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Abstract

A new multigrid method
compressible flow equations
volume formulation with the
vertices, and a multi-stage

gveraging. In calculations

for the solution of the inviscid
is presented. The algorithm uses a finite
flow variables stored at the cell
time stepping scheme augmented by residual

of transonic Tlow past a swept wing the

method exhibits remarkably fast convergence.



1. Introduction

The purpose of this paper is to describe a recently developed
multigrid method for the solution of the three dimensional Euler
equations of inviscid compressible flow. The last decade has seen
rapid developments in methods for solving the Euler equations [1-5].
Several multigrid methods have also been proposed [6-11]. The present
method, which requires only some rather simple modifications te the
basic time stepping algorithm for the solution of the Euler equations,

has proved to be remarkably efficient in practice.

The underlving idea is to integrate the time dependent Euler
equations until they reach a steady state. The problem is first
reduced to a set of ordinary differential equations by subdividing the
domain into polvgonal or polyhedral cells, and writing the
conservation laws in integral form for each cell. The resulting
semi—discrete model can then be integrated in time by a variety of
discrete time stepping schemes, either implicit or explicit. If one
assumes that the optimal time step increases with the space interval,
then one can anticipate a faster rate of convergence on a coarser
grid. This motivates the concept of time stepping on multiple grids.
The cells of the fine mesh can be amalgmated into larger cells which

form a coarser mesh. In each coarse mesh cell the conservation laws



are then represented by summing the flux balances of its constituent
fine mesh cells, with the result that the evolution on the coarsze mesh
is driven by the disequilibrium of the fine mesh equations. Finally,
the corrections on the coarse mesh are interpolated back 1o the fine
mesh. This process can be repeated through a sequence of meshes in
each of which the mesh spacing is doubled from the previous mesh. If
the time step is also doubled each time the process passes to a
coarser mesh, then a four level multigrid cvcle consisting of one step
on each mesh represents a total advance

4t + 24t + 44t + 84t = 154t,
where 4t is the step on the fine mesh. Further improvements in
efficiency can be realized by the introduction of more complicated
multigrid cyvecles in which more work is performed on the coarse grids.
These gains are contingent upon ensuring the stability of the
composite process, and preventing too much attrition of the
convergence rate from the disturbances introduced by interpolation

from coarser to fTiner grids.

The space and time discretization schemes are described in
Sections 2 and 3. The multigrid procedure is described in Section 4,
and a method of analyzing the scheme for a simple model problem is
presented in Section 5. The initial application of the method has
been to the calculation of transonic flow past a swept wing. This is
an important problem because transonic flow is the principal operating
regime Tor both commercial and military aircraft. Some results are

presented in Section 6.
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2. Space Discretization of the Euler Equations

Let p, o, u, v, w, E and H denote the pressure, density,
Cartesian velocity components, total energy and total enthalpy. For =a
perfect gas

% (v + v¥ + w") , H =E p/p
where v is the ratio of specific heats. The Huler equations for flow

of a compressible inviscid fluid can be written in integral form as

a f .
st ”J wde + ” F . ds = 0 (2.1)
Q o R V4

for a domain £ with boundary 3R and directed surface element dS. Here
w represents the conserved quantity and F is the corresponding flux,
For mass conservation

w=p, FE= (pu, pv, pw)
For conservation of momentum in the x direction

2
w = pu, FE = (pu” + p , puv, puw)

with similar definitions for the v and z directions, and for energy
conservation

w = pE, F = (pHu, pHv, pHw)

If we divide the domain into a large number of small subdomains,

we can use equation {(2.1) to estimate the average rate of change of w



in each subdomain. This is an effective method to obtain discrete
approximations to equation (2.1), which preserve its conservation
form. In general the subdomains could be arbitrary, but it is
convenient to use either distorted cubic or tetrahedral cells.
Alternative discretizations may be obtained by storing sample values
of the flow variables at either the cell centers [1] or the cell
vertices [5]. The algorithm in the present work uses variables stored
at the vertices of the cells of a rectilinear mesh. A control volume
for each vertex is formed by taking the union of the cells meeting at

that vertex. Equation (2.1) then takes the form

d Py < - o o
T (E VO Wy =0 (2.2)
k k
where Vk and Qk are the cell volume and Tlux balance for the kth cell
in the control volume. The flux balance {or a given cell is now

approximated as

(o=

Q:E;geas (2.3)
£

where gp is the directed area of the ¢th face, and E@ is an estimate
of the mean flux vector across that face. Fluxes across internal

faces cancel when the sum E Qk is taken in equation (2.5), so that
k

only the external faces of the zontrol velume contribute to its flux
balance. The flux balance at each vertex can be evaluated directly by
summing either the flux balances of its constituent cells or the
contributions of its faces. The flux across each face is estimated by
a simple arithmetic average of the values of the flow wvariables at the

four corners of each face.



The approximation (2.2) needs to be augmented by artificial
dissipative terms Tor two reasons. First there is the possibility of
undamped oscillatory modes. For example, a mode with values ii
alternately at odd and even points leads to a numerically evaluated
flux balance of zero in every interior control volume. Although the
boundary conditions may suppress such a mode in the steady state
solution, the absence of damping at interior peoints may have an
adverse effect on the rate of convergence to the steady state. The
second reason for introducing dissipative terms is to allow the clean
capture of shock waves and contact discontinuities without undesirable
oscillations. Following the pioneering work of Godunov [12], a
variety of dissipative and upwind schemes designed to have good shock
capturing properties have been developed during the past decade
[13-23]. The concept of total variation diminishing (TVD) schemes,
introduced by Harten [18], has proved particularly useful as a guide
to the design of non—oscillatoryv schemes for scalar conservation laws.
First order accurate TVD schemes can be realized either by upwinding,
or the introduction of dissipative terms with a large enough
coefficient. These ideas may be extended to the treatment of a syvstem
such as the Euler equations by splitting the flux into components
corresponding to the different characteristic speeds,; and applying the

upwind or TVD construction separately to each component.

The use of flux splitting allows precise matching of the
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disgipative terms to introduce the miniwmum amount of dissipation
needed to prevent oscillations. This in turn reduces the thickness of
the numerical shock laver to the minimum attainable, one or two cells
for a normal shock. In practice, however, it turns out that shock
waves can be quite cleanly captured without flux splitting by using
adaptive coefficients. The dissipation then has a low background
level which is increased in the neighborhood of shock waves to a peak
value proportional to the maximum local wave speed. The second
difference of the pressure has been found to be an effective measure
for this purpose. The dissipative terms are constructed in a similar
manner for each dependent variable by introducing dissipative fluxes
which preserve the conservation form. For a three dimensional
rectilinear mesh the added terms have the form

31725,k 7 Yi-1/2,5,k T Y, 012,k T Y, 5-12,k

+ d - d (2.4)
iy Jrkrl/2 i,d,k-1/2

These fluxes are constructed by blending first and third differences
of the dependent variables. For example, the dissipative Tlux in the

i direction for the mass equation is

- 2y _ (4) .2, _ .
div1/2,5,% - Rle L R 'Y (2.5)
2 . , - (2) (4, .
where &, 1s the second difference operator, e and e are the

adaptive coefficients, and R is a scaling factor proportional to an
estimate of the maximum local wave speed. For an explicit scheme the
local time step limit 4t*% is a measure of the time it takes for the

fastest wave to cross a mesh interval, and R can accordingly by made
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proportional to 1/4t%. The coefficient e provides the background

dissipation in smooth parts of the flow, and can be used to improve

the capability of the scheme to damp high frequency modes. shock

L3 Y
capturing is controlled by the coefficient &(21, which is made

proportional to the normalized second difference of the pressure

3 . - ‘-) 0 R + 3 3
v o Paen, g,k T “PiLgk T Pio1, 5,k
Dk : : T N .
Lad, X Pivt, i,k 7 “Fi5,k 7 Pi-1, 4,k

in the adjacent cells.

Schemes constructed along these lines combine the advantages of
simplicity and economy of computation, at the expense of an increase
in thickness of the numerical shock layer to three or four cells.

They have also proved robust in calculations over a wide range of Mach

nunmbers (extending up to 20 in recent studies [24]).



3. Time Stepping Scheme

The discretization procedures of Section 2 lead to set of coupled

ordinary differential equations, which can be written in the form
glg_ + R(w) = 0 (3.1)
where w is the vector of the flow variables at the mesh points, and
R{w) is the vector of the residuals. The residual at each vertex
consists of the flux balance defined by equations (2.2) - (2.5)
divided by the sum of the volumes of the cells meeting at that vertex.
These equations are to be integrated to a steady state. Multi-stage
time stepping schemes prove to be effective for this purpose and they
can also readily be adapted to drive a multigrid procedure. In the
numerical solution of ordinary differential equations multi-stage
schemes are usually designed to give a high order of accuracy. Since
the present objective is simply to obtain a steady state as rapidly as
possible, the order of accuracy is not important. This allows the use
of schemes selected purely for their properties of stability and
damping. For this purpose it pays to distinguish the hyperbolic and
parabolic parts stemming respectively from the convective and
dissipative terms, and to treal them differently. This leads to a new

class of hybrid multi-stage schemes.
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Dropping the subscripts i,J the general m stage hybrid scheme to

advance a time step 4t can be written as

w(o) = w

wil) = w<0) - al 4t R<0)

w<m—1) = w{ﬂ) ey A4t R(m~2) (3.2)
ey - w0 a4t plm D)

wn+1 - W(m)

+ R .
where w' and w' 1 are the values at the beginning and end of the time

step, and the residual in the q+lst stage is evaluated as

9
(a) _ ¥ (r) (r), p
R = L ﬁqr Q(w ) ar D{w J (3.3)
r=0
subject to the consistency constraint that
q q
N . _ .
> By * 2 e = 1 (3.4)
r=0 r=0

A useful insight inte the behavior of these schemes can be gained

by considering the model problen

5

u, *ou o+ pasx”

u = {3.5)
! X XX XK

In the absence of the third order dissipative term this equation
describes the propagation of a disturbance without distortion at unit
speed. With centered differences the residual has the form

AtR

A, ~ )
557 Wyer 7 Y5
(3.6)
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where A = 4t/4% is the Courant number. If we consider a Fourier mode
~ 0 ipx . R . . .
u = e the discretizaticon in space vields
du _ 7

4t ar " zZu
where z is the Fourier symbol of the residual. Setting £ = pdx, this
is

b
z = — Arising - 4au(l ~ cos ¢)° (3.7)

In the complex plane z describes an oval path as 2 ranges from -z to
w. A single step of the multistage scheme yields

;n+1 - g(z)an
where g(z) 18 the ampilification factor. The stability region of the
scheme is given by those values of z for which g{z) ¢ 1. The maximum
stability interval along the imaginary axis attainable by an m stage

scheme igs m—-1. Schemes achieving this limit have been characterized

by Kinmark [25].

The computational requirements of a multi-stage scheme can be
substantially reduced by freezing the dissipative part of the residual
(0))

at the value D{w in all stages of the scheme, so thal in the

(q+1)St stage
AP { { 3 N
R'Y = L o) - D(w{o))} (3.8)
L
The amplification factor can no longer be represented as a polynomial,
but it can easily be calculated recursively. If the time stepping
scheme is to be used in a multi-grid procedure it is important that it

should be effective at damping high frequency modes. One can fairly

easily devise three and four stage schemes in the clasgss defined by



equation {(3.8) which meet this requirement. An effective three stage

scheme 18 given by the coefficients

ITts stability region is shown in Figure 1.

Additional flexibility is provided by a class of schemes in which
the dissipative terms are evaluated twice. This may be used to make a
further improvement in the high frequency damping properties, or else
to extend the stability region along the real axis to allow more
margin for the dissipation introduced by a TVD scheme. In this class

of schemes

) PN ,

r(0) - L {ch‘-of‘) - w0

B J
and (3.10)
) . . \

RV = p o) - me™y - asnw ) g
In the case of pure dissipation (Qw = 0), the amplification factor
reduces to

g =1+ z + ay B zd

Thus if g is chosen such that alﬁ = 1/4, the stability region will
contain a double zero at z = -2 on the real axis. A maximum stability
interval of 8 can be attained along the real axis by choosing 8 such
that qlp = 1/8. Figure 2 shows the stability region of a five stage
gscheme in this class with the coefficients

= 3/8, a« = 1/2, g =1 (3.11)

i
fond
\\
j2]
Q

%, = 1/4, &, .
1 /4 2 3
This scheme attains a stability interval of 4 along both the imadinary

and the real axes.
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As it stands the maximum permissable time step is restricted by
the stability limit on the Courant number. This restriction can be
relaxed by replacing the residual at each point by a weighted average
of the neighboring residuals. In a one dimensional case one might
replace the residual Ri by the average

ﬁi = &Ri—l + (1-2¢) Ri + ERi+1
at each stage of the scheme. This smooths the residuals and also
increases the support of the scheme, thus relaxing the restriction on
the time step imposed by the Courant Friedrichs Lewy conditioen. If ¢
> 1/4, however, there are Fourier modes such that ﬁi = 0 when Ri # 0,

To avoid this restriction it is better to perform the averaging

implicitly by setting

— . b — - Q\
eﬁé_l + (1 + 2e&) E& €§i+l Ri (3.12)
For an infinite interval this equation has the explicit solution
1-r o
- - 49 ‘7
Ri s % 1 Ri+q {(3.13)
q=—oe
where
€ % e, T <1 (3.14)
(1-r)”~

Thus the effect of the implicit smoothing is to collect information
from residuals at all points in the field, with an influence
coefficient which decays by factor r at each additional mesh interval

from the point of interest.

Consider the model problem (2.5). According to equation (3.10)
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the Fourier symbol (3.7) will be replaced by

i sin ¢ + 4y(1—008§)£

Z = “A I+ Z2e{l-cosg)

In the absence of dissipation one now finds that stability can be
maintained for any Courant number A, provided that the smoothing
parameter satisfies the condition

s 1 {AZ _ 1}
- T ¥2

where h* is the stability limit of the unsmoothed scheme.

In the three dimensional case the implicit residual averaging is

applied in product form

<

- 2 3 - - e i 2 . > ~
{1 exﬁx) (1 uyéy) (1 ezéz) R =R {3.15)

) 2 o
where 5;, Sy and 5; are second difference operators in the x , y and z

directions, and €., 16 and e are the corresponding smoothing
£

- o

parameters. In practice the best rate of convergence is usually
%
obtained by using a value of A about three times A, and the smallest

possible amount of smoothing to maintain stability.
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4, Multigrid Time Stepping Schene

The discrete equations (3.1) describe the local evolution of the
system in the neighborhood of each mesh point. The underlying idea of
a multigrid time stepping scheme is to transfer some of the task of
tracking the evolution of the system te a sequence of successively
coarser meshes. This has two advantages. First, the computational
effort per time step is reduced on a coarser mesh. Second, the use of
larger control volumes on the coarser grids tracks the evolution on a
larger scale, with the consequence that global eguilibrium can be more
rapidly attained. In the case of an explicit time stepping scheme,
this manifests itself through the possibility of using successively
large time steps as the process passes to the coarser grids, without

violating the stability bound.

In general one can conceive of a multigrid scheme using a
sequence of independently generated coarser meshes which are not
associated with each other in any structured way. It is convenient,
however, to generate the coarser meshes by eliminating alternate
points in each ceoordinate direction. This allows the Tormulation of
simple rules for the transfer of data between grids. In order to give

a precise description of the multigrid scheme subscripts will be used
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to indicate the grid. Several transfer operations need to be defined.

First the solution vector on grid k must be initialized as

(0)_ T W
kT Yk,k-1 "k-1
where w, is the current value on grid k-1, and T, is a transfer
k-1 k,k-1

operator. Next it 1s necessary teo transfer a residual forcing
function such that the solution on grid k is driven by the residuals

calculated on grid k-1. This can be accomplished by setting

- _ (0)
P ® O, k-1 B ()~ By (w7
where Qk k-1 is another transfer operator. Then RP(wk) is replaced by
) . 4 |

R}{Wk) + PP in the time stepping scheme. Thus, the multi-stage schemne
% ! £%

defined by equation (2.2) is reformulated as

(1) _ (0) (0)
Wy = Wy &g Atk (Rk - Pk}
{g+l)y . (0) _ {a)
Wy = Wy aq+l dtk (Rk + Pk>

ity

The result wé then provides the imnitial data for grid k+1. Finally

the accumulated correction om grid k has to be transferred back to

+
grid k-1. Let w, be the final value o¢f w, resulting from both the

k k

correction calculated in the time step on grid k and the correction

transfTerred from grid k+1. Then one sets

W1 T Yper T T k(W T vy

is the solution on grid k-1 after the time step on grid k-1

+

and before the transfer fTrom grid k, and Ik—l Kk is an interpolation
3

operator.
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The solution transfer rule is simply to set wioj to w1 at the
coincident mesh point in grid k—-1. The residual transfer rule is a
weighted sum over the 9 nearest points in two dimensions, or the 27
nearest points in three dimensions. The corresponding transfer

operator Q can be expressed as a product of summation operators

k k-1

in the coordinate directions. Let K denote an averaging operator in

the x direction:

1
e Blisrso, 5.0 = 7By 5 6 Y Bisy, g,
and
2 1 1 1
iy By sk "7 By 5k P B T Biel gk
Then in the three dimensional case
3

g .2 2
k,k“l K l"'y #

p:4

2

0
i

2

Z

The interpelation operator Ik*l K transfers the corrections at
]

coincident mesh points, and fills in the corrections at intermediate

points by bilinear or trilinear interpolation.
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5., Analysis of the Multigrid Time Stepping Scheme

The analysis of multigrid schemes is complicated by the
nonuniformity of the process. If a mesh point is common teo two meshes
then corrections can be directly transferred from the coarse to the
fine mesh. On the other hand the correction at a point of the fine
mesh which is not contained in the coarse mesh has to be interpolated
from the corrections at neighboring points. It is proposed here to
circumvent this difficulty by modeling the multigrid process as a
combination of two processes. The first is a uniform process in which
every mesh point is treated in the same way, and the second is a
nonlinear Tiltering scheme which eliminates the data from alternate
points, For the sake of simplicity the analysis will be restricted to
a one dimensional model. It also proceeds on the assumption that each
coarser mesh is produced by eliminating alternate points of the finer
mesh, so that there exists a set of points which are common to all the

meshes.

Figure 3(a) illustrates the data flow of a two level scheme in
which grid 1 is the finer mesh and grid 2 is the coarser mesh.

Suppose that the calculation is simulating an equation of the form

duj
= i ) ¥
8“,’{:—‘" Pj(]-lf (

[ ]
i
g
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where u‘j is the dependent variable at mesh point j of grid 1, and
R(uj) is the residual. Here it will be convenient to use bracketed
superscripts to indicate the grid level, and to reserve the use of
subscripts for the indication of the location of the mesh point in the
fine grid. Suppose that the points 0,2,4... are common to both
meshes, while the points 1,3,5... are eliminated in grid 2. A simple
multigrid scheme can be described as follows. On grid 1 u'j is updated

by a correction

(1)

Su . (l)
J

at f(Hj(u }D; (5.2)

b

where the function f depends on the time stepping scheme. On grid 2

corrections are calculated as

éuéz) = "Atiz)

(2)

where the residual RJ

f(ﬁé‘”) 5 = 1,3,5... (5.2)

is calculated by accumulating the residuals at
the nearest neighbors after first allowing for the correction

introduced on grid 1. For example,

+

i+l (5.4)

g(2) - ¢ gt
j J-1

L
+ 2(1l-¢) Rj + ¢ R
where the degree of spreading is controlled by the parameter e, and

(1),

R. = R.{u =+ &u 7 5.5
J J< ’ ( )
Then on interpolating the corrections on grid 2 back to grid 1, the

total correction of the complete multigrid scheme is

. e
auj = éu§1> 6u3“) , J even

(1 . (2) (2 .
du, = 6u§i> + %-(5u%”i + ﬁuj+i), J odd

This process can be broken down into two stades as illustrated in



(2 .
Figure 3(b). First the corrections ﬁuELDare calculated Tor all points

of grid 1 by formulas (5.3)-(5.5) for j both even and odd. In effect

the two level process is now calculated uniformly on the original fine

(2)

grid. In the second stage 8u, “is then replaced by
J

2y [ X
6u§“' = 6u&“> , J even
J J
~{2) 1 (2) (2) .
S - N / + N .
ﬁuj > (6uj_1 5uJ+1), Jj odd

This nonlinear filtering process eliminates the need to calculate
(2 . . . . o
aa . ) at the odd points, allowing these calculations to he shifted to

a coarser grid. It introduces an additional errveor

e‘j = 0 , J even
1 (23 - (2) (2) ,

ol g f b o (33 kS A +

Qj o2 *éuj~1 géuj 5uj+l)’ j odd
Assuming the mesh %o be uniform, this can be written as

1 {2) (2) (2) o 5
ej =T {5uj~1 25uj ! 5uj+1)(1 CO8—r xj) (5.6)

where 4x is the mesh interval of the fine mesh, and xj = Jjax are its

mesh points. Thus the filter introduces additional errors in the form
of a carrier wave at the mesh frequency n/4x of the fine mesh,
modulated by the second difference of the corrections 5u§2) which
would be calculated in the second stage of the uniform scheme. It we
make the usual assumptions of linearity and periodicity, the
multilevel uniform scheme can be analyzed by the Fourier method. If
the multilevel uniform scheme is unstable, we can anticipate that the
corresponding multigrid scheme will be unsound. Because of the

injection of additional errors at various mesh frequencies by the

interpolation process of the multigrid scheme, a reasonable criterion



is to require the multilevel uniform scheme to have a substantial
stability margin at the mesh frequencies of all the meshes above the

coarsest mesh in the sequence.

The following paragraphs address the question of the stability of
the multilevel uniform scheme. The analysis is carried out for an
initial value problem on an infinite interval governed by an equation
of the form

—2—‘% + AV = 0 (5.7)
where A ie a linear differential operator in one space dimension. The
operator A may contain a fercing term, so that v is not zero when the
svesitem reaches a steady state. Let the vector u with elements uj
represent the discrete solution. The residual is

R = Pu (5.8)
where P is a difference operator approximating 4t A. In the case of a
pth order accurate scheme, if P is applied to the values Vj = V(Xj) of
the exact solution, then
Pv = at(Av + 0(ax)F)
Using supercripts to denote the time steps,
un+1 = un + Bu
where the correction &u depends on the residual through the action of

a time stepping operator F, corresponding to equation {(5.2). VTFor

example, if we use the multi-stade schenme



u(g> = u”
u{l) = u(O) IR | Pu(O)
(9 {
L C pull)
ran
(3 ) 2
u\-)) - u{oa - aq Pu(‘”
n+1 _ {3)
1 = u
we find that
» A 2] {
W3V w0 P agagp?) pul®)
2 2 271
Consequently
2,
F = GB(I - azP + azalP )

If we set

o]
ﬁ(&) = 4x 2 uy enlng/AX

then the Fourier transform of the residual (5.8) is Pu where P(%) is
the Fourier symbol of the difference operator. Suppose, for example,

that we consider the model problem (3.5) for which

4
R R 3 a
A::é—}-é- fJAX i
ax
and that we use the central difference scheme {3.86). Then
~ L2}
P(g) = A isin ¢ + 4au(l - cosg)” (5.9)

Similarly if F(¢) is the Fourier symbol of the time stepping operator,



then
su(e) = F(g) P(&) ul(¢)
and
ey = g(e) WMo (5.10)

where g(¢) is the amplification factor
Y

g(gy = I ~ F{g) P(2) (5.11)

Suppose that we have a nested set of grids with successively
doubled mesh intervals. T+ is now convenient to revert to denoting
the grids by subscripts 1,2,3... (Since the individual elements of
the sclution vector do not appear in the analysis this leads to no
confusion). Consider a multigrid time stepping scheme in which time
steps are taken on successive grids sequentially down to the coarsest
grid, and the cycle is then repeated. In order to produce the same
final steady state as a scheme using only the fine grid, the evolution
on every grid except grid 1 should driven by the residuals calculated

on the next finer grid. Let R+ be the residual on grid 1 after the

1
change Sui, and let RZ be the residual caleculated on grid 2. Also let
971 ne the operator transferring residuals from grid 1 to grid 2, so
that Q R. is a weighted sum of fine grid residuals corresponding to

21 1

the coarse grid residual R,. Then cn grid 2 replace RZ by
Fan

T, = R +52



and on grid 3 replace RB by

where

+
S3 = 932(R2 + SZ) - R3

= / + . + e
Q5(Qyy By + Ry = Ry)

With a single stage time stepping scheme 8u, is determined by
2

....RB

substituting the corresponding fine grid residual QQIR{ for RZ’ but R2

) + . .
needs to be calculated because R2 - R2 appears in Sg. With a

multi—-stage time stepping scheme R2 would be recalculated several

times while 52 would be frozen at its initial value on grid 2. If we

examine the action of an m stage scheme on one of the coarser grids,

we have
(0) _ +
Uy 7 Ux1
(1) _ (0 _ +
S P %3 9 ko1 By
(2y _ (0) _ (1), + ()
R N Ao (R "7+ Qg Bypg 7 By )
(m) _ {0) o {m—1) + (0
u T T uy (R Qo oy Bpoy TR
u, = u(m}
K k
Here 1un the second stage
(1 _ (0) (1) (0
Rk Rk = Pk(uk uy )
+
=7 o Py 9y k-1 B
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whence
(2y _ (0) _ _ T +
e up E T g ey B) @ ey B
Following through the remaining stages, we find that
oo (my o (0)_ +
éuk 5 ouy wy = Fk Qk,kwl Rk~1 (5.12)

where Fk is the time stepping operator on grid k as it would appear

for a single grid,.

Now consider the evolution of all quantities in the multigrid
process, assuming that it is uniformly applied at every mesh point of
grid 1. Suppoese that the collection operators Q21’ QSZ all have the
same generic fTorm. On the fine grid denote this by @, with

corresponding Fourier symbol Q(£). For example, if

i 1
AY —
(‘QR/j = T R,j"“}_ + Rj + 7 R,j’f‘l
then
Q{¢) = 1 + cosg (5.13)

On grid 1 dencte the Fourier symbols of the residual and time stepping

operators by

p, = P(8), f; = F(&) (6.14a)
and the symbol of the first collection operator by
agy = 008 (5.14b)
For a system of equations these symbels will be matrices. On the
subsequent levels the correspending symbols are
p, = P25 Ny, £ = F(2¥ Ty (5.14c)
and
= a2 e (5.14d)



Now on the first grid

Gul = - flrl

where ry ie the Fourier transform of the residual

Ty T Pty

On subsequent grids it follows from equation (5.12) that

ﬁuk = - fkrk

where

+

k-1

S T § O R |

Since the system is linear

_%,. Fa
-1 = Tk-1 7 Px-1 "Yk-1
+ +
1 m 3 o -y N 92
(but in general ry 1 is not equal to Pp 1 Yg-1 when k > 2).
Substituting for 5uk~1’ we fTind that
A R RS S (5.18)
Finally fTor an m level scheme
m
ulo= uy - E £Lor, (5.16)

Equations (5.14)-(5.16) define the stability of the complete
multi-level scheme. The formulas can easily be evaluated for any
particular choices of residual operator, time stepping operater and
collection operator with the aid of a computer program. Figures 4 and
5 show typical results for the dissipative central difference scheme
(3.8), with the collection operator (5.13). Both results are for
blended multi-—-stage time stepping schemes of the class defined by

equations (3.2) and (3.3). Figure 4 shows the amplification facter of
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a three stage scheme in which the dissipative terms are evaluated
once, as defined by equations (3.8) and (3.9). The Courant number is
1.5. As the number of levels is increased the stability curve defined
by the amplification factor is compressed to the left, retaining a
large margin of stability at all high frequencies. Thus the scheme
zhould be resistant to the injection of interpolation errors. Figure
5 shows the amplification factor of a Tive stage scheme in which the

dissipative terms are evaluated twice as defined bv equations (3.10)

and (3.11). Residual averaging is also included with a coefficient of
.75, and the Courant number is 7.3. Although the stability curve

exhibits a bump, there is still a substantial margin of safety, and

this scheme has proved very effective in practice.

This method of analysis, in which the multigrid process is
regarded as a multilevel uniform process on a single grid, subject to
the injection of additional interpolation errors, can easily be
modified to allow for alternative multigrid strategdies, including more
complicated V and W cycles. Nor is it necessary to use the same time
stepping and residual operators on every grid. It may pay, for

example, to use a simplified lower order scheme on the coarse grids.
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5, Transonic Flow Calculations For Swept Wings

This section presents the results of some calculations using the
method described in Sections 2-4. The application is the calculation
of transonic flow past a swept wing. The five stage time stepping
scheme defined by equations (3.10) and (3.11) was used in conjunction
with residual averaging. A W cycle, as illustrated in Figure 6, was
used in the multigrid procedure. This was found to be slightly more

efficient than a simple V cycle.

The mesh was of C type in streamwise vertical planes, generated
by the introduction of sheared parabolic coordinates. This was
accomplished by a two stage mapping procedure. The first stage
introduces parabolic coordinates by the transformation
(X + iT? = x - x (z) +1i (v -~y )}/t(z)

VA = z
where z is the spanwise coordinate, t{z) is a scaling factor which can
be used to control the number of cells covering the wing, and xO(z)
and yO(z) are the coordinates of a singular line lying just inside the
leading edge. The effect of this transformation is to unwrap the wing
\

to a shallow bump Y = S{X,Z). The second stage is a shearing

transformation



X=X, Y=Y - 8(X,2), Z = Z
which maps the wing to the coordinate surface Y = 0. The mesh is then
constructed by the reverse sequence of mappings from a rectangular
grid in the X,Y,% coordinate system. Meshes of this type contain
badly distorted cells in the neighborhood of the singular line where
it passes into the flowfield bevond the wing tip. These cells, which
have a very high aspect ratio and a triangular cross section, present

a mevere test of the robustness of the multigrid scheme.

Figure 7 shows a typical result for the well known ONERA M6 wing
at Mach number of .840 and a angle of attack of 3.06 degrees. The was
computed on a mesh containing 96 cells in the chordwise direction, 16
cells in the direction normal to the wing, and 16 cells in the
spanwise direction. The figure shows equi-Mach contours on the
surface and in a vertical plane above the wing.* Tables 1-3 show
convergence histories for calculations of this case on 96x16x16,
144x24x24, and 192x32x32 meshes. The result of a calculation using 20
cycles on a previous coarser mesh was used to provide the initial data
for each of these calculations. The maximum feasible number of grid

levels was used in the multigrid cyvcle, four in the first two cases,

%T am indebted to G. Volpe for the use of his graphics software to

prepare this paper.



and five in the last. It can be seen that the convergence rate does
not vary much with the number of mesh cells, varying between an
average reduction per cycle of .80 and .82 in the density residual.

In all three caszes the 1ift coefficient is converged to within .1
percent in less than 20 cycles. Table 4 shows the convergence history
for a flow with a smaller supersonic zone, at a Mach number of .700

. g O . . .
and an angle of attack of 2.067 . Iin this case the convergence rate 1is

These calculations were performed on a Cray XMP 216 belonging to

Cray Research. BEach cycle on the 192x32x3Z2 mesh takes just under 8

seconds. Thus a calculation with 20 multigrid cycles can be completed
in 3 minutes. If a 96x16x16 mesh is used a calculation with 20 cycles
takes about 1/2 minute. Thus the method might be used for interactive

degign calculations.
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Table 1

Calculation of the flow past the ONERA M6 wing at Mach .840 and

3.06° angle of attack on a 96x16x16 mesh using 4 grid levels

Cyvcle Average dp/dt Lift Coefficient Drag Coefficient
1 .115 .30335 02507
10 226 10 2 .31829 01990
20 885 1074 .31738 01987
30 535 1070 .31743 .01987
40 645 10°° .31744 .01987
50 .821 1077 .31744 . 01987
60 109 1077 .31744 . 01987
70 142 1078 .31744 01987
80 256 1077 .31744 .01987
90 682 10740 .31744 .01987

100 210 10740 .31744 .01987

Average reduction of dp/dt per multigrid cycle .797.



Table 2

Calculation of the flow past the ONERA M6 wing at Mach .840 and

3.06° angle of attack on a 144x24x24 mesh using 4 grid levels

Cvele Average dp/dt Lift Ceoefficient Drag Coefficient
1 .180 .31496 .02023
10 590 1072 .31937 .01691
20 .437 1077 .31953 .01700
30 783 1074 .31948 .01698
40 821 107° .31947 .01698
50 149 1077 .31947 .01698
60 .233 1075 .31947 . 01698
70 .381 1077 .31947 .01698
a0 131 1077 .31947 .01698
90 633 1075 .31947 .01698
100 383 10°° .31947 .01698

Average reduction of dp/dt per multigrid cycle . 837.



Table 3

Calculation of the flow past the ONERA M6 wing at Mach .840 and

0 - , . . ;
3.06" angle of attack on a 192x32x32 mesh using 4 grid levels

Cycle Average dgp/dt Lift Coefficient Drag Coefficient
1 .114 .31778 .01778
10 446 1072 .31826 .01597
20 167 1072 .31762 .01566
390 262 107° .31746 .01567
A0 626 1072 .31747 .01567
50 101 1074 .31747 .01567
60 185 1077 .31747 .015867
70 257 1070 .31747 .01567
80 720 1077 .31747 .015867
a0 151 1077 .31747 L01567
100 320 1075 , .31747 .015867

Average reduction of dp/dt per multigrid cycle .833.
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Table 4

Calculation of the flow past the ONERA M6 wing at Mach .700 and

e} - ) . y
.06 angle of attack on a 144x24x24 mesh using 4 grid levels

Cvele Average dp/dt Lift Coefficient Drag Coefficient
1 .135 . 18681 .00863
10 .865 1077 .17961 . 00645
20 268 1074 .17918 .00647
30 126 107° .17919 .00647
40 138 107° .17919 L00647
50 205 1077 .17919 .00647
60 .349 10°° .17919 .00647
70 615 1077 .17919 . 00647
80 118 1077 179189 00647
a0 224 10710 .17919 .00647
100 502 10 11 .17919 .00647

Average reduction of dp/dt per multigrid cycle .785.



7. Conclusion

These results clearly establish the benefits of the multigrid
technique for convergence acceleration. The computational efficiency
of the present method reduces the cost of three-dimensional
compressible flow calculations to the point where they can be
routinely used as an aerodynamic design tool. The method has been
implemented in a modular computer program, in which the flow solution
module is essentially independent of the grid gdenerator, requiring
only the Cartesian coordinates of the grid points, and a definition of
which surfaces are inner and cuter boundaries at which solid wall or
far field boundary conditions should be applied. Thus the same method
can be applied to a variety of configurations by substituting
alternative grid generators. Studies are presently being pursued of

an extension to the Navier Stokes eguations.
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Figure 1
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Stabllity reglion of 3 stage scheme with single
evaluation of dissipation
Contour lines |g| = l., .9, «8, ...
and locus of z(%) for A = 1.5, u = 04
Coefficients ap = .6, ag = .6



Figure 2

Stabllity region of 5 stage scheme with two
evaluations of dissipation
Contour lines |g| = .9, .8, .7, .
and locus of z(&) for A = 3, , u = .04
Coefficients a); = 1/4, ay = 1/6, a3 =

3/8, a4 = 1/2, 8 =1



{a)

Multigrid scheme

(b)

Uniform scheme with nonlinear filter

Figure 3

Grid i
COLLECTION
Grid 2
INTERPOLAT ION

Grid 1

Step 1: éu(l)

Step 2: ou'?’

ALTERNATE POINTS
ELIMINATED

Filtered correction: 6u'Z

Data Flow of Multigrid and Uniform Schemes
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Amplification Diagrams for a 3 Stage Scheme
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Figure 6
W cycle
E Calculate one time step

Transfer data without updating the solution.
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‘ Figure 7

Constant pressure contours of flow over the ONERA M6 wing





