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The flow over a pair of counter-rotating cylinders is investigated numerically and
experimentally. It is demonstrated that it is possible to suppress unsteady vortex
shedding for gap sizes from one to five cylinder diameters, at Reynolds numbers
from 100 to 200, expanding on the more limited work by Chan & Jameson (Intl J.
Numer. Meth. Fluids, vol. 63, 2010, p. 22). The degree of unsteady wake suppression
is proportional to the speed and the direction of rotation, and there is a critical
rotation rate where a complete suppression of flow unsteadiness can be achieved. In
the doublet-like configuration at higher rotational speeds, a virtual elliptic body that
resembles a potential doublet is formed, and the drag is reduced to zero. The shape
of the elliptic body primarily depends on the gap between the two cylinders and the
speed of rotation. Prior to the formation of the elliptic body, a second instability
region is observed, similar to that seen in studies of single rotating cylinders. It is also
shown that the unsteady wake suppression can be achieved by rotating each cylinder
in the opposite direction, that is, in a reverse doublet-like configuration. This tends
to minimize the wake interaction of the cylinder pair and the second instability does
not make an appearance over the range of speeds investigated here.

Key words: drag reduction, instability control, vortex interactions

1. Introduction
The flow over a pair of non-rotating identical circular cylinders is characterized

by the interaction between the cylinder wakes that leads to a number of particular
flow states according to the Reynolds number, Re = Ud/ν, and the normalized gap
spacing, g∗ = g/d . Here, U is the free stream velocity, d is the cylinder diameter, ν

is the kinematic viscosity and g is the distance between the two cylinder surfaces.
In the Reynolds number range of 100–200, an unsteady two-dimensional vortex
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Figure 1. (Colour online available at journals.cambridge.org/FLM) Idealized synchronized
vortex shedding modes in the wake of a non-rotating cylinder pair. Flow is from left to right.
(a) In-phase shedding. (b) Anti-phase shedding.
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Figure 2. Counter-rotating circular cylinder pair. (a) Doublet-like configuration. (b) Reverse
doublet-like configuration.

wake has been examined experimentally by Williamson (1985) and Xu, Zhou &
So (2003), numerically by Kang (2003) and analytically by Peschard & Le Gal
(1996). These studies found that for g∗ < 1, vortices are shed asynchronously from
the cylinder pair, and Kang classified the vortex shedding mode as being either flip-
flopping (0.4 <g∗ < 1.5) or following a von Kármán vortex street representative of
a single bluff body (g∗ < 0.4). These findings are supported by the work of Kim &
Durbin (1988) and Sumner et al. (1999). For g∗ � 1, two synchronized vortex shedding
modes from the cylinder pair are observed, either in-phase or anti-phase (figure 1).
Williamson (1985) noted that for 1 <g∗ < 5 the anti-phase mode is predominant and
stable since each vortex generally keeps its form while being gradually dissipated
further downstream. Within this gap spacing regime, however, it is possible for the
wake to ‘flip’ to in-phase shedding synchronization and vice versa, particularly for
smaller gaps such as g∗ = 1. The in-phase mode is unstable as the opposite-signed
vortices tend to coalesce into a larger vortex cell. This mode often leads to non-
sinusoidal lift and drag variations, and it breaks down into alternative shedding
modes when the gap is small. Numerically, the formation of the in-phase shedding
mode can be induced by disturbing the flow using either a tripping technique at
the beginning of a time marching routine, or by using an artificially large time step
and/or introducing some non-streamwise flow component.

When the two cylinders are put into counter-rotation, several recent numerical
studies have shown that these wake instabilities can be attenuated and even entirely
suppressed (Yoon et al. 2007; Chan & Jameson 2010). Counter-rotation can be
achieved in two different rotational configurations: the doublet-like and reverse
doublet-like configuration, as shown in figure 2. Yoon et al. (2007) investigated
the doublet-like configuration for a number of gap distances at Re = 100, and showed
that there exists a critical rotational speed, Ωcrit, where the unsteady vortex wakes
are completely suppressed. Here Ω = ω/(2U/d), where ω is the rotational speed of
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the cylinders. Also, decreasing the gap spacing reduces the critical vortex suppression
speed. The wake structure present when the cylinders were rotated at speeds below
the critical value can be classified in a manner similar to non-rotating cylinders and it
depends on both g∗ and Ω . The unsteady regime at g∗ =0.7 produced a single vortex
street, while a larger gap spacing yielded either in-phase or anti-phase synchronous
vortex shedding. Chan & Jameson (2010) extended this work by showing that the
unsteady vortex wake could be suppressed in the reverse doublet-like configuration
as well. For Re = 150 and g∗ =1, they show that Ωcrit = 1.5 for the doublet-like
configuration and 3.5 for the reverse doublet-like configuration. Additionally, they
found that for the doublet-like configuration, an increase in rotational speed past the
critical speed created a virtual elliptic body that resembled a doublet potential flow.

Here, we examine the flow past two counter-rotating cylinders in more detail, where
the cylinders rotate at the same rate. We refine the previous numerically obtained
results using a higher order simulation method, and confirm the computations using
physical experiments. In the work by Chan & Jameson (2010), the simulations
were performed with a commercial computational fluid dynamics (CFD) code for
incompressible flow simulations, CFD-ACE+, from the ESI Corporation. In the
current work, we use a high-order spectral difference (SD) method developed recently
for compressible flow simulations. The accompanying experiments were performed
in a water channel using digital particle image velocimetry. We focus on relatively
low Reynolds numbers so that we can assume that the flow past the counter-
rotating circular cylinder is predominantly two-dimensional. We use these techniques
to investigate the effect on the wake structure of gap spacing (g∗ = 1, 3, 5), Reynolds
number (Re = 100, 150, 200) and rotational speed (0 � Ω � 5), focusing on the
unsteady suppression for the doublet-like and reverse doublet-like configurations,
and on the formation of virtual elliptical bodies. In addition, we describe for the first
time the presence of a second region of instability at rotation rates above the critical
value. A particular highlight of the present work is the remarkable agreement found
between the numerical and experimental results.

Our study was inspired by the original work of Prandtl & Tietjens (1934) who
hypothesized that steady, symmetric streamlines can be generated by two touching
cylinders rotating in the opposite direction. The motivation also comes from Prandtl’s
subsequent experimental work on a single rotating cylinder which led to the design
of the Flettner rotor ship. We expect that the concept of the virtual elliptic body
may find applications in ocean and wind engineering (see, for example, Whittlesey,
Liska & Dabiri 2010).

2. Numerical methods
2.1. Introduction

While second-order methods for computational simulations of fluid flow are by now
mature and reliable, they introduce levels of numerical diffusion that cause rapid
attenuation of concentrated regions of vorticity. Consequently, accurate simulation
of vortex-dominated flows can most readily be achieved by resorting to higher order
methods. One of the most promising approaches is the discontinuous Galerkin (DG)
method, for which the theoretical basis has been provided by Cockburn & Shu
(1989), Cockburn, Lin & Shu (1989), Cockburn, Hou & Shu (1990) and Cockburn &
Shu (1998). The rapid growth of the computational complexity of DG methods with
increasing order has spurred the search for more efficient variants or alternatives. One
approach is the nodal DG scheme in which the solution is represented by Lagrange
interpolation at a set of collocation points in each element, and the quadratures
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required by the DG method are pre-integrated to produce local mass and stiffness
matrices (Hesthaven & Warburton 2008).

The spectral difference (SD) method has recently emerged as a promising
alternative. The basic concept of the SD method was first put forward by Kopriva &
Kolias (1996) under the name ‘staggered grid Chebyshev multidomain’ method. In
order to discretize the conservation law

∂u

∂t
+

∂

∂x
f (u) = 0 (2.1)

they proposed to represent the solution by polynomials of degree p in each element
and the flux by polynomials of degree p + 1, with interlocking collocation points for
the solution and the flux. The flux collocation points include the element boundaries,
where a single-valued numerical flux is imposed which is common to each element
and its neighbours on the left or right. Then, the value of ∂u/∂t at each solution
point is obtained directly as the derivative of the flux polynomial. Kopriva & Kolias
(1996) used Chebyshev and Chebyshev–Lobatto points as the solution and flux
collocation points, and it remains unclear whether the SD scheme is stable with this
choice, although they did prove the scheme to be conservative. Some years later,
Liu, Vinokur & Wang (2006) presented a general formulation of SD methods on
both quadrilateral and triangular elements. While the SD method has proved robust
and productive in a variety of applications (Wang et al. 2007; Mohammad, Wang &
Liang 2008; Ou et al. 2009; Premasuthan et al. 2009; Liang, Jameson & Wang 2009a;
Liang, Premasuthan & Jameson 2009b; Liang et al. 2009c), doubts persist about its
stability. For example, Huynh (2007) showed that it can be weakly unstable in one
dimension depending on the choice of flux collocation points, including the choice
made by Kopriva & Kolias (1996). In contrast, Jameson (2010) proved that it is
stable in an energy norm for all orders of accuracy if the interior flux collocation
points are chosen as the zeros of the corresponding Legendre polynomials.

The implementation of the SD method on quadrilateral or hexahedral elements
is simple as it allows one to use polynomial interpolation based on tensor product
forms rather than the multivariate interpolation used with triangular or tetrahedral
elements. The formulation is briefly reviewed in the next section.

2.2. SD spatial discretization in two dimensions

Consider the unsteady compressible 2D Navier–Stokes equations in conservative form

∂ Q
∂t

+
∂ f
∂x

+
∂ g
∂y

= 0, (2.2)

where Q is the vector of conserved variables, and f and g are the total fluxes
including both inviscid and viscous flux vectors. The inviscid and viscous fluxes of
the Navier–Stokes equations can be written separately in the following form:

∂ Q
∂t

+ ∇Fe( Q) + ∇Fv( Q, ∇ Q) = 0, (2.3)

where the conservative variables Q and Cartesian components f e( Q) and ge( Q) of
the inviscid flux vector Fe( Q) are given by

Q =

⎡
⎢⎢⎢⎣

ρ

ρu

ρv

E

⎤
⎥⎥⎥⎦, f e( Q) =

⎡
⎢⎢⎢⎣

ρu

ρu2

ρuv

u(E + p)

⎤
⎥⎥⎥⎦, ge( Q) =

⎡
⎢⎢⎢⎣

ρv

ρuv

ρv2 + p

v(E + p)

⎤
⎥⎥⎥⎦. (2.4)
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Here ρ is the density, u and v are the velocity components in the x- and y-directions,
p is the pressure and E is the total energy. The pressure is related to the total energy
by

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (2.5)

with a constant ratio of specific heat γ . For all numerical test cases in the present
study, γ = 1.4 for air.

The Cartesian components f v( Q, ∇ Q) and gv( Q, ∇ Q) of the viscous flux vector
Fv( Q, ∇ Q) are given by

f v( Q, ∇ Q) = µ

⎡
⎢⎢⎢⎣

0
2ux + λ(ux + vy)

vx + uy

u[2ux + λ(ux + vy)] + v(vx + uy) +
Cp

P r
Tx

⎤
⎥⎥⎥⎦, (2.6)

gv( Q, ∇ Q) = µ

⎡
⎢⎢⎢⎣

0
vx + uy

2vy + λ(ux + vy)

v[2vy + λ(ux + vy)] + u(vx + uy) +
Cp

P r
Ty

⎤
⎥⎥⎥⎦, (2.7)

where µ is the dynamic viscosity, Cp is the specific heat at constant pressure, Pr is
the Prandtl number and T is the temperature (λ is set to –2/3 according to the Stokes
hypothesis).

To achieve an efficient implementation, all quadrilateral elements in the physical
domain (x, y) determined by the one-level h-refinement are transformed into a
standard square element (0 � ξ � 1, 0 � η � 1).

The governing equations in the physical domain are then transferred into the
computational domain, and the transformed equations take the following form:

∂ Q̃
∂t

+
∂ f̃
∂ξ

+
∂ g̃
∂η

= 0, (2.8)

where

Q̃ = |J| · Q, J =

(
xξ xη

yξ yη

)
and

(
f̃
g̃

)
= |J| J−1

(
f
g

)
. (2.9)

In the standard element, two sets of points are defined, namely the solution points
and the flux points. A fourth-order representation is illustrated as an example in
figure 3.

The solution is represented as a tensor product of polynomials of degree N–1 using
a Lagrange basis defined as

hi(X) =

N∏
s=0,s �=i

(
X − Xs

Xi − Xs

)
(2.10)

at N solution points Xi . The flux along a line of solution points is represented by
a polynomial of degree N using a staggered basis including points at the element
interface:

li+1/2(X) =

N∏
s=0,s �=i

(
X − Xs+1/2

Xi+1/2 − Xs+1/2

)
. (2.11)



6 A. S. Chan, P. A. Dewey, A. Jameson, C. Liang and A. J. Smits
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Figure 3. (Colour online) Distribution of flux and solution points for the
fourth-order SD scheme.

The reconstructed solution for the conserved variables takes the form

Q(ξ, η) =

N∑
j=1

N∑
i=1

Q̃i,j

|Ji,j |hi(ξ ) · hj (η). (2.12)

Similarly, the reconstructed flux polynomials take the following form:

f̃ (ξ, η) =

N∑
j=1

N∑
i=0

f̃ i+1/2,j li+1/2(ξ ) · hj (η), (2.13)

g̃(ξ, η) =

N∑
j=1

N∑
i=0

g̃i,j+1/2hi(ξ ) · lj+1/2(η). (2.14)

Thus ∂ f̃ /∂ξ and ∂ g̃/∂η reduce to polynomials of degree N–1 consistent with the
solution. Following the analysis of Huynh (2007) and Jameson (2010), the flux points
are selected as the Legendre–Gauss quadrature points plus the two end points, 0 and 1.
The locations of the interior Legendre–Gauss quadrature points are the roots of the
equation Pn(ξ ) = 0.

For the inviscid flux, a Riemann solver using the Roe (1981) scheme is employed
to compute a common flux at interfaces to ensure conservation and stability. In the
present study, the flux vector at the element boundary interfaces is computed with the
entropy fix suggested by Harten & Hyman (1983). The viscous fluxes are computed
from the average of the flux point gradients on the element interfaces as outlined
by Liang et al. (2009a). All computations presented here are advanced in time using
a fourth-order strong-stability-preserving five-stage Runge–Kutta scheme (Spiteri &
Ruuth 2002).

The SD code used in this research has been extensively validated and documented
by Liang et al. (2009b) and Ou et al. (2009), and it has been verified that the order
of accuracy is N when using N × N solution points in each element. Additional code
validation tests are given in the Appendix.
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(a) (b)

Figure 4. (Colour online) (a) Mesh around the cylinder pair surfaces (g∗ = 1). (b) The
fourth-order SD solution collocation points around the cylinder pair surfaces (g∗ = 1).

2.3. Model set-up

In order to perform the SD simulation, we start by constructing a computational
domain using a commercial mesh generator. The size of the computational domain is
66.328d ×100d consisting of 5176, 7736 and 9088 cells for g∗ =1, 3 and 5, respectively.
Simulations were performed at Reynolds numbers of 100, 150 and 200. The mesh is
constructed to be finer near the cylinder surface (figure 4) and progressively coarser
radially outward. Figure 4 illustrates the solution collocation points (16 per cell) by
the fourth-order SD around a cylinder surface. The computational domains for other
values of g∗ are constructed in a similar manner. Our study, as shown in §A.3 of
the Appendix, indicates that the fourth-order SD solutions using these mesh densities
lead to mesh-independent results with sufficient accuracy, which is consistent with Ou
et al. (2009).

Across the inlet, the Dirichlet boundary condition is specified with a uniform
velocity of 0.1 m s−1. The position of the inlet plane is far enough upstream for
the flow to be considered unbounded and to have negligible influence on the vortex
shedding behaviour of the cylinder pair. The upper and lower boundary conditions
are set to a symmetrical slip condition. At the exit boundary, a fixed pressure equal
to the free stream condition is specified while other flow variables are extrapolated so
that the flow remains uniform at the inlet. An isothermal, no slip boundary condition
is applied on the cylinder wall surfaces.

One of the main advantages of using the SD scheme is that we can reduce the
total computational time by first producing a less accurate result using a lower order
scheme (that is, second order) to establish the general flow pattern and then switching
to higher order (that is, fourth order) after the error residual norm has converged to
a satisfactory level. In addition, any solution from a higher order scheme can be used
to restart another solution of a lower scheme. This proved to be particularly useful
when stepping through different rotational speeds.
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Figure 5. (Colour online) Sketch of water channel and experimental apparatus. (a) Top
view; (b) side view. Note: drawings not to scale.

We consider steady and unsteady flow solutions. The results shown in the next
section are determined when the computation reaches a statistically stable solution
and from which the solution from the impulsive start is excluded. Since we primarily
focus on the suppression of the unsteady vortex shedding, we are less interested in
how the final solution is established. Hence, in order to balance the solution accuracy
and the computational time, the fourth-order SD method is only implemented to
obtain the final flow solution.

3. Experimental methods
The flow past the counter-rotating cylinder pair was investigated experimentally

using digital particle image velocimetry (DPIV). To achieve counter-rotation of a
cylinder pair, a Pittman DC motor (9236S009-R1) attached to a timing belt with a
6 : 1 gear reduction ratio was used to rotate one of the cylinders, and the second
cylinder was coupled to the first via a spur gear to produce counter-rotation at the
same rate. The rotation speed was determined by sampling the output of a digital
optical encoder accompanying the motor at a frequency of 500 Hz. The apparatus
was mounted in a closed-loop, free surface water channel having a test section 0.46
m wide, 0.3 m deep and 2.5 m long (see figure 5) with free stream turbulence intensity
less than 4 %. Surface waves were eliminated by mounting a clear acrylic plate;



Vortex suppression and drag reduction in the wake of counter-rotating cylinders 9

0.0127 m thick, 0.45 m wide and extending 0.61m upstream and downstream of the
cylinders, to be in contact with the free surface, with the cylinder pair mounted
vertically and protruding through a slot machined in the acrylic plate. The bottoms
of the cylinders were held in place by low-friction bearings, housed in a streamlined
mounting block that extended 10 mm above the channel floor and had a foot-print of
0.066 m × 0.03 m. There were no additional end plates on the cylinders. The cylinders
were 0.00635 m in diameter and 0.3 m long, producing an aspect ratio of 47. The
DPIV results were used to examine the two-dimensional continuity equation in three
different spanwise planes along the cylinder pair (midspan and midspan ± 10d) to
verify that three-dimensional effects were negligible. All other data were acquired at
the midspan of the cylinders.

Neutrally buoyant silver-coated hollow ceramic spheres with a mean diameter of
93 µm were used as seeding particles (Potters Industries Inc. Conduct-O-Fil AGSL150
TRD). A Spectra Physics 2020 Argon-Ion laser coupled to a fibre optic delivery system
and Powell lens (Oz Optics Ltd.) were used to produce a 1.5-mm-thick light sheet for
the experiments. A Redlake MotionXtra HG-LE CCD camera with 1128 × 752 pixel
resolution was used to acquire the DPIV images. The camera frame rates ranged
between 50 and 100 Hz, producing 30–60 discrete time intervals between subsequent
vortices being shed, with a typical exposure time of 3 ms.

Two-dimensional discretely sampled velocity fields were computed by calculating
local spatial cross-correlations using software developed by Jiménez (2002). Three
passes, with 64 × 64, 32 × 32, and subsequently 16 × 16 pixel windows with 50 %
overlap were performed. To achieve sub-pixel accuracy, a 5 × 5 pixel Gaussian
interpolation was utilized. In a typical DPIV pair, vector outliers were primarily
constrained to the edges of the domain and regions of the domain with insufficient
lighting (for instance, in the shadows created by the cylinders). Fewer than 1 % of
vectors in the far-wake of the cylinders proved to be outliers, though resolving the
near-wake of the cylinders was more challenging due to lighting issues. The analysis
yielded, at most, 5 % error in velocity and 10 % error in vorticity. The vorticity was
calculated at each point by computing the circulation about a closed contour formed
by the eight neighbouring points using a trapezoidal rule scheme (Raffel et al. 1998).
There is an estimated error of 9 % in the determination of the critical rotation speed
to suppress vortex formation, Ωcrit.

The DPIV system was validated by examining the flow past a stationary cylinder.
A fast Fourier transform (FFT) was taken of the time-resolved velocity field in the
cylinder wake to determine the vortex shedding frequency f , and ultimately the
Strouhal number, St = f d/U . The Strouhal number was found to be 0.163, 0.184
and 0.197 for Reynolds numbers of 100, 150 and 200, respectively, deviating less
than 0.05 % from Williamson (1989), see the Appendix for further detail. There is an
estimated uncertainty of 5 % in the calculation of the Strouhal number. Note that
the shedding frequency was captured equally well by taking the FFT of the vorticity
field. The Strouhal number was found to be invariant for three different DPIV spatial
resolutions (2.5, 5 and 8.5 vectors per cylinder diameter), and a spatial resolution of
5 vectors per cylinder diameter was selected for all results presented here.

A typical data set consisted of 1200 image pairs that were phase averaged at the
vortex shedding frequency to minimize noise. The phase-averaging was a two-step
process: a first data set was used to find the shedding frequency from the cylinder
pair, and then a second data set was acquired with the camera timing synchronized
with the vortex shedding frequency. It should be noted that the time-resolved data
were always used to determine quantities such as Ωcrit and Strouhal number, and the
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phase-averaged data were solely used for qualitative purposes in displaying vorticity
contour plots. In the case where counter-rotation of the cylinder pair suppressed
unsteadiness, all image pairs of the original data set were used in the averaging
process. Due to optical constraints, only the wake region of the cylinder pair was
investigated.

4. Results
4.1. Doublet-like counter-rotating cylinder pair

Here, we present results for the doublet-like counter-rotating cylinder pair (see figure 2)
with g∗ = 1, 3 and 5, and Re = 100, 150 and 200. In this configuration, the cylinders
rotate in a manner that enhances the interaction of the vortex streets in the wake
of each individual cylinder, and there is a critical rotation rate at which the wake
instabilities are suppressed completely. Increasing the gap spacing corresponds to an
attenuation in the interaction, corresponding to a higher critical rotational speed.
Nonetheless, relatively low rotational speeds (Ωcrit < 2) were required to suppress
wake instabilities for all cases.

For g∗ = 3 and 5, the stable anti-phase shedding mode was observed when the
cylinders were rotated below Ωcrit for all Reynolds numbers. The case for g∗ = 3
and Re = 200 is shown in figure 6. Note the excellent qualitative agreement between
the computation and the experiment. In this particular mode, the vortices shed by
the cylinder pair remain stable and coherent throughout the entire domain. As the
rotational speed increases, the vortex strength decreases until the unsteady vortex
wake is entirely suppressed. At a rotational rate at or slightly above Ωcrit, vorticity
lobes extend downstream from the surface of the cylinders, but with a further increase
in rotational speed the vorticity remains concentrated in the immediate area of the
cylinders.

For the cases with g∗ = 1, the unstable in-phase vortex shedding mode was observed
at Re = 150 and 200 for all rotational speeds below the critical value. At the
lowest Reynolds number investigated, Re = 100, the vortices shed by the cylinder
pair coalesced to form a single von Kármán vortex street, shown in figure 7. This
phenomenon was also observed at the same Reynolds number by Yoon et al. (2007)
for g∗ = 0.7. In the case of a non-rotating cylinder pair, the single vortex street
shedding mode is only observed at smaller gap spacings (g∗ =0.4), as found by Kang
(2003), so that counter-rotation of the cylinders increases the allowable gap spacing
to achieve this particular mode. A more detailed discussion of vortex suppression
speeds is taken up in § 4.3.

Increasing the rotational speed above Ωcrit results in a closed vortex system taking
the form of a virtual elliptical body, similar in appearance to that of a doublet in
potential flow. The computational results clearly display the evolution of this flow
pattern, as seen in figure 8. The experimental DPIV data did not have sufficient
spatial resolution to resolve the stagnation point created by the closed vortex system.
Instead, streaklines in the immediate wake were visualized using 10 consecutive
images obtained with a Sony HDR-SR10 HD camcorder recording at 30 f.p.s. These
streaklines, shown in figure 9, clearly show the presence of the stagnation point in the
wake of the cylinder pair, indicating the presence of the virtual elliptical body above a
certain rotational speed. This also confirms the predictions of Chan & Jameson (2010)
made using a lower order numerical simulation.
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Figure 6. Doublet-like rotational configuration: streamlines and vorticity at various rotational
speeds for g∗ =3, Re = 200. (a) Computational results. (b) Experimental results. First row,
Ω = 1; second row, Ω =1.5; third row, Ω = 1.85 (computational) and 1.88 (experimental);
fourth row, Ω = 3. For this case, Ωcrit =1.85 (computational) and 1.88 (experimental). Vorticity
contour levels for the computational and experimental results are the same.

The lift and drag coefficients are defined by

CL =
L

1
2
ρU 2d

, CD =
D

1
2
ρU 2d

, (4.1)

where L and D are the lift and drag forces that are numerically evaluated by summing
the normal and tangential forces from the pressure and viscous stress terms.
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Figure 7. Doublet-like rotational configuration: streamlines and vorticity at various rotational
speeds for g∗ = 1, Re = 100. (a) Computational results. (b) Experimental results. First row,
Ω =1.2; second row, Ω = 1.5; third row Ω =3. For this case, Ωcrit =1.35 (computational) and
1.4 (experimental). Vorticity contour levels for the computational and experimental results are
the same.

By rotating a cylinder, positive or negative lift can be generated depending on
the direction of the spin. From potential flow theory, the lift force asymptotically
increases with spin rate. In a viscous fluid, however, Mittal & Kumar (2003) showed
that at Re = 200, the potential flow theory over-predicts the lift curve of a single
rotating cylinder in the range of 0 � Ω � 5. The main contribution to the lift in the
case of the rotating cylinder pair comes from the pressure term while the viscous stress
contribution is relatively small. Figure 10 shows the time-averaged values of the lift
coefficient CL for the upper cylinder in the doublet-like rotation. Though not shown,
CL for the lower cylinder has the same amplitude but opposite sign, yielding a net
zero lift for the pair, as expected. The results are virtually independent of Reynolds
number, and in the lower speed range (0 � Ω � 2.5) they are also independent of gap
spacing. The value of CL for each cylinder is close to the value obtained by Mittal &
Kumar (2003) at Re = 200 for a single rotating cylinder. The interaction between
the two cylinders prevents the exponential increase of CL with rotation rate seen in
the case of the single cylinder. The observation that the coefficient of lift does not
depend on gap spacing at the lower rotational speeds is directly correlated with the
creation of the virtual elliptic body: once the virtual elliptic body appears, CL begins
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Figure 8. Instantaneous streamlines and vorticity showing the evolution of virtual elliptical
body for the doublet-like configuration (computational results). (a) g∗ = 1, Re =150; (b) g∗ = 3,
Re = 150; (c) g∗ = 5, Re = 150. Stagnation points are represented by ‘�’. Vorticity contour levels
are −0.5 (blue) and 0.5 (red).

to depend on gap spacing. As shown in figure 8, the rotational speed to create the
virtual elliptic body increases with increasing gap spacing, and it is for this reason
that CL at g∗ = 1 is the first case to deviate from the larger gap spacings, as seen in
figure 10. A deviation between g∗ = 3 and g∗ = 5 does not occur until a rotational
speed of Ω ≈ 4.5, very close to the rotational speed required to create the virtual
elliptic body at g∗ = 3.

For most of the investigated values of the Reynolds number and g∗, the lift forces
cause a repelling force on each cylinder. The only exception is for g∗ =1 and Ω > 4
where the faster rotation produces an attracting force. The non-monotonic trend of
CL for g∗ = 1, which has a maximum at Ω ≈ 2.65, is associated with the creation
of the virtual elliptic body. With the creation of a closed streamline surrounding
the cylinder pair, the local fluid immediately adjacent to the cylinders becomes
increasingly dependent on the cylinder rotation. The flow between the cylinder pair
reverses direction and opposes the free stream velocity after the formation of the
virtual elliptic body. As the cylinder pair rotational speed is increased, this reversed
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(a) (b)

Figure 9. (Colour online) Experimental streaklines (a) and computational streamlines
(b) showing the existence of the stagnation point and virtual elliptical body for the doublet-like
rotational configuration: g∗ = 1, Re = 150, Ω = 3.1.

flow is continually accelerated. The force becomes attractive because the fluid velocity
between the cylinders is significantly increased due to the induced velocity generated
by both the cylinders. The relative increase in the fluid velocity on the outside
of the cylinders, the side furthest from the centreline, is noticeably less since it is
predominantly induced by the rotation of only a single cylinder. Hence, the CL only
displays an attractive trend for high rotational rates, where the induced velocity
between the cylinder pair becomes sufficiently high to create a pressure imbalance.
This effect is amplified at the lowest gap spacing due to the relatively close proximity
of the cylinders, and is ultimately responsible for the attractive force observed. It can
be hypothesized that an attractive force would be seen for the larger gap spacings at
sufficiently high rotational speeds, though further investigation is needed to validate
this proposal.

As to the behaviour of the time-averaged drag coefficient, CD , figure 11 shows
that it generally decreases with increasing rotational rate. The results are only shown
for one cylinder because the problem is symmetrical in the mean. As found in the
case of the mean lift coefficient, the degree of wake interaction and its effect on the
mean drag coefficient depends primarily on g∗ and the effect of Reynolds number is
small. For example, in the case of g∗ = 1 and 0 < Ω < 2.5, most of the drag reduction
comes from the pressure term. For 2.5 � Ω < 3, a small net thrust is observed in
this ‘transitional’ range. The net thrust is observed just prior to the creation of the
virtual elliptic body. As shown in figure 8, this range corresponds to the coalescence
of the front and rear stagnation points of each cylinder into a single stagnation point
positioned in a location near that of the rear stagnation point prior to merging. The
manipulation of the stagnation points just prior to the creation of the virtual elliptic
body is responsible for the pressure imbalance that leads to the generation of a small
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Figure 10. (a)–(c) Flow past a doublet-like counter-rotating cylinder: numerically
determined time-averaged values of the lift coefficient (upper cylinder).

net thrust. For 3 � Ω � 5, the pressure drag rises almost linearly with increasing speed
while the viscous drag drops linearly at about the same rate, so that the total mean
drag is approximately zero. It is in this speed range that the virtual elliptic body
forms and grows larger with respect to the increasing speed.

Also plotted on figures 10 and 11 are the results obtained by Chan & Jameson
(2010) for the lift and drag coefficients at Re = 150 and g∗ =1 using a second-order
accurate commercial incompressible flow code. The results are generally in good
agreement with the current study, and both investigations show the same trends in
the lift and drag behaviour. The current work finds the cross-over speed, where CL of
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Figure 11. (a)–(c) Flow past a doublet-like counter-rotating cylinder: numerically
determined time-averaged values of the drag coefficient (upper cylinder).

each cylinder is zero, at Ω ≈ 4.1, versus 4.3 from the previous study. This cross-over
speed is where the lift force on each cylinder transitions from repelling to attracting.
Both studies also find similar characteristics in the drag behaviour in that there is
a slight positive net thrust prior to the formation of the closed vortex system, i.e.
the virtual elliptic body. In the speed range where the elliptic body is formed, the
form drag balances out the viscous drag yielding approximately zero net drag, and
the flow pattern resembles a potential doublet. Additionally, the unsteady vortex
suppression speed is Ω = 1.6 compared to the value of 1.5 found by Chan & Jameson
(2010). Nonetheless, small discrepancies are observed in the lift coefficient where the
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virtual elliptic body is observed (Ω � 3). Two primary contributing factors to the
differences are the order of accuracy of the method and the effect of compressibility.
The present results have been computed with the fourth-order accurate version of the
SD scheme at Mach 0.1. Based on the results reported by Ou et al. (2009), we believe
the compressibility effect is very small, while fourth-order accuracy is sufficient to
produce negligible numerical errors with the mesh that has been used in this work.
Accordingly, the current results are believed to be more reliable than those presented
by Chan & Jameson (2010).

For the low-speed range where the pressure term accounts for most of the drag
reduction, the mechanism for the mean drag reduction is similar for all gap spacings.
The transitional range where a small net thrust is observed occurs at a faster speed
with increasing gap size, i.e. at Re = 150, 2.5 <Ω < 3.2 for g∗ = 3 and 2.5 <Ω < 3.6
for g∗ = 5. In general, the larger the gap size, the more the vortex wakes become like
those shed from a single spinning cylinder. One very interesting result reported by
Mittal & Kumar (2003) for a single spinning cylinder is the appearance of a second
instability in the form of a one-sided vortex shedding mode. In the present case of
a pair of counter-rotating cylinders in the doublet configuration, a similar second
instability is observed, due to the release of the one-sided vortex that is built up by
slow moving vorticity near the stagnation point for each cylinder. This phenomenon
is only observed for g∗ = 3, 5 just prior to the formation of the virtual elliptic body,
and is not seen for the smallest gap space, g∗ =1. There is a slight jump in the
mean drag when the instability occurs above Ω =3 for g∗ =3 and above Ω =3.5 for
g∗ =5. The second instability mode will be discussed in more detail in § 4.4. At higher
rotation rates, the virtual elliptic body appears and there is a near-perfect balance
between the pressure and viscous drags that produces approximately zero mean
drag.

To get a sense of the momentum balance for the experimental and computational
work, the streamwise velocity contours and the corresponding velocity profiles are
shown in figures 12 and 13 for the case of g∗ = 1 and Re = 100, where the single
von Kármán vortex street is present. The velocity profiles are taken at a distance of
10 diameters downstream of the cylinder pair. At lower rotational speeds, a velocity
deficit is observed that extends far downstream of the cylinder pair. As the rotational
speed increases, the velocity deficit region moves closer to the cylinder pair, until at the
highest rotational speeds investigated the deficit region is almost entirely contained
in the region where the virtual elliptic body can be found. This results in a very small
velocity deficit, indicating that the drag due to momentum flux is negligible in this
case. As observed from the experiments, the velocity deficit decreases to almost zero
over the range of Ω = 2–4, which is consistent with the computational findings.

Experimental drag coefficients could be estimated by integrating the time-averaged
velocity profiles at a fixed downstream distance. For the profiles shown in figure 13,
the experimentally and computationally determined momentum deficits differed by
4.26 %, 3.31 % and 2.01 % for Ω = 1.5, Ω = 2 and Ω = 4, respectively, highlighting
the excellent quantitative agreement between the experimental and computational
findings.

The Strouhal numbers, are shown in figure 14. Only cases resulting in an
anti-phase shedding are shown since this mode produces a distinctly dominant
shedding frequency f . There is excellent agreement between the results from the
SD computation and those from the experiment. The Reynolds number dependence
is most noticeable in going from Re =100 to 150, and less so in going from 150 to
200. The effect of gap spacing is not significant, except in the region of the second
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Figure 12. Doublet-like rotational configuration: normalized streamwise velocity contours at
various rotational speeds for g∗ = 1, Re = 100. (a) Computational results. (b) Experimental
results. First row, Ω = 1.5; second row, Ω = 2; third row, Ω = 4.
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Figure 14. (a)–(c) Flow past a doublet-like counter-rotating cylinder: numerically
determined Strouhal number (anti-phase shedding only).

instability, i.e. for 3 <Ω < 4. For g∗ = 1, the shedding mode is predominantly in-phase
for 0 <Ω < 1 and therefore these data points were not included.

4.2. Reverse doublet-like counter-rotating cylinder pair

When the cylinder pair is rotated in a reverse doublet configuration (see figure 2),
the interaction of the vortex wakes between the two rotating cylinders is substantially
reduced because the rotation serves to push the wakes away from one another.
Figure 15 compares the computational and experimental vorticity contours and
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Figure 15. Reverse doublet-like rotational configuration: streamlines and vorticity at various
rotational speeds for g∗ = 3, Re = 200. (a) Computational results. (b) Experimental results.
First row, Ω = 0; second row, Ω = 2; third row, Ω = 2.4; fourth row, Ω = 5. Vorticity contour
levels for the computational and experimental results are the same.

streamlines at various rotation rates for Re = 200 and g∗ =3. It is apparent that
the vortex shedding from one cylinder becomes increasingly independent from that
of the other cylinder as the rotation rate increases. However, the effect of gap size
on the wake interaction is important at the smallest gap (g∗ =1) where an in-phase
shedding mode exists at all Reynolds numbers for Ω < 1. As shown in figure 16,
the vortex shedding mode transitions to a stable, anti-phase pattern at Ω = 1. This
synchronization helps stabilize the vortex street pair and maintain its form further
downstream. In this regime, a vortex shed from the upper cylinder is counter-balanced
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Figure 16. (a)–(f ) Instantaneous streamlines and vorticity for reverse doublet-like
counter-rotating cylinder (computational results): Re = 150, g∗ = 1. Vorticity contour levels
are −0.5 (blue) and 0.5 (red).
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Figure 17. (a)–(f ) Instantaneous streamlines and vorticity for reverse doublet-like
counter-rotating cylinder (computational results): Re = 150, g∗ = 3. Vorticity contour levels
are −0.5 (blue) and 0.5 (red).

by a vortex of opposite sign shed from the lower cylinder. The upper vortex street
perfectly mirrors the lower with the line of symmetry being half way between the
cylinders, and the strength of each vortex is maintained for long distances downstream.
As the gap increases, however, the wake interaction drastically reduces (see figure 17),
thus effectively causing the vortex wakes from each cylinder to each behave like that
generated by a single rotating cylinder.

The mean lift coefficients, shown in figure 18, are almost independent of gap size and
Reynolds number, but the effect of the gap is much more apparent in the drag curves
shown in figure 19. It should be noted that as the gap increases, the values of CD and
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Figure 18. (a)–(c) Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined time-averaged values of lift coefficient (lower cylinder).

CL approach the values of a single rotating cylinder given by Mittal & Kumar (2003).
As observed by Chan & Jameson (2010), the reverse doublet-like rotation produces an
attracting force with a magnitude that increases with the rotation rate. Interestingly,
CD for g∗ =1 shows a non-monotonic behaviour with the rotational rate. This is
the result of a transition from an in-phase shedding mode to an anti-phase shedding
mode at Ω ≈ 1 for the lowest gap spacing in this rotational configuration. The effective
width of the wake increases for the in-phase mode due to its non-sinusoidal nature,
causing CD to increase until the stable anti-phase mode is achieved. The Strouhal
numbers plotted in figure 20 show little dependence on the gap spacing and rotation
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Figure 19. (a)–(c) Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined time-averaged values of drag coefficient (lower cylinder).

rate, although there is a distinct Reynolds number dependence, especially at the lower
rotation rates. Also, the results obtained from the SD computation generally agree
very well with the experimental results.

4.3. Unsteady vortex suppression

The standard deviation of the lift and drag coefficients for the doublet-like rotation
are shown in figure 21; the corresponding values for the reverse doublet-like are
shown in figure 22. The standard deviation gives a reasonably good prediction of the
critical rotation speed, Ωcrit, where the unsteady wakes are suppressed, in that steady
flow is observed when the standard deviation value is zero. Experimentally, Ωcrit
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Figure 20. (a)–(c) Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined Strouhal number (anti-phase shedding only).

was determined when the FFT of the time-resolved velocity field yielded a shedding
frequency of less than 5 % of the shedding frequency for cylinders rotating at speeds
just below suppression. The estimated uncertainty in the experimentally determined
Ωcrit is at most 9 %.

The computationally determined values of Ωcrit are compared with the experimental
values in figure 23, and are summarized in table 1. There is excellent agreement for
all cases that were investigated, except for the reverse doublet configuration at
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g∗ =1 where the computational results are approximately 10–20 % larger than the
experimental ones. Observations of the particle motion in the DPIV experiments
suggest that at higher rotational speeds the flow exhibits a noticeable degree of
three-dimensionality, particularly in the case of g∗ = 1. This was also confirmed by
noting that the two-dimensional continuity equation deviated slightly from zero in
the near wake of the cylinders for low gap spacings and high rotational speeds.
Thus, it is possible that this discrepancy occurs because the computations used in
this work were strictly two-dimensional. Nevertheless, the critical rotational speed
monotonically decreased with increasing gap spacing, and the data suggest that Ωcrit

depends more strongly on gap spacing than on Reynolds number.
For the doublet-like cylinder rotation (figure 23), Ωcrit < 1.9 in all cases, and its

value monotonically increases with increasing gap spacing and Reynolds number. The
results presented by Yoon et al. (2007) and the current investigation only have one
point of overlap (Re = 100, g∗ = 3), but in both studies the critical vortex suppression
was found to be 1.7. However, as seen in the figure 21, there is a small region of
instability at speeds above Ωcrit. This second instability mode occurs in the doublet-
like configuration at Ωcrit ≈ 3.25 for g∗ = 3 and Ω ≈ 3.75 for g∗ = 5, but is suppressed
for g∗ =1. As indicated earlier, this instability is related to the same phenomenon
observed in the case of a single rotating cylinder, as investigated by Mittal & Kumar
(2003). It will be discussed further in § 4.4.

Rotation of the cylinder pair in the reverse doublet-like configuration (figure 23)
reduces the interaction of the vortex streets resulting in higher critical rotation speeds
(that is, Ωcrit > 2). This is in contrast to the doublet-like configuration, increasing
the gap spacing reduces the vortex suppression speeds for the reverse doublet-like
configuration. For g∗ = 1, the critical speed is as high as Ωcrit = 4.4, indicating that
the proximity of a nearby cylinder promotes the instability of the wake. At the largest
spacing, g∗ = 5, Ωcrit collapses near 2.3 for all Reynolds numbers. Also, an increase in
the gap spacing results in a monotonic decrease in the critical speed.

When the results for both rotational configurations are compared (figure 23), we
see that they appear to converge to a single value with increasing gap size. As noted
earlier, this is not surprising, in that with increasing gap size the interaction between
the two cylinder wakes diminishes, and in the limit we would expect the two wakes
to become independent and to have Ωcrit approach the value to suppress vortex
formation in the wake of a single rotating cylinder. Kang, Choi & Lee (1999) found
that for a single rotating cylinder at Re = 100, Ωcrit = 1.8, and at Re = 160 it was 1.9,
and Mittal & Kumar (2003) reported the first critical suppression speed for a single
cylinder to be 1.91 at Re = 200. These values are very similar to the convergent value
suggested here, which gives Ωcrit ≈ 1.9 at Re = 100, and approximately 2 at Re = 150.

4.4. The second region of instability

In figure 21, we saw evidence for a small region of instability at speeds above Ωcrit

for the doublet-like configuration that depends on the gap spacing. Mittal & Kumar
(2003) observed a similar second instability in the case of a single rotating cylinder,
and they postulated that it occurs because the balance between the advection and
diffusion of vorticity is disturbed. With rotation in a counter-clockwise direction in the
regime of the second instability speed (i.e. 4.35 < Ω < 4.75 for Re = 200), they observed
the build up of positive vorticity in the slow moving flow near the stagnation point
in the near wake that, once it gathered enough strength, shed at a lower frequency
than that seen in the regime of the first instability.
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Figure 21. Flow past a doublet-like counter-rotating configuration: standard deviation of
the coefficients of lift (a) and drag (b), obtained numerically.

In the current work, the computations and experiments indicate that when the gap
is small (i.e. g∗ = 1), the interaction between the two vortex streets prevents the second
instability from occurring. When the vortex shedding is suppressed at sufficiently high
spin rates, there are two pairs of stationary stagnation points associated with the
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Figure 22. Flow past a reverse doublet-like counter-rotating configuration: the standard
deviation of coefficients of lift (a) and drag (b).

positive (red) and negative (blue) vortices from each cylinder, as shown on the left
column of figure 8. Each front stagnation point (that is, upstream of the cylinder
centres) moves outward radially with increasing spin rate (that is, with increasing
circulation) and its location follows the closed streamline around the cylinder body.
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Doublet-like configuration

Re g∗ = 1 g∗ = 3 g∗ = 5

100 1.35 (1.32) 1.70 (1.72) 1.80 (1.79)
150 1.60 (1.61) 1.85 (1.86) 1.90 (1.94)
200 1.65 (1.70) 1.85 (1.88) 1.90 (1.94)

Reverse doublet-like configuration
100 4.40 (3.84) 2.45 (2.52) 2.20 (2.24)
150 4.10 (3.71) 2.45 (2.53) 2.25 (2.28)
200 4.10 (3.53) 2.40 (2.46) 2.15 (2.27)

Table 1. Critical rotational rate to suppress vortex formation, experimental
values in parentheses.
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Figure 23. (Colour online) Critical rotation speed for vortex suppression.

In contrast, each rear stagnation point (i.e. downstream of the cylinder centres) moves
inwards towards the front stagnation point as the spin rate increases. At some point,
the two closed vortex systems merge into one, and the two stagnation points combine
into a single point at a location near that of the rear stagnation point prior to merging
(centre column of figure 8). By increasing the spin rate further, each closed vortex
system is stretched to resemble a tear drop shape, and the stagnation point progresses
towards the horizontal centreline. It is at this point where we observe that the second
instability occurs prior to the appearance of the virtual elliptic body.

The relatively large gap sizes for which this instability occurs, i.e. g∗ = 3 and 5,
effectively cause the vortex street from each cylinder to appear similar to that produced
by a single rotating cylinder. However, the interaction between the two vortex streets
is apparently sufficient to lower the spin rate at which the instability appears when
compared to the case of a single rotating cylinder. For the doublet-like rotation, we
observe that for Re = 200, g∗ = 5, the second instability occurs at 3.55 � Ω � 3.8 over
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(a)

(b)

Figure 24. Instantaneous streamlines and vorticity for the second instability of the doublet-like
counter-rotating configuration (computational results): (a) Re = 200, g∗ = 5, Ω =3.75;
(b) Re =200, g∗ = 3, Ω = 3.25. Vorticity contour levels are −0.1 (blue) and 0.1 (red).

a Strouhal number ranging from 0.0143 to 0.0321. For Re = 200, g∗ =3, it occurs at
3.65 � Ω � 3.85 with 0.0155 � St � 0.0298. As was shown in figure 14, there are some
slight differences in the values of St and Ω corresponding to the second instability
at different Reynolds numbers and gap spacings. For example, consider the vorticity
and streamlines of the second instability shedding mode for g∗ = 3 and g∗ = 5 shown
in figure 24. The red vortex was shed from the upper cylinder while the blue one was
shed from the lower cylinder. The decreasing distance between successive vortex cores
with increasing Strouhal number reflects the higher shedding frequency. Also note
the excellent agreement between the computation and experiment shown in figure 25
for Re = 100, g∗ = 5 and Ω = 4.

In the reverse doublet-like case, the second instability does not occur in the speed
range of our investigation because in the first steady flow region the positive and
negative vortices in the vicinity of the cylinder bodies are less likely to affect one
another. The front and rear stagnation points are produced away from the centreline
and in opposing pairs. Consequently, it appears that this configuration helps delay the
merging of the front and rear stagnation points. Figure 26 illustrates the progression
from unsteady (left column) to steady flow (centre and right columns) for Re = 150
for different gap sizes. We see that at Ω = 5 for g∗ =3 and 5, only a single stagnation
point is formed for each cylinder. A qualitative comparison between figure 26 in the
present work and figure 8 from Mittal & Kumar (2003) suggests that the delay in the
merging of the front and rear stagnation points caused by the presence of a second
counter-rotating cylinder retards the onset of the region of secondary instability. It
remains an open question as to whether the secondary instability exists at higher
rotational speeds than those examined here.
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(a)

(b)

Figure 25. Instantaneous streamlines and vorticity for the second instability of the doublet-like
counter-rotating configuration, Re = 100, g∗ = 5, Ω = 4: (a) computational; (b) experimental.
Vorticity contour levels are −0.5 (blue) and 0.5 (red).

4.5. Power consumption for rotating the cylinder pair

The possible benefits of unsteady wake suppression bear a cost in terms of the power
consumption required to overcome the translational aerodynamic drag as well as to
maintain the rotational motion of the cylinder pair. This can be analysed in terms of
the time-averaged power coefficient defined by

CP = CD +
|CM |ωd

2U
, (4.2)

where CM is the time-averaged moment coefficient calculated from the moment about
each cylinder centre. Figure 27 shows CP (of the upper cylinder) plotted against
rotational speed for both the doublet-like and reverse doublet-like configurations in
comparison to the single rotating cylinder at Re = 200. The trends are similar for
Re = 100 and 150. It is observed that in both rotational configurations, as the gap
size increases, and not surprisingly, the curves converge towards that of the single
rotating cylinder. As the gap size decreases, it is advantageous, or more efficient, to
rotate the cylinder pair in the doublet-like configuration due to a decrease in both the
aerodynamic drag contribution, (CP )D , and the required torque, (CP )M , as shown in
figure 28. Note that the aerodynamic drag contribution to CP , shown in figure 28(a),
is essentially a replot of CD for Re = 200 (figures 11 and 19).

An interesting phenomenon is observed in the doublet-like case where there appears
to be a noticeable change in the slope of the power coefficient in the transitional range
prior to the formation of the elliptical body. This is particularly so for g∗ = 1, where
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Ω = 2.4 Ω = 2.45 Ω = 5

Ω = 2.2 Ω = 2.25 Ω = 5

(a)

(b)

(c)

Figure 26. Flow past a reverse doublet-like counter-rotating configuration: instantaneous
streamlines and vorticity at various rotational speeds (computational results). Stagnation
points are represented by ‘�’. (a) Re =150, g∗ = 1; (b) Re = 150, g∗ = 3; (c) Re = 150, g∗ = 5.
Vorticity contour levels are −0.5 (blue) and 0.5 (red).

a clear discontinuity in the spinning torque curve is observed in figure 28(b), such
that there is a sudden jump in (CP )M at Ω =2.6. In this rotational regime, the
stagnation points transition from being vertically to horizontally aligned (i.e. from
the middle column to right column of figure 8) and the flow between the cylinder pair
reverses direction, opposing the oncoming free stream velocity. It may be that in this
transitional regime, as the flow between the cylinder pair becomes stagnant before
reversal, there is a significant reduction in the torque required to rotate the cylinders.
Once the flow has reversed direction and the virtual elliptic body has formed, the
cylinders must continually accelerate the fluid particles contained between the cylinder
pair, thus returning the power coefficient to a monotonically increasing trend. This
behaviour occurs over a very short interval in Ω , and a further investigation of this
flow mechanism is required to better understand the nature of this regime. It may
also be possible that three-dimensionality plays an ever increasing role at lower gap
spacings, potentially highlighted by the fact that such a large discontinuity in power
coefficients is only seen for g∗ = 1. For g∗ = 3 and 5, the range of speeds where the
slope changes also coincides with the occurrence of the second instability.
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Figure 27. Flow past a counter-rotating cylinder: numerically determined time-averaged
values of the power coefficient (upper cylinder, Re = 200).

0 1 2 3 4 5
–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0(a) (b)

Ω Ω

(C
P

) D

(C
P

) M

 

 
Re = 200, g* = 1 (Doublet)
Re = 200, g* = 3 (Doublet)
Re = 200, g* = 5 (Doublet)
Re = 200, g* = 1 (Reverse doublet)
Re = 200, g* = 3 (Reverse doublet)
Re = 200, g* = 5 (Reverse doublet)
Re = 200 (Single rotating cylinder)

Re = 200, g* = 1 (Doublet)
Re = 200, g* = 3 (Doublet)
Re = 200, g* = 5 (Doublet)
Re = 200, g* = 1 (Reverse doublet)
Re = 200, g* = 3 (Reverse doublet)
Re = 200, g* = 5 (Reverse doublet)
Re = 200 (Single rotating cylinder)

1 2 3 4 50

1

2

3

4

5

6

7

8

9

10

 

 

Figure 28. Flow past a counter-rotating cylinder: contributions of aerodynamic drag
(a) and spinning torque (b) to the mean power coefficient (upper cylinder, Re = 200).

In the reverse-doublet configuration, no change in the slope of (CP )M in figure 28(b)
was observed at any gap spacing, since neither a closed body nor a secondary
instability were present for the range rotational speeds examined here. Deviations
in the slope of CP are the result of changes in the aerodynamic drag contribution,
(CP )D , and a sharp transition occurs during the drag reduction phase just prior to
the total suppression of unsteady wakes at Ω = 4.1, 2.3 and 2.25 for g∗ = 1, 3 and 5,
respectively (see figures 27 and 28).
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5. Conclusions
Digital particle image velocimetry and a high-order spectral difference

computational method were employed to investigate the flow over a pair of counter-
rotating cylinders. The experimental and computational results were generally in
excellent agreement in resolving the wake structure and various stability regimes.

For the doublet-like rotational configuration, a synchronized in-phase vortex
shedding mode that was unstable to small disturbances was present at Re = 150
and 200 for g∗ = 1. Decreasing the Reynolds number to 100 for this case resulted in
a wake structure similar to that of flow past a single bluff body. The existence of a
virtual elliptic body, first predicted by Chan & Jameson (2010) to appear when the
rotational speed is sufficiently large, was validated by the high-order SD computations,
as well as by the experimental results. The size of the virtual elliptic body increases
with increasing rotational speed. The values of the critical rotation rate Ωcrit, where
the wake forms an elliptic body and the total drag reduces to zero, were found more
precisely than in this previous work, and over a wider range of Reynolds number
and gap sizes. In addition, for the first time, a secondary instability was observed for
g∗ =3 and 5, at rotational speeds just prior to the formation of the virtual elliptic
body.

For the reverse doublet-like rotational configuration, the in-phase shedding mode
was present for g∗ = 1 at all Reynolds numbers when Ω < 1, and the anti-phase
shedding mode was present when 1 < Ω < Ωcrit. This is similar to that seen for a pair
of non-rotating cylinders, but it was shown here for the first time that counter-rotation
of the cylinder pair would lead to wake stabilization by transition to an anti-phase
shedding mode for 1 <Ω <Ωcrit.

For both rotational configurations, a stable anti-phase wake structure was observed
for all Reynolds numbers at g∗ = 3 and 5. For the doublet-like configuration, the
value of Ωcrit monotonically increased with increasing gap spacing and Reynolds
number, while for the reverse doublet-like configuration, it monotonically decreased
with increasing gap spacing and Reynolds number. These opposing tendencies of
the two rotational configurations with increasing gap spacing cause Ωcrit to converge
towards the value needed to suppress vortex formation in the wake of a single rotating
cylinder.
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Appendix. Validation results of the present numerical method
A.1. Single stationary circular cylinder at Re =100, 150 and 200

Here, we compare our SD numerical results for the flow past a single stationary
circular cylinder at Re = 100, 150 and 200 with the results from a number of previous
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Re = 100

Source St CL CD Cpb

Present (SD, Fourth order) 0.164 ± 0.325 1.338 ± 0.009 −0.70
Present (Experiment) 0.163 – – –
Braza, Chassaing & Ha Minh (1986) 0.160 ± 0.25 1.364 ± 0.015 –
Ding et al. (2007) 0.166 ± 0.287 1.356 ± 0.010 –
Henderson (1994) 0.165 – – −0.73
Kovasznay (1949) 0.163 – – –
Liu, Zheng & Sung (1998) 0.164 ± 0.339 1.350 ± 0.012 –
Park, Kwon & Choi (1998) 0.165 ± 0.332 1.33 ± 0.009 −0.74
Sharman et al. (2005) 0.164 ± 0.325 1.33 ± 0.009 −0.72
Williamson (1989, 1996) 0.164 – – −0.71

Re = 150
Present (SD, Fourth order) 0.184 ± 0.518 1.326 ± 0.026 −0.84
Present (Experiment) 0.184 – – –
Belov, Martinelli & Jameson (1995) 0.182 ± 0.486 1.168 ± 0.025 −0.82
Chan & Jameson (2010) 0.181 ± 0.531 1.331 ± 0.028 −0.80
Henderson (1994, 1995) 0.186 – – −0.87
Kovasznay (1949) 0.180 – – –
Park et al. (1998) 0.184 ± 0.516 1.32 ± 0.026 −0.85
Williamson (1989, 1996) 0.184 – – −0.85

Re = 200
Present (SD, Fourth order) 0.196 ± 0.68 1.340 ± 0.045 −0.96
Present (Experiment) 0.197 – – –
Belov et al. (1995) 0.193 ± 0.64 1.19 ± 0.042 −0.94
Braza et al. (1986) 0.200 ± 0.75 1.40 ± 0.05 –
Ding et al. (2007) 0.196 ± 0.659 1.348 ± 0.050 −
Henderson (1994) 0.197 – – −1.01
Kovasznay (1949) 0.193 – – –
Lecointe & Piquet (1984) 0.194 ± 0.5 1.58 ± 0.0035 –
Liu et al. (1998) 0.192 ± 0.69 1.31 ± 0.049 –
Mittal & Kumar (2003) 0.193 ± 0.66 1.316 ± 0.049 –
Rogers & Kwak (1990) 0.185 ± 0.65 1.23 ± 0.05 –
Miller & Williamson (1994); Williamson (1996) 0.197 – – −0.86

Table 2. Flow past a circular cylinder at Re = 100, 150 and 200: Strouhal number,
CL, CD and Cpb .

studies, as shown in table 2. The total number of cells used in this validation case is
6384. The grid distribution and boundary conditions are set in a similar and consistent
manner as those used in the present research. The results were computed using the
fourth-order SD refinement, with 102 144 degrees of freedom (DOFs). The Strouhal
numbers at Re = 100 and 150 are identical to the experimental values reported by
Williamson (1989). The computed mean base pressure coefficients, Cpb, at these two
Reynolds numbers are −0.70 and −0.84, respectively, and they also are in excellent
agreement with the experimental values reported by Williamson & Roshko (1990).
In addition, our computed lift and drag coefficients are well within the range of
values reported in previous work. However, there appear to be some discrepancies at
Re = 200, which may be due to the presence of flow three-dimensionality which our
two-dimensional code cannot resolve. Nonetheless, the Strouhal number agrees well
with the computational value by Henderson (1994) and the upper transient value
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Mach number CD CDp CDv CL CLp CLv

0.05 0.0581 −0.3481 0.4061 10.2450 9.8253 0.4193
0.1 0.0637 −0.3353 0.3990 9.9640 9.5472 0.4168
0.2 0.0901 −0.2747 0.3648 8.8534 8.4456 0.4078

Table 3. Flow past a single rotating circular cylinder: CL and CD variations as a function of
Mach number at Re = 200, ω = 3Ω (steady flow). Subscripts: p = pressure and v =viscous.

from the hysteretic transition regime reported by Miller & Williamson (1994) and
Williamson (1996).

A.2. Single rotating circular cylinder at Re = 200

Using the mesh from the stationary case, a non-slip, isothermal, moving boundary
condition is applied at the rotating circular cylinder wall. The mean and standard
deviation values of lift and drag, the Strouhal number and the coefficient of power
are plotted in figure 29 as a function of rotational speeds for three different orders of
accuracy. The figure also shows a comparison with the incompressible flow solutions
using a finite-element formulation reported by Mittal & Kumar (2003). In the lower
speed range, only slight variations in the flow solutions are seen amongst the third-
and fourth-order SD methods and Mittal & Kumar’s method. The second-order SD
method for the current mesh is not suitable for achieving the final flow solution.
However, one of the advantages of our current numerical method is that a flow
solution from the second order can be used as an initial condition for starting the
more accurate higher order solution. Therefore, instead of using a higher order and
letting the solution develop from an impulsive start, appreciable computation time
can be saved with this restarting technique.

As the rotational speed increases, it is apparent that a larger discrepancy occurs
between the solutions from our compressible SD code and those using Mittal &
Kumar’s incompressible flow solver. Our solutions show the occurrence of the
secondary instability in the speed range of 4.5 <Ω < 5.15 as compared to Mittal &
Kumar’s solution of 4.4 <Ω < 4.8. One explanation for the difference is that the
compressibility effect can no longer be neglected when the circular cylinder is rotated
at a high enough speed. Figure 30 and table 3 show the effect of compressibility
on density and Mach contours and on the force coefficients at Re = 200, ω = 3Ω ,
calculated at free stream Mach numbers, Ma, of 0.05, 0.10 and 0.20. For Ma =0.2,
the local Mach number around the cylinder spinning at a very high rotational speed,
e.g. Ω =5, can become supersonic, thus yielding an entirely different flow problem.
For very low Mach numbers, such as the case of Ma = 0.05, our solver suffers the same
inefficiency as most other density-based compressible flow solvers. In this research, we
use Ma =0.1 since it is efficient, robust and yields results very close to those obtained
using incompressible flow solvers, as shown in this section for the single rotating
cylinder and in figure 10 for the counter-rotating cylinder pair.

A.3. Study of mesh density and SD order of accuracy

The numerical accuracy of different SD schemes has been documented by Ou et al.
(2009). Here, an additional numerical accuracy test based on the mesh density and
the SD order of accuracy is presented in table 4 for the three gap sizes considered in
this research. Listed are the mean and standard deviation values of force coefficients
and the corresponding Strouhal numbers (for the anti-phase shedding pattern) of the
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Figure 29. Flow past a rotating circular cylinder: mean CL (a), standard deviation of CL

(b), mean CD (c), standard deviation of CD (d), St (e) and mean CP (f ).
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Configuration Re g∗ Ω SD order Number of cells DOFs CD CL σ (CD) σ (CL) St

1 150 1 0 2 5176 (Coarse) 20 704 1.502 0.247 0.270 0.356 –
150 1 0 2 20 704 (Fine) 82 816 1.504 0.232 0.369 0.395 –
150 1 0 4 5176 (Coarse) 82 816 1.474 0.227 0.110 0.388 –
150 1 0 4 20 704 (Fine) 331 264 1.472 0.228 0.107 0.361 –

2 150 1 3 2 5176 (Coarse) 20 704 0.082 6.045 0.000 0.000 –
150 1 3 2 20 704 (Fine) 82 816 0.028 6.067 0.000 0.000 –
150 1 3 4 5176 (Coarse) 82 816 0.001 6.063 0.000 0.000 –
150 1 3 4 20 704 (Fine) 331 264 0.002 6.077 0.000 0.000 –

3 150 3 0 2 7736 (Coarse) 30 944 1.457 0.063 0.020 0.420 0.183
150 3 0 2 30 944 (Fine) 123 776 1.444 0.061 0.022 0.431 0.190
150 3 0 4 7736 (Coarse) 123 776 1.421 0.057 0.023 0.429 0.193
150 3 0 4 30 944 (Fine) 495 104 1.422 0.058 0.023 0.429 0.192

4 150 3 3 2 7736 (Coarse) 30 944 0.060 9.250 0.000 0.000 –
150 3 3 2 30 944 (Fine) 123 776 −0.013 9.373 0.000 0.000 –
150 3 3 4 7736 (Coarse) 123 776 −0.069 9.391 0.000 0.000 –
150 3 3 4 30 944 (Fine) 495 104 −0.069 9.388 0.000 0.000 –

5 150 5 0 2 9088 (Coarse) 36 352 1.420 0.032 0.017 0.382 0.180
150 5 0 2 36 352 (Fine) 145 408 1.403 0.030 0.019 0.390 0.186
150 5 0 4 9088 (Coarse) 145 408 1.373 0.028 0.020 0.386 0.189
150 5 0 4 36,352 (Fine) 581 632 1.373 0.028 0.020 0.386 0.188

6 150 5 3 2 9088 (Coarse) 36 352 0.098 9.452 0.000 0.001 –
150 5 3 2 36 352 (Fine) 145 408 0.029 9.549 0.000 0.000 –
150 5 3 4 9088 (Coarse) 145 408 −0.040 9.569 0.000 0.000 –
150 5 3 4 36 352 (Fine) 581 632 −0.040 9.564 0.000 0.000 –

Table 4. Numerical accuracy test based on SD order and mesh density: values of the force
coefficients and Strouhal numbers of the top cylinder. The standard deviation of the force
coefficients are denoted by the symbol σ .

Re = 100

g∗ CD CL σ (CL) Source

1 1.427 0.259 0.147 Present (SD, Fourth order)
1.44 0.28 0.17 Kang (2003)

3 1.444 0.074 0.281 Present (SD, Fourth order)
1.47 0.08 0.28 Kang (2003)

Table 5. Stationary circular cylinder pair: mean CD , mean CL and standard deviation of CL.

top circular cylinder of the counter-rotating cylinder pair, for the stationary case and
for the case with Ω =3. In this test case, we use two different sets of meshes – coarse
and fine. The fine mesh is essentially reconstructed from the coarse mesh by simply
quadrupling the number of cells. The differences between the results obtained from
the coarse mesh and those from the fine mesh are small when the fourth-order SD
is used. However, the computational cost increases proportional to the number of
DOFs. Therefore, in order to perform a fairly large simulation matrix in a reasonable
amount of time, the coarse meshes in conjunction with the fourth-order SD were
used to obtain the final results presented in this paper.

A.4. Stationary pair of circular cylinders

Here, we compare the force coefficients for a stationary circular cylinder pair obtained
using the fourth-order SD calculations with the numerical results using the immersed
boundary method by Kang (2003). Table 5 lists the values of mean CL and CD
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Figure 30. Flow past a single rotating circular cylinder, Re = 200, ω = 3Ω: normalized
density (a) and Mach (b) contours at different free stream Mach numbers.

as well as the standard deviation of CL for the flip-flop shedding mode at g∗ =1,
Re = 100 and for the anti-phase mode at g∗ = 3, Re = 100. In general, the results are
in reasonable agreement, further establishing our confidence in the approach used
here.

REFERENCES

Belov, A., Martinelli, L. & Jameson, A. 1995 A new implicit algorithm with multigrid for unsteady
incompressible flow calculations. AIAA Paper 1995-0049, 33rd Aerospace Sciences Meeting
and Exhibit, 9–12 January 1995, Reno, NV.

Braza, M., Chassaing, P. & Ha Minh, H. 1986 Numerical study and physical analysis of the
pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130.

Chan, A. S. & Jameson, A. 2010 Suppression of the unsteady vortex wakes of a circular cylinder
pair by a doublet-like counter-rotation. Intl J. Numer. Meth. Fluids 63, 22–39.

Cockburn, B., Hou, S. & Shu, C. W. 1990 TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws. Part IV: The multidimensional case.
Math. Comput. 54, 545–581.

Cockburn, B., Lin, S. Y. & Shu, C. W. 1989 TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws. Part III: One-dimensional systems. J.
Comput. Phys. 84, 90–113.

Cockburn, B. & Shu, C. W. 1989 TVB Runge–Kutta local projection discontinuous Galerkin
finite element method for conservation laws. Part II: General framework. Math. Comput. 52,
411–435.

Cockburn, B. & Shu, C. W. 1998 TVB Runge–Kutta local projection discontinuous Galerkin finite
element method for conservation laws. Part V: Multidimensional system. J. Comput. Phys.
141, 199–224.

Ding, H., Shu, C., Yeo, K. S. & Xu, D. 2007 Numerical simulation of flows around two circular
cylinders by mesh-free least square-based finite difference methods. Intl J. Numer. Meth. Fluids
53, 305–332.

Harten, A. & Hyman, J. M. 1983 Self-adjusting grid methods for one-dimensional hyperbolic
conservation laws. J. Comput. Phys. 50, 235–269.



Vortex suppression and drag reduction in the wake of counter-rotating cylinders 39

Henderson, R. D. 1994 Unstructured spectral element methods: Parallel algorithms and simulations.
PhD thesis, Princeton University.

Henderson, R. D. 1995 Details of the drag curve near the onset of vortex shedding. Phys. Fluids
7, 2102–2104.

Hesthaven, J. S. & Warburton, T. 2008 Nodal Discontinuous Galerkin Methods – Algorithms,
Analysis, and Applications. Springer.

Huynh, H. T. 2007 A flux reconstruction approach to high-order schemes including discontinuous
Galerkin methods. AIAA Paper 2007-4079, 18th AIAA CFD Conference, 25–28 June 2007,
Miami, FL.

Jameson, A. 2010 A proof of the stability of the spectral difference method for all orders of accuracy.
J. Sci. Comput. 45, 348–358

Jiménez, J. M. 2002 Low Reynolds number studies in the wake of a submarine model using particle
image velocimetry. MSE thesis, Princeton University.

Kang, S. 2003 Characteristics of flow over two circular cylinders in a side-by-side arrangement at
low Reynolds numbers. Phys. Fluids 15, 2486–2498.

Kang, S., Choi, H. & Lee, S. 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11,
3312–3321.

Kim, H. J. & Durbin, P. A. 1988 Investigation of the flow between a pair of circular cylinders in
the flopping regime. J. Fluid Mech. 196, 431–448.

Kopriva, D. A. & Kolias, J. H. 1996 A conservative staggered-grid Chebyshev multidomain method
for compressible flows. J. Comput. Phys. 125 (1), 244–261.

Kovasznay, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds
numbers. Proc. R. Soc. Lond. A 198, 174–190.

Lecointe, Y. & Piquet, J. 1984 On the use of several compact methods for the study of unsteady
incompressible viscous flow round a circular cylinder. Comput Fluids 12, 255–280.

Liang, C., Jameson, A. & Wang, Z. J. 2009a Spectral difference method for two-dimensional
compressible flow on unstructured grids with mixed elements. J. Comput. Phys. 228, 2847–
2858.

Liang, C., Premasuthan, S. & Jameson, A. 2009b High-order accurate simulation of flow past two
side-by-side cylinders with spectral difference method. J. Comput. Struct. 87, 812–817.

Liang, C., Premasuthan, S., Jameson, A. & Wang, Z. J. 2009c Large eddy simulation of
compressible turbulent channel flow with spectral difference method. AIAA Paper 2009-402,
47th AIAA Aerospace Sciences Meeting, 5–8 January 2009, Orlando, FL.

Liu, C., Zheng, X. & Sung, C. H. 1998 Preconditioned multigrid methods for unsteady
incompressible flows. J. Comput. Phys. 139, 35–57.

Liu, Y., Vinokur, M. & Wang, Z. J. 2006 Spectral difference method for unstructured grids.
Part I: Basic formulation. J. Comput. Phys. 216, 780–801.

Miller, G. D. & Williamson, C. H. K. 1994 Control of three-dimensional phase dynamics in a
cylinder wake. Exp. Fluids 18, 26–35.

Mittal, S. & Kumar, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303–334.

Mohammad, A. H., Wang, Z. J. & Liang, C. 2008 LES of turbulent flow past a cylinder using spectral
difference method. AIAA Paper 2008-7184. 26th AIAA Applied Aerodynamics Meeting, 18–21
August 2008, Honolulu, HI.

Ou, K., Liang, C., Premasuthan, S. & Jameson, A. 2009 High-order spectral difference simulation
of laminar compressible flow over two counter-rotating cylinders. AIAA Paper 2009-3956,
27th AIAA Applied Aerodynamics Conference, 22–25 June 2009, San Antonio, TX

Park, J., Kwon, K. & Choi, H. 1998 Numerical solutions of flow past a circular cylinder at
Reynolds numbers up to 160. KSME Intl J. 12, 1200–1205.

Peschard, I. & Le Gal, P. 1996 Coupled wakes of cylinders. Phys. Rev. Lett. 77, 3122–3125.

Prandtl, L. & Tietjens, O. G. 1934 Applied Hydro- and Aeromechanics, Dover edn. 1957. Dover
Publications.

Premasuthan, S., Liang, C., Jameson, A. & Wang, Z. J. 2009 A P-multigrid spectral difference
method for viscous flow. AIAA Paper 2009-950, 47th AIAA Aerospace Sciences Meeting, 5–8
January 2009, Orlando, FL.

Raffel, M., Willert, C., Wereley, S. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.

Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput.
Phys. 43, 357–372.



40 A. S. Chan, P. A. Dewey, A. Jameson, C. Liang and A. J. Smits

Rogers, S. E. & Kwak, D. 1990 Upwind differencing scheme for the time-accurate incompressible
Navier–Stokes equations. AIAA J. 28, 253–262.

Sharman, B., Lien, F. S., Davidson, L. & Norberg, C. 2005 Numerical predictions of low Reynolds
number flows over two tandem circular cylinders. Intl J. Numer. Meth. Fluids 47, 423–447.

Spiteri, R. J. & Ruuth, S. J. 2002 A new class of optimal high-order strong-stability-preserving
time discretization methods. SIAM J. Numer. Anal. 40, 469–491.

Sumner, D., Wong, S. S. T., Price, S. J. & Paidoussis, M. P. 1999 Fluid behaviour of side-by-side
circular cylinders in steady cross-flow. J. Fluids Struct. 13, 309–338.

Wang, Z. J., Liu, Y., May, G. & Jameson, A. 2007 Spectral difference method for unstructured
grids. Part II: Extension to the Euler equations. J. Sci. Comput. 32 (1), 45–71.

Whittlesey, R. W., Liska, S. & Dabiri, J. O. 2010 Fish schooling as a basis for vertical axis wind
turbine farm design Bioinsp. Biomim. 5, 035005(1–6).

Williamson, C. H. K. 1985 Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech.
159, 1–18.

Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular
cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627.

Williamson, C. H. K. & Roshko, A. 1990 Measurements of base pressure in the wake of a cylinder
at low Reynolds numbers. Z. Flugwiss. Weltraumforsch 14, 38–46.

Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28,
477–539.

Xu, S. J., Zhou, Y. & So, R. M. C. 2003 Reynolds number effects on the flow structure behind two
side-by-side cylinders. Phys. Fluids 15, 1214.

Yoon, H. S., Kim, J. H., Chun, H. H. & Choi, H. J. 2007 Laminar flow past two rotating cylinders
in a side-by-side arrangement. Phys. Fluids 19, 128103-1-128103-4.


