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1. Introduction

The most important requirement for aeronautical appli-
cations of computational methods in fluid dynamics is the
capability to predict the steady flow past a proposed con-
figuration, so that key performance parameters such as the
lift to drag ratio can be estimated. Even in maneouvering
flight the time scales of the motion are large compared with
those of the flow, so that unsteady effects are secondary.
Thus the aerodynamic design will normally be based on
analysis of steady flow. In fact unsteady flow due to buffet
or wing flutter is not acceptable for normal operation, so
the analysis of unsteady flow is required primarily for
checking the structural integrity at the limits of the
flight envelope, such as establishing that the minimum speed
at which flutter can occur is greater than the maximum
permissible speed in a dive. It is particularly important
to be able to calculate steady solutions of aerodynamic
flows in the transonic range, where the formation of shock
waves leads to the onset of drag rise, and a drastic deteri-
oration of the 1ift to drag ratio as the speed of the air-

plane approaches the speed of sound.
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In the last decade revolutionary progress has been made
in our ability to predict complex transonic flows past wings
and wing-body combinationsl_4. Most of this work has rested
on the assumption of potential flow, which allows the Euler
equations to be reduced to a single second order partial
differential equation of mixed type for the potential. As
the Mach number is increased and the shock waves become
strong enough to produce appreciable amounts of entropy and
vofticity, the assumption of potential flow becomes progres-
sively less acceptable. Some disturbing discrepancies be-
tween potential flow solutions and solutions of the Euler
equations have been noted at quite moderate Mach numbers,
such as the NACA 0012 airfoil at Mach .8 and an angle of
attack of 1.25° . Some non-unique solutions of the potential
equation have also been discovered for flows containing
fairly strong shock waves, raising the question of whether
the Euler equations admit a similar non-uniqueness, and
whether these solutions are stable solutions of the time
dependent equations. There are also engineering applications
where the flow is essentially rotational. For example, there
is renewed interest in the use of propellers to increase the
propulsive efficiency of long range transport aircraft. This
leads to the requirement to predict the flow over a wing in
a swirling slipstream behind a propeller. Thus there is a
real need for an efficient method of calculating steady
solutions of the Euler equations without introducing the
assumption of potential flow.

The conditions for the existence and uniqueness of a
steady state solution of the Euler equations are not well
established. It is, however, an accepted practice to
integrate the time dependent Euler equations until the
solution approaches a steady state.7_9 For the case of a
flow in a domain exterior to a body, one anticipates that a
steady state will be reached by the propagation of distur-
bances to infinity. This paper focusses on ways to increase

the efficiency of this procedure. The following guestions



Steady-State Transonic Flow 39

are addressed in particular:

1. The choice of an efficient time stepping procedure
to maximize the amount by which the solution can be
advanced in time for a given amount of computational
effort.

2. The choice of dissipative terms to prevent undesired
oscillations in the solution.

3. The treatment of the boundary conditions in the far
field to reduce reflection of waves back into the flow
field.

4. Acceleration of the rate of convergence to a steady
state by artificial modifications of the time dependent
equations.

The work has been conducted in cooperation with

Wolfgang Schmidt* and Eli Turkelt

2. Finite Volume Scheme for Space Discretization

Since the emphasis is on steady state solutions, it is
convenient to formulate the space and time discretization
procedures separately, in such a way that the steady state
solution is independent of the time step, so that very
large time steps can be used without altering the solution.
The scheme must be able to represent the stationary shock
waves which can be expected to appear in a steady transonic
flow. For the present purpose, however, the ability to
simulate travelling wave fronts without distortion over
long periods of time, as might be needed, for example, for
a Riemann problem, is of secondary importance, as long as
the final steady state solution is unimpaired. It turns
out that it is not necessary to resort to upwind differ-
encing and flux vector splittinglo'll. Quite satisfactory
representations of stationary shock waves can be provided
by the use of a comparatively simple central difference
scheme, augmented by the addition of dissipative terms
with a magnitude determined by local flow gradients.

* Dornier Gmbh, Friedrichshafen.
+ University of Tel Aviv, Israel.
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In order to provide the flexibility to treat
arbitrary geometric configurations a finite volume formu-
lation is used for the space discretization. Let
P, P, u, v} E and H denote the pressure, density,
Cartesian velocity components, total energy and total
enthalpy. For a perfect gas

- p 1.2 2 - p
E = + = . = + =2
-T)p 2(u +v+), H E (1)

where y is the ratio of specific heats. The Euler
equations for two dimensional inviscid flow can be written
in integral form for a region @ with boundary 39 as

0] waxdy +§ (fdy - gax)= 0 (2)
Q EEY)

where x and y are Cartesian coordinates and

w = P ’ f = pu r 9 = pVv (3)
pu pu?+p pvu
oV ouv pv2+ p
pE puH pVvH

The computational domain is divided into quadrilateral
cells as in the sketch, and a system of ordinary diffe-
rential equations is obtained by applying equation (2) to
each cell separately. The resulting equations can then be

solved by several alternative time stepping schemes.
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Let the values of the quantities associated with each
cell be denoted by subscripts i, j. (These can be regarded
as values at the cell center, or average values for the

cell). For each cell equation (2) assumes the form

ge (W) + 0w = 0 (4)
where h is the cell area, and the operator Q represents an
approximation to the boundary integral in the second term of
equation (2). This is defined as follows. Let Ax, and Ay
be the increments of x and y along side k of the cell,

with appropriate signs. Then the flux balance for, say, the

x momentum component, is represented as

At

)
Tt (hpu) + (qkpuk + Aykpk) =0 (5)

=1

where h is the cell area, q is the flux velocity
9 T AU T 8%V (6)

and the sum is over the four sides of the cell. Each
guantity such as u, or (Du)l is evaluated as the average of

the values in the cells on the two sides of the face,

1 1
(Du)l = 3 (pu)i,j + Vi (pu)i’j_l (7
for example. The scheme reduces to a central difference
scheme on a Cartesian grid, and is second order accurate

provided that the grid is smooth enough.

3. Dissipative Terms
The finite volume scheme is augmented by the addition

of dissipative terms designed to suppress the tendency for
odd and even point oscillations, and to limit the generation

of wiggles and overshoots near shock waves. The basic
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dissipative terms are second differences with a coefficient
proportional to the absolute value of the second difference
of the pressure. Thus the coefficient is very small except
in regions of large pressure gradient, such as the neighbor-
hood of a shock wave or stagnation point. The amount of
dissipation provided by these terms proved sufficient to
eliminate ripples from the solutions, but the calculations
would generally not converge to a completely steady state.
Instead, after the flow reached an almost steady state,
oscillations of very low amplitude (with max %%~" 10—3,
for example) would continue indefinitely. The oscillations
had long time periods, as if they were induced by reflec-
tions from the boundaries of the computational domain. It
turns out that the calculations do converge to a completely
steady state when the amount of dissipation in the smooth
part of the flow is increased by the introduction of terms
containing fourth differences. A fixed coefficient can be
used for these terms without impairing the overall order
of accuracy of the scheme. Near shock waves, however, the
fourth differences tend to induce overshoots. This can be
prevented by subtracting the coefficient of the second
differences, which becomes large in regions of high pres-
sure gradient, from the coefficient of the fourth
differences, so that the terms containing the fourth
differences are switched off when the terms containing the
second differences are switched on.

This leads to the following scheme: equation (4)

is replaced by the equation

(hw) + Qw - Dw = 0 (8)

oY TN

t

where Q is the spatial discretization operator defined by
equations (5-7), and the operator D introduces the

dissipative terms. For the density equation

= (9
Do DXp + Dyp )
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where D o and Dyp are corresponding contributions for the

two coordinate directions, written in conservation form

D =d,,1 . -4, 1. 10
xP it+5,3 dl—j,] (10}
D =d, .,1 -4, . 1
yp ll]+§' 1,37x

The terms on the right all have a similar form:

for example

(2)
d,, 1 . =h,,1 .(e3 1 . ~
its,] it5.] i+z,3 (°i+1,j pi,j)
At
(4)
- £
i+%,j (Pi42,573%441,3%3°1,57P1-1,54
(11)
where h is the cell volume, and the coefficients 5(2) and
3(4) are adapted to the flow. Define
. . = 2p. . + DL .
v, . = Pi+1,j Pi,j T Pi-1,3 (12)
o3 Pit1,3 ¥ 2Pi,3 * Pi-1,j
Then
(2) _ (2 13
€ i+%,j 3 max (vi+l,j’ vi,j) (13)
and
5(41 = max 0, (K(4) - 6(2% 1 .) (14)
l+‘2"rj l+§lj
(2) (4)
where typical values of the constants x and « are
2y _ 1 (4y _ 1
“ =7 256
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The dissipative terms for the remaining equations are
obtained by substituting pu, pv and either (opE or opH for
p in these formulas.

The scaling h/At in equation (11) conforms to the
inclusion of the cell area h in the dependent variables of
equation (8). Since equation (11) contains undivided
differences, it follows that if ¢ 2} = 0 (ax2) and ¢ %
= 0 (1), then the added terms are of order Ax3. This will
be the case in a region where the flow is smooth. Near a
shock wave 8(2) = 0(1), and the scheme behaves locally like

a first order accurate scheme.

4, Time Stepping Schemes

The objective of the time stepping procedure is to
advance the solution to a steady state as rapidly as
possible for a given amount of computational effort. The
use of an implicit scheme permits a larger time step but
requires more effort per time step. To keep the operation
count for each step within reasonable bounds one has to
resort to some kind of factorization, such as that of
Beam and Warminglz. When the time step At becomes large
the factorization is then dominated by terms of order at?,
so that the optimal step for convergence to a steady state
is not necessarily as large as all that. The present
investigation concentrates on the use of explicit schemes
which allow relatively large time steps. These have the
advantage that they are readily amenable to vectorization,
so that the resulting code can take full advantage of the
power of vector computers such as the Cray 1 or Cyber 205.
Multistage two level schemes of the Runge-Kutta type have
the advantage that they do not require any special starting
procedure, in contrast to leap frog and Adams-Bashforth
methods, for example. The extra stages can be used either

(1) to improve accuracy, OY
(2) to extend the stability region.

An advantage of this approach is that the properties of
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these schemes have been widely investigated, and are
readily available in textbooks on ordinary differential
equations.

In the present case, if the grid is held fixed in
time so that the cell area h is constant, the system of

equations (8) has the form

dw _

gxt Pw=0 (15)
where if Q is the discretization operator defined in
Section 2, and D is the dissipative operator defined in

Section 3, the nonlinear operator P is defined as

(Qw - Dw) (16)

T

Pw =

The investigation has concentrated on two time
stepping schemes. The first is a three stage scheme which
is defined as follows. Let a superscript n denote the time
level, and let At be the time step. Then at time level n

set
w(o) =W
w(l) = w(o) - At Pw(o)
w(z) = w(O) - %} (PW(O) + Pw(l)) (17)
w3 = w0 _ %; (Pw(o) + Pw(z))
n+l _ _(3)
w =w

Variations of this scheme have been proposed by Garyl3,
Stetterl4, and Graves and Johnsonls. It can be regarded
as a Crank-Nicolson scheme with a fixed point iteration
to determine the solution at time level n+l, and the
iterations terminated after the third iteration. It is
second order accurate in time, and for the model problem

u, + auy = 0 , u(x,0 given ) (18)
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it is stable when the Courant number

At
axls 2

This bound is not increased by additional iterations.
Compared with standard third order Runge-Kutta schemes,
this scheme gives up third order accuracy in time in
favor of a larger bound on the Courant number.

The other scheme which has been extensively
investigated is the classical fourth order Runge-Kutta
scheme, defined as follows. At time level n set

w0 .

w(l) - W(0) _ %; Pw(O)

w(2) - w(.0) - %} Pw(1) (19)
w(3) = w(o) - At Pw(z)

w(®) = w(o) - %? (Pw(o) + 2wy 2pw ')+ Pw(3))
wn+l - w(4)

This scheme is fourth order accurate in time, and for the

model problem (18) it is stable for Courant numbers

‘aAt 2

Its stability region, which is displayed on page 176 of
Ref. (16), for example, also extends well to the left of
the imaginary axis, allowing latitude in the introduction
of dissipative terms.

Both schemes have the property that if pw’ = 0
then w(l) = w(o) , and so on, so that wn+l = wn, and
the steady state solution is

Pw = 0
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independent of the time step At. This allows a
variable time step determined by the bound on the local
Courant number to be used to accelerate convergence to a

steady state without altering the steady state.

The expense of re-evaluating the dissipative terms
at every stage of these schemes is substantial. One
method of avoiding this is to introduce the dissipative
terms in a separate fractional step after the last stage
of the Runge-Kutta scheme. Thus equation (16) is replaced
by

Pw = & Ow (16%)

and the fourth order Runge Kutta scheme defined by
equation (19), for example, is modified by setting

S R3] (4)

+ AtD w
This method has the advantage that the stability pro-
perties for the two fractional steps are independent, so
that the scheme will be stable if each fractional step
is stable. It has the disadvantage that the steady state
solution is no longer independent of the time step.

An alternative approach which has proved successful
in practice, is to freeze the dissipative terms at their
values in the first stage. Thus the fourth order Runge-

Kutta scheme is modified so that it has the form

(0) _ .n
% =w
w(l) - w(0) _ At Qw(0) N %% Dw(0)

(2y _ . (0) At (1) At (0) 20

= W - >h ow + >h Dw (20}
w(3) - w(O) » %%-Qw(z) " %? Dw(o)
w(4) - w(0) _ %% (QW(O)+ 2Qw(l)+ 2QW(Z)+ Qw(3))
+ AF pw (0)
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The operators Q and D require roughly equal amounts of
computation. Assigning to each 1 unit of work, and assuming
that dissipative terms would be required in the leap frog
or MacCormack schemes, both of which have maximum time steps
bounded by a Courant number of one, one obtains the

following table for the relative efficiency of the schemes:

Efficiency

Evaluations Evaluations Maximum = time ste
Scheme of Qw of Dw Work Courant Number work
Leap frog 1 1 2 1 1/2
MacCormack 2 1 3 1 1/3
3 stage 3 3 6 2 1/3
4 stage 4 4 8 2.8 .35
4 stage 4 1 5 2.8 .56

{frozen Dw)

5. Boundary Conditions

The rate of convergence to a steady state will be
impaired if outgoing waves are reflected back into the
flow from the boundaries, so it is important to treat the
boundary conditions by a method which minimizes wave
reflection. Consider first the boundary condition at the
profile. Let X and Y be local coordinates such that the
boundary coincides with a line Y = constant. Using sub-

scripts X and Y to denote derivatives, the Jacobian

h= x,¥y = Xy¥y -
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corresponds to the cell area of the finite volume scheme.
In differential form equation (2) then becomes
2

3 9 - =
T (hw) + == (yyf - ng) + 5y (249 v¢E) 0 (21)

Consider the flux balance for a cell adjacent to the
wall, as drawn in the sketch. There is no convected flux

across side 1, since

Xy = yyu = 0 (22)

But there are contributions Ayp and Axp to the momentum
equations, which require an estimate of the pressure at the
wall. Taking the time derivative of equation (22) multi-
plied by p, and substituting for ;% (hpu) and g% (hpv)7
from equation (21) leads to the relation (given by Rizzi™ ')

(XX2+ yxz)pY = (xgXy + Yy¥y)Pyg + p(yYu—xYV)(vaX—quX) (23)

Thus we can estimate Py in terms of guantities which can be
determined from the interior solution, and we can use this
value of Py to extrapolate the pressure from the adjacent

cell center to the wall.
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In order to treat the flow exterior to a profile one
must introduce an artificial outer boundary to produce a
bounded domain. If the flow is subsonic at infinity, there
will be three incoming characteristics where there is inflow
across the boundary, and one outgoing characteristic,
corresponding to the possibility of escaping acoustic waves.
Where there is outflow, on the other hand, there will be
three outgoing characteristics and one incoming
characteristic. According to the theory of Kreisslg, three
conditions may therefore be specified at inflow, and one at
outflow, while the remaining conditions are determined by
the solution of the differential equation. Stable boundary
conditions have been given by Gottlieb and Turkel19 and
Gustafsson and Oliger20 for a variety of difference schemes.
The treatment of the outer boundary condition adopted here
follows 'similar lines. The equations are linearized about
values at the end of the previous time step, and the
characteristic variables corresponding to outgoing
characteristics are then determined by extrapolation from
the interior, while the remaining boundary conditions are
specified in a manner consistent with the conditions
imposed by the free stream.

If a, and g, are the velocity components normal and
tangential to the boundary, and ¢ is the speed of sound,
the characteristic speeds for waves impinging on the
boundary are Qnr Dy q,-C and qa, + ¢. Let values at the
end of the previous time step be denoted by the subscript o.
Then the corresponding characteristic variables of the

inearize tions are p-c?2 - + .
linearized equa p-cge . Dy s P pocoqn and p pocoqn

Let values extrapolated from the interior and free
stream values be denoted by the subscripts e and . Then

at the inflow boundary we set
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- c2 = — 2
p cop P, CiPow (24a)
9 T 9t (24b)
P-r,c9, T P, ~ pocoqnw (24c¢)
P+ pocoqn = pe + pocoqne (244)

yielding

1
pP=3 (pe +p, t Ooco(qne- qnw)>

3 P - P,
9y =9 T 5
@ o o
The density can be determined from (24a). For steady state

calculations it can alternatively be determined by
specifying that the total enthalpy H has its free stream
value.

At the outflow boundary one condition should be

specified. If the flow is a parallel stream then

—%% = 0, so for an open domain

p =P, (25)

A non-reflecting boundary condition which would eliminate

incoming waves is

3

g (P 7 0589, =0 (26)

. . 21
This does not assure (25). Following Rudy and Strikwerda™,
{25) and (26) are therefore combined as _
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) : _
3F (p- pocoqn) + g(p - pm) =0 (27)

where a typical value of the parameter 8 is 1/8. The
velocity components and energy are extrapolated from the

interior.

6. Convergence Acceleration

Two ways of accelerating the rate of convergence to a
steady state are

1) +to increase the speed at which disturbances
are propagated through the domain
2) to introduce terms which cause the disturbances

to be damped.

Both have been attempted.

In differential form equation (1) is

AW 9 3 _
Wt £ + 559w =0 (25)

In a steady state w should satisfy

3 3 _

ﬁf(W)"‘ a—y—g(w)—O
In order to modify the speed of wave propagation without
altering the steady state one can multiply the terms
confaining the space derivatives by a matrix M to produce

the equation

ow 9 P _
E—+M{-§f(w)+ a—y—g(w)}—o (26)



Steady-State Transonic Flow - 53

In this work M has been restricted to the form I,

where A is a scalar multiplier. Then one can choose X

so that the equations are advanced at the maximum Courant
number permitted by the difference scheme at every point
in the domain. This is equivalent to using different

time steps at different points. The time stepping schemes
of Section 4 are so constructed that the steady state is
independent of the local time step. Consequently the

time step can be altered from one point to the next

without altering the steady state.

As a model for this procedure consider the wave

equation in polar coordinates r and ¢,

Rim

_ 2 3 1
¢tt = c 3 a7 (r?) + ;2 ¢ee§

Suppose that the wave speed c is proportional to the

radius, say ¢ = <ar. Then
b, = a2l 2 (xé ) + ¢
te T r gy (70) 06

This has solutions of the form

1 ~oant

¢ = 3Fe

H

indicating the possibility of exponential decay.
As a model for the introduction of damping consider

the telegraph equation

¢tt + a¢t = ¢xx + ¢yy

Multiplying this equation by ¢,, and integrating by parts

over all space leads to the relation
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aP o o«
sE e [ ¢t2 dxdy = 0
where
l o (o<
P= 3 a{i (3.2 + 0,2 + ¢y2) dxdy

Since P is non negative, it must decay if a > 0 until

¢ = 0. When relaxation methods are regarded as simulating
time dependent equations, it is similarly found that the
term containing %:plays a critical role in determining

the rate of convergence”~. One would therefore like to
find a method of introducing a term in the Euler equations

which would play a similar role.

Assume for the moment that there are no shock waves,

and consider the Euler equations in primitive form:

dp e =

T + pVeg =10 (27a)
ag

T + =Vp =0 (27b)
dH _ 1 93p _

aE " -0 (27¢)

where g is the velocity vector,

a 9
5 == +q -V

t 7 35t
and H is the total enthalpy. If h is the specific
enthalpy then

2
H=h+

o)

where g is the magnitude of g. The scalar product of
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equation (27b) with g can be subtracted from equation

(27c) to give

Q:lQ-
(adi=4
+
o+
a8
I
(=}

which implies the isentropic relation

dh+dTp =0
along particle paths. 2An initially hometropic flow there-

fore remains homentropic. Equation (27b) then becomes

ad _
& +tvh =0 (28)

Let T be the circulation § g - dx around a closed material

loop. Equation (28) yields Kelvin's theorem that

== =0g-dg~-¢vh-dx =0

Thus if the flow is initially homentropic and irrotational

it remains so. If one now assumes this to be the case,

so that
du _ v
oy b
and sets
a = v

where ¢ is a velocity potential, then equation (28) can
be integrated to yield the unsteady Bernoulli equation

3% +mw==n (29)
3t ®

where H_ is the total enthalpy in the far field.
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This suggests that the difference H-H_ can serve in
the role of ¢, - Suppose that the continuity equation
(27a) is now modified by the addition of a term containing

H~H_ so that it becomes

dp . _ -
aE + pV-g + ap(H-H ) 0 (30)

where o is a damping parameter. Since in a steady flow

H = H_,the steady state equation remains unaltered. Also,
since Kelvin's theorem is a consequence of equations

{(27b) and (27c), it still holds. Thus a flow without
shock waves should remain irrotational and homentropic,
and one can still introduce a potential and obtain the

unsteady Bernoulli equation.

Now on differentiating equation (29) with respect to

time it becomes

+ u¢ + vé + = =0 (31)

b Xt vt 5t
But

sh _ c? 9p

3t p at

where ¢ is the speed of sound, so equation (31) can be
combined with equation (30) to give the unsteady

potential flow equation with a damping term:

2
dre + 2u¢Xt + 2v¢yt + actey

= (a2~ v2) ¢ - 2uve o+ (aZ-vi)e

Yy
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This can be reduced to the telegraph equation by
introducing moving coordinates x~ = x -ut, y= = y -vt.
Thus at least in subsonic flow the added terms should
have the desired damping effect.

When the density equation is combined with the
momentum equations to yield a system of equations in
conservation form, the modified equations become

5 3 2 _
Ep—"ﬁ (pu) + W (pv) + p(H—Hw) =0 (32a)
d 3 2 P _
T (pu) + % (pus+p) + 3y (pvu) +a pu(H-H ) = 0
(32b)
3 3 3 » _
5 (pv) + == (puv) + = (pv°+p) +a pv(H-H_ ) = 0
t X 3y
(32¢)

2

9 ] _ -
5T (pE) + EQ(PUH) + o5y (pvH) + o pH(H-H ) 0

Y (32d)

The energy equation now has a quadratic term in H, like
a Riccati equation. This can be destabilizing, and an
alternative which has been found effective in practice

is to modify the energy equation to the form

3 3 2 - =0
§E(DE) + 53 (puH) + 5y (pvH) + «a(H-H))

which tends to drive H towards H_.
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7. Results

The ideas developed in Sections 2-6 have been
extensively tested in numerical experiments. Some results
are presented here for nonlifting flows past a circular
cylinder and an NACA 0012 airfoil. Because of the symmetry
the calculations were restricted to the flow in the upper
half plane. Polar coordinates were used for the cylinder.
An O mesh was generated for the NACA 0012 airfoil by
transforming the profile to a near circle by a Joukowski
transformation, shearing the near circle to a circle, and
then mapping polar coordinates in the domain exterior to
the circle back to the physical plane by reversing the
Joukowski transformation. In each case the mesh contained
64 intervals in the chordwise direction, and 32 intervals
in the normal direction, extending to a distance of about
25 chords from the profile, with a mesh interval near the
outer boundary of about a chord. In the case of the
NACA 0012 airfoil the cells adjacent to the outer boundary
had an area 25 million times greater than the area of the
smallest cell, adjacent to the trailing edge. The numerical
experiments confirmed that the modified four stage Runge-
Kutta scheme defined by equation (20) was more efficient
than the other schemes, and this scheme was used to
produce all the results displayed in this section.

Figures 1 and 2 show results for a circular cylinder
at Mach .35 and Mach .45. Each figure shows the computed
pressure distribution and the convergence history of the
calculation. The flow is fully subsonic in the first case,
and there should be no departure from fore and aft symmetry
if the calculation were exact. The flow should also be
isentropic. The calculations were normalized with p = 1
and o = 1 at infinity, so the quantity § = p/pY - 1 can
be used as a measure of entropy generation. The maximum
computed value of S was .0003. At Mach .45 there is a

moderately strong shock wave, as can be seen in Figure 2a.
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The entropy was computed to be .0120 behind the shock wave.
The measure of convergence plotted in the figures is the
root mean square value of %% (calculated as Ap/At for a
complete time step). In the subsonic calculation this was
reduced from 1.32 to .167 10-6 in a 1000 cycles, with an
average reduction in the error of 1.6 percent per cycle.
Convergence was faster in the transonic case, at an average
rate of 2.1 percent per cycle for a final error of .778
10—9. Another measure of convergence is the deviation of
the total enthalpy from its free stream value. The final

root mean square value of this deviation was .214 lO-6 in

the subsonic calculation and .101 10—8 in the transonic
calculation. Both calculations were performed at a fixed
Courant number throughout the domain, and the enthalpy
damping terms defined in Section 6 were included. The
initial condition was uniform flow. The solid wall
boundary condition was enforced at the first cycle, as if
the cylindrical obstacle were suddenly inserted in the flow.
This creates very large disturbances, but the pattern of
the flow field was still established in about 400 cycles.
Figure 3 shows the result for an NACA 0012 airfoil
at Mach .8 and zero degrees angle of attack. 1In this case
the potential flow solution was calculated first and used
as the initial condition for the Euler solution, allowing
a comparison of the two results. The potential flow
solution is shown in Figure 3a and the Euler solution in
Figure 3b. It can be seen that at this Mach number the
location of the shock wave is identical in the two
solutions. In the Euler calculation the entropy behind
the shock wave was computed to be .0053. When the Mach
number is increased to .85, the entropy production through
the shock wave rises to .0120 and a substantial deviation
develops between the potential flow and Euler solutions,
with the shock wave about 10 percent of the chord further
aft ‘in the potential flow solution. Fiqures 3c and 34 show
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the convergence history with and without enthalpy damping.
The average reduction in the error was improved from .9
percent per cycle to 1.4 percent per cycle by the enthalpy
damping.

These results confirm that steady state solutions of
the Euler equations can be calculated with quite moderate
consumption of computer time. The present implementation
of the fourth order Runge-Kutta scheme requires about 400
floating point operations at each interior cell. 1In a mesh
with 64 x 16 = 2048 cells each cycle therefore requires
about .8 megaflops (million floating point operations). The
code, which is written in standard FORTRAN, runs at about
50 cycles per second on the Cray 1 computer, corresponding
to a computing speed of about 40 megaflops a second. A
typical run is sufficiently converged for engineering
applications in 500 cycles, and requires about 10 seconds.
The method has also been coded for the three dimensional
flow past a swept wing. In this case about 700 floating
point operations are required at each interior cell. On
a mesh with 80 x 12 x 16 = 15360 cells each cycle requires
about 11 megaflops, and converged results are obtained in
about 500 cycles, taking about 3 1/2 minutes on the Cray 1.
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