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1. INTRODUCTION

The-utility of numerical methods for predicting transonic flows
over wings and bodies is by now well established. The computer pro-
gram FLO22, based on a method presented at the. 1973 IFIP Symposium on
Computing Methods'[l], has actually been widely used to calculate the
aerodynamnic perfor@anée of wings of transport aircraft. Provicded that
a correction is méde for the displacement effect of the viscous bound-
ary layer, this code has been found to give predictions which are
accurate enough to serve as a useful design guide [2]. The salient
features of the code are: _

(1) the use of a potential flow approximation to the eqguations of
motion

(2) the use of upwind differencing in the supersonic zone to simulate
the region of dependence of the flow, and to prevent the appear-
ance of expansion shock waves»whiéh would violate the entropy
inequality -

(3) the use of a relaxation procedure based on an artificial time
dependent equation to solve the difference equations

(4) the use of a curvilinear coordinate system generated by a sequence

,of simple transformations to -produce coordinate surfaces following

the wing shape. .

_ 'The use of the potential flow approximation greatly reduces the
amount of computation required. Since the resulting flow is irrotation-
al, it is consistent to approximate shock waves by discontinuities
across which entropy is conserved. This approximation has been found
quite satisfactory in practice, since the shock waves generated by air-
planes cruising at subsonic speeds are generally guite weak. In fact
the appearance of stronger shock waves marks the onset of drag rise,
which sets an upper bound on the cruising speed. In order to obtain a

unique solution to the potential flow eguation, it is necessary to

* This work was supported by the Office of Naval Research under Contract
NO0014-77-C-0032, and also by NASA under Grants NGR 33-016-167 and
NGR 33-016-201. The calculations were perforiied at thie ZRDA Mathe-
matics and Computing Laboratory, under Contract EY-76-C-02-3077.%*000.



_exclude cxpansion shock waves, corresponding to the condition that
entropy'cén only increasc. The use of upwind differcncing in the
supersonic zone, first introduced by Murman and Cole [3], has been
found an effective way to enforce the entropy condition. The non-
linear equations generated by the discrete approximation are not easy
- to solve. The use of a relaxation process modeled on an artificial
time dependent eqguation [4] has been found to give reliable and
acceptably fast convergence.

The main disadvantages of the scheme used in FLO22 are the use of
nonconservative difference formulas, which result in a failure to sat-
isfy conservation of mass across shock waves, and the difficulty of
finding suitable transformations of coordinates to permit the treatment
of more complex gecmnetric configurations. The method to be described
here is an attempt to overcome these shortcomings, while retaining the
successful features of the previous method. The basic idea is to use
a discrete approximation which directly represents a balance of the
mass flow through small volume elements. This leads to a relatively
simple treatment of the potential flow eguation in conservation form.
The volume elements are distorted cubes generated by local trilinear
transformations defined by the element vertices. Elements of this kind
can be packed around any reasonably smooth configuration. The subsonic
difference formulas can conveniently be derived from the Bateman varia-
tional principle [5]. A directional bias is introduced in the super-
sonic zone by adding an artificial viscosity, which is Constructeé in
such a wvay as to produce an effective switch to upwind differencing.
This serves to prevent the appearance of expansion shock waves; The
‘artificial viscosity has a divergence form, so that the conservation
form of the equations is preserved by the difference scheme, and proper
shock jump relations, consistent with the isentropic approximation,
are satisfied in the limit as the mesh width is decreased to zero [6].
The most promising alternative to the use of artificial viscosity to
enforce the entropy condition appears to be the optimal control method
proposed by Glowinski and Pironneau [7], in which the entropy condition

is represented by penalty functions.
2. FORMULATION OF THE EQUATIONS

The flow is assumed to be isentropic and to satisfy the équations
of potential flow. Let g be the velocity vector, with magnitude g ,
and P the density. Then the potential flow equation can be written in

-

conservation form as
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o Velpg) = 0
where g is the gradient of the potential .
(2) q = V¢

Let a be the local.speed of sound, and M the Mach number g/a. Also let
M, ,9q, =1 and p, = 1 be the Mach number, speed and density of the
uniform flow at infinity. Then the local density is given by the
formula

' - e 1/(y-1)
(3 p = {1 + Iil Mi[l - qzj}
where Yy is the ratio of specific heats, and the pressure and speed of
sound follow from the relations

Y-l

»
(4) . p=-t5, a® = £
M2 - M

Equation (1) is hyperbolic in supersonic flow (t1 > 1) and elliptic
in subsonic flow, and shock waves will generally appear if there is a
region of supersonic flow. The shock jump conditions are
(a) continuity of ¢ implying continuity of the tangential velocity
component .
(b) continuity of pa where a, is the normal velocity componént
{c) the entropy condition that a, decreases through the shock.
Under the assumption of isentropic flow, conditions (a) and (b) imply
that the normal ccmponent of momentum is not conserved. The resulting
" momentum deficiency causes the appearance of a drag force, which is
an approximation to the wave drag [8].

The boundary condition at the body is

To obtain a unique lifting solution we also impose the Kutta conditicn
that the flow leaves the trailing edge smoothly with equal velocities
along the upper and lower surfaces. The resulting spanwise variation
in the circulation T = q ds around each section of the wing causes

a vortex sheet to be shed from the trailing edge. The vortex sheet
will be convected with the flow,and roll up along its side edges. In
the calculations this will be ignored and the vortex sheet will be

assumed to coincide with a coordinate surface. The conditions appliec



at the sheet are then )
(a) the jump T' in the potential is constant along lines parallel to
the free stream .
(b) the normal velocity component qa, is continuous through the shock.
According to an analysis of the asymptotic behavior of the potential
in the far field [%9], ¢ approaches the potential of the undisturbed
unifbrm flow except in the Trefftz' plane far downstream, where it
satisfies the two.éimensional Laplace equation for the flow induced by
the vortex sheet. ' _
In a finite domain R with boundary S equations (1)-(5) are equiva-

lent to the Bateman variational principle that
. [
(6) I = J p &R
R

is stationary. In fact according to equations (3) and (4), a varia-

tion 8¢ causes a variation

Thus
61 = -~ j pg'V §¢ dR
R
' = J (Yo} V-(pg) dr - f §¢ p a9, és
R ]

and the boundary terms vanish if §¢ = 0 or q, = 0.

NUMERICAL SCHEME

The Bateman variational principle will be used to derive differ-
ence formulas through the introduction of a discrete approximation to
" the integral I defined by equation (6). This leads to a central diff-
erence scheme. ¥hen such a scheme is used to compute the flow past a
profile with fore and aft symmetry, such as an ellipse, ﬁﬁe fore andg
aft syrmetry is preserved in the solution, and expansion shocks will
appear in transonic flow. Thus any scheme which is not desymmetrized
in some way is restricted to subsonic flow. The basic difference
formulas will therefore be modified by the addition of artificial vis-
cosity to introduce the desired directional bias in the supersonic
Zone. , ‘

In order to represent the Bateman integral, the region in which

the flow 1s to be computed is divided into distorted cubic cells,
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gencrated from cubes by separate transformations between local
coordinates X,Y,Z and Cartesian coordinates X,¥:2, as illustrated

in Figure 1.

XsY 2 _ .

\ Figure 1

The vertiées of the cells define the computétidnal mesh, and subscripts
i,j,k will be used to denote the value of a guantity at a mesh point.
In order to reduce the amount of computation a simple one point inte-
gratidn scheme will be used, in which the contribution of each cell
to the integral will be evaluated as the pressure at the cell center
(defined as the point mapped from the center of the cube in the X,Y,2
coordinate system) multiplied by the cell volure. Quantitites eval-
uated at the cell centers will be denoted by subscripts i+l1/2, j+1/2,
’k+1/2. Averaging and difference operators will be introduced through
the notation ’
W £ =7

xfi,5,k (£

i+1/2,5,%° fi—l/z,j,k]

Sxfi,5,x = f54172,5,x " fic1/2,5,%

If will also be convenient to use notations such as

Hh
!
Hy
]

n
it

Y J 3

xx SX(fo) ’ .

XY §X(6Yf)

Numbering the vertices of a particular cell from 1 to 8 as in
Figure 1, the vertices in the local coordinates are assumed to be at
X. = + 1 s, Y. = + £ : 2 = + 1 . If x.,y:,z. are the Cartesian coordi-
i -2 i n 2 - 2 1431771
nates of the ith vertex, the local mapping is then defined by the

trilinear form



.

(7) X = 8

S (11)

1 1 1 |
XitZ + xix)(z + Y;Y](Z + ziz]

=
RS X e o]
-

with sinilar formulas for y, z. The potential is assumed to have a

similar form inside the cell
(8)'. ¢ =8 § 0. (& + x xj(l-+.y Y)[l + 2.2)
) - L iY4 i 4 i V4 i

These formulas preserve the continuity of x,y,z and ¢ at the cell
boundaries because the mappings in each cell reduce to the same bilin-
ear form at the common face. At the cell center the derivatives of

the transformation can be evaluated by formulas such as .
x, = % () = %, + %, - %, +x, - % + x, ~ x )} = p,,8,%

4 2 1 4 3 6 5 8 77 "YZ X
Similarly it follows from equation (8) that

b T MyzOx® 0 dxy T MpSyy® o dyyp T Syxypt

In order to evaluate the contribution of each cell to the Bateman
integral it is now necessary to express the pressure and cell volume in
terms of the local derivatives of the mapping and the potentzal Let H

be the transformation matrix

X Y 7
(9) | | H=1Yy Yy Y4
2x %y 24

and let h be the determinant of H. Then the metric tensor is defined
by the matrix ‘
(10) - : G =HH

Also the contravariant velocity components are U,V,W where

<
il
(9]
-
5
| PSE————

-Then

q” = Udy + Vo + Wo,



and the variation in p due to a variation 8¢ is

‘ 2
6p = - pé(—3-) =-p(Uss, + Voo, + e, )

According to the one point integration scheme, the contribution from
the cell centered at i+l/2, j+1/2, k+1/2 1is the volume of the cell,

given by the determinant h. » multiplied by the pres-

i+l/2,3+1/2,k+1/2
sure pi+l/2,j+l/2,k+l/2" On setting .

oI

%3 ,5.x

= 0

and collecting the contributions from the 8 cells with a common vertex

i,3,k, we then obtain the formula
(12) ‘~ Hyo 8y (phU) + U8y (PhV) + uXY§Z(phW) = Q

at each interior mesh point. Along the boundafy there are only 4
cells adjacent to each mesh point,and equation (12) is correspondingly
modified.
Equation (12) is a discrete approximation to the conservation law
3

(13) L §§ (phU) + §§-(phV) + 2 (pnw)

=

which can be derived directly from equation (1) by using the tensor
formula for the divergence operatof [9]1. 1In fact we can derive equa-
tion (12) by representing a flux balance through a set of auxiliary
cells,'each of which is generated from a cube joining the centers of 8

primary cells, as illustrated in Figure 2.

Flux balance cell .
XY,z . ) X,Y,Z

Figure 2



in this interprctation (phu)i+l/2,j+l/2,k+l/2 is an approximation to
the flux across the face X = 0 of that part of the secondary cell which
lies in the primary cell A in Figure 2. The boundary condition (5)
reduces to U = 0, V = 0 or W = 0 on cell faces which coincide with the
boundary. The flux balance is then represented with secondary cells
bounded on one or more faces by the body surface, 6 as illustrated in

Figure 3.

Flux balance cell

' i"“"""""i
N !
i

|
TIEITTITTT ST

body surface
X]’Y’z XrYfZ

. : ' Figﬁre 3

" The lumping error introduced by the one‘point integration schene
now appears as an error introduced by calculating p, h, U, V, ¥ at the
corners of eacn secondary cell, instead of averaging these quantities
over the cell faces. If the vertices of the primary cells are gener-
ated by a global mapping smooth enough to allow Taylor series expan-
sions of x,y,z as functions of X,Y,Z, then the contributions to this
error from adjacent primary cells offset each.other, with the result
that equation (12) approximates equation (13) with a second order local
discretization error. .

The one point integration scheme haé another disadvantageshowever,
which can be seen from the following simple example. Setting h = 1,

p = 1, equation (12) reduces in the two dimensional case to

(yydyx + MyySyyld = 0
which is the rotated Laplacian scheme
541,941 Cann, et Cien;ge1 t Cuen, o1 T 4053 7O
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The odd and even points are decoupled, so that high frequency oscil-
lations in which ¢ = 1 at odd points and -1 at even points are admitted
by the scheme. To overcome this difficulty we can shift the point of
evaluation of the flux ¢X across the side AB in Figure 4 from A towaxrds

the center of the side by adding a compensating term -

E@Xy.

.

L il

. ‘ |
. | B Flux at C is
: ] '

Co ——>
, I I I S (0, + €¢
- - " a X'p XY
-
Figure 4

The addition of similar terms on all faces produces the formula

. Iuyxéxx T oHyxSyy T EaXYXYl¢ =0
which reduces to the usual 5 point second order accurate formula when
€ = 1/2, and to the 9 point fourth order accurate formula when & = 1/3.
Similarly in the discrete approximation to equation (13) we- want
to prevent excessive spatial averaging in the approximation of
$§K§¢¥Yf¢zz. Allowing for the dependence of p on ¢X*$Y§¢2 s the coef-

ficients of ¢ in eguation (13) are

XX'¢YY'¢ZZ
. B, = oh(g™t - u%/a’%)
A, = oh(g?? - v2/a2)

A, = ph(g>> - w2/a?)
1

1) are the elements of:G—

vhere g . In order to compensate equation

(12),we can use these coefficients to determine the magnitude of the
terms which should be added to shift the locations at which é.,¢.,é,
are effectively evaluated in calculating the fluxes across each face,
“for examﬁle, £ AXUZGXY¢ to shift ¢X in the Y direction. Collecting
the contributions from each of the 8 primary cells surrounding a
mesh point, we obtain the following formulas. Let

nd - & g AT R Ae b At o = aee are - . e e e —— e = - -



47\) 5¢

= (A 12%xy

QXY X

with similar formulas for QYZ . O and let

zx !

QXYZ = '(AX + Ay, + A )éxych

Then the final compensated equation is

{14) pxzﬁx(phU) + uzxéy(phv) + uXYGZ(phW)

{ o

= eluy 6y Ouyt 1y V"QV"+ “yészzx 5 SxyrOxyz? = O

where 0 < € < 1/2. 1In practice the valué g = 1/2 has been used.

It remains to add the artificial viscosity reguired to desymmetrizc
the scheme in the supersonic zcone. Instead of equation (13) we shall
satisfy the modified conservation law

2 (phu+P) + a_ (phv+Q) + EB-—-(ph'%:ﬁz) =0 -

3 3y 92 . -
where the added fluxes P,Q,R are proportional to the cell widths in
the physical domain, with the result that the correct conservation law
is recovered in the limit as the cell width is reduced to zero. The
aziifkﬁai.viscosity is designed to produce an effective switch to
upwind @ifferencing in the supersonic zone. Presuming the distribution
of mesh points to be smooth, it is constructed in the fs&is&zgg manner.

First ve introduce the switching function

: 2
B = Th max {0,[1 - éﬁ}}
: g

and we construct P by the formula

2
P = ;ﬁ'[U Syxt UVhyySxy* WU“zxézx]¢

and §,§ by similar formulas. Then

ﬁ. . if Uu >0
lyjlk

-

P. ., =
i+1/2,3.k if U <O

“Pit1,5.x
with similar shifts for Q, R. Finally, equation (14) is modified by

the adlition of

GXP + 6YQ + GZR



Since # = 0 when q < a, P,0Q,R . nish in the.subsonic zone. In the
supersonic zonc they approximatc —u[Uléxp . -—p]V]éYp ' —ulwldzp.

It may be verified [11] that the coefficients of the third deriva-
tives of the potential such as Ssryr Pyyxr by introduced by

P,Q,R are the same as in the artificial viscosity generated by the
rotated difference scheme which has been previously used in three
dimensional transonic flow calculations [1,2,4].

Finally the ‘nonlinear eguations generated by this discretization
process are solved by a generalized relaxation method which is derived
by emdedding the steady state equation in an artificial time dependent
equaticn. Thus we solve a discrete }approximation to '

3

{phU+P) + %Y {phV+Q) +~§§ {phW+R)

micu

%
= Cbyp ¥ Béygt Yogp + 00p

where the coefficients a,8,y are chosen to make the flow direction
timelike, as in the steady state equation, and § controls the damp-

ing {4].

4. CONSTRUCTION OF THE MBSH

Zhe formulation of the artificial viscosity presupposes a smooth
distridution of cells. Also the one point integration scheme will
cause a loss of accuracy if the mesh is not smooth. It is ém*gsriagé:;
therefore, to use a reasonably smooth mesh. This is most easily
accc:aélished by using global mappings to generate the mesh points.
All other steps, such as the transformation of the eguations of moticn,
are tken taken over by the numerical scheme.

Svept wing calculations have been performed on a mesn generated
by a sheared parabolic coordinate system, which has been found to give
good yesults with earlier methods [1,2,4]. First, we introduce

parabslic coordinates in planes containing the wing section by the

transformation
o S 1/2
X + i¥ = {Ix - xglz) + ily - yO(Z))}/t(Z)}

pA = z : .

vhere z is the spanwisc coordinate, xo(z) and y.{(z) define a singular

0
line just inside the lecading edge, and t{z) is a scaling factor which



can be used to control the number of cells covering the wing.

"B
\f\ /——\C
‘b ™~
X, ¥,2 §l§l.z“

Figure 5

The effect of this transformation is to unwrap the wing to form a
shallor bump Y = S(X,2), as illustrated in Figdre 5. Then we use a

shearing transformation

[

X=X, Y=Y-s8(X,2), &=

to map the wing to the surface ¥ = 0. The mesh is now constructed by
the reverse sequence of transformations from a rectangular grid in the
X,¥,%2 coordinate system. The vortex sheet trailing behind the wing is
assumed to coincide with the coordinate surface leaving the trailing
edge. This mesh can be modified to treat wing cylinder combinations
by first mapping the cylinder to a vertical slit by a Joukowsky trans-
formation, as illustrated in Figure 6, and then using the same seguence
of transformations to generate a sheared parabolic coordinate around

the wing projecting from the slit.

Front view of . : {

wing-cylinder combination Cylinder mapped to vertical slit

'Figure 6 .



» An alternative mesh generating scheme for wing fuselage combina-
tions [12] starts by introducing cylindrical coordinates as illustratec

'in Figure 7. o

6 = ~-1/2

Cylindrical coordinate system for

wing body combination

Figure 7

" In each cylindrical surface the wing section then appears as a profile
in a channel bounded by the intersection of the cylinder with the
plane of symmetry at 6 = + w/2. This configuration can be mapped to
a channel with a bump on the upper wall, as illustrated in Figure 8,

by the transformation

o = log (1 —'cosh(g))

§ = T/2
0 ,
o] ’ .
.0 B
B e
. A
8§ = -n/2 6 = w/g 8 = —-g/f2
c 4

. Figure 8

Finally the bump is removed by a shearing transformation.



o % REODULYDS

Two examples of numerical calculations are presented in this sec-
tion to illustrate the capability of the finite volume method. The
first mesh generating procedure proposed in Section 4, the sheared

parabolic coordinate system, was used in these calculations, both of

-which were performed on a sequence of three progressively finer meshes.

After the calculation on each of the first two meshes, the number of
intervals was doubled in each coordinate direction and the interpolated
result wvas used as the starting point for the calculation on the new
mesh. The fine mesh contained 160 intervals in the chordwise X direc-
tion, 16 intervals in the normal Y direction, and 32 intervals in the
spanwise Z direction, for a total of 81,920 cells. 100 relaxation
cycles were used on each mesh. Such a calculation takes about 15 min-
utes on a CDC 7600.

"The first example is a calculatlon of ‘the flov past the ONERA M6
wing, for vhich experimental data is available [13]. The result is
displayed in Figure 9. Separate pressure distributians are shown for
stations at 20, 45, 65 and 95 percent of the semispan. Section 1ift
and drag coefficients CL and CD were obtained by integrating the pres-
sure coefficient CP over the profile. The critical pressure coeffici-
ent at which the flow has sonic speed is marked by a horizontal line
on the pressure axis. Although the calculation did not include a
boundary layer correction, it can be seen that the agreement with the
experimental data is guite good. The triangular shock pattern is
clearly visible in the three dimensional plot of the pressure distri-
bution (Figure 9f). The front shock, emanating from the leading edge
at the wing root, merges with the rear shock about three quarters of
the way out across the span. The second example is indicative of the
level of geometric complexity which can be treated with the existing
code. The result is displayed in Figure 10. It is for a Douglas DC 10
wing mounted on a cylinder in a low mid position. The true DC 10 con-
figuration is not exactly modeled, because the code does not provide
for a wing root fillet.

These results confirm the promise of the new method. It appears

that it can be used to treat configurations of more or less arbitrary

complexity, subject to limits set by the power of the available comput-

ers. The extension to new configurations is primarily a matter of

devising mesh gencrating schemes, since the internal computations are

" essentially independent of the configuration, apart from the identi-

fication of which elements are the boundary elcments,
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