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HNAGNETORYDRODYNAMIC WAVES
by

Antony Jameson.



SOMMARY .

The ides of magnetohxdrodynamié Wavea wasg
introduced by Alfven in 1942 and these waves have been
poétulated as the basis of various cosmic phenomena such
as punspots and magnetic vari_able stars. However, there
has been & lack of any convincing experimental
demonstration of the waves. Experiments with gases
involved other interactions, and the only experiments with
liquids, by Lundquit snd later, under more favoursble
conditions, by Lehnert, failed to produce any really
wavelike behaviour.

In this thesis the equations governming
nagnetohydrodynamic waves are examined in detail.
Chapter 3 treats steady state situations. The effects of
damping both by eleciric resistivity and by viscosity are
taken into account. The premence of terms repregenting
these raises the order of the equations so that the
solution for a one-dimensionsl system hag two modes, only
one of which is wavelike, but either of which mey be the
more important. The solutions for two-dimensional and
sxisymmetric systems are obtained as eigenfunction
sories, in whieh the two modes are represented in the
coefficient of each term. It is found that side wall



damping will dominate the situation if the fluid region
is t00 narrow. It was this which prevented Lehnert from
producing wavea. Chapter 4 treats tranaient situations.
The solution is found as a Laplace transform which can
be inverted as a series quite simply if either viscous
or resistive damping ie absent, or if the two are equal.
In these cases the same solutions can also be obtained

directly as eigenfunction series.

On the basis of the theory developed it appeared that
using the beat available liquid conductor, sodium, with
a field of .5 to 1.0 webor/nz. and provided that the
fluid region was not only about 15 cm deep but also
quite wide, 1t should be posgible to demonstrate
convineing resonant phenomensa in steady state situations,
and propagation and reflection of tramsient waves.
Chapter 5 deecribes experiments fulfilling these
conditions in which resonant magnification of the
transverse field by as much as 9 times at the centre
0f the fluid region was obmerved, and in which trensient
waves were seen 1o propagate through the sodium depth a
number of times, bveing reflected back asnd forth,
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NOTATION.

Notation for general analygias:
t tinme.
B electric field.
B magnetic field.
Q charge denaity.
i current density.
™ magnetic¢c conetant.
N electric constant.
v resistivity.
X = -’r!:- electric diffusivity.
u velocity.
p pressure.
r denaity.
W\ vigoous diffusivity.

Notation for wave equations:

x,y,2 or x,y,@ coordinates.
B, fixed x component of 3.
Bl' u variable 2z or ¢ components
of B, u.
c = —B-o—; wave speed.
(P)
B
h = -(-F:;F v
d typical length.
T = laq dimensionless time.



X = E , Y= % dimensionless coordinates.
X

Ne ~ dimensionless damping parameters.

d half depth.
P frequenaqy.
Pa p—.?-' dimensionless rroquohoy.
H, U phasor representations of h, w.
K.,k roots for the two modes.
Klakld. Iz-kzd dinanaion.leac roots.
Ty, T ) multipliers for the two modes.
Q = = 41

(Xv) (AN)

%
- (%) = (%

8 = $evip - AsN) P

2°2 2

power intaks.

D ‘ power digsipation. .
Notation for a plane or ¢ylindrioal svptem in a stesdy state:
d,e ~ half depth, half width.
-2 |

=3
Yis I3 inner radius, outer rsdius.
0 =22

41

Di(x), Ety) eigenfunctions.



B, 1 ' aelgenvalues.
N, N | dimengionless eigenvalues.
4 " tem in expanmsion of f.

3, (ny.) Y (ny
'= LA CTA NS A
!l .
I=1 or ¥ boundary value.
Z=H-1

_ Yor each temm of the expansion the notation follows
the one-dimensional analysis with in addition:

a multiplier for each tem.
2 ATl
3 Qein” | AR
2p 2P
Notatl tems wi ' 11p:

The notation follows the earlier notation with:

~ Suffices a,b fluid and walls.
k, J roote for fluid and walls.
o d multipliers for fluld end walls
in eigemfunction expansions.
8 ratio deriving from the

boundary condition for XK.



p | variable for Laplace trangformation.
F 4 : Laplace transform of f.
gs=h-1

Otherviess the notation follows the notatien for the
steady state analysis except:

N 2
ool
b= (0212-32)*

-1 A =1 AN
0 = ain ?g--m S

0 fo lane or
Iranaient el tuation:

The notation follows the notation for a one-dimensional
aystem in a transiemt state with the same notatien for
. axpansion in dgmetion. as wvas used for a planse or
eylindrical aysten in a steady state.
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CHAPTER 1.
PROLOGUR.

1.1 Magnetohydrodynamic waves.

The poseibility of magnstohydrodynamioc waves was
firet established by Alfvent in 1942, The stresses in a
‘magnetic field cen be resolved into e hydrostatic pressure

2 2
B together with e tension 2 along the lines of force.

2 *

'I:han incompressible fluid the first can be balanced by
the preassure of the fluld, leaving only the second,

4ls0 in = perfectly-conducting fluid, motion of the

fiuid Acmss the lines of force 18 preverited by the
induced currehts which such a motion would cause, s0 that
- the fluid and tue lines of force move always together and
ve can think of the fluid masa as attached to the lines of

forces These therefore are like atretched strings in

2
which the ratio of tension to density is é%;, and they

are able to carry waves moving at a speed I~Ji§; like
- \Yi

stretched sirings. 3Such wavea in a fluid which is not
ideal will be demped by electrie resistivity and
‘viscoslty. They can be generated by fluctuations in the
‘fluid velocity at the boundaries caused by wall movement,
or by fluctuastions in the magnetic field at the

boundaries caused by currents in conducting walls. Thene



currnts ert glther be prodveed divectiy by oo licotion
0 a potentdal differoince o wedln insloved Crom the
flvid, or induced by wovaacnt of the walls rcoioge the

cppdled Tflaeld,

1.2 Previousg experinecnts.

There have been two ntteupts to rrodce these waves
* - 2 h)
in liguids, the first by Lundguist™, und t.e second by
Luknertsc Tuore hove aleo beocen sole axperiienta yith

ionized guses. Tiicrde are less gulted to cuaniitative

—

mensurenents, and here only waves in liguids will be

tleougoead,

Lundguipt uged mercury in a cylindriel cﬂntuineﬁ;
oren ot the top, ficure l.1l. He sseillated £ dice, ribbed
So srevent loss of e motion by slip in o~ vieeous boundazy
Ioyer, ot the botton of the container, nil orgureld tite
surfien gprecds at tne top. At correct Treoavencics for
q iven field ticre siould be regonances, uld in an idesl
2d syotem the surface velocity gshnould then tend to
iﬁfinity. Fecuuse of the low conductivity of wmereury hie

did not in Fact sueceed in obiteiuing any resonance at all.

In ordcr to reduce the danping Lehnert uged ligquid

roulwl, which has five times lhe conduvetivity of mercury.
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He aleo used a cylindrioal container, open at the top,
and oscillated & disc at the bottom, figure 1.2. But in
this ease the disc was of copper, and the excitation was
chiefly by the induced currents flowing in it. He used
a fixed frequenay of 30 c/s and varied the field, and
thua the resonant frequenay of the aystem. He measured
the potentiel differsnce between two probes on the
surface induced by the fluid movement. His results are
shown in figure 1.5. The maximym potential differsnce
was only 1.15 times the potential difference at an
infinite field intensity.

An exsmination of the wave squations makes it
clear that the deming wes chiefly dus to the side walls.
Iauixdquiatz vag aware of the importance of side wall
damping, but Lelmort’ makes no ocomment on it. Also by
varying the field with the frequency fixed the field as
resonance was only about halt the maximum available
field so that conditions foi- mé formation were not as

favourable as they might have bean.

¥hen the author joined the magnetohydrodynsmics
group at the Cambrid.go University Engineering Department



i:. 1.5~ there had un boen no cxperiment:l dorornstrotion

¥

o well developed waves under conitrolled vrntitative
coninitiong, and o further investigution genncl vorthwhile.
In e yregent work, stnrted after digousclong with

Dr. Skerelilf, who wuase intérested in the po.-ibility of
in evpuriacnt usging clectric exeitation, thce iheoretieal
behaviwr of the waves in botty steady state and transieont
sitvations is nnalysed in Chapters 2-4. Chopter 5
digscusites thae deslgn of on cpoarestus to produce (uite
well devaleped waves, oind pregents the results of gteady

FS

strte ard trensient crperiments with such -n apperctus,.



CHAPTER 2.
PRELIMINARY THEORY.

2.1 The wave equations.

Derivations of the wave equations can be found in
gtandard worksa’s. The development for plane and

axigymmetric aystems is here summarized.

We start with tbe usual eguations of

nmagnetohydrodynamics, in which the electric force gq E
=)

and the displacement curremt € -é-'% are assumed negligible.
The equatione for en incompresgible fluld are then
] 2B
V 3 _E_ = %
Vxi=y]
V.3=0

Ti=B+uxB

du JxB Vp
Fr i IR AT

v-_1_1_=0

Proﬁ these

5t = VT (uxB) +NAB
NVu - u VB + AAB,

I

A=

Tl



Fretp X
- /—/.r'
— )
\ .
CARTESIAN COORDINATES CYLINDRICAL COORDINATES
i 2 201

Take Ceartesian coordinates x, ¥y, z or cylindriecal
coordinates x, y, § where ¢ 1o measured about the
x axis, and assume either that the system doea not vary
in the 2z direction, or that it is axially symmetric
about the x axis. Assune also that the only components
of B and u which ere not zero are a fixed x

component of B, B and varigble z or ¢ components

O!

of B and u, B1 and u. Then in the first case the

equations reduce to

0 22X
3 2B
2 ..o 1
(:-b-{-VA)u—- s ax
2P
3x =0
2P



while in the second case they reduce to the same first

three equationg but with
_ﬁ_,,’g_z=.t£
PPy y y
In the second case differentiating the last two of the

*

four equations with respect to y and x gives
2 .
2.0
2

2% ) =0.

Yy
This does not necessarily hold for & solution of the
first two equationa. Our assumption that it is posaible
for the x and y components of 2 and u 1o vanish
ig thus not valid, but if we assume Bl and u are
small enough for their squares t be neglected & solution
of the first two equationa still represents a good
_approximation of the true situstion. Whem X\ = v =0
these two equations become the classgical wave equations
for a wave gpeed

5

o7 (rﬂ);

If we replace Bl by
h = —=—7
(ve)?
g0 that both variables have the dimengions of velocity,

the pair appears in the mors symmetric‘form



2 ‘°u
5 - )b = e 55

2
AR

2.2 Boundary congitiohg.

At a boundary between twoe resistie media of the
same parmeability ind dielectric oonstanf the tang?ntial
component of ¥ and the tangential and normal components
of B and u are contimuous. The assumptions of 2,1 imply
continuity of the normal components of B and u, and since
E=7"0-uxp vi= Vxj
the remaining conditions are satiafied if on & wall

X =8 1f
X_%% + cu, h and u are continuous

and on a wall y = a if

i

— h and u are continuous.

If one of the media is inviseid, there may be a
discontinuity of u. If one of the media is & perfect
conductor a current sheet may form with a disoontinuity
of h aoross it. If one of th§ media ie a
non conductor so that X\ ip infinite amd ] zero,

the condition for E does not apply.



Finally we note that eince

Vx 3= pl
B, in a plane, or ¥ Bl' in a cylindrical system is
a strea:m Tunction for pj, and therefore constant at a

non-conducting surface.

2o% limitink caues.

hen ~ 0T X -—oc 3 Au or ADh—0, since the
other terms remesin finite. But & fuuction whicn satisfies
Laplace's eque;tion and is constant om the voundaries is

constant everywhere, Bc that in these cases 1f u or h

is constent on the boundarias, %% or %% —Q, and the

equations redvce to

(Z -AQm =0

Il

or

{—;—_E ~-vQ)u = ¢
he first of'these is the equation for tne skin effect
in a conducting solid, the“second the egquation for a

velocity woundury layer in a non-condueting ligudd.

-

when v or X =0 the equastions
3 n o= o 22
3u _ .2k



10
or

(%-VA)U' = (_'!t"-'-'g

2x
reduce to
22 2 2° 22 2 2 2%
2t2 >x° e O 222
or » 5
22 ") 2 2 > 2 22

AI! we solve for h and u independently each from their
omn boundary conditions the equations connecting them
could fail., But if v = 0 u is indeterminete at the
boundary because free slip is possible, and if » = 0

h 1is indeterminate ut the boundary, because a current
sheet can foim along the wall — a ourrent sheet across
thie field involves an infinite force densitjr from the
magnetic force § x B8, but at a wall slip would
introduce an infinite visaous strese, so this is poseidl e,
In the firat case we therefore sglve for h and determtine
u from .h, whereas in the second we solve for u and
determine h <from u.

2.4 Mmengionless fomm of the equations — damping terms.
If d is a typioal length of ﬁ;e gystem the

equations can be put in dimensionless form by the




gubgtitutions
: t b

xe3, YT=9. T=F, N=g. Veomo
capitals representing the dimensionless variables.
The transformed squatisns are

E W VNI ?ﬁ
At & boundary X = A

/\%& +w, h snd u are continuous,

at & boundaxry Y = 4

/\%—%. h and u are contimuous.

The properties of a one dimengional aysitem are thus

entirely determined by the damping terma /\ and A .

Taking the 6r1p.nal brackets (% ~-XxA)h and (-;f’; BEVIAR T
with % as the typical time, we see t2at they represent the
ratios of the damping to the inertial terms in each. They
are the reciproecals of the magnetic and viscous Reynolds
numbers based on the wave speed, and the parameter %\ wad
introdueed by Iunndquist as a measure of the electiric

quality of the system .

2.5 General properties of golutions.

Since differentiation converts an even function to an

odd function, or sm odd one to an even one, a solution
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for A even in x must be balansed by a solution for u
odd in x, and a solutiom 0dd in x muet be balaxced by

a solution evem in x. Therefors if the boundary conditiona
for h and u are even and odd respectively, an odd
‘solution for h must represent a transient, and will die
out, s0 in general the solution will be of the same type

ap the bo'undary conditions.

For a steady state, assuming

h o= Heipt, u = Ue‘tpt,

the equations reduce to

20U
(ip-2"& ) H = ¢ 53

(1p..w.x) U - o2%

Combining thess
((1p~\b)(1p-*'&) - o° —3)8 = 0

Supposs that H = I(x) X(y).

Then for & plane system we get
P2XY + 1p(t ) (X T+XX") o X Ye2X Y ex¥™ )4+ 2X"Y = O
Bow if
" ' 2 e IR

Y =wny, Y =.nY -n4Y, n a constant,

we get on dividing by ¥y
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PPX + 1p() (X020 ~ e (X =202 4n%X) + 0" = 0
and the varisbles are separated.

12 the variables are replaced Sy variables which
vanieh at the walls it is now possible to find a sblution
sgtigfying the boundary conditions on both H and U as
& series of eigenfunciions because the nature of the y
varigtion temms is the seme for both.

If we put

I' - - mex

we can again separete the vardables. But in this case the
elgenfunetions would have to satisfy two boundaxry econditions
- at each end because of the croas derivative terms between

H and U, and thig is impossible. An expansgion in
eigenfunctions of x beocomes possible only if ~ or™ =a 0O
80 that one boundary condition is relaxed.

Por transient situations from which 1t bhas not been
eliminated an attempt 1:0. separate both z and y in this
simple way thus bresks down in the most general case, and we
carmot expect to find such simple solutions.

When N ='v the equations

2 . <
L’t “&)h - Cax

2 ‘- o2
("t-;A)u Oax



oan be exprasasd an two independent equstions by the

gtbhatitutions

h+u=1w, he-ua=2w

ioh cive

The oy gtex 1z thus rodiced from &
cgennd oTdsT system mnd evponsion

oo rinte eigeufunetiors of &

fourth arder to =
g now poucivble in

o Yo

14
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GHAPTER .
STRADY STATE THEORY.

3.1 Separgtion of the different aspects of the waves.

The behaviour of the waves is more easily underatood
if the different underlying factors are isolated. The
equations will here be studied first in steady state
situations and secondly in transient situations. In each
case one-dimensional situations will first be examined to
eluoidate the baslc behaviour and the effect of side walls
will be exsmined subsequently.

3.2 Half infinite system.

Congider now the general case of a half infinite
system in a steady state

If H and U are the phasor representations of h and
u the equations are
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22
{1p -)\'——-)H = o?U

'31

(ip -V—-z-)U = e 37 EH

These are satisfied by H = r .ikx U= en“ if

(ip + 2% r = 1ok
1p+vﬁk2=ickr o
(1p+)\k2|)(lp+vk2) + 042 2t o (0241(>\+v)p)lt2-p2 =0

kzn-a.:_(a.ad-ﬁ)*
2 2
e +1L>~+V)_g

2a = Nv 5‘)?;"

For each valuo of k2

5
. ok ip +vk

T = -R—T-

: ip N :

2L ip vl
ip + n k© )
Represeptative boundary conditions fer magnetic and
mechanical excitation are
H=1l, Um0 at the wall (1),

end
H=0, U=1 at the wall (2).

These can be satisfied by a combination of terms involving

the two Ivots for x°. e solutions for ceases (1)

and (2) are

1k, x ak,x | iox Ak
g - ﬁ i. - EZ 0‘- : . U w ] - §
I‘l - 1'2 1'1 - I"2



and 1l x 10,x

, 2
- S
H'Qik}-z"_!ikgx U::fl‘ rg_
1 31 1 _ 3
- T

B T -
where k1 and k2 must Yo given migns such that

B, U—~0 gteo.’

In a case whers -2\-%. -\‘-%«1.
) c

-% <<l
a
and >
2 ' e « 1(x+v )p
k E T e .
2 0 .)w
2

klag,.ﬁ.- Z_L
R + 1(XNeVv)p

Ap Y
l‘de cannot ignore 02 . ;%\ cgnpared with 1 in kl' kz.

although ﬂnay are small, because x is unbounded, and
8x —+oco with x however small © may be.
To meke H, U—~0 at oo we must take

2 + 2 ¥
- P , o (8o 2 3O)p
! (02 + i(x-w)p‘) + ( v )
Also 2

1 1p+>\k.12 02+1Vp
2
2 ip +Vk2 _ 02 + dvp v

1p +>\k22 a® + Np A

T
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Here >;§ s Y—% may be ignored compared with 1, so
c e

allowing for the correct signs of k:l' k2
£

- >
ry * -1, r2"(>\)

& - .L_-.X.i'+\f* _}___L*_xi§v*
. rl 2 - N * rl-rz v

With these values the solutions for cases (1) and (2),

maznetic and viscous excitation, are

_ X%je iklx o % eikZI ) )\* ;klx_ k‘& ikzx

H , Um L
)\*4-\1& >\.}_+\Ii‘
and i ik i ik
x b'q x x
H=_\r'&ek1-\f*ez .'UBV*QH t)\%e 2
>\¥+V.r ‘ >\*"'V

The terms corregponding to kl Tepresent waves which
pmetrate‘some distance into gpace, while those
corresponding to kz_ raprasgnt a rapidly diminishing
disturbance confined to e boundafy layer. To obtain waves
we must therefore use magnetic excitation if N >v ,

mechgnical excitation if Vv > X.

3«3 Confined one-dimengional gygtems.

For resonance effects the system must be confined.
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Concidar e syatem with wallas at + d.

FIELD

K

|
+

— \\W\\\\\“

d
ONE — DIMENS\ONAL  SYSTEM

Fisﬂ Eig

I£f H=1l, U=0 at the walls, H will be even, U odd.
If H=0, U=1 at the walls, H will be odd, U even.
In case (1) put H = r oos kx, U = spin kx.

In cese (2) put E = r gin kx, U = - oos kx.

In either case the equations are satiasfied if
(ip +>K°)r = ok
ip +~k° = - okr
k12, k22 take the seme values as before but

2 - -}_p_::_kf
1p +2k°

For oases (1) and (2) we pow have

. cos klx oy cos kzx 8in klx _ gin kzx
1l sin klﬁ 2 sin kzd 3in kld sin k2d
B = , U =
ri cot kid - reoot k2d rlcot kld - racot kgd
and sin klx sin kzx cos klx cos kzx
sin k.d ~ fim d o1t K@ nciw kod
H=o<;tl;1d oot]]?d' U“Ptkldhtga
19 2 _ co k1 _ co _fg_
b3 ] Yo b1 Ta



Using d as a typical length these results can be
put in dimensionless form.
With

AN X

A= <,

> K = kd
capitals representing the dimenaionless variables, the

golution for case (1), magnetic excitation, is

o008 L..ll oos sz ain K.lX ain xzx

T} ®n - T n K #in ~ 8in K

H sin K- 2.y . 5 2
rl oot Kl - r2 oot K2 rloo't K:1 - rzcot KE

K2 = ~a+ (a+ )Y,

oy . L+ (A AP S
20' A A ] S""ANJ

2 _ 1P +~K2
iP + A K°

The situation is completely determined by P, A and A,

The previous anaelysis now applies if A P, AP <<],
giving

2 1 3
P 1 1 T
K # (1 * i(A-vaf) » X, & L=+ ,&l::”) )

. the signs being no longer importent, and
o 1l + iAP + inP ~
Y ¥ -TFIP r§ = - ﬁ TAF A~

1
r, &-1 r, 4-1(5) w-i(x



% - |
With () = 1 | ;

_j_Kz

v::o‘i:.!‘.2 & -1

and with X +ve &nd nesr 1
[ ] ¥

cos X ixX ain K X 1K, X
e e-te f . g te © . X -i-x

2
/

Then for case (1)

e Ak 1K, X' sin X;X iKZX'
'7.‘ ‘—‘q— e

B 2 . ,U*—am I

1001-.;{1-(5(-) 1 oot Ky - (£5)

Put

Q= (-,&7)*. o= (-,-’:——)i. 26 = (A+A)P

K, & {1 - 18), K, # 1Q(1 + 18)
doe ll 2 copPchOP + 1 ainPghtP, ain K1 = ainPchodP -
100sPshel

Then the wave temme axe _

_Ii_mj’(l - 18)X - _—oin p(1 ~ 16

— B ain P ° i1Acos P- B gin P °?

whare

Aachar+7sha:9. B = » choP + shoP

‘or if P~1
.;¢1+7er, B=7+er.
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'* 2 .2 .2 .22
‘12txsouii’+;132|.=..'i..n2I*au’.'-ai-u-"'a'B coa® P

and ig least when coa P = 0 if A > B, 7-:1. and
vhen s8in P =0 if A =3B, 7>1°
When cos P =0, sin P = 21,

ooalflé:ti@.?, sinxl.%;tl

and the solution for case (1) is

H = i}wg&iejwe“Q(lﬁ-iﬁ)I‘ U _@_M(l—iﬁ)‘- e—Q(l+ie)x'

0P+ 5?4-7
When sin P =0, cos P ==x1,

coakl % x1, ain Kl = F 6P

and the solution for case (1) is

K - £008R(1-10)Teaopa™ W IHOIX! - Lipinp(1 se)x gpaQ(1HONT
1+ 761’ . 1e 73?

These are the resonamt conditions for cases in which -
7 = or < 1. /Magnifieation 1s only posaidble if ” = 1,
A=wv, Yresonsnce thaen ocourring when P = L2 s % cesas
If v >\ resonance is exhibited by a reduction in the
diminution of H which takes place when P = x, 2x sores
For the alternative case, mechanical exeitation, the
solution is e pame with H and U, and X and v
interchanged, wmagnification now only being poésible h & o
v =N, |
When vV or A =0 the second mode disappears,
leaving only the wave wode. When Vv =0 +the solution

for megnetic excitation reduces to
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- SRR X

2
K = 77T{R®

K = P(1-16), P =20,
vher A = Vv there is also a simplifiocation. In

this case

2 ¥ 2 ¥
'a--l—+f—\’;. ﬂ-/%. (a2+8%) -}\((2%\—) +%) |
: 2 ¥ 2 -2
ek R MG B - e R B
2,2,
2

K =10

+
2k

2 ¥
e KKy = 200K+ 2B
T, = r2.=- -3 '
and for magnetic excitation

sinkK  cosk, X~ coak 8ink X 8 X
" A . -

ain(K - ‘

When AP<=1
-i_? - B
=X 1. ! YN
KK = & 2P

. «n ‘71'\*"’) -iP
w5 - XAREU

ain(K2-Kl) ) l'(/\-ov 21iP)

This simplification corresponds to the reduotion of order
in the equations where X =v (2,5). There is mo



1 -

regonances, Lnove belug oL teady chnole cLulte with

frequeney nnd no wagrificwtion,

The recults of mu erierl celewlationg Lre Siven in
Figures %,3% - T.€, These and :11 Toter nwseriocal
calculstionn wers converniently curried out with the
comruter at tue qr-thewetical Lobor.tory (Appcudrx 1),

. Te crlenlations ere for nurmetice exeitwlion, E  belng
teken as 1 at the woll, the resultis for echarical
exaltation beins obtained by reslucing H by U .zmd7
by % o PFigures 7% :uid Lo show e fleld H o oot the
centre 2isingt ne divenciorlaesg Ire ueney oot

different vulurs of /fp for AN+~ = ,01 unc ..

The ubocuce 0F rosopance vien A =V ig wp,pe T, we

is tie abuenee 0f wiriifiertior wumm v DX ‘M e
digiiancmaent of rescusnt frequancy, Filoures . i

.6 show the sy ifiestion »% tie fund.mental snd

[ ¢ T %E foiddust

variztion of /AN + /v rnd T e The gmidlilleation

hgmonice frecusncicy P =

A

may be limitad either oy tre vilus cf N+ NV “ the

curve. for dimdnzaoning 7 then g iaptoties?1;

oorencaing e corve for  om = 0 vhen oo JhoedN ) Nbo

-’

by the vilue of ~ , the cusva o s wive of

pecliag off o the ri nt snd - rocehine an o an difigaicn
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MAGNITUDE AND PHASE OF H

AT THE CENTRE OF A ONE

DIMENSIONAL SYSTEM .

H=

1 AT THE wWALL
A +AN = -01
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FIG.3 4. MAGNITUDE AND PHASE OF H

AT THE CENTRE OF A ONE DIMENSIONAL
SYSTEM. H=1 AT THE WALL
A+N = -1
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FIG. 3.5 MAGMNITUDE OF H AT THE CENTRE

OF A ONE DIMENSIONAL SYSTEM AT THE
FUNDAMENTAL RESONANCE : P = %
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of when A+~ <~ , From the second figure it can be

N -

geen that a hamonic resonance with magnification is only
posaible if A+/v ~ .05 or leas.

The available liquid conductors are liquid metals for
which 7 ~ 10"2 or less, so that for magnification
magnetic excitation must be used. Iundquist's method is
equivalent to this, since the fluid trapped in the ribs of
the ogcillating diec had the same effect as a conducting
~dise. When the total demping is sufficiently emall,
| however, the effect of viscosity can nevertheless not be
ignored, becaunse of the way in which it affects the
excitation, finally limiting the performance.

3;4 Power intgke gnd diseipation.

The distribution of power between the modes

corresponding to k1 and 'ka, and the elecirie and
vigeous action of the fluid, 13 interesting.

If the excitation is magnetic, power is taken in by the
potential difference acting on the wall current. Tke flux

|

. a
for one half is (rf’)1lr Joh dx, the e.m.f. -(rﬁ)i [0'%% dx.

Also the current for h =1 at the boundary is (ﬁ})i, 80
the intake of power for one wall 1s
d
I =~ 2h
(7 e
If the excitation is mechanical, power is taken in by the

viscous force »n the moving wall. The force is ,ov(%%
' X=q
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'so with u =1 at the wall, the intake for one wall is
D
I =pv($d)

Also 12 H and U are the phasor representations of
h 'a.nd u, the mean intake with nagnetic excitation is

a 1
Imm-neiféﬂjndx=naiﬁ,§ljnu

0 0 ,
and the mesn intake with mechanical exoitation is

v 3 N b, -
.;pamune-%'(ﬁgx)x; =R°#g—'(%i)m'

How we note that

d

20 = (AemIP = (A TR((EE 4 (DT = B ¢

and therefore for all values of

bt

Here with H =1 at the boundary

Tr. : o \
HiX = a
0 © r o0tk ~1 00K, icotP(1-18)- 2

Therefore to the first order,
when cog P = 0, cot i’(l—-ie) 2 0P,

pc
I & ——
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and when sin P =0, cot P (1-18) = &5 ,
= A
2(gg +7 )
The power is teken in largely by the mode corresponding

to Kl’ the wave mode.

-

Also with U =1 at the boundary

g_l. - 'Eg 1P(1-18) - 2(1+16)
2y, _ 1 "2 - Z
X'y . T to cotk, =
-1 O O s P(1-160) - %
I T gt
1 2 4
80 when oos P = 0
,ocNQ rc
mean 1, ~ i
27(01’ +7) 2(ep +,7)

and when sin P = 0

The intake of powsr 1is thus tne same as with magnetic
i
7
by the mode corresponding to K2. the boundary layer

excitation, replacing 7 s but it is now largely

mode.

The power is disaipatéd'par‘hly by electric resistivity,

partly by viscosity. The electric dissipation for one



half 1= .
‘ a

D = TS 32 ax
0

¥
.so0 here with & current (-%-) -g—%

d_ 2
2h
D>‘ =P}\J (S;) dx
0 .

The viscoug dissipation ia

d
au
'- - 2 - 4(—8 Ty
D, 2FVJ0 Xt T o Haxb"'axa)

which reduces t©

d 5
2
D, =pV o(g&) dx

Then 1f H, U are the shasor representations of h,

rd S ¢ G

d , 2
A H 29N 12
Dhmaan”"ﬁ Jo‘axl dx = 2[05% dx
rd

2 .

Dvmean = 7351 ' Iggl dx = A&’Z’j

/

Now for magnetic exoitation

ainxlx
R T
2-- ,

N cotx.l - r, cot K2

33‘2 - Al 2
X g1 2’

1

2
%«

0 C

x
‘L"‘% B8y,

28



When

>
th
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ainP(1-13)X

~g{l+is) X N
einb(1-16) + 7Qe , X' = 1-X, X + ve

P{1+C)

cog P = 0, oin P(:i-193) =1,

P(i+6)( sinPX-1i0PXcosPX)+ pQe~ ¥ (cosdQX'-1s1noQX")

2 Qe ¥ cos0QX! + 1(PainPi- Qe X 0ineQX")

a2 s P2ain®Pxr + 2202672’ - 2, pqe” ' sinPXsinaQx!
vhen sin P = 0, sin P{(1~-10) = 16P,
A (} ~ 1) (oinPE-16PXcoaPX) + Qe ' (cog0qX*-151n0Gx" )
® % sinPX + ~7Qe“qx.coaBQX' ~ i{sinpX+pXcosPX+ :er"qx.
| | 9indgxt)
a2 s 512— ainPX + 2% 4

+ E?Qé_qx'(% einPXcostCX' +8inPXainoQX! +PXcoaPLsinbQX")

Intecration with regpect to X from 0 to 1 of the

first two terms neglecting e«ZQ’ gives

when

when

Also

3(2% + »%Q),
cop P =0, and
W 2%Q)
sin P = 0.
the integrals of the remuaining terms because either

cos P = Q, lcos PX'! < BX' -



or _
sin P = 0, |etn PX'| < PX*
or
|sin 6QX'} <= eQx' ,
1
1 "'QX‘
are less than factors of L'e X', but
0
0 1
1 3 1 ] 1 "Qx. ]
x ¥ axr = %T e B
0 1 0
0
: 2
= (E e L e N
Q Q2 Q2 P
i

and accordingly they can be neglected.
The dissipation ig tims to this order of accuracy, the
gun of the dispipation corresponding to each term alone.
Finglly when c¢os P = 0

IBI = OF + 2,

therefore

D Amean

2
P-1 VAN —u
4 (&3P+7)2 -,%— (6?4-7)2
and when sin P = 0
1

Bl = 5 *7
therefore 1 2
=5 +7Q = +
5, . rpz/\ 27 _pe 52 T 7
mean 1 2 1 2
(EF"'?) (§-§+7)
Also

chosle ) ch-:oslizx
ay _ 8k aink,

2X rlcotKl - rzcoth
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and & similar snalysis again shows that we can evaluate
1

2
%%‘ dX ag the sum of the integrals of the squares of the
0

two terms separately, lgnoring the cross terus.
We obtain

5 PTYS i PR Y
Vmean_ 4 (eP+7)L 4 (eP+7)2
when cos P = 0, and A
"3-'—*- Q g*é--t-?
.ﬁz-— Ifl.c._.__,_...___..
Vmean 1 _’_7)2 4 (éli)_.'_?)Z

when g8in P =

For the wave node electric or viscous digsipation ie
thus more important according as XN > or = Vv , whereas
for the boumdary layer mode they are equal. Wwhen coe P =
the total diseipation correaponding to the wave and

boundary layer modes is

£2e L/\-i-hOPz _ pL ap and s ¢ ~
) 2 =73 2 ETNOIRY
(8P+7) (6P+ 7} (qu-?)
and when gin P = 0 the dissipation for the two modes is
FAY Yo'l
2 & 7
c 5] [ c
*L(' +)2 ’az'( 1, .2 and%—(_l__+)2°
7 tp *7 e ¥/

The wave or boundary layer mode is thus more important

1
according as 9OF or 8p ~°F < -

0

31



A oheck on the power oalance  ives
c
D= P = I
2(6P+ )

when cog P = 0 and

c

D I

= 1 =
2('6-13 +7)
when sin P = 0.

when A =v the jower dissipated in the wave mode is

Op

always — 5
(6P+1)

of thisg mode. The change in power intske us the freauency

changes is balanced by tie erar;e in dissip=-tion in the
boundary layer wode, correspondéing to tie cluuie in its

amplitude required to meke up the bcundery velue ae nodes

or antinodes of the wave mode pase the Loundary. A3 X — 0

the steepness of the boundary leyer detcriiaed by @ = L

N
increases so that the power dissipsted is conctmmt, und
there is no increase in rmarlitude. Thig resvlt does not
correspond to the solution for N =0, wiich would be
infinite at resonance, becuuse the introauztion of the A
termp changes the order of the equations.

When the excitation ie meci.mieal and X = Q0 there

is ar. appmrent breakdown in the power balance becauae the

» corregponding to the cunuoitant awiplitude

32

power inteke would nmormally be msinly by the boundary layer

node which no longer exista. However the co-lculution of

power intake from the velocity :radient ut *the wall breaks

down in this case, hecavas tiiore 13 a current sheet at the

wall with an indinite J x B  force, making the viacous



force indetenninate. If we consider what happens to the

solution
.s_ifﬁ } 7sinK2§ coale _ cosK2I
. sinK.J: sd.mi2 - r, cosk, 1'2cosii2
cotk, . co'tfz_ ’ cotk, i co Tk,
ry T, Ty r,

25

for a case in which X % O, when > — O, we see that the

velocity boundary layer diminighes in magnitude because of

1

the factor S but increases in gteepnens since

1‘2 7'

K., = 1Q{1+1i€) e, 5o that it cen ¢till account for the

2

reguired intske of power, wiile the current shect appears

a3 the limit of the wagnetic boundary luyer which tgs no

1
factor ra .

2.5 The offoct of side wallg in an ideal cuge.

The effect of side walls iwust now be conaidered.

Take a plane system with walle ¢t x = +d, ¥y =+

———

or a cylindricel system with walle at x = + 4,

y = yl" y2-
vi | yi
Fi\ELD T
e g = i
+ . l§ - Py
ra s
PLANE SYSTEM CYLINDRICAL SYSTEM

Plea3.7



2 R
iH=c¢c -7, 3.:_>U-=C,;"'"

X 3%
e bowndary conditions for i netlc eveitalion oy =«
wall curreni cuan De Lallen ag

h =21 in & ;lane cuse,

‘o

1

h o= T; in z eylincériecl cace,
Leooouse B, or yB, 1s a stream function for » (a2
1 1 7

cpd *truo i, constant &% the well, this corre.ponding *to

no <istuihonee outgide the systenm.

The hoin  .nfevendent of y  the solutlion is

. - .
erin L Lons

the game ua wionout cide wells, »iugly

A DX

cos = Y. con =%

¥ - _(..:._ - .._.:L - 9—-
Sa o eIy (6De - “"""’\d
o JALDY o oo Fafine)

¢ ¢

The wonndnyy condtions Hn each nide wnll =re ..et by the

fortation of =~ coyrent sheet from the conlicscence of the

erosn currents corrTesgonding o the varistion in h.
M+ thig gheet is Just stron, enough to bulance tie

difference in a  letwen inoide and outside follown from

+he =trens funesion roperty of h.  Such oheets do not fomm

ot the mfinite 3 ;4 B

ey -

wnd walls becougse they woula 122y

forcea.
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ol T
For an aribtrary section similar considerations
apply; d is now a function of y, and becaunac of the
gtream function property currents correspénding t¢ x and
y variation of h cancel et the walls except on portions
purallel to the field, where sheets form. When N,v % 0
neither ocurrent sheets nor velocity discontinuitiea are
possible et the side walls and the side wall effects must
penetrate into the fluid., I[n order to obtain wave
behaviour it will be essertial that the walle be

aufficiently separated.

e a———

The detailed analysis when X ,V % 0O can either be
mmerical, or where it is poazsible to separate the
variables, by expansion in elgenfunctions. The
éigenrunction nethod can give a picture of the behaviour
without the need for a separste calculation for each
different case. Detailed.treatmente 0of the method can

be found in works on partisl differential equationnG’T.

Here the terms involving y variation are the A

~ terms, where for = plane or cylindrical oase

LT R T I
?x° oy 3x° 23y V¥ 4

and the variable y can be separated by expressing the
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solution ag an expansion of Tunctions satisfying

" 8 =Y o
£ =-n°€ or € 4= - = - n°é&
T

1
LU

Functions satiafying these and satisfying boundary
conditions at two values Yis Yo of y, exist unly for
particular eigenvalues n, and it is possible to express
the wost generul solution for & geometry with parallel
walls as an expansion of the eigenfunctions corresponding

to these valueg because of the orthogonality property,
y
2

ylA E,E. & =0,
5% , A a function depending on the equation
satiafied by

for eigenfunctions Eé. €. of separate elgenvalues
ng, Ne , which allows the most general condition f = f£(y)
to be satisfied on 2 boundary x = constant, rrovided
this is put in & form eomsistent with the conditions
satisfied by € at ¥Yis Joo Thus to represent £ by an
expansion

t= ZfEe
we multiply by A €. and integrate to obtaln, becsuse

of the orthogonality property,
fyz

A E_Tay
~Jy

2 2

A B . ay
J Yl
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The orthogonality property follows directly from the
equation satisfied by -.

The general equation
£" +a &’ +b8 =~ 1€

multiplied by A such toat

becomesn
(A8')' + BE& = — n°A€, B = Ab.

wow multiplying

(AE))* + BE, = - n,° 4B,

(AEY)' + BE = - n 4B

by Etand E’b' subtracting and integrating,

j{u&;,) €, - (ABN)'&)dx = (uFy - nd )/.afibﬁe dx
Then integrating by parts the first term vaenishes 1f any
linear combination of €& end &' vanishes at jy, and
Yoo The question of convergence is covered in the standard

wrks6'7.

The method can only work for (eonetries for which
geparation is possible ufter the eguations have been
expressed in terma of variables constant at the boundaries,

since the orthogonality property refers to a given pair



of limits of the variable in temas of which the

expensgion is carried out.

Here expension is poasible with rectangular
gections, @nd in the plune and cylindrical cases the

appropriate eigenfunctions are
©(y) = cos ny or ogin ay,
= = &%
n such thet &(e) =0, n. =33
E(y) = Jq () Yylmyy) = Yylny) J(myy),
n such that f‘.-‘,.(y:_) = 0.

In the first case, if the solution is symmetric about
the x axis, the coefficients of the siae teras venish,

leavirg a co:-ine serles. also
e

A=1, AEZ dy = @
” ""e

In the secound case

A=Y
. Yo
ond to evaluate AEE dy we no‘c.e8 that the equation
Y1
?
for € multiplied by 2y&  is

(yEND' + (89 = - an%H2(ED'



whenee integreting vy parts vitn at Jir Yo
'\f y
el ; 2 .
12 < P
((:«'é)) = n” E yel
1 J1
Now
[ ] . 1 t ( v l( \_ \ ?
vy € {oy) = my 0y ¥y Gwry) = ¥y (ygdig (g )) = - %
[} | . L)
ut sinee n ig a czero of (3.
J,(ny.) Y (ny,)
NI SR i S \
ACaRE AR
t o .
v, & (yy) == &,
Thus
Yo 2
.YE- dy - o 2 (I‘L - -L)
y1 n°x

€ -

1,7 General casgse of a jplane or ¢ylindrical system.

It is now possible to zolve the general steady astate

case for which

(ip = XA = ¢ 22,

H)

ll

)=
(ip «vAD)U = ¢ 5% ¢

39



2 2 2 2
AEE-—EE-r-—-é- or ?-*,5--&?24-%%-—15
ox ¥y 2" 2y y

H=1I, I =1 or ?—,U:o &t the wallg

put 7
H=1+2, %2=0 etthe walls

and where E\(y) are tne anppropricte eicenfunctions, let
I1=3I8,, 2=X2€,, U=~ Z(E,

Then tie original equations are setisfied if

2 —
2 @2 = 20U
(ip + dn° = 2N =) 7 = %= 1pT
‘Dxa X
2
2 :e_E - .2Z
(ip + vn® - V_ax YT = 5y

These have a particular integral

T ome 2P Tao
:Lp-t-hna’

‘The equetions for the complementary functions wre just

the one dinencional equations with ig+>n2 » 1p+vn2

replacing ip .

40
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We obtain

lcotkld - T, co‘bk d

x sinkax
ESJ( %!-Biﬂ&?

gy e,

ryeotk; &4 - r,cotk,d

a = 2
ip +An

+
k% a - g j-_(nz-i-ﬁ)

‘0 = g2s ) (ip+ vo?)e V(i o4 X %) . e%+1( X+ v)pe2 dvp?
: v . )\v

b Y, Av

= 11>+VJ.2+Vk2
ip + X\ n? + >~k2

In a plene caae
Iﬁl‘ Il-'s%.-fzto, Id-‘—i ceee

In a qylindriocel case

2
'Isfyl Ig———ﬁiz—— Ylady

(1 - 1)

»
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I Y2
Eay =2 | Y (ny)d)(ny;) - Jotw)Yl(nyl))
I1 o 1
Apo
Y (oyy) 0y (nyy) + J (ny)Y,(ny,) = %1 '
!( :) JL(n.v.r';!)
‘l\lh'enoe . L
xy -1 y
Taad(b_dy.,.0°2 o .%
1.2 L 95T Yl) B LN 5

Ualng tha diiaeneionless varisbles

1 » B c’Acd'N

_ i
X d cd

d ]
N = nd, K = kg,
we now have, where N ~1, AP, NP «l,

K? s PPui (A BN And K2 s 141 (A+A) Pe2AN T2
, .
1+1 (Awv) P2 AN N2 AN
p2 o LAAPIAWNE 2 L LA NRPeANES A
1 77 Jvinpeann? ' T2 141 A PANEE A

or with second order error

g2, ¥ ' 4

Hg,(tﬂxiz}, K.;Gﬂhﬂﬂ)
1+i (AP 2

and with first or_da_r error

¥
ry=-i, 1, --—1(%)
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Also
ip

’& = """“"""“"'2"
1P+ Al

.or with first order error

a = 1.

Then putting
= L (—’-‘/—)‘1r 20 = (AW)P, 285 = (A )112-
Q*m: 7= A ’ = ) = WP »

K, = B(1 - i(e+3)), K, = 1G(1+10)
the one-dimensional analysis holds with 645 replacing
6 1in Kl'

The amplitude of the wave %termm of Z at
regonance assuming 2 <1, will be

T
(6+ 5 )P+ 7
At the fundspenial resonance P = % .
For a plane case for which -g- =B, N = %% » then also

2
)
5=;2-—'

Thus if 7~6, E~1, +the first term of the expsnsion
will be dominant because of the repid increase in 3 , and
the profile along the y axis will epproximate to s sine

wave. If on the other hand 2> 6, or E = 1, each of the
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earlier terms will be nearly the same multiple of I, w0
they will add up to a multiple of I. BExcept for boundary
layers near the walls, where the higher terms become
important, the profile will therefore be flat. Also, if
o~ ©, +the amplitude will fall off rapidly if E <falls

below one, by virtue of the factors

1+-l,;, 1+-%.....
E® E

In the case of a cylindrical syastem, when yi— 0
the terms of the solution involviyg the Neumann function
Yl disappeur because Yl(mrl)—-o-oo et 0, and when
Yy —= oo the solution — the a3olution for a 8:59 system.

e +
Now the zeros n of Jl(m,r,e) aproach ——i—-

ssyuptotically from below, and for a plane system the

zZeros are ef > Thus in general n lies at a point
Yo~ 1
€ x (e + F)x Yo
betwean end ——————— vwhich depends on .
Yo ""yl o Yom¥q ¥y

The remarks on slde wall damping for a plane system
therefore apply equally %o a cylindrical system, with n
slightly greater than bafors.

When Vv or X =0 some of the characteristics of
the behsviour are easler to distinguish.
With v = 0 the equationa for a plane case reduce to

52
(1p - (3e &) 25225
P 1’ 527 Tay



The solution becomes

Z = af (S28KX _ )

coskd
ip o p2-1>\n2p
e=———35, ¥ =—3
ip +An : e + 1 Ap

Since, however, there is no longer a boundary
condition U, it become joscible to separate the
variable x, and to obtain zn altermative picture of
the solution as an expansion in eigenfunctions of x
which can now meet the necessary boundary conditions.
This will emphasize the different characteristics of
the behaviour.

The required fumctions are-
©ix}! = cos mx or sin mx,

m 2 zero of ocos md or ain md,
satiefying

i) - II?Q
If the system is eymmetricel about y = 0 the sine

terms will vanigh,
¥e now put for s plane case
Hel+32 I=3Y¥9, 2= S%%P,

where

4 = &
1:31' Iaﬂo' IB__%’ sav s e



Then the equations are satisfied if

2 2 _
(ip + ( N+ —(.:--—)m2 - )\3—-)2 = = ipI
ip Byz
Z = . Coshiy
Z = -8l coahke) !
ip 2 e 2
= iR g2, cem
& >\2 cgméo K >\+m +Ti D
ip + Am +—i-p—-
Whm p=m1’ Gn3, LN
-u -
a1_>\m1’ 33 Am3 LB R N )

2.2
whereas normally, since % ’ %-\-%— 58 m2 for the lower

values of m, a 1ie much emaller. The resonance ia
thus revealed 1n an inocrease of the multiplier of the

_ relevant termm,

Also for these values of p

kl = ml, k3 = m3 s e s e
whereas normally k 1is much greater.

The region of y variation ~~% o Thus normelly thig

region i3 a thin layer near the wall, but at resonance

it expands to a width ~-g- , & depending on which

regonance.

46
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A pecond alternative i3 a double expansion
H=I+2 1=2TI,9DE , 2=Y% D€
2 .
Sy 2 7 .
(1p + ( >+ iP)m #+An)Z = ~ 1pl ,

ip

Ze-al, &=
. 22
ip + >\(m2+n2) + EII)-

T ig the product of the earlier 'I'o and I_. (pages 45,41-2).

For a plane case for which % = E,

and resonance is again revealed by an increase in the value

of the relevant pultiplier, Thus when p = ey, Gy ...-e,
ic ic
all = -l- ’ a31 = —l— - a8
Moy (2 <5) Mgl 4 =)

Teking E =1, at the first rcsonance

. N SU N S
81738yzi8gp ccc = FUT P T4 P Te05 vt

whereas normally aince ;L.Z >>1 for tae lower values of nm
m

311=313:a15 ceees = 108 1 - S

this ecorresponding to the thickening of the boundary layer

at resonance revealed by the earlier representation.
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The regulta of rumerical calculetions cre riven in
Fiiuras 7.9 ~ 2,15, Iﬁ ovaTy cune the fluid is tnkin to he
irvigeid., Fi ures 5.9 wnd 7.9 akow the effent of side vwmlls
on e ield ot the centre Jing X = 0 Por ;lone syoteus
of diferent width for which A = ,C1 end .!. It
alther cose the rr,id foll off of perdorunnce o io retin
&+« % fullsz below 1 L3 oparent. 1P ¥ 2 the
periarnane: o TLrei0s e a¥e=dicencion. oot elice,
Fures %.10 2.4 #,11 srow the axtenrion oubtwards ot the

cide voll effect Lo distencas of 22 % 1 ong

Wity
i
[=2

toe fundnientld 4 Jtratl nareonie ro-cengnees for s
Jleang goswen o F convara ceetior {or owidlen MNe L03. To

obtein g Tlat 2 ile at the :{\‘m-.’if',‘:mn_t-,l SoAacranern thio

VEIQEL wovld Yevs tw wo aeveryi tises the denth. Fosurcs
7.22 and T.1% ahow %he etffeet of *tre Yoruy it ‘s _vtio

orv the fleld at the centre lineg X = . c4 first

roocranee Yor gy ctema of sguere sccetion for o iah

A TS G RO The Tield ot the timer nownmwery ic
towmm ao e oo for ecol orac, omd o Mol Lt
rwoxds 2f e podint of  wpxdoaur flel? Diotoohooiee

Ty

.

8w dnerecoces it oanoqront.  Hewover, ihe votio o

e

the Ticld at the vesction ¢ ntre _oint to the fizld ot tle

some sointeim o i gep nardly dselings Srom obout
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FiGg. 3.8.
SIDE WALL DAMPING

PLANE SYSTEM A= -01

Y PROFILES AT FUNDAMENTAL
RESONANCE FOR DIFFERENT
VALUES OF E

70




F1G6. 3.9

SIDE WALL DAMPING

PLANE SYSTEM A=-1

Y PROFILES AT FUNDAMENTAL
RESONANCE FOR DIFFERENT
VALUES OF E .

1
1
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F1IG. 3.10

BOUNDARY LAYER THICKENING AT FUNDAMENTAL
RESONANCE Y PROFILES AT X=0 FOR
FREQUENCIES APPROACHRING RESONANT FREQUENCY

PLANE SYSTEM A= 01 W~ =0 E=1
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F1G. 3.1

BOUNDARY LAYER THICKENING AT FIRST HARMONIC
RESONANCE Y PROFILES AT X =0 FOR FREQUENCIES

APPROACHING RESONANT FREQUENCY .
PLANE SYSTEM A= 01 w~=0 E=1
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FIG.3.12. EFFECT OF TORUS RADIUS RATIO ON AXIAL
SYSTEMS Y PROFILES AT X =0 FOR DIFFERENT

RADIUS RATIOS AT FUNDAMENTAL RESONANCE .

P=3% A=-01 AN =0 E-=

!
INNER BOUNDARY VALUE H=|
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FI1G. 3.13. EFFECT QOF TORUS RADIUS RATIO ON AXIAL SYSTEMS
Y PROFILES AT X = QO FOR DIFFERENT RADIUS RATIOS AT
FUNDAMENTAL RESONANCE .

P=3 A="1 ~N=0 E=1
INNER BOUNDARY WVALUE H= 1
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]

A8 eag _{’_.‘_2_ fiicreases from 1 when A = .01, end

)

declinen only sli/ hitly from about 4.9 when N =.1, g0
+he true effect of torus radius ratio is not great in thise

TS €.

In Lehnert's experiment ¥ was .27, so that side

wuil damping douinated the experiaent,

3,8 The effect of conducting material at a4 voundary.

The wresence of conducting watcerial ot o boundary will
alter she perforwance of the system. The effect on a
ragnetically excited system cen be illustrated by the

cape V = 0,

Coraider first a one~diueusional systea with
conducting slabs inserted between the existing current

sheet and the fluid.

FIELD ‘ _
= 1 fx
o if

ONE ~ D\MENS\ONAL SYSTEM

— —

Flg.3.14



Demoting the fluid by s suffix a, the walls by a
suffix b, '

(ip"'\ag;i) B, = c%!'

9“ .
el -
ipUa- 2x !

02
(1p-()\ "'i

D 2)}1 = 0,

(ip - >‘b';x2 Hh

Hb = 1 at the onter'aurraoe,
Hy = Hps >\a.gi‘ +eU, = ()\; %)—'3 %b%%
a.t the joining surface.
The last oondition derives from continuity of the tangential
component of X (2.2).
The differeﬁtial equations give
B, = A coskr, |

&
2 o B0 .
¢ +1)«ap



To satisfy the boundary conditlons
31 + BZ = 1

By et & B, 3T - 3 coskd,

B:le:’:t'nliza"':lf = # A sinkd,

2
P
s = I | -ip (2 = = 2)
IND 3 ) >x ¢

2B, = A {(coskd + s sinkd) o3t .

2B, = A (coskd - s ainkd) o3t |

B, +3B, =4 (coshifcoskd - # sirhjfsinkd) = 1 ,

E = coakx
& coshjfooskd — s sinhjZainkd

fhe solution, denoted by a suffix g9, for a simple
gyetem without the slabs is

B = coakx
(] co=kd

The phasor for the corresponding flux acting on one wall is

a
(rp)*J H dx, &nd the exciting current is (ﬁ)*._ so the
. |

flux phasor for unit exciting current is

Q°=rnax=rﬁﬂ§£ﬂ

Q
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In terme of thig therefore
 exd ip

ro"?l':':l.'

Henge, representing the wall resistance/unit length by

g tankd =

/ T, v A
b b
Beg =73 >
i . —— £ -0
: 14 I, % -0
(3 ouhjf*__aag;%& 1..,__52

H is reduced by the currents which are induced in the
mlabs by the alteméting flux, the reduction being greater

at resonance, when 00 is large.

¥han the glabs are thin emough for skin effect not to
Jbe important, sc that the current flow can be assumed
wniform in them, the approximate result can be obtained
directly. Suppose the gystem is excited by a current Il.
and a ourrent I, flows in the slabs. Them with ®
defined as the flux phasor for unit exciting current

2
I.-1
H 1~%2 ipd
== =—I-—-—_.l-
HO o 1 R °
°+%°°0=b0’
A 2
H 1&
o] 1+ 0
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In & plane or axisl gystem slabs mey be placed either
at the end or at the side boundaries

Y4 Y |
FIELD ' RS
i~ ﬁk:.x.
, | 5 T %,
- N o
e L d ¥ -~
PLANE 3YSTEM AXIAL SYSTEMN R
T Fige3.315
With end slabs the equationg for a plane asystem are
( ( o) 22 ) H, =0
ip - + ) —

¢ 2
‘iP~>*bg;§-’\b;;§)ﬁb"°

B, = 1 at the outer surface, H; =1 at the sides,

ok °~2) ?Eﬁ —aab
a a 1ip’ ox b 2x

at the joining surface.

2 2

For en axial system -?-—2-- is replaced by -?1-- + 1 %3... - ,3.;2 '
oy 2y YW
Yy
and the outer boundary value is -;1- inastead of 1.

We can now proceed as in 3},7. using the same

representation for both regions to eliminate y.



Y
Writing I for 1 or -ir;-. we put

H=21I+2, I1=%1,€,, 4 a IT ., tq

where the elgenfunctions &.(y) satiafy

2

[
/ G 2 —n?6 or &%+ %— & L. ne |
A . ¥y

n having s value suoch that
E(yl) ™ E(y2) « 0 ’
and I takes the same value as before. (pages 41-42)

The solution is now aimilsr to the one-dimensional
solution.

The differential equatione are satisfied if

2 2
2 8y @
(1p +% 0% < (% + 55 :-;;5) Z, = ~1pI

a
' : 2 2
pS - ihn
2, . ___..;1__5, PR P
ip + > x° c® + i1XNp

54
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The boundary conditions are satisfied if

’Bi'+ 32 = bl
B o3T & 3, o 3T & 4 coskd + (b-a)T

B o3 - 52 e~3f = 5 A sinkd

2
[+]
*ipx__
a = 3 Abajk ’

I (a coshjf + b{l-coshif)) = A(coshjfcoskd-asinhjfainkd)
b

- 1 + =(sechjf-1l) coskx
Z, = aY (——2

l-atanh jftankd oopkd

- 1)

The effect of the slabe is exhibited in the factor

1 -o-_i(aechjf—l)
1 - gtenhjftankd

Y =

which acts on the principal tem %%g%% of the solution

for 3, . A8 A —~w, b-~+0, 8—~0, Y-+1, giving

the molution for a system without the slabs (3.7, page 45).
A8 M —0, b—=1l, s—w, Y-+0; the solution for
B, 1 then the solution of the equations with the x
variation terms deleted, just the solution for a aimple
side skin effect. The slabs thus detract from

the performance, as in the one-dimensional case.

Now taﬂkd corresponds to the altermating

flux of the particular tem of the expansion, and



the reduction in performance will a@in be greater at

resonance.
’ yi Yyi
FIELD !
& P =I ‘
e
——— - J_f? i+
| (Y SN B 'R
w s ; -
PLANE SYSTEM AXIAL SYSTEM x
Mg.5,16

#ith side slabs the equations of a plane aystem

are ) ) »
0+ Sy 2 U 2 -
(ip ( a + ip) ax2 A 3y2) a

' 22 22
(1p e N —— A —=) = 0
632" v 32 Hy,

‘z{b =1 at the cuter surface, Ha =1 at the ends.

oH 2H
Ha = H-b, >\a -_3}5 = >\b 31-9 at the Joining surface,

these differing from the earlisr equations in that there
isno uxB tem in the condition for E.

Again the equations of an axial system are obtained by

N2 2 _
replacing —%—5 by L2 + %% -}5 ., and the outer
3y 2y y
71
boundary value 1 by 7

The apgropriate representation is now in eigenfunotions

56



of x, For the plane case we put

BH=1+3 1=LI%, 2= !.‘.‘2696,

vhere ihe eigenfunctions are

D (x) = cosmx

or

ain mx
satlisfying

P = - n°D.
For theae

I, =%, I,=0, I LR

3 = had 31 ’ lllll
the sine tems dropping out by

The aifferentin) equations are now ezxtisflied 1f

2 2
c ™y 2 ?
7(1p + Nb + zEJm - A =

) ,2)za = - ipl
+
2
2 22 .
y
Ea = A cosh ¥v - &l
iy . 22
1. 2 L
B = - > 5 k2 = 'S‘L*m +'§_‘""‘£""§s
ip + N me ¢ 28 £ a
P & ip
- Ju! -Jy! -
Zb = Bl & + 52 e w LI
1 AP 2 +D
yt =g+ f -3, y+ve, b=————m 4% = 4+ n°
' 1oe M m° A
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The boundary conditions are satisfied if

Bl+132=bf

By PR ZB2 e 3% - A cos ke + (bea) I

B, o' - 1, e~ - _ 5 A sinh ke

Ak ip

" Kl Rpadk
T (acoshjf+b(l-coshjf)} = A( coshjfcoshke+ssinhjfainhke)

m—

b _
1 + = (sechjf - 1) coshky
Za=-a1'(l- 1 )

1l + a tanhjf tanhke coshke

In this cese the effect of the slabs is again represented
by a faotor

1 + 2 (sechjf - 1)

¥ =
1 + s tanhjf tanhke

but the term %—gﬁﬁ on which it mcts 1s no longer the
principal temm, but the side wall damping term, resonant
effects being exhibited by changes in a (3.7, page 4().
As Ab-nn, b ~~0, g—=0, Y—1, giving the solution
for a gystem without the slabs (3.7, page 46). As )\b-' 0,
b—1, g-=+c0, Y—0, this now resulting in the

pame solution for Ha ag would be obtained with the

y 1instead of the x variation terms deleted, just

the one-dimensional s=solution. 8ide slabs thus
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su press the side wall damping end improve the
performance. This is because there is no component of
uxB ealong the slabs, so that the continmuity of the
tangential component of E at the boundary implies a
current flow in the slabs in the same sense as in the
fluid, helping the bulld up of the field towards the
centre: with end slabs on the other hand, the u x B
tem causes a quite different current flow in the fluid
to that in the walls.

The conclusions for an axial system would be the
ssme, the ¥y terms now being expressed with Bessel

functions instead of elementary funciions.

If the system is completoly surrounded by
conducting material‘it is no longer poesible to
produce a solution with separated variables. However
because of the different nature of the current flow in
and and side slaba, the one being in a sense to reduce
the performance, the other in a sense to increase it,
caused by the presence or absence of a component of
u x B along the boﬁndary, the end and side slabs
should act nearly independently, the current in each
flowing into the sodium, so that separate esti:ates

can be made of the effect of each.
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In the case of end slabs but not in the case of
slde slabs 1t is .o0ssible lo extend the solution to
talte into account viscosity, it still being -ossible
to satisfy the voundary conditions with an
eligenfunction representation. The ecuantions for a

plane system nre

‘ N 52 32 ') Bl _
(ip - (== + =3))H_ = ¢ ==
8 Bxd By2 a X
2 2 DH
3 ) a
(ip - v (5 + =)0, =c=
a g7 By2 a 3x
( n (2 v 200)
ip - -5 + —5;)d, =0
b axz.’ aya b
Hb = 1 ot the outer surface, ha -1 at the oides,
BHa =331
Ha = H,, e S5 = Xb Sx 4% She joindng gurface,
Ua = 0 at the pides and joinin; gurface.
| 3° 3¢ 13 2
For an axial systeu 5 1is revlaced by YT Sy
Ay 3ye Ty

J
outer boundary velue of 1 by 3:-1- &3 before.
The procedure is unenanged.

¥
driting I for 1 or ?1_ we put

H=T+12, I=LI& , 2=YX2€& . U=y0&,

=



Tien the differentl ] oruwctionsg are saiisfied if

(ip + N n - X -—~—r}Z = ¢ - ipl
a Gyl R 9
X w YA
o I R “
(1p + v n® -~ v_—IU =c i

J)E 2 X

N 2w 25
(ip + % = 2y —

li
{
e
L lort
A

e d
“b
e o e >, -
2, ry A.J_ CO T ™ + T A? 005k2.\ al

f?'a = Al si_nklx + A? :-sirx_kzx

ip
ip + an

. '3
—o.j_(o.‘)‘-l-ﬁ)

N
fi

2 , Z
o“2( N + va)p+2>~a~vn p=i(N +

2. = - 2 p = — a

'}a Va

: 2 2
o ip + v&n + Nk

ip + )>.n2 + )_kz
5} &

o

"z'b = Bl ejx‘ +.B2 e"jx. - bl

x' =d+ £~ x, X+ ve,

ip » 1p o
b = 3 J=——+n1n"

S ip e+ ™ ™,
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The boundary conditions ars satisfied if

k-3
= ba_'

Bl+32

g . ~3f . T
Bl ej + 52 e T rlalcoakld + rzhgeoskzd*-ﬁha)l,

By e*" - B, ¢"¥* = g,r)A cink d + s,7,4,8in0k,d,

0= Alsink

1d + Azﬂin.k

2%

"l
j ?

=1

s 82

D‘ylﬁi‘y

208 : kK, x
b . T1%0 klx r,coek,
_ (1 + glsecnif-1,)( einigd T slnk.d
Z =8l e e -1

Ty ( cotkldusltmhjf}-ra( cotk,d-s,tanhj Zf)

where in a planec cas:z {(puce 41)

= 4 = - 4
Il s :JE » 12 - ({, l-;j — = ?47( [ El
in sn axial case {page 4u)
L_ ¥ Jo(y,) ¥y (ayq)
T oG - S Rl LA M |
= , = ==, = -
1° -1 Y1 S vy T 0w,)

Wwhen v _-—0 r2-—.0, giving tlie inviseid solution,
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CHAPTER 4.
TRANSIANT THEORY,

4,1 Ideal case.

A representztive exciting disturbance for the analysis
of transient behaviour iz a unit step at the boundary in
eltier the magnetic field or the velocity. Here magnetic
excitation will be considsered.

For an undamped ¢ .ge th. eguetiong

seve for h  the gencral soluvtion
h = £z - ot) + glx + ct).
The unit step 5oundaly congition can then be sntisfied
by taking h gs the sum of the two square waves travelling

to tho left ond risht reapectively, ficure 4.1.
! +

=
SN SN DU SN P—— ——

pist I O s R B

A

TRAVELLING SQUARE ‘WAVES

Figeded
The field changes in cteps first 10 the boundary

value, then 1o twice tre woundary value, then back to
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the boundary value, then to zero, end so on. At the wave
Trontg thiere ure current sheets, these giving impulses to
the fluld by the J x 8 forces in opposite directions, so

that when thie fronte meet the veloclty ocancels.

If > > 0 psuch current sheets are imposuible, snd
1f ~> 0 velocity stepa are impossible; so in either

case the wave fronts must disperse.

4.2 Genergl case of g one-dimenpional gystem.

7

FIELD g
——— g w—-—-é——-—h—
2 > &

&Y,

ONE — DIMENSIQNAL SYs5TEM

Figed,.2

The ;eneral case of s one-dimensional systen for

which
2
F->25n = B
22X
(?__vz?_)u = R
ot ?Xz X
h =1 vwhan I=+da
h=u=0 elgsevherewhen t =0

can be tackled by the use of the Leplacs tranafozmationg

10 separate t.



Then h and U can be expressed as

h = 2; J'h ept dp, uU = 2—%_1- J'E ep‘t dp,
P
where P is a path from =~io to 1i<e lylng % the
right of any poles of h, u. |
Then h and u satisfy the original equations 1if

2

’31

V) u = T2
(p _21)\1 ¢33

)
|

h = =, u = 0 vhem x = ¢ 4d.

These are the same as thé one-disenalonal steady state
equations mith p replacing 1ip and glve

ooak x -inklx sinkzx
c.1 a:l.nkj_d "aT.nT%‘ = sink.ld = sin—kzd
P rjcotk d - raootk a’ rleotkld - r,o0tk,a

kX = ~a% (a2-p)?

. 2 2
e an)y 8
2. b ¥ : B ry

r2,,_z‘_+.:f_k_2.

P +>~k2




The expressions for h and U heve no branch points
becpuse taking the altsmative rbots for kl’ k2 changes
the numerator and denominator equally.

They have poles when

rlcotkld = rzcotk,d .

2
Because of the factor %- the intesirals j-ﬁ'ept dp,
IYG ¥ dp round a semi-circle %o the left closing tie

path F in the p ulane —* U es the radius of the
gemi-circle ~eoce , go that P can be replaced by the

cloged loop of P with the semi—circleg, figure 4.7.

PATH  OF INTEGRATION
?1 é a ‘2‘-.2

The integrals for h eand u ocan therefore be evaluated
ap the swus of the residues of the poles of B and wu,
all of which lie within *his loop by the definition of P.
Since tne poles lave t0 be found Ly solving transcendentel

equations tne evi.luastion is difficult.
>

66



Wnen v = 0 the sitwrion ie much simpler.

™Me rolution for h now reduceg to

. ed
5 . —S0gkX ,23__51.__“
b = p ocoskd ? k

e +X™p

Theyroc arc poles when p = 0 und when

AN

¥=xun, mzs-,é%,

a0 0 a,y
that iz, when

p2 + \mzp + c%a = Q,

Alco
2
Ll xp~
2k == A - + ——
op @4+ 2p (o« xp)?
-?-lf-'. = L (l + ﬂ}—-ﬁ)
3 P 2p

Thug when p = - a + ib, k =m ,

? % coskd = ~ pd%% oinkd = — md {1 + =

- ibnnd sin md
a~ 1ib

2‘
n
217) gin md
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and the residue when P = —a + ib 1is therefore

(1 - -i%) (ma+ib)t
~ pd sin md ° . 908 mx
We then obtain, after adding the pairs qf temma corresponding
o p=-az%xid,

-at

h = 1~ 8088 . (g5abt ~

Dasinmd sinbt),

8
b
the sum taken over successgive valuep = 2% cevee Oof m.

g4 24t
Putiing
)-'2-% =~ ping, a = omeind, b = cncosd

this can be wriiten

o-ousindt cosm{x+cooutt; + ocosm(z-co0adt)

h=1-% mdsinmd

~tand( sinm{ xecoosdt) ~ simm{x~coosot))

In terms of dimnensionleas varistilea

x-%.w=i‘§. f\a--;f‘-a-. M= md

these last formulase betome

s8int =/-\-§!-,

h=loS & MeinbT [ oos N{X+0030T) + oos M{EK~comoT)
/ Madnii ~tand(gin H{X+cos0?)-asin M{X-coaaTl))

The situation is entirely detemined by /\ .

When A =0 the solution reduces to the Fourier



representation of the two travelling aquare waves which
then comprise the solution (4.1). VWhem A >0, becouas
of the factor M in 8, the deocsy of the higher harmonics
ia fagter than that of the lower harwonies. This
‘" represents the dispersion of the weve fronts which results
fron the impocsibility of current sheets (4.1).

~This golution for an inviscld case cen elsc be
obtained directly as & reproacntation in sigemfunctions of
x, since vith no condition on u when t >0 sguah
functione are now adeguate for the boundary conditions.

To eliminate x fLrom

' 2 \_?.._2..2;)11 - o2l

t 9% ?x
24 _ 3B
2t rr4

we take functiong

"D (x) = cos mx or pin mx
for whiah
P - - 2D
and put '
‘ = -~ Ps
h =1+ 2, z:iu(.)?b, uszué'»—-mg,

The egustions are then satisfied if
y 2
(35 + M%) ZT=~ cum

a
)

ez
i

= M

ot



and the boundary conditions

h =1 when X =#%4

n=u=0 elsewhere wien t =20
are satisfied 1f where

1= 2'1'696 ,

Z=-1, u=0 when % =0,

We oLtain

7 =-T 8% (cosbt - % ginpt), U = %Z e—ats.‘l.nbt.

T =2 ‘1‘2 0, 13 B e
the sine termas dropping out by symmeiry,

g0 this 1s the same solution as before.

1t is impossgible to eliminate u completely from

the equatione because of the initlal condition on wu.

The metnod is very easily extanded to e case where
the variation of the boundary value of h with time is
arbitrary. If this value is ho(t) we put
P's
B

ho=h +z z-—-f.zb?b. ur-f.ub
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Ther where
1 = YT 690
the equations are satisfied if

> 2y = =
(-2 Z = -am-n T

Ea-ho‘f,'ﬁn()when‘hno.

In this way the inversion of a Laplace transfom is
avoided. |

The eltuation is egein less complex when » =V,
Then in the solution obtained earlier for b, u in the

general case (puce 65)

i

2
)‘2*2: ﬁ"‘i{-"} (32‘&)*’%‘((%)2 +£)

b
2 3 ¥ 2
2 2 CAY 2 .
et N RTR - R D

| 3 ¥
k=1 (K ((-é%;)‘2 + B, ko0 =21 ((-29,-)2 + 8

2
- -ooﬁxsinkzd - ooal:zxninﬁd
h = % T eIn(E, X )d |

- This simplification, zs in the aterdy state case, resulta

from the lower order of the governing aystem of equations
(205). There are now poles when
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kz—H = i h' m = -2%" » ﬁ g vresses

that is, when
2 852 S

p = -M.m +(2\) )t k = izxiﬂl
There is no pole when lr.l = k, because then the
mmerator slso vanighes.
The residue when p =0 1is 1.
Also when kz'kl = 2m

: 2dooa(k -kl)d '
? 2 dcops2md
35 olallrie)d = - gyt = - SKGT

so the residus when kyk, = 2u is
coen(it‘-gh m)minj}%% ) d - ocm(%';q~ -n)uin(%% +n)d ;Mm2ﬂ2%\) 2)'t:
2 2
8@+ (R

The mmerator can be written

(ocomh '%. 0o smx~1sinh %aim)(iainh -3% co smd-co sh g—% sinmad)

~{oosh -g—ﬁ oosax+isinh %\ alnmx) (isinh -%% cosmdecosh 2

2(comn o ce smnxcogh 5y, 8inmd glnh 5% sinmxsinh oosmd)
Also when mda%,:’zﬁ....., oosmd = O, oosZ2md = =1,
and wher md = x, 2X ....., sinmd = 0, cos2md = 1.

Thus the solution for h reduces to
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!
>
~
i

i
+
——

F a0
S E\
~
P
et
<+

-

gy oo X cogh =
R X ginnd oo cogt )\ 2)\

T T R ‘
Qg Oy — '—__ . gz
Sl \* Ovmid slmax einh 5% sinh 22

The L dividuuwl taume de rot o ve e J0¥u 3 L wrevellins:

i o sodntlon e Llse ve obiulned cirectls s oo
renrarantgtion in termn o (i cnfrrosions of x deriving

from +h: couations (2.9)

~
2 & x_?:_ -

whieh ere obtainced by the gubstitutiong

h+u - v, - 4=,
™o appoyricte eienfunetions for the two e¢juniions huve

D 4 (:;9! S ng*. v'cDﬂ - 9)-55)' = - mz_@,

for tus onoc Cuos

for *he cther, n gsatizfying
cosmd o mirod = Q
The um divided bty tus ¢of 1o egdivtions for v o nd v then

pdves Do b thn gl llon slleady cDtudned.



Unfortunately the convergence is bad when N\ 1s
gmall, since then for the earlier terms ('é%;')z»ne, 20
that the Telative size of succepsive terms is mainly
determined by the factor E‘ on the underneath, which
decresses; the first temms of the eeries therefore
incresse. These difficulties of convergence musti also
apply to the general case for which X &V .

The results of numerical calculations when viseoai-ty
is absent are given in figures 4.4 and 4.5. These show
the development of the wave pattern when A= ,01 and .l.
In each figure the longitudinsl profile of the field is
given for values of the dimensionless time T = ldq
of .5, 1.5 and 2.5, these corresponding to instanis
when the wave fronts in an ideal case would be at the
quarter points of the system, before the first collision,
after it, and after the first reflection. Thé increasing
dispersion of the wave fronts can be seen. When N o= 1
the fronts have alresdy degenerated almost to a sine wave

form before the first reflection.

4.3 pPlane and cylindrigal sysltemp.

In an undamped system with side walls the current
sheets at the wave fronts turn along the walls forming a

current loop which cloases on itself, reverses direction as
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- the fronts pass each other snd opens wntil the fronts

reach the walls and are reﬂccted, when it beginas to closme
agein, figure 4.6.

/ EXC\TING CURRENT

J .

Vi b

\ WAVE £RONTS

TVCCHSSEWE SVTUATIONS VN Aw \DEAL CASE

Pig.4,6

When > end v > 0 the side walls cause additional
damping because of Hie resistance to the path of the

ourrent and the viscous drag along the sides.

Here only
the cage » > 0 will be considered.
| Y4 Y4
. \
- . |
Ji * |
f
™ o Tsii
$’I.'-
PLANE SYSTEM CYLINDRICAL SYSTEM

Fla. 4,

For a plane system the equations are then

<§;- Mixﬁ«r;;-)) h = o33

‘Q___ 2h
2t ° %33

h =1 at the boundaries,

h=us=0 elsevhere wvhen % = Q.
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Y
Yor a cylindrical system they are the same with B_-é
2 v
replaced by _f-—z- + %% - % » and the boundary value 1
Yy y
y
by -31- A double expansion in eigenfunctions of x and
y is the most convenient method. These will be the same
as before,
D (x) = comax or asimx,
"€ (y) = cosny or sty for a plane system,

9,(y) Y,(yy) - Y,(y) J,(yy) for an axial aystem,

satisfying
D" .- #fD, . -
E‘a-nzﬁ or ef+_—i§-=--%--n25

y
Then writing 1 for the boundary value, and

b, I=LT, D€ =I5B, u- it

the equations are satisfied 1if
(% + N(n%4n?%))T = - am

2u -
3t = CMR

z=J, W=0 when t=0.
These are the same as for the one-dimensional case, with

\ (l2+n2) replacing \ %, Thay give

- - T ~-at
T n -l at(c:oel‘:ﬂ:--%s:mb'l'.). ﬂ--i’rI- e‘ sinbt,

2,2
o BEAL) G2, 52 22



Ioe is obteined as the product of the coefficients Ib

snd I. evaluated in 3.7 (pages 45 end 41-42). In &

plane came

4ginmdpinne
I- mdne

and in & cylindrical ocase
(% 1) I, (ny,) Vo

he dmpiu is now determined by a factor

- » (m%4n?) 4 . )“21
e 2 instead of e

or in terms 0f the dimensionless variables

r-%. A-%&. M=pd, ¥=nd

_ Aoy,

The additional demping dus to the side walls is represented
by the part '—\-g—z- « 8ince the negative exponent inoreases
when both M and ¥ inorease, not only is there a
longitudinal diespersion of the wave fronts, but also there
is a transverse degeneration to a2 profile acroszs the

section of sine wave form.

The results of numerical oalculations for a square
section plane gystem are givem in figures 4.8 and 4.9.
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CHAPERR 5
EXPERIMENTS

501 ov design of eriment.

When it became clear from the theoretical work that
it should be posmsible to produce quite well-developed
waves in apparatus of laboratory size, oontrary to
Lehnert's conclusion’, it wae decided to proceed with an
experiment.

The available liquid conductors are liguid metals,
notably mercury and sodium potassium alloy which are
liquid at room temperature, and sodium which liquefies at
97°C. Their main characteristica are given in fable 5.1.

Table 5,1
] V}IODM v Klsotric
Density  irtusivity diffusivity
Ne X
r 3 % 2,V
kg/m n°/s n</s
Mercury ‘ |
at 20%C 13.6 10° 1.19 10~/ 7.55 1071
56% sodiwm
44% potassium 3 -7 1
at 2000 .87 10° 8,0 10 2,80 10~
Bodium
at 120°0C .9% 10°  6.77 10~7 .82 1071

S8odium and sodium potassium are both highly corrosive,



and moredover oxidize on exposure to air, so that they are
difficult to handlie. For a—il three liquids v <N, The
deamping of waves will be detemined by A+ -z’“-cid': .
where ¢ ip the wave ppeed, d the half depth of a closed
gystem (3.%). Also for a main field Bo' the wave speod is

B .
(—i)—; . Teking B, = 1 weber/m’, and A +~ = .05 for
pe

purposes of comparison, so that a harmonic resonance lig
just possible {3.3), d has to be 196, 18.5 and 5.6 om
for wercury, sodium.potaesium and sodiwn rempecilively, the
large depth needed by neroury being partly & result of the
lower wave speed assocluted with its bigher density. On
the bagls of thece flgures it was decided tiat sodium
would have t0 be uvsed &s the mediua for an experiment
despite the attendent difficulties, The nced for heating
apparatus. to ligquefy it is a vulsance. On the other bang,
bearing in wind ite corrosiveress, the fuct that 1% iz a
g0lid at room temperature ig an advantage for the handling
of apparatug containing 1%, aince i1t will not escaje in the
event of damage. The resigtivity of sodium increeses with
tenpereture, mmd a working temperatire of 120°0 was
pelected, & safe uargin above the melting point, but mot ao

high as to inecur s serious inerence 1n resietiviity.

An experiment muet wee an arxial ;eonelry with the

mein field along the axls, to ullow cirenlsnr disturbances
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in the fleld and free movement of the fluid round fhe

axis, To re;trict the size of the apparatus the maximunm
uge nust be nade o0f the availuble space in the magnetie
region., A pogsible way of inoressing the utilization of
the space in the axial direction im to use a system open

at one face. Such a gystem behoves like & closed system
bisected, the depth accommodating s quarter instead of a half
wavelength at the fundamental resonance., The length for
comparison with other systems becomes therefore the full
depth instead of the half depih, with a corresponding gain.
Lundquist2 and Letmert’ uscd systems of this type. Howaver,
such gystems involve difficulties of excitation. Simple
icagnetic excitation can no longer be used for lack of a
current path, so that some Tora of wall movement must be
used. But with 11quid metals simple mechanioal excitetion
is ineffective because v <@ X (3,3). It becomes necessary
to use a conducting wall carrying induced currentas like
Lehnert, or a ribbed wall like Lunrdquigt. The firat method
introduces additional losses, the second an elamant of |
wcertainty. The necessary mechenical drive will occupy
mich of the space which might heve been sained. Algo the
inertial forcea.will be a gource of difficulty, and it
becomes impossible 1o produce e sharp pulse for excitation
of trangient waves. For these reasons a closed system

excited by = sheet of electric current flowing round the
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gection was chosen.

The overall conception once decided, the design of
the apparatus could be divided into three main problems:

1) the design of a magnet to produce a uniform field of

the required strength over the required region;
2) the design of the sodium container;

3)  the design of equipment to excite and measure steady

state and transient waves.

5.2 Optimum shape.

The magnetic region should be chosen to have an
optimum shape. In 3,7 it was shown (page 43) that the
amplitude at resonance of a particular term of the

solution is approximately

1
(6+}5P+7 N
where B '

2
N
20 = (A+A)P, 2}:3\—*’—1‘,”-——. 7-(",{)
The most important texm of the solution is the first for
which N ?aa a value betwean %% and %ﬁ% s vwhere 4
and e are the half depth and width of the section, which
depends on the ratio of external to internal radius. At the

fundamental resonsnce P = 5 . Taking N = %% as a sufficient
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approximgtion, and substituting A = %ﬁ » 1in a case
where 7 can be neglected, and ~ compared with A
in 6 and 5, the amplitude of the first temm is
then

2cd

2
x%(1+(%))

For a given applied magnetic field the performance with
a given fluid is then determined by
d
5
d
1+ (e?

For a given ratio of external to internal radius the
volume is proportional to dez. if this is fixed we
then find by differentiation thgk performance is at a
maximum when '

92 = 2d2

Thus, on the asuppostion that the overall cost of the
apparatus will be roughly proportional to the volume of
the magnetic region, e ought to be about 1.4 4.

5.3 The magnet.

There being no suitable magnet available, it was
necessary to bulld one. To save cost it was decided not

to attempt to obtain a field greater tham 1 weber/m?,



a vslue which cen be obtrined with nild steel withoutl
saturation, so thet no moroe excensive matericl noed be
used. For the same reason it was declded to rule out the
use of '\ woiter cooled ocoil. Now acroas the width of the
coll thers is an unused waste flux, The shell, however,
must be large enough 4o carry this additional flux
without any flux conaentration, if the full potentdszl
rerformance ia 10 be realized. The reculred shell size
inoreases rapidly as the current density is reduced, and
-1t wess therefore decided to use a coil with & high current
denaity which would heat ﬁp while it Oparafed, and to

limit the tiae ¢f operation on any one occacion.

Tia general problem of the design of 8 ma;net under
thege conditions is comsidered in Appendix 3. On the basis
of the study outlined there,it was concluded that the beot
form of censirzction was simply a coil lying in the elot
between two flat steel slabs separzted by two spacer pleces
providing the flux refurn path. The arrangement ie
illugtrated in figure ».1. At &n iron face, becausec of the
high permecbility of iron, refruction of the lines of
force enpures that these leave the iyon prscticelly at
right sngles. Accordingly, with thie conatruotion the
field is certain %o be everywhere vertical, as if the coil

were pert of & long solenoid, and therefore uniform. The
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arrangement results in a nagretic re lon for experimental
work whicn 1o complcetely enclosed, and uocess to the

region can only be peined vy taking tie 's1d' off the
cagnet. In this cage the magnet wus placed in a latoratory
witil & travelling crane in the rcot, so thet this pregented
‘no difficulty. Aluminium and copper were possible materiale
for the coil. Agein on the basis of the analysis in
Appendix 3, it appeared thwt t.¢ totul cost 6f the nagnet
would be about the sawe with either usterial, and gopper

wag chosen ag the more readily aveilable.

To ellow for s sodium container of optinum shape -
(5.2) the wagnet wam bullt with a gup 20 cm deep and
60 ea in diameter. dith so deep a gap the relﬁctanco-_
of the iron path oomparsd with that of the gap is
negliygible, provided saturmtion is not approached. For
a field B weber/m2 and current deusity 3 L/mz such

& gap requires itnerefore e coll of conducting area

A = 153000 ? a? ,

Insulators were availsble which could withstand uj: to
160°C. Between 20 and 160°C the resistivity of copper
rises from 1.73 to 2.70 10°° m. Its heat capscity 1s
7,40 106 Joules/m3, 80 in this range the meen heating rate
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with a current denaity J A/m° is

1,65 10724 32 0/,

Vuluea .
% = .2 107 wever/a, A = .0% m®
were choasen, siving a running tluwe declining to about
14 minutes et a fiecld cf 1 webér/mg, essuning no
esogpe of heat to the swrroundings.

The totel conducting sren once determinaed by a cucice
of 2, tue number of turns into which this crea 1o
divided must ke chosen to Tit iﬁe viduding, b the volts: e
supply. Here a 220 V B¢ suprly was availsble and the
coll was desirned go toet 2t the maximua temperature the
voltage nended to rointain a current sufficient for « fleld
of 1 weber/m2 would be just le=n 4than this. The eoil was
aplit horizonitally, and tne twe nalves operated in ;zrullel,
Each nalf of the coil had 558 turmg of .05 mm by
.14 mm  couper ciurip, rectungular ‘o reduce Wrc wastage of
gpce, in 62 lajeros of 9 turns exach, ocevpyin o totsl
depth of 12.5 em. The resistunce of each balf was .92 @
st 209C, 1.414 ot 160°C.

The strip wae insuvluted with Teramel, a heat resiuting
engriel, and was wound Vetween cheeks of 4 leet resictant
Tufmel., The tums woere bound and lued to,cther witin
fibre lass ctripas and Arcliite, and once +*ie Araldite

had set the two hwlves of thie cuil proved ripid encush to
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be ensily transporiteble. Rach helf had one chatk‘:ylﬁ'dn
thick and one cheek .6 c¢n thieck, and the two halvea were.
vlaced with the thick cheeks sgainst each other. *
Matching grooves on tneir onter faces then provided four
tunnels .5 om deep and 2.5 em wide for the leads to
the godium contuiner. Also in each half of the ocolil the
lead from the bottom layer was brought out throuh e
croove in the thiock cheek. Originally these prooves vere
slaced on the fuces againdi thie turus pve that these leads
would be protected from dimsyse in handling. lHowever, in
tie course of the experiment.) rnropraume there was an
ingulation fzilure in one kalf of the coil beitween the
lexzd coming out and the pmasiig tuiua. Betweean turne in
suecceggive luyers of & coll) tiere ig only a very small
voltage: between tihe lead from the bottom und the passing
turns, on the other hand, neaxr tane outside of the coil

tne voliage approscies the full voltage on the coil. In
thls case it mppesared on ingpection thet some fibreglass
tape which had been inserted to help resipt this greater
voltoge hud veen displaced durdng the winding operation.
The nal? had to be written off, w«rid on the replucament the
lend wae crought out on tle cuiter face. Tr.e cheek of the
undenagzed hAlf was also gawn into and the lecd oved %o

the cuter feca.

Thie complete coll wel. ned about 700 Kg and the ratio



of conductor to totoi volume waugn 77.

The ouvter radius of tae coll was 1.65 times the inner
roediusd asgewaing & miform fall off of the field ascrose
the coil width, the total flux with a coil of this radius
ratio will be 1.8 times the flux through the 'poLe face., In
this case, zllowing for half the flux passing each side
rovnd the shell, the iron path area neceasary to prevent
concentration of the field was thus 260 cm®.  The shell
was actuelly built of ordinary mild steel with top and
bottom slabs 150 em longz, 13%5 cie wide, and 20 am thiek,
providing an area of 270 cmz, uridging spacer rieces
2C cm high of the aame soction. The armWlar area
carrying the pole flux ot tiie inner edye 0f the coil w.as
1,33 times the pole face area and this should a;ein have
been enovgh to »revent concemtration., The top and bottom
" slebs each weighed 3 tons, and were gplit =lony the centre
line to bring the weijht of ezcn individual iece within
the 2 ton limit of the laborutory crure. The total steal
welght was 7.6 tons,

Current was supplied fa the ragnet froma 220 V,
120 kw 4 pole DO gehez'atur driven from the 346 V three phase
AC main by a 130 kw © pole induction wotor. This
senerating set had veen neld og a ctundby su,ply for the
dngineering Laboratory, snd +o move i1 to a uosition

begide the uagnet it had to be  artiy cisuentled,



The use of the set eliminated ewitching problems with
such an inductive cirouit, since all that was necessary
was to cut the voltﬁge of the generator by reducing the
ocurrent t0 its field windings until the main ocurrent was
small enough for the circuit to the magnet to be broken.
8ince there was no starting equipment on the AC machine,
it was necessary to start the met vith the DC machine
acting as a mbtor. and to switch over when the operating
‘speed of 960 r/m had Been readhed.

To measure the magnet current, sumeters were
inserted in the cirouit to each half of tﬁo coil. The
coil tempereture ocould be estimated by comparing the
voltage required with the ourrent, the temperature limit
being represented by a resistance of .71l

The ganeral layout of the wagnet and its generating

set can be sean in the tmnnnpioco.

Teats of the magnet field were made uaing search coils
connectied by twisted leads to a moving coil flux meter
acourate to + 2%. To measure the absolute value of the
field at the mid depth at pointe om a particular radius a
10 tarmn  coil of 5.0 om® mean area within + 1%, giving an
‘end to end defleetion of the needle on the flux meter soale
for a field changs of 2.0 weber/m®, was simply rotated 180°
- on a sta;k through one of the tunnels between the two balves
of the magnet coil, To test the general wniformity of the
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field a 100 turn coil of 5.0 cin® wuean area, giving ten
tines the gensitivity, was .oved around the air cap in the
vertical and in any desired horizontal direction with s
traversing gear operated by nylon cords through one of

these tunnels. ihe tests showed = variation of the field
witn tie current registered by the anieters whioh was

linear within 4% 1im tue ronge up to ) weber/m2 at eny
pariicular point in the gep, confimuing that any non-linear
vebaviour of tre ateel was wninportunt in tihis rang e Hecause
of the relatively ne ligible totel reluctance of tie gteel,
{1l tae other nand variations as great ag ¥ were found
between one point und snother due npparently to imperfeciions
in manufacture. In particular there was a step in tiie ield
(erosg the g;1it along the cenirc line in the top and botton
slabs, becnuse the pieces on eltiter side of the aplit ¢id not
abeolutely mutch cuach other. Lo regular spatinl variaetion of
the field wus tound., Teble 5.2 ,dves the calibration of the
nasnet ot a point at the mid—rad'ﬂs taid wic=depth well away
frow any sliarp variation in the Ticld.

foble .2
Calibrption of magnet.
CQurrent ¥icld

'y ‘ weber/m”
100 » 325
200 » 650

300 970
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The field was about % leas than ni ht be expected
ideally, partly because the gap was in many planes deeper

than was designed.

As expected, at %00 A the nurmet coll took about
15 minutes to reach the tempernture limit of 160°0.

5«4 The container.

The sodium container was constructed and filled at
the Atamic Buergy Establighuent, Harwell, under the
direction of Nr. D.3. Lacey, an expert in 1iquid metals.
After dlascussion it was decided that the only readily
available materisls, with vhich tiere would be no danger
of fracture, which would withstand a tempersture of
120°C, and resist sodium, and which could be easily
genled, were metals, and that the complication of induced
well currents would have to be accepted. An 18
chromium & nickel stainless steel wae seleoted for its
non—-magrnetic behaviour snd low electric conductivity, and
the container was built of 1.2 mm asheet of this material,
jeined bf fusgion welding, Wolls of this thickness ars
quite flexible, and when the podium was liquid the

conteiner needed good support if it was to keep its shape.

Figure 5.2 ghows a section of the container, as it

was finally built. It wae a rectangular section torus
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19.5 cm high everall, and of 55 om external, 7.5 om
intermal diameter, these measurements icken outelide the
steel, The top =nd bottow faces were each dished .6 em
inwards for additional strength, und the space within the
recesses thus formed was filled with 3indenyo plates top
and bottom for heut inswlation and extra support. Heating
windings were placed round the circuuference.. The container
had 8 2.5 ca dimueter f4lling hole pousitioned at the
mid~radiue, =nd attached to the dgealing cap there wus a
amall search coil nounted on & stulk. In addition there
vagn a.soarch winding round the full torus section. This
pacgsed under the neating culls to sscupe irterterence fron
thege, but outelde the Sindanyo ;lutus. Finzlly outside
everything there was a toroidal winding of copper seguents
to excite the waves, The arrangement of the various
windings is illustrated in i ure 2.3, ‘The large scarcn
winding and the exciting winding were added after tho

container had been filled.

The coniainer wes filled fro. o larg e eleetrieally
hested godiwms tank throngh a filt.r of porouws s*tninleas
cteel, The filling line was la ged vith ushestos, The
container wae hNested in adve ce by its ownh nusting winding
Yo the teuperatare proposed for the lntoer experiients,

12000, 80 thnt the presoure in iie contalner, once sezlcd,
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should be atwepherie, and the seetion truly rectangular
4t this temperature. The container and filling line were
prefilled with argon supplied from a pressured botile, to
prevent oxidation of the sodium. The sodium was paesged
into the container through an open funnel -— since argon
'is denser than air it does not disperse very quickly, and
it was tnerefore considered that arcon gupplied from the
arcon line to etaer mith the wrgen aiasplaced from tne
container by the sodium was sufficient protection. The
sodiun wag punped from itz tank by argon under pressure
from its supply bottle. Its flow was controlled by a
velve with & bellows seal.

Lorge quantities of Pyromet extdnguishing powder
were at hand in case the sodium ignited, and trays of this
powder were laced under the apperatus to catch any sodium
thet night be spilled. There was ulso u large pressurized
Pyromet extinguisher. Everyone workiﬁg on the container
wore prolective vigors and agbestos coats, glovee and

bcots.

The density of godium deoreases from .97 é:/cm3 at
26°C to .93 g/cm3 at 120°C, 1most of the change
occurring when it melts, This is more than can safely be
acconmoduted by ithe flexibility of the walls and s

clearance upace should be left., To obtain the desired
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depth of sodium a probe was placed beside the filling
funnel to close an electric circult thiough the sodivm
vhen the sodium surface reached it, and ring a warning
bell. Regrettably this failaed, perhups because of the
formation of a film of sodium hydroxide on its surface,
with the result that the sodiwn overflowed znd caught
fire. The flamiies wore immedigtely extinguished with the
- Pyromet powder, and it was then necessary to withdraw
sone of the sodium with polythene squeeze bottleg, which
were able to withstand the sodium, tempornrily at least.
The sodium appeared hot to be seriously éontmninatedo
When pufficient sodium had been withdrawn, the sealing'cap
with its attached search coil was 1laced in position and
fusion welded to tﬁé container. Tie aro was atruck from

a tungsten rod, surrounded by an argzon jet.

The clearance epace actuslly left, which should
contain arpgon, was .6 o deep ét the working teuperature
of 120°C. ‘he corregpouding sodiwn depth wae 17.5 om.
In sodium the wave speed for a ricld B, weber/m2 is
29,2 Bo /8. At the first resonance tic depth contains
& half wavelength, so with this depti the resonant
frequency is 83.5 Eo ¢/c.  Alse the time required for a

transient experiment in which tiie wave frunts trevel
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gseveral times through thie depth and back is about

L%§ 8. Allowing for the wall thickness the width of the
o
sodiw.) mection was 2%.5 cu., with a ratio of outer to

inner radius of 7.0.

With the contalner once couwpletely sealed the risk
of fire wag low. The podium was only hesated when in
pocsition in the magnet, snd in the event of the container
developring a leak, perhups by a fallure of one of the
welded joing, it would heve solidified on tac noygmet
gteel. There was no danger of ligquid sodium rescling the-
concrete floor, with which it is lieble to explode by
extracting and reacting with the.water. As 8 precaution
' é pressurized Pyroumet extinguishexr and asbestos clothing

were Kept at hand.

The rppearance of the ccnteiner with its windings is
illustrated in figure 5.4, ti.e leada to the hestin: and
axciting windings can be seen extehding to the right ot
the helght at which they would pasas throwvih the tunnels
in the magnet ooll. Figure 5.5; snowe the container in
popition in the pagnet. It weas e éight fit, and
figure 5.6 shows how it was lowered 1w on a sling of
fibreglass tepes. Thece did not deteriorezte when hezted

and occuplied negligible spaca.



FIG, 5.4

Fic . 5. 5
THE = CONTAINER IN POSITION .




. 5.6
HOW THE CONTAINER WAS MOVED INTO

POSITION .
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‘5.5 Heating. |

The mass of the sodium was 39.5 kg. The specific hest
of sodium is 1.23 Joules/g °C, and its latent heat of fusion
115 Joules/g, ®so the total quantity of energy needed to heat
thie amount of sodium from, say, 20°C to 120°C is 9400
kioulea. Heatws supplied by three wixidings round the
cii-cumforence, star connected, and fed from the three phase
- AC main through three Variac transformers on a single spindle.
Sueh an arrangement has no magnetic effect. The windings
ware lagged with ashestos corxd. Iuch had 8 tums of |
Pyrotenac wire, with a resistance of 4800, At 240V, giving
. 3.6KW, 1t took BO minutes to heat the sodium to about 120°C.
The temperature could be held near 120°C with the transformers
sst to 110V, giving .75k¥. At 120°C the conductivity of
sodium i 84 W/w®0'C, Allowing for the direct loss of heat
outwards from the heating elements, and the heat conducted
through the faces, the temperature variation betweem the
inner and outer radii éhould then have been within 2°da_.
The temperature was measured at the inner radius, where
there could be no hot spots from the heating elements, by
a themocouple connected to a potentiometer. This
combination had been calibrated against lsboratory
thermometers accurate to 3+ 1°C. The thermocouple was
wedged under the exciting winding between some asbestos
lagging and the verticel wall. When the scdium was melting
the temperature meaaured was 97°C within + 2°C, confirming
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the accuracy of the method of measurement.

5.6 Detecting arparatus.

To determine the situatiom in the sodium the
e.m.f. induced by changes in the flux through one or
other search coil was compared with the current supplied
to the exciting w:l;ndir;g. In steady state éi‘fuations
the effect of the m could then be scen as a
modifiention in mg,nitude and phave of the mutual
indugtance between the exciting and search windin;s.

In transient situations the time deley before waves
travelling from esch face reached the gearch coil at
the centre could be observed directly.

The small search coil attachied to the sealing cap was
positioned at the centre of tue torus section. The coil,
illustrated in figure 2.7, was encés_ed in a double walled
drur .35 om long and of 1.9 cm mean diameter, of
«37 mm stainless steel sheet, mounted on g stsinlens
gteel stalk of .6 cm diameter containing the leads.
The coil had 10 turmsg, the naximum number for
which there was space, of .37 mm ailver copper wire,
with a resiatahce of .20 The effective area
enclosed by the tums, calculated from their diameter
2

at the centre of the wire section, was 2.75 com

within + 4%. It was impossible to rewind the coil
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