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SUMMARY

Hyperbolic systems of partial differential equations governing
inviscid and viscid flows are analyzed. A new combination of a
finite volume discretization in conjunction with carefully de-
signed dissipative terms, and Runge Kutta time stepping“schemes}
are shown to yield effective methods for solving the Euler equa-
tions in arbitrary geometric domains. Different types of accele-
ration techniques are discussed to improve convergence speed of
explicit time dependent methods. Computational results ranging
from viscid/inviscid airfoil flows to cascades, inlets, wings
and wing-body configurations are presented. Special attention

is given to the formulation of the Kutta condition and to flows

with leading edge separation.

1. INTRODUCTION

Aircraft development costs have escalated exceedingly within the
last years. Greater emphasis must be placed on exploring analyti-
cally and experimentally new configuration concepts aimed at sub-
stantially expanding airplane performance capabilities. The pre-
sent state of the-art in aerodynamic analysis and design requires
extensive configuration iterations through repeated wind tunnel

testing that is costly, time consuming, and relies heavily on



inhouse experiences and expertise. Significant advances have

'been achieved in the last few years in aerodynamic computational
methods which allow the numerical computation of flows around
three-dimensional configurations and provide valuable guides to
those seeking understanding of specific problems or those pursuing

innovative design concepts.

It is the purpose of this reviéw to discuss some numerical tech-
niques for solving hyperbolic systems of partial differential
equations which govern flows which can be solved by time or
space marching. For solutions for transonic potential flow
which have been proved to be very useful, but are limited in
application, Ref.. 1-3 give good overviews. Here, the dis-
cussion is limited to solutions of the Euler and Navier Stokes
equations. To solve problems numerically, one must make several
decisions which include the following: the selection of an ap-
propriate form of the equations which describe the flow of in-
terest; an algorithm-to calculate the numerical solution of

the equations within a domain or region of the fluid; a tech-
nique to properly approximate boundary conditions along the
boundaries of the domain; and finally, the treatment of
shockwave discontinuities which may occur within the domain.
For each of these decisions, useful, and in some cases pro-

mising, new alternatives will be presented and discussed.

2. GOVERNING SET OF DIFFERENTIAL EQUATIONS

Within the scope of this study we consider only flows governed
by first-order hyperbolic systems of partial differential

equations. Such a system can be written in general form in

an N-dimensional space X = (x1, Xor eenny Xy t) as
N-1 oF
g—t‘é+ z (C] —8;1' + E]) =0 : (1)
j=1 ]



where U and Ej are vectors of dimension M; Fj is a vector of di-
mension Mj' and Cj is an M x Mj matrix. The coordinate t is the
coordinate direction in which the solution is advanced.t can be
either a time or space coordinate. U is the solution or state
vector of the system. Given the initial conditions at t = to’
X7 t) for t > t,e In
general, Cj, F., Ej are functions of the space X and the ele-

J
ments of U. Letting I represent the identity matrix and ¢ the

we seek to solve for U‘(x1, Xorenos

null vector (vector whose elements are all zero) we say that

Eg. (1) is written in strong conservation form (or divergence
law form) if Cj = I and Ej = ¢ for all j, or weak conservation
form if Cj = I for all j. Otherwise, Eq (1) is said to be in
nonconservation form. In the next chapters only solution methods

for the equations in conservation form will be discussed.

2.1 Time~Dependent Navier Stokes Equations

The system of time-dependent Navier Stokes equations written in
strong conservation form in a Cartesian coordinate system of
three spatial dimensions (x, y, 2) 1is

g BFl 3F2 8F3

5€+8x+8y+82 =0 : (2)

where N = 4 and
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- The marching coordinate is the time t. The velocities in the co-
ordinate directions x, y, z are represented by u, v, W and the
pressure p is obtained from an equation of state as a function

of density p and specific internal energy e

where E is the total energy. For an ideal gas, where the ratio

of the specific heats y is a constant, the equation of state is

p = (y-1) pe

Other examples for real gases are shown in Ref. 4.

2.2 Time-Dependent Euler Equations

The time-dependent Navier Stokes equations reduce to the Euler
equations for inviscid flow if the stress tensor T only contains

as normal stress the pressure p and if k = O.

Therefore also Eqg. (2) is valid, but now using

, 7 - N .
pu oV pw
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= = 4 2 -
F1 < pv ’ F2 pve + p ¥ ’ F3 w pvw
nw pvw pw2 + p
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Again, the equation of state is being used to compute the pres-

sure p.



2.3 Steady Euler Equations for Supersonic Flow

We assume that within the domain for which we seek a solution,
the velocity in one coordinate direction is always supersonic.
If u > ¢, where ¢ is the local speed of sound (for an ideal

gas C = /?_7_573) we may use the coordinate x as the marching
coordinate. The steady Euler equations in a Cartesian coordi-
nate system of three spatial dimensions written in strong con-

servation form are

U 1 2
—a—}z + ———ay + 32 = Q (3)
where N = 3 and
“ u 4 o -
pu pv ow
Du2 + p puv puw
U= ¢ puv S, F1_= {pv2+p> , Fp = { pvW ?
, puw pvw ow? + p |
E+ E+ +
_( P) U ) | (E+p) g i (E p)vvJ

If the flow is uniform at some upstream location x = xo_for
all y, z in the domain, the above system can be simplified since
total canthalpy HT = (E+p)/p is constant. Thus there is no need

to include the energy equation in the above system. The resulting

system is

oF oF
oU 1 2
3% "3y T3z 0 ° (4)

where now
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2.4 Transformed Equations

It is often convenient for both analytical and/or computational
purposes to transform a system of equations into a new coordi-
nate system more natural to the fluid domain or as a consequence
of a closen mesh generation. One simple example is the transfor-
mation into a cylindrical coordinate system (see, e.g. Kuttar at
al in Ref. 5). For more general curvilinear coordinate systems
these transformations become very complex. However, as shown by
viviand in Ref. 6, this will not change the conservation pro-
perties of the governing equations. Since we will only discuss
finite volume methods in the present paper, no coordinate trans-

formation is needed as shown in the following section.

2.5 Finite Volume Approach

The form we now consider is the integral form of a system of
hyperbolic equations which can be expressed in conservation
form. It is an useful form for both physical and computational

purposes. If the hyperbolic system is expressed as

> N-1 OF
ot . Ix,
=t 3
- _ N-1 _ D N
then by defining the flux-tensor H = I F. i., where lj are
: i=1

unit vectors in the xj coordinate directions, we can rewrite

the system as

§T:—+VH=O

Integrating this equation within a volume V contained in the

domain and enclosed by the surface S yields

%zfgdv+f§ds=o (5)
v S



for volumes or meshes fixed in time where the direction of ds

is that of the outer normal to the surface S. For meshes moving

in time Eg. (5) has to be written as

3 -> = > > > >
==/ Uav + [ Has - [ U+ Xds=0 (6)
v(t) S(t) S(t)

with X as local velocity of ds (mesh velocity).

Eg. (5) and (6) can physically be exposed as the total flux

balance in a control wvolume.



2.6 Relationat at Discontinuities

Following the analysis of Lax [7], a solution to a system of
differential equations in a domain is called genuine if it
and its first partial derivatives are continuous everywhere
in the domain D. A weak solution is also a solution of the
system but is genuine only in subdomains of D. The subdomains
are separated by surfaces in D across which the solution is
‘allowed to be discontinuous. Relations governing jumps in the
values of the dependent variables across discontinuities may
be obtained for'systems in conservation form by integrating
the system about a small volume containing a portion of the
surface. For example, a surface of slope tan ¢ in the

(xj, xa) plane is shown in Fig. 1. For simplicity, the sur-
face is assumed to be orthogonal to all the other coordinate
directions. Using the conservation equations from the previous

chapter we obtain with the areas of the surfaces S3 and 84 + O:

- > -> -> > > - -
Fa J.u-ns+F 1°nS+Fa'ia'nS+F'1°ns=O
1 1 3 1 2 2 3 3 2
or .
-1
"(Fa —Fon) (tang) =F, - F.

2 % I3 I

The above jump _relation is commonly known as the Rankine-~Hugoniot
1 US’ the speed of the dis-

continuity (shock wave speed), and the relation determines the

equation. If x, = t, then (tan¢)

jump across a moving discontinuity. If X, is a spatial coordi-
nate, the relation specifies: the jump across a steady oblique

discontinuity.



3. NUMERICAL DISCRETISATION

The discretization procedure for Eg. (5) or (6) follows the
method of lines in decoupling the approximation of the spatial
and time dpendent terms. The éomputational domain is divided
into quadrilateral cells for two-dimensional flows or hexa-
hedrons for three-dimensional flows. For simplicity the spa-
tial discretisation will be discussed on the basis of two-

dimensional flows only.

A system of ordinary differential equations is obtained by
applying Eg. (5) or (6) to each cell separately. The resulting
. equations can then be solved by several alternative time step-
ping schemes. The present paper will only discuss central ap-
proximations and Runge-Kutta-type stepping schemes since they
proved to be extremely valuable. The most widely used schemes
are those of Mac Cormack, e.g. see Ref. 8, or Lax-Wendroff [9].
Detailed descriptioﬁs of these schemes are found in the cited

literature.

3.1 Central Space Approximations

The physical space is discretised into a mesh of quadrilaﬁeral
cells as sketched in Fig. 2. Let the values of the quantities
associated with each cell be denoted by i,j. In a cell-centered

scheme these can be regarded as values at the cell center, or

B [ fudvol

g, . = —
ted [ avol



For each cell Eq. (5) can be expressed as

d =
3T (Uv) +Q - U =0 (7)

where V is the cell area, and the operator Q represents an
approximation to the boundary integral defined by the second
integral in Egq. (5). This is defined as follows. Let Axk and
AYy be the movements of x and y along side k of the cell,
with appropriate signs. Then the flux .balance for, say, the

x-momentum component, is represented as

[ e B

]

k=1

Where Qk is the flux velocity
Qk = Akak-AXKVk (9)

and the sum is over the four sides of the_.cell. Each quantity
such as U2 or (pu)2 is evaluated as the average of the values
in the cells on the two sides of the face,

(pu), = 3 ((ou)y 4 + (pu) )} (10)

i+1,3

for example. The scheme reduces to a central difference scheme
on a Cartesian grid, and is second order accurate provided that

the mesh function is smooth enough.

A similar nodal point scheme can be constructed as shown in
Fig. 3. Now all U are defined in the nodal points i,], itself
and the first integral in Eg. (5) is approximated as

d _d 1 :
I \fi udvol = gp {7 (Uy %05 4 5+Uy 5 4%U5 4 59 v}

- 10 -



Consequently, the quantities such as U2, pU2 are now evaluated

as the averages

1
For mesh refinements and multi-grid techniques such nodal point
schemes seem to be more appropriate since the gquantities U are
defined on coinciding points after mesh halfing and interpola-

tion is simplified.

3.2 Dissipative Terms

To suppress the tendency for odd and even point decoupling, and
to prevent the appearance of wiggles in regions containing severe
pressure gradients in the neighborhood of shock waves or stag-
nation points, it proves necessary to augment the finite volume
scheme by the addition of artificial dissipative terms. There-

fore equation (7) is replaced by the equation

d

3¢ (UV) + QU - DU = O (11

where Q is the spatial discretization operator defined by
equations (8=10), and D is a dissipative operator. Extensive
numerical experiments have established that an effective form
for DW is a blend of second énd fourth differences with coef-

ficients which depend on the local pressure gradient.

The construction of the dissipative terms for each of the four

dependent variables is similar. For the density equation

Dp = DXp + Dyp , (12)



where Dxp and Dyp are corresponding contributions for the

two coordinate directions, written in conservation form

D = 4, 1, -4, 1. 13
X i+ 'E'lj i - '2_13 ( )
D =4, |, 1 -4 i
yp 1,J + E’ L,] — 5

The terms on the right all have a similar form:

for example

-(2)
€i+—2—Ij (O - P, .)

i+1,3 i,3
1 |
i+ 53 @
G+ 55T e _ e R Py g 73 P,y (14)
*3Pi,5 7 Piy,y)
where V is the cell volume, and the coefficientes 5(2) and
6(4) are adapted to the flow. Define
| . . — 2p, . P, _ ﬂ
Yy T TP T R T AT (15)
" i+1,] i i-1,3
Then
(2) | (2
€ i or %vj = K max (vi+1,j’ vi,j) (16)
and
ey 4 -é—-,j = max (0, (¥ 03 ;4 %—,j)) (17)
where typical values of the constants K(Z) and K(4) are
(2) _ 1 (4 _ 1
< =3 - = 256



The dissipative terms for the remaining equations are obtained

by substituting pu, pv and E for p in these formulas.

The scaling V/At in equation- (14) conforms to the inclusion

of the cell area V in the dependent variables of equation (10).
Since equation (14) contains undivided differences, it follows

that if ¢ (2) - 0(Ax?) and ¢4 2 0(1), then the added terms are
of order Ax3. This will be the case in a region where the flow

(2)

is smooth. Near a shock wave ¢ = 0(1), and the scheme behaves

locally like a first order accurate scheme.

It has been found that in smooth regions of the flow, the scheme
is not sufficiently dissipative unless the fourth differences
are included, with the result that calculations will generally
not converge to a completely steady state. Instead, after they

have reached an almost steady state, oscillations of very low
dp

amplitude continue indefinitely (with max TE " 103, for example).

Near shock waves it has been found that the fourth differences
tend to induce overshoots, and therefore they are switched off

(4)

by subtracting 5(2) from « in equation (17).

3.3 Time Stepping Schemes

Stable time stepping methods for equation (10) can be patterned
on standard schemes for ordinary differential equations. Mul-
tistage two level schemes of the Runge Kutta type have the ad-
vantage that they do not require any special starting proce-
dure, in contrast to leap frog and Adams Bashforth methods, for

example. The extra stages can be used either

(1) to improve accuracy, oOr

(2) to extend the stability region.



An advantage of this approach is that the properties of these

schemes have been widely investigated, and are readily available
in textbooks on ordinary differential equations.

Consider a linear system.of equations

du
—_— = 0.
3t AU o)

Suppose that A can be expressed as A =

= TAT”) where T is the
matrix of the eigenvectors of A, and A is diagonal. Then setting

v = V_'U yields separate equations
Ez-vk'+ Akvk = 0

for each dependent variable Vi The stability region is that
region of the complex_plane containing values of AAt for which

the scheme is stable. Consider now the model problem

3u Ju 3%y
-ﬁ-+a§+EAX§§2‘—O (18)

on a uniform mesh with interval Ax, with a dissipative term
of order Ax. This can be reduced to a system of ordinary dif-

ferential equations by introducing central-difference appro-

. . 3 3
ximations for % and Frrre

du,
1 a €
T ax Mt T Yier) Taw (et SO

Taking the Fourier transform in space



where

A
zwx)

1 , . .
A= = (i a sin wAx - 4¢ sin >

It can be seen that the maximum allowable value of the imaginary
part of XAt determines the maximum value of the Courant number

a At for which the calculation will be stable, while the addition

AX
of the dissipative term shifts the region of interest to the

left of the imaginary axis.

In the present case, if the grid is held fixed in time so that
the cell area V is constant, the system of equations (10) has

the form

du _

3t + PU = 0O (19)
where if Q is the discretization operator defined in Section 3.1,
and D is the dissipative operator defined in Section 3.2, the

nonlinear operator P is defined as

(QU - DU) ' (20)

<=

PU =

The investigation has concentrated on two time stepping schemes.
The first is a three stage scheme which is defined as follows.
Let a superscript n’denote the time level, and let At be the

time step. Then at time level n set

W(O) - g°

D O _ ap py©@

g® - 4@ _ é’t' @eu©® & oty (21)
g3 =tﬁ0)__%g(PUKn,+PU(%)

gitt U(3)



Variations of this scheme have been proposed by Gary [1l],
Stetter [12], and Graves and Johnson [13]. It can be regarded

as a Crank Nicolson scheme with a fixed point iteration to de-
termine the solution at time level n+1, and the iterations ter-
minated after the third iteration. It is second order accurate
in time, and for the model problem (18) with € = O, it is stable

when the Courant number

alt

l Ax g
This bound is not increased by additional iterations. Compared
with standard third order Runge Kutta schemas, this scheme gives
up third order accuracy in time for a larger bound on the Courant
number.

The other scheme which has been extensively investigated is -the
classical fourth order Runge Kutta scheme, defined as follows.

At time level n set

W@ ="

oD 2 5@ _ At 5y (@)

0@ =gl - 28 gtV » (22)
v =0 - e @

5@ 2 g© L 88 (0 4 gy gy 4 g

SRS

This scheme is fourth order accurate in time, and for the model
problem (18) with € = O, it is stable for Courant numbers

alAt
|Ax | =2 a

Its stability region, which is displayed on page 176 of Ref. [12],
for example, also extends well to the left of the imaginary axis,

allowing latitude in the introduction of dissipative terms.



Both schemes have the property that if pu® = O then U(1) = U(O),
and so on, so .that Un+1 = Un, and the steady state solution is
PU = O

independent of the timé step At. This allows a variable time
step determined by the bound on the local Courant number to
be used to accelerate convergence to a steady state without

altefing the steady state.

The expense of re-evaluating the dissipative terms at every
stage of these schemes is substantial. One method of avoiding
this is to introduce the dissipative terms in a separate
fractional step after the last stage of the Runge Kutta
scheme. Then equation (20) is replaced by
PU = Lo (203

29 :
and the fourth order Runge Kutta scheme defined by equation
(22), for example, is modified by setting

Un+1 (4) At (4)

This method has the advantage that the stability properties
for the two fractional steps are independent, so that the
scheme will be.stable if each fractional step is stable. It
has the disadvantage that the steady state solution is no’

longer independent of the time step.

An alternative approach which has proved successful in practice,
is to freeze the dissipative terms at their values in the first
stage. Thus the fourth order Runge Kutta scheme is modified so
that it has the form |



(O) n

U =U
(1y _ 0y At _(0) _ At __(O)
u =U -5 W + 55 DU
(2) _ () _ at (1) At (O) (23)
U =U = 5w W + 55 DU
(3) _ ©):_ At (2) At (0)
U = U= 55 QU + - DU
g4 2 5O | é%-(QU(O)+2QU(1)+2QU(2)+QU(3))+é£ o (@

The operators Q and D require roughly equal amounts of compu-
tation. Assigning to each 1 unit of work, and assuming that
dissipative terms would be required in the leap frog or Mac
Cormack schemes, both of which have maximum time steps bounded
by a Courant number of one, cne obtains the following table

for the relative efficiency of the schemes:

Scheme Evaluations Evaluatidns Maximum Efficiency
of QU of DU Work Courant Number = time step
work
Leap frog 1 1 2 1 1/2
MacCormack 2 1 3 1 1/3
3 stage 3 3 6 2 1/3
4 stage 4 4 8 2.8 .35
4 stage 4 1 5 - 2.8 .56

(frozen DU)

3.4 Boundary Conditions

Improper treatment of the boundary conditions can lead to
serious errors and perhaps instability. In order to treat
the flow exterior to a profile one must introduce an arti-
ficial outer boundary to produce a bounded domain. If the
flow is subsonic at infinity there will be three incoming
characteristics where there is inflow across the boundary,
and one outgoing characteristic, corresponding to the pos-

sibility of escaping acoustic waves. Where there is outflow,



on the other hand, there will be three outgoing characteristics
and one incoming characteristic. According to the theory of
Kreiss [14], three conditions may therefore be specified at
inflow, and one at outflow, while the remaining conditions

are determined by the solution of the differential equation.

It is not correct to specify free stream conditions at the

outer boundary.

For the formulation of the boundary conditions it is convenient
to assume a local transformation to coordinates X and Y such
that the boundary coincides with a line ¥ = constant. Using
subscripts X and Y to denote derivatives, the Jacobian

(24)

corresponds to the cell area of the finite volume scheme.

Introduce the transformed flux vectors

G1 = YYFixYF2’ G2 = XXFZ-nyl (25)
where F, and F, are defined by equation (2). In differential

form equation (2) then becomes

3e. 3G .
9 2.0 (26)

1
3¢ (B0 * 5t sy




Consider first the boundary condition at the solid wall.
Across side 1 of cell A in the sketch there is no convected

flux since

xxv - yxu =0 . (27)
But there are contributions Ayp and Axp to the momentum
equations, which require an estimate of the pressure at the
wall. Taking the time derivative of equation (27) multiplied
by p, and substituting for 3—-(hpu) and %E (hpv) from equation

. at
(26) leads to the relation given by Rizzi in Ref. 13

(xx2+yxz) Py = (xXxY+yXyY) py * 0 (yYu—va)(vxxx+uyxx) - (28)
Thus we can estimate p, in terms of quantities which can be de-
termined from the interior solution, and we can use this value
of py to extrapolate the pressure from the adjacent cell center
to the wall. This approach is also called "normal momentum in
" method". Further techniques are described in Ref. 15 by Mac-
Cormack. For fine meshes, the simple Py = Py approach proved

to be accurate enough for engineering purposes.

Stable boundary conditions have been given by Gottlieb and
Turkel (16) and Gustafsson and Oliger (17) for a variety of
difference schemes. The treatment of the outer boundary con-
dition adopted here follows similar lines. The equations are
linearized about values at the end of the previous time step,
and the characteristic variables corresponding to outgoing
characteristics are then determined by extrapolation from
the interior, while the remaining boundary conditions are
specified in a manner consistent with the conditions imposed

by the free stream. Let

- 20 -



Since the boundary is a line Y = constant, the eigenvalues of
B determine the incoming and outgoing characteristics. If q,
and q, are the velocity components normal and tangential to
the boundary, and c is the speed of sound, these eigenvalues
are q_, 4y 9,7C and qn+c. Let values at the end of the
previous time step be denoted by the subscript o, and let

To be the eigenvector matrix of Bo. Then Bo is reduced to
diagonal form by the transformation A_ = To-1BOTO, and
setting v = T;1U the linearized equation assumes the form

] -1 v ov
3 (hv) + TO AOTO I + AO 5}7 = 0
The characteristic variables are the components of v. These

—c 25, -
are p-C_ “p; dys P pocoqn and po+pocoqn.

Let values extrapolated from the interior and free stream values
be denoted by the subscripts e and =. Then at the inflow boun-

dary we set

p-c? =p,-cle, | (29a)
q, = 9 (29b)
oo
P = P.Ca, = Py ~ Docpqn°° _ (2%¢)
P+ Qocoq*n = pe * pocoqn'e (294)
yielding

1
p = 5-(pe + P, * S, (qnefqnw))




The density can be determined from (28a). For steady state
calculations it can alternatively be determined by specifying
that the total enthalpy H has its free stream value.

At the outflow boundary one condition should be specified.
If the flow is a parallel stream then %§ = 0, so for an open
domain

p =P, (30)

A non reflecting boundary condition which would eliminate

incoming waves is

3
3t (P_pocoqn) =0 (31

This does not assure (30). Following Rudy and Strikwerda (18),
(30) and (31) are therefore combined as

3

52-(p—pécoqn) + a(p-p ) =0 - (32)

where a typical value of the parameter o is 1/8. The velocity

components and energy are extrapolated from the interior.

- Various other boundary conditions designed to reduce reflec-
tions from the outer boundary ‘have been proposed by several
authors (19.20), and it seems that it would be worth while

to test some of these alternatives.

- 22 -



A very simple set of Quite efficient boundary conditions can

be found by using the flux variables plus the characteristics

to decide upon the number of conditions to be specified. For
flows entering the fluid domain at a boundary only one variable
can be exﬁrapolated from inside, e.g. density. If total enthalpy,
flow direction, and total pressure are prescribed at the boun-
dary, eu, pv, and p can be computed. For flows having the fluid
domain a set of exit conditions is derived by prescribing only
static pressure p, extrapolating pu, pv, E, and computing o

from the energy eguation.

For turbomachinery cascades only periodicity-conditions have
to be applied rather than the external far field conditions.

For cases with detached bow shocks it can be desirable to use
a moving mesh aligned with the bow shock for better accuracy.
All the relations discussed in the previous chapter apply also
for such cases if Egq. (6) is discritised. Only the mesh velo-
city based on the moving, bow shock is required as additional
information. Basically, two solution processes are of practical

use:

- characteristic relations; for details see Ref. 22 and 23
for two-dimensional flows and Ref. 24 for three space di-~

mensions

- extrapolation of the pressure from inside the domain to
the rearward facing side of the shock and application of

the classical shock relations as discussed in section 2.6.

Comparisons of both approaches in Ref. 25 indicate that the
second approach especially in three space dimensions is supe-
rior due to its much easier and faster coding for nearly the

same accuracy.

- 23 -



3.5 Kutta Conditions for Lifting Flows

In potential flow theory, Kutta conditions are needed at all
surfaces where the flow is leaving the contour, e.g. at trai-
ling edges, side edges. In two-dimensional lifting airfoil
flow the classical Kutta-condition says that the static pres-
sure at the trailing edge on upper and lower surface is equal
thus the velocity vector is equal in magnitude and direction
since in isentropic flow total pressure is constant. This
leads to zero velocity at the trailing edge for nonsero
trailing edge angle. For three-dimensional lifting flow
Mangler and Smith in Ref. 26 discuss in detail possible solu-
tions and trailing edge wakes behind wings. All standard
methods in linear and nonlinear compressible potential flow
theory assume the wake, and thus the lines with the Jjump in
potential, to leave in the bisector-direction and to have
constant jumps in potential along x in spanwise constant lo-
cations. The flow around the wing tip in general is neglected.
This can cause at higher 1ift coefficients quite large devi-

ations from the physically correct situation.

Solutions to the full compressible Euler equations do not
need any explicit Kutta-condition to be unique, neither in
two- or in three-dimensional flow. This might be explained
on the basis of Fig. 3. Potential flow needs for uniqueness

a Kutta condition, since all rear stagnation point locations
are possible. As sketched in Fig. 3a, for all points g = O
and static pressure p = stagnation pressure is a solution. So

this point has to be specified by an additional condition.

In the full compressible inviscid equations of motion (Euler)
a flow around a sharp corner or an edge with a small radius
of curvature will always cause expansion to supersonic flow.
As indicated in Fig. 3b, compression to the point where the
flow is leaving the surface can only happen through a shock
which will cause total pressure loss and a large amount of
vorticity due to the combination of shock strength and cur-

vature. This will require a point on the surface with dif-



ferent total pressure which implies different velocities for
the same static pressure, i.e. a contact discontinuity or
wake like shown in Fig. 3b. However, this solution is not
stable since there exists in subsonic flow a solution with-
out any total pressure loss, namely the one with the flow
leaving the trailing edge and thus not having the large ex-
pansion and the shock. In transonic lifting cases with shocks,
the total pressure loss on one side is larger than on the other
‘which will only allow the flow to stagnate at the trailing
edgevuppef surface while the velocity at the trailing edge
lower surface is finite, thus leaving the lower surface
smoothly as shown in Fig. 3c. The wake contact discontinuity
in velocity and total pressure is captured in the fully con-
servative finite volume scheme. Therefore the wake shape is
not fixed due to the mesh but will be a result independent

" of the mesh chosen.

The same mechanism applies to sharp leading or side edges or
when the radius of curvature is small combined with locally

supersonic flow.



4. CONVERGENCE ACCELERATION

Different devices can be used to accelerate the convergence of
the solution to a steady state. The ones mainly used are impli-
cit approximate factorization technigues which are described

in detail in the present short course lecture by R.M. Beam [27].
Those techniques presented here have all in‘common that they
preserve the high degree of vectorization which is possible

for explicit schemes on present day or future vector computers.

The first is to use the largest possible time step permitted
by the local stability bound everywhere in the computational
domain. This has the effect of assuring that disturbances are
propogated the whole way across the domain in a number of time
steps of the same order as the number of mesh intervals. It
can be regarded as scaling the wave speed to give equations
of the form

éE+ A(EEL+-f2-=O

Jt 9x Ay
where A is proportional to the local mesh size. Assuming.that
a stretched grid is used to the computational domain away from
the profile will be very large near the outer edge of the do-

main.

As a model for this procedure consider the wave equation in

"polar coordinates r and 8,

_ 2 9 .1
dep = 7 (Tap (¥ )+ Tz bgq)

N

Suppose that the wave speed ¢ is proporticnal to the radius,

say ¢ = ar. Then

= 42 3 «
=0t (rgy (F0) F 9g)

¢tt



This has solutions of the form

i -ont
b=

H

suggesting the possibility of exponential decay.

A more sophisticated modification of the equations, which is
presently being investigated is to set
53U oOF oF,

et MGty =0

where the matrix M couples the equations for pu, pov and E, and
modifies the eigenvalues of the system. The new MacCormack
method [28] verifies this by stripping off the sign of the
eigenvalues of the system by using the diagonalisation matrix.
An other idea proposed by Jameson is to shift the spectrum of
the eigenvalues by adding resp. subtracting the maximum abso-
lut value of eigenvalues. Both techniques lead to block bi-

diagonal matrics which can be solved easily.

The second device for convergence acceleration is to introduce
a forcing term proportional to the difference between the total
enthalpy H and the free stream value H_ throughout the domain.

The density and energy equations

3
= mu)-+5§ (pv) = O

and

3 3 _
_3; {(puH) + 3y (pvH) = O
are then consistent. This property is not preserved by various

predictor corrector difference schemes, such as the MacCormack



scheme. It is preserved by the schemes defined in sections
above however, provided that the dissipative operator is
applied to pH and not oH in the energy equation. Thus a
forcing term proportional to H-~H_ does alter the steady

state.

The reason for introducing such a term.is to provide additonal
damping. The term is intended to have an effect similar to that

of the term containing oy in the telegraph equation:

+a¢t=¢ + ¢

q5tt XX Yy .

Multiplying this equation by ¢t’ and integrating by parts over
all space leads to the relation

co

g%—+ o f f ¢t2 dxdy = O

Yo o B <)

where

!

(=)

1
P=3

L ~— 8
| “~— 8

} (¢t2 + ¢x2 + ¢y2) dxdy
Since P is non negative, it must decay if ¢« > O until ¢ = O.
When relaxation methods are regarded as simulating time depen=
dent equations, it is similarly found that the term containing
op plays a critical role in determining the rate of conver-
gence [29].

In subsonic flow the Euler equations are equivalent to the

unsteady potential flow equation

= (a2_42 - 2_,2
¢tt + 2u¢xt + 2v¢yt (c» u<) ¢xx 2uv¢xy + {c*-v“) ¢yy (33)
which “‘can be reduced to the wave equation by introducing moving
coordinates xl!=x-ut, yl=y-vt. Also the unsteady Bernoulli equa-

tion is



It can be verified that if the Euler equations are written in
primitive form, and the density equation is modified by the

addition of a term proportional to H-H_, so that it becomes

o, %, L%, 2u, H) =

¥ + u T + v 3y + p (ax + aY) +ap (H-H ) =0
then the flow remains irrotational in the absence of shock waves,
and equation (33) is modified by a term proportional to ¢t. When
the density equation is combined with the momentum equations to
yield a system of equations in conservation form, the modified

equations become

3 : P
—-tﬁ(pu) +5-§-7—(pv) + o p (H-—Hm) = Q

]
o]

) 3 2 3
5T (pu) + . (pu“+p) + 5y (pvu) + a pu (H-H )

!
o}

d 3 L 2
(pv) + 5= (puv) + e (pve+p) + a pv (H-H )

w 3 R L j
T (E) + 3% (puH) + g-y- (ovH) + ¢ pH (H-H ) = O
The energy equation now has a gquadratic term in H, like a

Riccati equation. This can be destabilizing, and an alter-
native which has been found effective in practice is to mo-

dify the energy equation to the form

3 3 2
E (B) + 3% (puH) + -é-; (pvH) + (H—Hm) = Q
which tends to drive H towards H_. The added terms can con-..
veniently be introduced in a separate fractional step at the

end of each time step.



The third device for convergence acceleration is the multiple
grid technique which has been demonstrated to be a very power-
ful for quasi-linear second order differential equations by
South and Brandt [30] as well as Jameson [31l]. However, tech-
niques being developed for the full potential equation cannot
be simply applied for the Euler or Navier Stokes equations.
Brandt [32] proposed a multi-grid solver for the steady

Euler and Navier Stokes equations, while Ni [33] presented

a multiple grid technique based on a one step distribution
formula scheme for the Euler equations. We tried the multiple
grid technique in combination with the center point as well
as the nodal point Runge Kutta time stepping and with a Ni-
type one step scheme. In general nodal point schemes are
better suited to multi-grid techniques since after each mesh
halving mesh points will remain mesh points in the coarser
mesh. Best results so far have been obtained using the one
step distribution formula scheme of Ni. Therefore this pro-

cedure is described briefly. For details we refer to Ref. 33.

The basic idea is to use the coarser grids to propagate the
fine grid corrections properly and rapidly through out the
field, thus improving convergence rate to steady state while
maintaining low truncation errors by using the fine grid

discretisation.

The changes'AU2h in the coarse grid, obtained by removing

every other line from the fine grid, are determined by
AU =1 §u : (34)
Where Igh is operator which transfers to each control volume

of the coarse grid the correction GUH of the fine grid using

specific distribution formulas.



After computing the corrections 5U2h on all coarse grid points,
the flow properties at the finest grid are updated by

U =0+ 1 su (35)

where Iih is a linear interpolation operator which interpolates
the coarse grid corrections to give the connections at each

fine grid point of the finest mesh.

The scheme is quite sensitive to the choice of distribution

formulas and the boundary condition treatment. Also, compared
with the Runge-Kutta stepping schemes, a fairly large dissipa-
tion has to be incorporated to make multi-grid converging ef-

ficiently.



5. ‘ MODEL-EXAMPLE BURGERS EQUATION

To gain better insight into the numerical behaviour of the
Runge Kutta stepping schemes with central differences, the
three-stage scheme has been applied to the inviscid Burgers

equation in divergence form

U aF 17..2
T F=3U (36)

Following Eg. (21) we get

U(O) ="
(1y _ (0 _ at _(0) (o)
v =0 px Ti+1/2 T Fi-1p0)
(2) _ 1 (1) (1) _ At (1) _ =M
v =z luteru ax Fir1/a ~ Fio1y2)! (37)
(3) _ 1 (. (0) (L _ At _
vt =g {ut 4 ix Fi3ln - T30
g+l 5 (3)
where F(O) is being evaluated from U(O), F(1) from U(1), etc.
Fi+1/2 is being approximated by
R = F{l-ﬂJ+U )i
i+1/2 2 i Ti+t

One example of including the mentioned second order filter is

to add one filter step after the Runge Kutta stepping, e.qg.

e A R N SO LSS SO (38)

with 8§ as backward and 6+ as forward differences operator

§ U, =0, - U, etc.
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The coefficient u is given by

{

(3) (3) (3)
T i S
T (3) 01 (3) (3)

[Ui+1[+21ui |+|Ui_1]

In Ref. 34 a large variety of computations have been carried

out using different initial conditions and different filter

schemes. Only two cases will be discussed here; for people

interested, a program listing has been added at the end.

Fig. 4 shows the results for the fan solution without any

filter step in comparison with
ment is quite good. The result
solution without any filtering

around the discontinuity after

the exact solution. The agree-
in Fig. 5a for the shock jump
shows quite large oszillations

the dimensionles time t =

However, they can be damped nicely by using the additional

filter .step as indicated in Fig. 5b.

2.25..



6. MESH GENERATION

The presented numeriéal schemes allow in principle the compu-
tation of complete three-dimensional aircraft flow fields,
however the geometry discretisation along with the mesh ge-
neration is limiting presently the complexity. Mesh genera-
tion is a difficult and rather lengthy problem and will not

be discussed here in detail. Ref. 35-39 give an overview over
the present state. We will only mention the basic mesh topo-
logies which have been used in connection with the Runge-Kutta

Stepping schemes.

In two-dimensional airfoil flow parabolic C-type meshes are
easily established with good resolution near the leading edge
and lines which can be aligned with the wake. These meshes
can easily be extended to treat airfoils between .walls or
turbomachinery cascades as shown in Fig. 6. However, the
best trailing edge resolution can be obtained by using an

O mesh as known from conformal mapping. This mesh also
maximises the number of points on the surface for a given
total amount. Fig. 7 represents a typical example. For two-
dimensional or axisymmetric inlets very efficient mesh sy-
stems can be generated by using Maxwell-transformations [40]

as shown on Fig. 8.

Three-dimensional wings and wing-body combinations are treated
by either C-H or O-H type meshes being generated either by
solving a Poisson equation [35] or using transfinite inter-
polation [38]. Fig. 9 shows two examples. Three-dimensional
inlets or body-mounted inlets can be discretised by using\the
previously mentioned 2-D mesh projected on the body and used
for each 'inlet section as shown in Fig. 10. More complex con-
figurations require grid'structures as proposed by Lee [37].
We are presently pursuing such block structured meshes for

‘complex fighter configurations.



. 7. RESULTS

Up to now a large number of two- and three-dimensional compu-
tations have been performed. Some typical results are shown
to demonstrate the accuracy and convergence of the basic nu-
merical algorithm as Qell as results to show the wide range

of possible applications.

7.1 Nonlifting Two-Dimensional Flows

Fig. 11 shows results for the flow paét a circular cylinder
using the grid of Fig. 7. For Mach numbers 0.20 and 0.35 the
flow is fully subsonic and there is no departure from for

and éft symmetry as in an exact solution. Indeed, the com-
parison for M = 0,20 with the full potential solution shows

no difference. The'calculations are normalised with p = 1,

o = 1 at infinity, so the quantity s -can be used as a measure
of entropy generation. The largest computed value of S for

M = 0,35 was S = 0,0003, at a point along the surface. At
Mach 0,45 there appeared a moderately strong shock wave, as
can be seen in Fig. 12. Here entropy was computed to be 0,012
behind the wave. Fig. 12 also includes the convergence history
for this case. The measure of convergence is the residual for .
the density defined as the root mean square value of %% (cal-
culated as Ap/At for a complete time step). This was reduced
from 1.67 to 6.486 - 10°9. Enthalpy damping was used in this
calculation to accelerate convergence. The calculation was
started impulsively by suddenly introducing the cylindrical
obstacle into the uniform flow, and immediately enforcing the
solid wall boundary condition at its surface. This created very
large disturbances, but the pattern of the flow field is still
quite rapidly established. A measure of this is the size of

the supersonic region. In this case the number of supersonic
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points was frozen after 450 cycles. Fig. 13 presents similar
results for M = 0,50, again in comparison with the full po-
tential results. The additional velocity vector, streamline

and isobar-plots clarify the differences between the two so-
lutions. Since the full potential solution has no total pres-

sure loss, the flow at the rear stagnation point has the same

cp as the front one. The Euler solution nicely shows the total
pressure loss due to the strong shock which leads to the lower
rear stégnation point pressure. The largest difference, however,
emenates from the separated recirculating flow which is being
caused by the vorticity production due to the curved shock

and which is then concentrated to a separated region due to

the curved streamlines. This separation is to understood as

the limit of Reynolds-number to infinity. It is not specific

to the present method and was verified by a lot of other

methods, e.g. Ref. [4l].

Fig. 14 shows results for the flow past a NACA 0012 airfoil

using the 65 x-33 O - mesh shown in Fig. 7. Comparing the full
potential and the Euler results for M = 0.85, o = 0°, it can be
seen that the shock wave is further aft in the potential flow
calculation, which was performed by the fully conservative finite
volume method of Jameson and Caughey [2] , using a first order
accurate formulation in the supersonic zone. The convergence
history of the Euler calculation is also shown in Fig. 14. Fig. 15
presents a similar comparison between the potential flow and Euler
results for the NACA 0012 airfoil at M = 0.80. In this case the
shock locations are nearly identical, however the jump is sharper
in the Euler solution. Also shown are the convergence histories
with and without the enthalpy damping. Without enthalpy damping the
final residual is 0.269 . 10-6, with damping it is 0.240 . 10—9;
These runs used the potential flow result as the starting condition
for the Euler calculation. Thus the flow pattern was already essen-
tially established at the start of the Euler calculation, with the
result that the number of points in the supersdnic zone was frozen
aftér 180 cycles when enthalpy damping was used. To illustrate the
development of the flow field without the assistence of the potential
flow calculation, Fig. 16 shows the results for the same flow after

200, 400, 600, and 800 cycles with an impulsive start.
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Fig. 17 presents results for the Euler solution in the same
O-mesh at supersonic free stream Mach number = 1.20, d = o°.
The captured detached bow shock as well as the oblique shock at
the trailing edge can nicely be identified in the JSO-Mach-lines
and isobars-plot. The streamline and velocity-vector plots show
the flow direction change through the oblique shock.

These results support the conclusions that shock waves can be
satisfactorily captured without resorting to flux vector splitting
and one sided differencing Ref. 43 - 46 , at least for steady
state calculations.

7.2 " Two-Dimensional Lifting Flows

Examples using the present schemes in lifting two-dimensional flows
" have been obtained for inviscid flows and viscid flow using an
' interaction scheme with the boundary layer. Fig. 18 presents compari-
sons for the full potential solution using again the scheme described
in Ref. 2 and the Euler solver described above for M = 0,80 and
o« = 0,37. Shock positions at upper and lower surface are quite
different and the lift coefficient in the Euler solution is only
half that one from the full potential solution. Fig. 19 shows re-
sults for M = 0,20, &= 25°. The flow around the leading edgé
accelerates to supersonic speed and the potential flow solution
clearly shows a shock. The Euler solution, however is quite different
behind the supersonic region. The pressure distribution is influenced
by the vorticity and total pressure loss being produced and almost
tends to separate. A further increase in angle of attack would
cause similar results as for the cylinder in Fig. 13. The additional
streamline-plot nicely shows that the flow is leaving the lower
surface smoothly at the trailing edge. Fig. 20 = 22 show viscid
results using the interaction method described in Ref. 47. The
comparison with the measurements is guite good. It is also worth-
wile to note that even the inviscid Euler solution is much closer

to the experimental data compared with full potential methods.
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On Fig. 23 results are portrayed of Euler-solutions for transonic
flow over the Do - A2 (CAST 10-2) airfoil at M = 0.76, d = 0.5°
with and without condensation. These results as well as the mathe-
_matical treatment of real gas and condensation within the Euler

equations have been discussed in Ref. 48 and 49.

By using the mesh shown in Fig. 6 and corresponding periodicity
boundary condition, transonic turbomachinery cascades have been
analysed in Ref. 50. One of those examples is presented in Fig. 24.
Compared with different full potential solvers, again differences
occur which now mainly are contributed to the total pressure loss
which will cause different flow conditions since only total enthalpy,
total pressure, entrance flow angle and exit static pressure plus
sidewall contraction ratio have been specified in the Euler compu-

tation.

7.3 Three-Dimensional‘Inlet‘Flowfields

The three-dimensional Runge Kutte Time Stepping Scheme has been
extensively used for transonic and supersonic three-dimensional
inelt analysis. A variety of results will be published at the

1982 ICAS Congress in Seattle [ 51] . For the mesh shown on

Fig. 8 the computational results are shown in Fig. 25. The results
converged after 300 cycles and the reduction per cycle has been
0.975 for the density time-derivative. As example for supersonic'
flow with a moving mesh Fig. 26 presents the comparison of the
Euler solution with experimental data for a Fl16-type pitot-inlet,

discussed in Ref. 25.



7.4 Three-Dimensional Lifting Wing-Body Combinations

Three-dimensional wing-body combinations have been analysed using
the discussed Euler schemes in Ref. 38 and Ref. 47 using the
0-O-type mesh of Eriksson or the Yu-type C-H mesh. Detailed
comparisons of the four stage Runge Kutte stepping scheme and

the full potential solver based on Ref. 2 for the Onera M6 wing

and the DFVLR-F4 transport-configuration clearly prove the advantage
of the Euler eguation solution not needing any Kutta cbndition.

The O-type mesh in spanwise direction provides the accurate
modelling of the wing tip even with vortex flow as discussed in

the next chapter.

Fig. 27 - 30 show some results from Ref. 38 and 47. The results
in Fig. 30 have been performed for both, the full potential and

Euler solution on the same mesh.

7.5 Leading Edge Vortex Flows

Separation does not have to be a viscid phenomenon, it can also
occur in inviscid flow as shown on Fig. 13 and discussed earlier.
Since no Kutta condition is needed at trailing edges in two- and
three-dimensional flows, we might argue if separation at leading
edges of highly swept wings can be predicted as solution of the
compressible Euler equations. If we analyse the wing-body combina-
tion of Ref. 52 at M = 0.40 and X = 16° we obtain supersonic flow
at the nose with a shock. The corresponding Euler solution predicts
separation and thus the leading edge vortex flow pattern right
behind this region. Fig. 31 shows first results. More detailed
comparisons will be given in Ref. 53. Fig. 32 shows similar results
for a sharp leading edge computed with the three-stage scheme and
the second order filter Ee)only. These results are discussed further
in Ref. 54, however the peak at the leading edge in pressure seems

to be guestionable.
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8. CONCLUSIONS

The objectives of the present short course contribution were to
present an efficient and accurate solver to the full compressible
Euler equations to compute transonic and supersonic flow over

two- and three-dimensional configurations. Since in demonstration
cases the gsame meshes were used in the Euler solver as in the full
potential solver, the main differences in solutions of the fully
conservative full potential equation and the Euler equations could.
be demonstrated. The most important information has been that

Euler solvers do not need any explicit Kutta condition to be unigque.
Even on smooth surfaces separation can occur in inviscid compressible
flow caused by total pressure 1o0ss and vorticity due to a shock.
These effects heljp explaining the a apriori unexpected difference
between lifting Euler and full potential solutions. For viscous
flows the Euler equations solver have been successfully coupled with
an inverse boundary layer method. The same solver, however, can also
be applied to the time-averaged Navier Stokes equations. To further
improve the computational efficiency, the acceleration technigques
multi-grid and implicit filtering as discussed in Section 4 are

presently under further development.

Attractive features of the presented Runge Kutta Schemes are
their comparative simplicity, and their susceptibility to the
extensive use of vector operations on a vector computer. The
present implementation of the fourth oder Runge Kutta Scheme
requires in two-dimensional flow about 400 floating point opera-
tions at each interior cell. In tests on a CRAY 1 computer a
computing speed of almost 100 megaflops per second have been ob-
tained. All codes are written in standard Fortran, and this rate
was achieved simply by relying on the capability of the CRAY Fortran
compiler to vectorize the code automatically. A still higher rate
could be realized by writing gertain critical segments of the
program in assembly language. In practice a typical run is suffi-
ciently converéed in a fine mesh within 300 to 500 cycles for
engineering applications. This can be further improved by using

mesh-refinement.
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