ALGORITHMS FOR AUTOMATIC FEEDBACK CONTROL OF AERODYNAMIC FLOWS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Karthik Palaniappan
June 2007
© Copyright by Karthik Palaniappan 2007
All Rights Reserved
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Antony Jameson
(Principal Adviser)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Juan J. Alonso

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Sanjiva K. Lele

Approved for the University Committee on Graduate Studies.
Abstract

This thesis focuses on deriving algorithmic frameworks for the control of Aerodynamic Phenomena. The application of one such control law to the control of Flutter is discussed in detail. Flutter is an aero-structural instability that arises due to the adverse transfer of energy between the airplane structure and the surrounding fluid.

CFD is now a mature technology and can be used as a design tool in addition to being used as an analysis tool. This is the motivation for much of the research that takes place at the Aerospace Computing Lab at Stanford. Shape optimization involves finding the shape (2-d or 3-d) that optimizes a certain performance index. Clearly, any optimum shape will be optimum only at the design point. It has been found that the aerodynamic performance at neighboring operating points is a lot less optimal than the original shapes. What we need to do is to design and develop a feasible way of controlling the flow at any operating point such that the resulting performance is optimal.

In designing control laws, our philosophy has been to develop an algorithmic framework that enables treating a broad class of control problems rather than design control laws for specific isolated cases. This ensures that once a framework is established, extensions to particular problems can be done with very little effort. The framework we develop is problem independent and controller independent. Moreover, it has been shown that this leads to control laws that are feedback based, hence robust.
Acknowledgements

This thesis was never easy to write, and would have been impossible to finish if not for the people in my life. I take this moment to thank them all.

Firstly, I would like to thank Professor Jameson. He was a great research advisor. He gave me the freedom to work on the subject of my choice. And found the money to support my work. His warmth and genuineness will always be remembered. As also some of the conversations we’ve had: about research, and about life.

I thank Professors Lele and Alonso for patiently reading my thesis and providing valuable comments. And for all the research related advice, through the years. Professors Levy and MacCormack agreed to serve on my defense committee at extremely short notice. I thank them for finding the time, and for their valuable suggestions at the end of my defense. I would also like to thank Professor Kroo for discussions on aircraft flutter, and Professors West and Lall for advice on the design of nonlinear control systems.

Funding was partly by way of the Semino Fellowship awarded by the School of Engineering and the Department of Aeronautics and Astronautics and partly by way of NASA Langley and Air Force research grants. Their financial support is gratefully acknowledged.

I’ve had the good fortune of working with some very talented and driven people at the Aerospace Computing Laboratory. Work takes on a completely new dimension when you see motivated people burning the midnight oil all around you. That fact that there is company seems to add some meaning to the struggle. Nawee, Ki Hwan, Sahu and Anup: I will forever remember those midnight coding sessions at Durand 358. Those were good days!

I especially enjoyed the times that I worked with Sahu. It was one of the most inspired phases of my Ph. D. career. I think we bought out the best in each other. I thank him, also, for providing me with most of the infrastructure for a full fledged aero-elastic simulation and the technical expertise to add the missing pieces.
I would especially like to thank Nawee for patiently proof-reading my thesis, and helping me iron out the inconsistencies and Pat for working overtime to bring my code and data files back from the dead when bigarray, the scratch disk that I was working on, crashed just three weeks before my defense.

I would also like to thank my other lab-mates Balaji, Sriram, Seongim, Arathi, Jender, Georg, Andre, Kasidit and Edwin for providing a warm collegial atmosphere.

Lynn Kaiser, Carolyn Edwards, Diane Le, and Ralph Levine have been the go-to people for every administrative question that I’ve ever had. They’ve made it possible for me to get through school without ever having to read one of those long boring legal documents drafted by the administrative offices.

And then the gang: Vipin, Vishal, Sahu, Kaustuv, Allex, Shravan, RAP, Dev, Shardul, Srihari and Anshul. When I look back I think of all those lazy Saturday afternoon discussions (about world politics, war strategies, abstract art, literature, the human condition, and mindless local gossip), those late night trips to the city, hot cups of chai, and all those trips around the bay and beyond. Thanks for being around guys!

Finally, and most importantly, I would like to thank my Mother. For teaching me some of the most valuable lessons in life. For having faith in me. For constantly encouraging me to set my goals high. For pushing me that much harder to work towards my goals. For pulling me up all those times that I was down. For helping me realize that the end was in sight, always. For unconditional love, and support. I dedicate this thesis to her.
Contents

Abstract iv

Acknowledgements v

1 Introduction 1
 1.1 Shape Optimization: A Case Study 2
 1.2 Morphing Aircraft 7
 1.3 Flow Control 8
 1.4 Flutter Control 10
 1.5 Contributions 10
 1.6 Thesis Outline 12

2 Flutter: Modeling and Computational Simulation 13
 2.1 Fluid Mechanics 14
 2.2 Computational Simulation 16
 2.3 Actuator Modeling 18
 2.4 Structural Mechanics 19
 2.5 The Finite Element Method 20
 2.5.1 The Newmark Scheme 22
 2.6 Aero-Structural Integration 23
 2.6.1 Pre-processing 23
 2.6.2 Displacement Transfer 23
 2.6.3 Load Transfer 24
 2.6.4 Integration of Aerodynamic and Structural Solvers 26
 2.7 Mesh Deformation 27
3 Flow Control using Adjoint Sensitivities

3.1 Feedback Based Control .. 30

3.2 Optimal Fluid Flow Control 33
 3.2.1 Direct Sensitivity Analysis 34
 3.2.2 Adjoint Sensitivity Analysis 34
 3.2.3 Computational Advantages of the Adjoint Method 35
 3.2.4 Smoothed Gradient ... 36
 3.2.5 Optimization by the Continuous Descent Method: Convergence 36

3.3 Optimization Algorithm .. 37

3.4 Virtual Aerodynamic Shaping 38

3.5 Feedback Nature of Adjoint Based Control 38
 3.5.1 The Adjoint Boundary Conditions for Virtual Aerodynamic Shaping 38

3.6 Results .. 39
 3.6.1 2-d results .. 39
 3.6.2 Reduction in the number of actuators: Design Trade-off 40
 3.6.3 3-d Results .. 43

4 Structural Optimization ... 48

4.1 Optimal Control of Limit Cycle Oscillations in a Nonlinear Panel 49

4.2 Mathematical Model ... 49
 4.2.1 Structural Model ... 50
 4.2.2 Aerodynamic Model ... 50
 4.2.3 Computational Solution of the Nonlinear Equations 52

4.3 Adjoint Based Structural Optimization 52

4.4 Results .. 54

5 An Algorithmic Approach to Flutter Control 57

5.1 Optimal Control of Nonlinear Dynamical Systems 58

5.2 Optimal Control of Linear Dynamical Systems: LQR Control 59

5.3 2-d Flutter Control .. 61
 5.3.1 Typical Wing Section: Mathematical Model 61
 5.3.2 Computational simulation 62
 5.3.3 System Linearization and Model Order Reduction 63
 5.3.4 System Identification: Evaluation of Sensitivities 64
List of Figures

1.1 Convergence of the optimization algorithm from a parabolic initial profile 4
1.2 Convergence of the optimization algorithm from a Sears – Haack Initial Profile 5
1.3 Classical and Nonlinear Optimum Profiles for 2-D flow 6
1.4 Classical and Nonlinear Optimum Profiles for Axisymmetric flow 6
1.5 Variation of 2-d Optimum Profiles with Mach Number 7

2.1 Schematic Diagram showing the integration of aerodynamic (CFD, right) and structural (FEM, left) solvers 14
2.2 Comparison of C_l time histories for the case of a pitching airfoil. From Alonso [2] 15
2.3 A typical C mesh used for a 2-d flow calculation 17
2.4 Implementation of the Actuator Boundary Condition at the wall 18
2.5 Schematic Diagram showing the components of the stress tensor 19
2.6 Structural Discretization 21
2.7 Extrapolation of displacements from the CSM mesh to the CFD mesh 24
2.8 Extrapolation of loads from the CFD mesh to the CSM mesh 25
2.9 Aero-structural Integration 27
2.10 Mesh deformation using a material deformation model. From Premasuthan and Jameson [65] 28

3.1 Block diagram of an open loop system with Plant Transfer Function F 30
3.2 Block diagram of a closed loop system with Plant Transfer Function F and Controller Transfer Function G 31
3.3 Plant Transfer Function F 31
3.4 Plant Transfer Function F, reformulated as an optimization problem 32
3.5 Schematic Diagram outlining the continuous descent optimization procedure 36
Chapter 1

Introduction

An airplane, by its very nature of design, is meant to be a flow control device. This becomes clear when one considers a steady air flow with and without the airplane. The very presence of the airplane alters the flow pattern, significantly so.

Through the ages, the primary goal of the aerodynamicist has been to design airplanes such that they meet certain performance criteria. This could be, for example, the maximum range of the airplane or the drag at cruise conditions. Lower drag immediately translates to lower fuel consumption and hence lower operating costs.

The aerodynamic performance of an airplane is determined by the nature of the surrounding flow field under given flight conditions. The most important motivation for flow control arises thus:

If it becomes possible to control the nature of the surrounding fluid flow, then it is conceivable that both the operating envelope and the aerodynamic performance of an airplane within that envelope can be significantly enhanced.

Exploring techniques for active flow control is the central theme of this thesis.

In this chapter, we trace the development of flow control concepts from single and multi point shape optimization techniques to morphing shapes and virtual aerodynamic shaping. We discuss the benefits and limitations of the current state of the art in flow control. We then highlight the need for an algorithmic approach to Active Flow Control.
1.1 Shape Optimization: A Case Study

The flow field surrounding an airplane is determined by its external shape. Thus, one way of achieving desired performance levels is by suitably designing the external shape of the airplane. This falls under the purview of Aerodynamic Shape Optimization. Aerodynamic Shape Optimization based on Control Theory has been an active research topic for the last twenty years.

The theory of Optimal Control of Systems governed by Elliptic Partial Differential Equations was first developed by Pironneau [64]. This was first applied to Aerodynamic Shape Optimization by Jameson. Jameson developed the Adjoint method for Aerodynamic Shape Optimization in a sequence of papers by himself [31, 36, 33] and with Reuther and other co-authors [40, 66, 67, 68, 69]. Giles and Pierce have demonstrated the equivalence of the Adjoint equations to Greene’s functions [25, 24].

Many other research groups have developed CFD (Computational Fluid Dynamics) codes for aerodynamic optimization as well. Elliot [18, 19] and Anderson [5, 56] have developed codes based on the Discrete Adjoint approach that work on unstructured grids. Mohammadi [53, 52] has successfully used Automatic Differentiation software to create an Adjoint code from a CFD code.

In this section, we discuss the concept of flow control using shape optimization by studying a simple example problem.

Optimum Profile Shape Design for Supersonic Flow

One of the classic research problems in supersonic flight has been that of finding 2-d and axisymmetric profiles that have minimum pressure drag in supersonic flow. The 2-d sections are used as wing-profile sections, and the axisymmetric profiles are useful in that the distribution of Cross Sectional Area in a real airplane is made to follow the optimum distribution in order to minimize wave drag (The Area Rule). This problem becomes redundant without suitable constraints. We know that the minimum drag shape is a flat plate in 2-d flow and a needle-like profile in axisymmetric flow. But this is not the answer we are looking for. Hence to make the problem more meaningful, we ensure that the enclosed area/volume is constant. We also ensure that the ends are pointed. This is to anchor the shocks firmly to the leading and trailing edges.
CHAPTER 1. INTRODUCTION

Results from Classical Theory

Analytical solutions for the problem being studied have been obtained, assuming a linearized flow model. For the 2-d case the optimum profile is parabolic.

\[y(x) = 3Ax(1-x), \quad \tau = \frac{3A}{2}, \quad (1.1) \]

where \(A \) is the area enclosed and \(\tau \) is the thickness-chord ratio. The drag coefficient is given by

\[C_d = \frac{12A^2}{\sqrt{M^2 - 1}}. \quad (1.2) \]

For the axisymmetric case, the profile shapes that solve this problem are the well known Sears – Haack profiles, discovered independently by Sears (1947) and Haack (1947). The derivation of the Sears – Haack profiles is outlined in the book by Ashley and Landahl [6] and also in an article by Carlo Ferrari [21]. The Sears – Haack profile is given by

\[y(x) = \frac{\sqrt{16V}}{3\pi^2} \left[4x(1-x) \right]^{\frac{3}{2}}, \quad \tau = \sqrt{\frac{64V}{3\pi^2}}, \quad (1.3) \]

where \(V \) is the enclosed volume and \(\tau \) is the fineness ratio. The drag coefficient is given by

\[C_D = 24V. \quad (1.4) \]

As can be observed, these profile shapes have some interesting properties. Firstly, they are unique solutions to the optimization problem. Moreover, they are just a function of the enclosed area/volume and not the Mach Number.

Nonlinear Optimization via Control Theory

The aerodynamic shape optimization problem involves minimizing (or maximizing) a given cost function, with parameters that define the shape of the body as the design variables, usually of the form

\[I = \int_{\mathcal{B}_\xi} \mathcal{M}(w, S) d\mathcal{B}_\xi, \quad (1.5) \]

where \(w \) is the vector of flow state variables and \(S_{ij} \) are the coefficients of the Jacobian matrix of the transformation from physical space to computational space. \(\mathcal{M}(w, S) \) in our
case is just C_p, the pressure coefficient. We also have the constraint that the state variables at the computational points have to satisfy the flow equations, irrespective of the shape of the boundary.

Convergence from Different Initial Conditions: The main test of the correctness of the optimization algorithm is to see if it converges to the same optimum profile regardless of what the initial profile is. Figures 1.1 and 1.2 show the optimization history from two different initial profile shapes for 2-d flow. They both enclose the same area. It can be seen that they converge to the same optimum profile. This gives us confidence in the correctness of our optimization setup.

Optimum Profile Shapes: The results of the 2-d optimization can be seen in Figure 1.3 and the results of the axisymmetric optimization can be seen in Figure 1.4. As can be observed, the nonlinear optimum profiles are slightly different from the classical optimum profiles. They have a more rearward point of maximum thickness. The primary difference between a linearized flow model and a nonlinear model is the appearance of shocks at the leading edge in the case of the nonlinear flow model. Reducing the included angle at
Figure 1.2: Convergence of the optimization algorithm from a Sears – Haack Initial Profile

the leading edge and moving the point of maximum thickness rearward is consistent with reducing the magnitude of the leading edge shock. This results in a lower drag and at the same time brings the flow closer to the linear regime.

Variation with Mach Number: The optimum profile for 2-d flow changes with Mach number. The optimum shape for two Mach numbers is shown in Figure 1.5. It is seen that the point of maximum thickness is more rearward for the higher Mach number. This again is consistent with our earlier argument that the main goal of the nonlinear optimization is to reduce the magnitude of the leading edge shock.

Discussion of Results: The above results highlight the following points:

1. Shape Optimization using Control Theory does, indeed, find the optimum aerodynamic shape for a certain performance criteria. We see this by noting that the results of aerodynamic shape optimization are in the neighborhood of provably optimal solutions based on linear theory.

2. In spite of the fact that we started with different initial profiles, the Shape Optimization Algorithm converged to the same optimal solution. This shows that *Adjoint*
Figure 1.3: Classical and Nonlinear Optimum Profiles for 2-D flow

Figure 1.4: Classical and Nonlinear Optimum Profiles for Axisymmetric flow
CHAPTER 1. INTRODUCTION

3. The Optimum Shape for each Mach number is different. This is the most important result as far as this thesis is concerned. Clearly, in order to remain optimal over a range of operating conditions, we need the capability to change the shape to correspond to the optimal shape at that condition.

1.2 Morphing Aircraft

As can be seen from the results of the previous section, the aerodynamic shape that is optimum for a certain performance criterion varies as the operating conditions are changed. While multi-point design is possible, it would involve a sacrifice in performance from the optimum possible at each individual operating point.

What we would prefer, ideally, is to morph the shape throughout the operating envelope of the airplane. The idea of morphing shapes has been implemented in rudimentary fashion through the ages. The deployment of slats and flaps to increase lift during landing and the use of swing wings to achieve optimum performance through a range of Mach numbers are some examples.
Mani, Lagoudas and Rediniotis [51] have done extensive research in the use of active skin actuation for the control of turbulent drag. They hypothesize that turbulent skin friction drag can be minimized by the passage of surface waves of suitable frequencies and fairly small magnitudes. The skin is then controlled actively to affect this reduction. The feasibility of using Shape Memory Alloys and piezo electric actuators is discussed.

Baker and Friswell have studied issues regarding the implementation of shape memory alloy based wing design [7].

Shape Memory Alloys are materials that remember their original shape. They have the tendency to return to this shape after being realigned, when induced by a temperature or a magnetic field. They thus find potential use in any field in which actuators that change their material properties based on external physical conditions are required [71].

While the optimum shape for any operating condition can be calculated, designing a control surface that deforms accordingly is a technological challenge. This involves extensive research to develop new materials that are both compliant enough to change shape, and yet stiff enough to withstand the severe aerodynamic loads through the operating envelope. Developing suitable actuation methodology is also an active area of research.

1.3 Flow Control

Another concept that is fast gaining popularity in Fluid Mechanics circles is that of Active Flow Control. Indeed, it is important to realize that adding or removing fluid at the wing surface is equivalent to effecting a shape modification. Flow control using surface jets should, in principle, have an effect very similar to that of morphing surfaces.

The controllability of the Navier-Stokes equations has been discussed by Bewley [9, 10]. The optimal flow control problem is formulated as an infinite dimensional optimization problem, where a cost functional is minimized. This cost functional describes the features of the flow being studied. By showing that the cost functional is strictly convex, he establishes the existence and uniqueness of an optimal control.

The capability to directly alter the flow field offers a huge realm of possibilities. Seifert, Theofilis and Joslin [74] categorize the problems that are amenable to using Active Flow Control:

1. Separation (Delay, Reattachment, Stabilization, etc.)
2. Transition (Delay, Promotion)
3. Jet (Spreading, Vectoring, Acoustics)

4. Drag Reduction (Laminar Skin Friction, Turbulent separation control)

5. Thermal Management (Cooling, heating, reduced signature)

6. Guidance, Propulsion and Control (Mild hinge-less maneuvering, gust alleviation)

7. Vortex Dominated Flows

8. Combustion, Turbo machines (Inlets, rotors, stators and diffusors)

9. Cavity (noise, vibration)

10. Optical Distortion

While different types of actuators can be designed for active flow control, Zero Net Mass Flux (ZNMF) Synthetic Jets are gaining popularity as the actuator of choice. A ZNMF synthetic jet is popular for the main reason that it is formed entirely from the working medium of the flow. These eject and remove mass from the flow system through a narrow orifice periodically. This results in altering the momentum field around the orifice without adding or removing mass from the flow. The primary considerations in the design of synthetic jets are the size and positioning of the orifice, and the time frequency of actuation. The design of synthetic jets and the physics of their interaction with a cross-flow are discussed in detail by Glezer and Amitay [26].

Flow control, for aerodynamics, using synthetic jets has been studied experimentally by Amitay [4], Tuck and Soria [78], and Nishizawa et al [1, 57]. Numerical investigations were performed by Nae [55]. It should be noted that in all these experiments, the location and frequencies of the actuators were chosen apriori. The control implemented, therefore, is open loop.

The study of closed loop active flow control techniques is still in its primitive stages. This is because designing a closed loop (feedback) control law requires understanding of the system dynamics. In spite of the fact that it is possible to obtain numerical solutions to the Navier-Stokes equations, understanding of the behavior of a flow-actuator system is extremely limited.

Feedback laws based on Reduced Order Models have been derived by Samimy et al. [73], Kumar and Tewari [44] and Cohen et al. [16]. The major drawback of these efforts is
that the actuator dynamics are not modeled as part of the reduced order description of the system.

1.4 Flutter Control

An airplane, by its nature of being, is constructed so that it is as light as possible. One of the most expensive side-effects of light construction is the increased flexibility that comes associated with it.

When a flexible structure interacts with an unsteady flow, there is transfer of energy from the fluid medium to the structure and vice-versa. If this transfer occurs at a frequency close to the flutter frequency, the aero-structural vibrations may rapidly lead to divergence and consequently failure. This phenomenon is called flutter.

In order to maximize the performance of the airplane, it has to be constructed so that it is light. Thus flutter cannot be avoided. One way of pushing the operating envelope of the airplane is to delay the onset of flutter. This is done by structural redistribution. Techniques for flutter control using acoustic waves [49] and micro-trailing edge flaps [11] have been proposed. It should be noted that these techniques are only capable of extending the flight envelope and not eliminating flutter altogether.

1.5 Contributions

All previous attempts at flow control have either involved designing simplistic controls for complex problems or complex feedback based controls for simple problems. Problems like separation control, drag reduction and control of the vortex shedding frequency in the flow past a cylinder have all been controlled using open loop controllers.

Closed loop control has been demonstrated only on simplistic models derived from simulation or experiment.

An Ideal Flow Control Law should have the following properties:

1. Broadly applicable: we are looking for an algorithmic framework for generating flow control laws for a variety of problems. The development of such a framework would enable easy analysis and design of control laws for a variety of flow control problems.

2. Scientific: the control laws should be based on a realistic model of the fluid system.
3. Robust: should account for variability in measurement, actuation, etc. This would mean that the control u should be feedback based

$$u = F(x),$$

where x is the current system state.

Our goal, therefore, is to develop feedback based control laws that are derived from a realistic representation of the flow. We try to make sure that the framework is as generic as possible, lending easy extension to a variety of situations. We then discuss specific applications of the control law thus derived, including control of Flutter.

The author collaborated with Sahu [72] to develop an integrated hi-fidelity aero-structural simulation based on uflo87 (A 3-d unsteady Euler flow code developed by Professor Jameson) and FEAP (Finite Element Analysis Package: A nonlinear structural dynamics solver developed by Professor Taylor), for test purposes.

Inviscid Assumption: The primary emphasis of this thesis is to develop techniques for generating control laws for realistic aerodynamic/aero-structural problems. A control law thus derived is used to demonstrate flutter control.

Our aim is to control flutter at its onset, when the angles of deflection are less than 1°. It can be seen from Figure 2.2, that for the amplitude considered, the unsteady aerodynamics associated with an airfoil pitching in transonic flow is well represented by an inviscid model. The surface jets used for control cause an effective shape change that changes the aerodynamics of the system. This, again, is well represented by an inviscid model.

A Navier-Stokes simulation is considerably more involved than an Euler simulation. Numerical stability issues have to be addressed in portions of the simulation where the surface jets interact with the surrounding flow. Moreover, the turnaround time taken for Navier-Stokes simulations is much higher than that of Euler simulations for the problems considered, for very little gain in the representation of the Flow Physics.

Thus an Euler model is used in this thesis.

It should, however, be noted that the techniques for developing control laws, as discussed in this thesis, are fairly generic and extensions to the viscous case should be straightforward.
1.6 Thesis Outline

Chapter 2 and Appendix A discuss the flow and structural models used in this thesis and the key computational aspects involved in their simulation.

The Flow Control Algorithm is developed in Chapter 3 and Appendix B. This is then specialized for the case of Virtual Aerodynamic Shaping. The feedback nature of the control laws thus developed is highlighted.

Chapter 4 discusses the modification of the aero-structural behavior of a system by passive structural optimization.

In Chapter 5, we develop an active control law for flutter, and demonstrate its effectiveness by simulation.
Chapter 2

Flutter: Modeling and Computational Simulation

The primary purpose of this thesis is to demonstrate the feasibility of implementing a feedback based control approach for practical aerodynamic problems. The approach developed is first tested on an inverse design problem, and then used to show that flutter can be controlled. Flutter is an aero-elastic phenomenon in which there is adverse transfer of energy from the surrounding flow-field to the structure of the airplane, and vice versa. This leads to rapid divergence of the structure, and consequently failure.

The first step towards controlling flutter, is accurate prediction. To do this, we need to develop a mathematical model that will track the physics accurately and reliably. When forming our mathematical models, we should take into consideration the fact that over the last few decades, people have spent considerable amounts of time developing very sophisticated computational solvers for the separate problems of unsteady aerodynamics [28, 30, 32, 34, 35, 46, 58, 70] and structural dynamics [79] respectively.

The most practical approach to modeling aero-structural interactions, therefore, would involve formulating the problem as an interaction between an aerodynamic component that tracks the unsteady aerodynamics and a structural component that tracks the structural deformations. This will allow us to use previously developed flow and structural solvers with very little modification. Figure 2.1 shows a schematic representation of a coupled aero-structural simulation.
Objectives: The following sections discuss the flow and structural models used in this thesis, and describe some of the key computational aspects of their simulation, including techniques for aero-structural interfacing and mesh warping.

2.1 Fluid Mechanics

Choosing a fluid model for the flutter control problem involves consideration of the physics of the problem and the question of reasonably fast computation.

An accurate mathematical representation would need to effectively address the issues of unsteadiness and compressibility. Ideally, we would also like to consider viscous effects. But this would require significantly more computational resources in terms of time and computing power. Figure 2.2 presents a comparison of C_l time histories obtained using three different means for the case of a pitching NACA 64A010 airfoil. The simulations were performed by Alonso [2]. The parameters of the experiment were as follows: $M_{\infty} = 0.796$, $k_\epsilon = 0.202$, $\Delta \alpha = 1.01^\circ$, $Re = 12.56 \times 10^6$ and $T_{\infty} = 300K$. This experiment clearly shows that for the angle of attack variations and reduced frequencies considered, an inviscid model does not sacrifice much in terms of accuracy.

Our primary emphasis is to control flutter at its onset, before the divergence angles become very high. Moreover, at small angles of attack, almost all the nonlinearity associated with flutter that arises from the unsteady variation of the pressure distribution along the surface of the airfoil. It has been successfully demonstrated over the past few decades by
Figure 2.2: Comparison of C_l time histories for the case of a pitching airfoil. From Alonso [2]

Jameson and his associates [30] that the pressure distribution computed using an inviscid model matches very well with experimental results.

Thus, in the interest of saving computational overhead, almost all the flow situations in this thesis are modeled using the Euler equations,

$$\frac{\partial \mathbf{w}}{\partial t} + \frac{\partial \mathbf{f}_j}{\partial x_j} = 0. \quad (2.1)$$

Here,

$$\mathbf{w} = \begin{bmatrix} \rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\ \rho E \end{bmatrix}, \quad \mathbf{f}_j = \begin{bmatrix} \rho u_j \\ \rho u_1 u_j + P \delta_{1j} \\ \rho u_2 u_j + P \delta_{2j} \\ \rho u_3 u_j + P \delta_{3j} \\ \rho H u_j \end{bmatrix}. \quad (2.2)$$

The Euler equations represent the conservation of mass, momentum and energy for fluid flows where viscous effects are not predominant. Here, ρ is the density, u_i are the flow velocities, E is the specific internal energy, H the specific enthalpy, and P is the pressure.
at any point in the flow.

The pressure is related to the density and energy by the following state equation

\[P = (\gamma - 1) \rho \left(E - \frac{1}{2} u_j^2 \right). \]

(2.3)

Here \(\gamma \) is the ratio of specific heats. Another equation important for closure is the *Ideal Gas Equation of State*,

\[P = \rho RT. \]

(2.4)

The specific internal energy \(E \) is related to the Temperature \(T \) as follows

\[E = C_v T + \frac{1}{2} u_j^2. \]

(2.5)

Here \(C_v \) is the specific heat of the fluid at constant volume. The specific enthalpy \(H \) is related to the specific internal energy \(E \) as follows

\[H = E + \frac{P}{\rho}. \]

(2.6)

2.2 Computational Simulation

The *Euler* equations are highly nonlinear partial differential equations. Hence, closed form solutions cannot be obtained in general. We, therefore, resort to computational simulations to obtain the desired solutions.

All calculations in this thesis are performed on structured grids. 2-d calculations are performed on C or O meshes and 3-d calculations are performed on C – H meshes. A typical C mesh used for 2-d calculations is shown in Figure 2.3. The equations are discretized using cell-centered Finite Volume schemes. The spatial derivatives are calculated using central differences, with blended second and fourth order dissipative fluxes. The second order dissipative fluxes serve to damp out unfavorable oscillations that develop in the vicinity of contact discontinuities like shocks. The fourth order dissipative fluxes, when added in a controlled manner serve to increase the order of accuracy in smooth regions of the flow. This scheme belongs to the family of JST schemes for compressible gas dynamics developed by Jameson, Schmidt and Turkel [41]. The *Euler* equations can then be written as the
following set of coupled Ordinary Differential Equations

\[\frac{dw}{dt} + R(w) = 0. \]

(2.7)

Time integration is done using a dual time stepping approach. First, time accurate integration is done using a second order backward difference formula in time. This necessitates the solution of an implicit difference equation of the form

\[\frac{3}{2\Delta t} (w^{(n+1)}V^{(n+1)}) - \frac{2}{\Delta t} (w^{(n)}V^{(n)}) + \frac{1}{2\Delta t} (w^{(n-1)}V^{(n-1)}) + R(w^{(n+1)}) = 0. \]

(2.8)

at each real time step. The solution to this equation is obtained as the steady state solution to a problem of the form

\[\frac{\partial w}{\partial t^*} + R^*(w) = 0, \]

(2.9)

where \(R^*(w) \) is a modified residual with source terms. This equation is then solved in pseudo time using techniques from the solution of a steady aerodynamic flow.
CHAPTER 2. FLUTTER: MODELING AND COMPUTATIONAL SIMULATION

The convergence to steady state of the pseudo time problem is accelerated many fold, using convergence acceleration techniques like multigrid, implicit residual averaging, variable local time stepping and enthalpy damping.

The spatial and time discretization procedures, and the convergence acceleration techniques are discussed in great detail in Appendix A.

2.3 Actuator Modeling

The actuator used in this thesis is a steady jet that is assumed to add a velocity component, that is in a direction normal to the wall, to the fluid near the wall surface. A computational cell near the wall, with the jet coming out is show in Figure 2.4. The flow velocities in the halo cell within the wall are set so that the resultant normal velocity computed at the wall is numerically equal to ρq_n. Thus, if $\tan \theta$ is the slope of the tangent at the wall,

$$
(r_1 v_1 \cos \theta - r_1 u_1 \sin \theta) = 2r_2 q_n - (r_2 v_2 \cos \theta - r_2 u_2 \sin \theta).
$$

(2.10)

Here, the subscript 2 is used to denote the flow values at the cell just outside the wall, and the subscript 1 is used to denote the flow values at the halo cell. We also set

$$
\frac{\rho_1}{\partial n_1} = \frac{\rho_2}{\partial n_2}, \quad \frac{\partial P}{\partial n_1} = \frac{\partial P}{\partial n_2}, \quad \rho_1 E_1 + P_1 = \rho_2 E_2 + P_2.
$$

(2.11) \quad (2.12) \quad (2.13)

The required value of ρq_n is derived from the control algorithm.
2.4 Structural Mechanics

The structural dynamic model is derived from the theory of elasticity, which relates the deformation and internal stresses of the structure to the external loads applied. A Lagrangian frame is used to describe the structure, as contiguous elements of the structure continue to remain contiguous unless structural failure occurs. The state of structure at any point in time, is represented at each spatial point by 15 state variables. There are three displacements u, which represent the deviation of the point from its baseline position. Additionally, the internal state of the structure is represented by the stress and strain tensors, σ_{ij} and ϵ_{ij} respectively, both of which are symmetric and hence have six independent components each.

The normal stress is defined as the force acting in a given direction, per unit area normal to that direction. Shear stress is defined as the force acting tangential to a surface, per unit area. Figure 2.5 shows the components of the stress tensor. Strains are the ratio of the displacement of a point in a particular direction to the original dimension of the object at that point.

![Figure 2.5: Schematic Diagram showing the components of the stress tensor.](image-url)
There are six equations which relate the strains to the displacements. These are linear for the case of small deformations.

\[\epsilon_{ii} = \frac{\partial u_i}{\partial x_i}, \quad \epsilon_{ij} = \epsilon_{ji} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}. \] (2.14)

The stresses are related to the strains by six constitutive relationships. If the material is isotropic, these reduce to

\[\sigma_{ii} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\epsilon_{ii} + \nu(\epsilon_{jj} + \epsilon_{kk})], \quad \sigma_{ij} = \sigma_{ji} = \frac{E}{2(1+\nu)} \epsilon_{ij}, \] (2.15)

where \(E \) is the Young’s modulus of the material, and \(\nu \) is the Poisson’s ratio. The external forces can be related to the internal stresses and strains using the Newton’s laws.

\[\frac{\partial \sigma_{ij}}{\partial x_j} + \rho \frac{\partial^2 u_i}{\partial t^2} + \kappa \frac{\partial u_i}{\partial t} = F_i. \] (2.16)

Here \(\rho \) is the density of the material, \(\kappa \) is the damping factor, and \(F \) is the applied external force. Solving these fifteen equations gives us the stress – strain – displacement distribution throughout the structure.

2.5 The Finite Element Method

The structural dynamics is also simulated computationally. This is done using a Finite Element Method. The finite element method provides one way to discretize the continuous partial differential equations that govern the dynamics of the structure, into a set of coupled discrete ordinary differential equations which can be written in the form

\[[M] \{\ddot{q}\} + [C] \{\dot{q}\} + [K] \{q\} = \{F\}, \] (2.17)

where \([M], [C]\), and \([K]\) are the mass, damping and stiffness matrices respectively. All these matrices are of size \(n \times n \), where \(n \) is the number of degrees of freedom, as determined by the discretization. \(q \) is a vector of displacements, also of size \(n \). These could be linear displacements or angular rotations, depending on the nature of the discretization. \(F \) is a vector containing applied external forces and moments corresponding to the respective displacements.
Figure 2.6: Structural Discretization
In this thesis, we study the aero-structural behavior of a wing in Chapter 5. The semi-span of the wing is 0.294m, and the chord of the wing is 0.1158m. The wing is represented structurally as an aluminum plate that has the same dimensions as the wing, and is lined along the the symmetry axis. The plate is has the same dimensions as the wing and a thickness of 0.00165m.

The plate is discretized into 50 plate elements as shown in Figure 2.6. Each plate element has 4 nodes, leading to a total of 66 nodes in the discretization. Each node has 3 translational and 3 rotational degrees of freedom. The structural simulation, therefore, has a total of 396 degrees of freedom.

2.5.1 The Newmark Scheme

Equation (2.17) is solved using the Newmark scheme. The Newmark scheme is used to solve a second order transient problem of the form

\[R(t) = f(t) - P(q(t), \dot{q}(t), \ddot{q}(t)) = 0 , \]

where in our case

\[P = [M] \{\ddot{q}\} + [C] \{\dot{q}\} + [K] \{q\} . \]

The solution is updated as follows

\[q_{n+1} = q_n + \Delta tv_n + \Delta t^2 \left[(0.5 - \beta)a_n + \beta a_{n+1}\right] , \]

and

\[v_{n+1} = v_n + \Delta t \left[(1 - \gamma)a_n + \gamma a_{n+1}\right] \]

where

\[v_n = \dot{q} , \quad a_n = \ddot{q} . \]

In the above equations \(\beta\) and \(\gamma\) are parameters controlling the stability and numerical dissipation respectively. Typical values chosen for \(\beta\) and \(\gamma\) are 0.25 and 0.5 respectively. In this thesis, the structural analysis is performed using the Finite Element Analysis Program (FEAP), written by Taylor [79] at the University of California, Berkeley.

FEAP is an extremely versatile structural analysis program that allows for the construction of arbitrarily complex finite-element models using a library of 1-, 2- and 3-dimensional
elements for linear and nonlinear deformations. The material under consideration could be isotropic, orthotropic or even plastic. A number of solution procedures are available for linear, nonlinear and time-accurate problems. In addition to this, interfaces are available which enable the use of externally developed solvers. This comes in especially handy in the solution of large, nonlinear structural problems as extremely efficient external solvers that are written especially to solve sparse problems on parallel architectures can be used. This speeds up the solution process significantly. A number of time-accurate integration algorithms are also included with FEAP, which are of particular interest in the solution of aeroelastic problems.

2.6 Aero-Structural Integration

In the simulation of aero-structural systems, the interfacing of the aerodynamic and structural components is very critical. The integration involves transferring the loads from the fluid to the structural solver, and the displacements from the structural to the fluid solver in a consistent and conservative manner. The sequence in which these transfers are performed is of vital importance to the overall stability and efficiency of the procedure. The method used in this thesis is based on the work of Brown [14].

Firstly it is important to recognize that the CFD (Computational Fluid Dynamics) mesh need not be aligned with the CSM (Computational Structural Mechanics) mesh. Thus, it becomes important to first create a one-to-one association between points on the CFD mesh and points on the CSM mesh. This is done as part of a pre-processing step.

2.6.1 Pre-processing

The association is performed by locating the point on the CSM mesh that is closest to each CFD point, as shown in Figure 2.7. The link between these two points is then on assumed to be rigid.

2.6.2 Displacement Transfer

During an aero-structural simulation, the nodal values of the displacements and rotations are first transferred to the associated point on the CSM grid using the shape functions used in the finite element Model. The displacement of the CFD grid point can then be calculated
as a sum of the displacement of the associated CSM point and a rotation term which is obtained as a cross product of the angle with the length vector of the link.

\[
\Delta x = \Delta x_b + \Delta \theta_b \times L .
\]

(2.23)

The displacement and rotation at the associated point on the CSM mesh can be written in terms of the nodal displacements, as discussed earlier. The expression for the displacement of the CFD grid point then becomes

\[
\Delta x = W_t u + W_r u
\]

(2.24)

\[
\Delta x = W u,
\]

(2.25)

where \(W_t \) and \(W_r \) are pre-calculated weighting matrices corresponding to the translational and rotational components of the translation, and \(u \) is the vector of nodal displacements.

2.6.3 Load Transfer

The next critical procedure in the aero-structural integration process is the transfer of loads from the CFD grid to the CSM grid. The pressures at the surface of the CFD mesh are first integrated to obtain the values of the equivalent forces and moments at the CFD nodes.

Usually there are many more CFD points than there are CSM points. Thus, in theory, the load transfer from the CFD mesh to the CSM mesh can be done in an infinite number
For a conservative scheme, the equation is given by
\[\delta w^{CFD} = \delta w^{FE} \]
and a consistent and conservative load vector is given by
\[f_{CFD} = W_T^{CFD} \]
where we used the linear relationship for the virtual displacements \(\delta x \). In Figure 4.2.1, we can see how the pressure field, which has been interpolated from the CFD mesh to the points on the CSM mesh, is in the domain over a CSM patch to produce a force vector that is translated into the nodal forces of a finite element using equation 4.2.3v.

As previously, the transfer matrix \(N \) is calculated in a pre-processing step.
of ways. All these, however, will not be physically correct. We seek a solution that is, physically speaking, consistent and conservative. Consistency implies that the sum of the forces and moments at the nodes of the CFD mesh be the same as the sum of the forces and moments respectively at the nodes of the CSM mesh. By conservative we mean that energy is conserved, and that the transfer doesn’t introduce artificial energy sources into the system. The virtual work done by the nodal forces in the CFD mesh \mathbf{f}_{CFD} when the CFD nodes are subjected to a virtual displacement $\delta \mathbf{x}$ is given by

$$\delta w_{CFD} = \mathbf{f}_{CFD}^T \delta \mathbf{x}. \quad (2.26)$$

Similarly the virtual work done by the nodal forces at the CSM mesh \mathbf{f}_{CSM} when the CSM mesh is subjected to an equivalent virtual displacement $\delta \mathbf{u}$ is

$$\delta w_{CSM} = \mathbf{f}_{CSM}^T \delta \mathbf{u}. \quad (2.27)$$

In order to be conservative, the force transfer should occur in a manner that virtual work is conserved, or

$$\mathbf{f}_{CFD}^T \delta \mathbf{x} = \mathbf{f}_{CSM}^T \delta \mathbf{u}. \quad (2.28)$$

Equation (2.25) relates $\delta \mathbf{x}$ to $\delta \mathbf{u}$. Equation (2.28) can thus be written as

$$\mathbf{f}_{CSM} = W^T \mathbf{f}_{CSM}, \quad (2.29)$$

where W is the same matrix that relates $\delta \mathbf{x}$ to $\delta \mathbf{u}$.

2.6.4 Integration of Aerodynamic and Structural Solvers

The aerodynamic and structural solvers are coupled by exchanging information at regular intervals during the solution process. A schematic diagram outlining the coupling process is presented in Figure 2.9.

Each cycle of the aero-structural iteration starts with the transfer of the current displacement state of the structure from the CSM mesh to the CFD mesh. A CFD calculation is then performed, and new values of the nodal forces and moments are calculated. These loads are then transferred to the CSM mesh. The structural dynamics calculation is then advanced through the same time difference as the CFD mesh.
This cycle is repeated through the time period of interest. Usually, the stability limits impose more stringent limitations on the maximum allowable time step for the fluid solver than the structural solver. This might result in many more CFD calculations being performed in the same time it takes to perform one Finite Element calculation. This technique is referred to as the sub-cycling methodology.

![Figure 2.9: Aero-structural Integration](image)

2.7 Mesh Deformation

The displacements that are transferred from the CSM mesh to the CFD mesh, affect only the surface of the CFD mesh. An effective means of propagating these disturbances throughout the grid is required. Mesh deformation is an art in its own right, especially given the complex nature of the meshes used in CFD recently. Some of the problems frequently faced include bad scaling of the resultant new mesh, or worse, inversion of some of the interior cells. These are extremely hard to locate. However, the ill effects of bad scaling can be significantly minimized if sufficient care is taken during the mesh deformation process.

In this thesis, the mesh is assumed to be a solid body satisfying the laws of elasticity as discussed in Section 2.4. A deformation applied to the surface can then be considered as a displacement applied at the surface nodes of the body. The equations of elasticity are then solved, and a deformed grid is obtained. The mesh deformation algorithm used in this thesis was developed by Premasuthan and Jameson [65]. Figure 2.10 shows the deformed mesh, after an airfoil, initially at 0° angle of attack, is subject to a counter-clockwise rotation of 90°. As can be seen, the cells are still reasonably well scaled.
Figure 2.10: Mesh deformation using a material deformation model. From Premasuthan and Jameson [65]
In this chapter, we lay out the groundwork for the concept of flow control as discussed in this thesis.

Our aim is to control the behavior of an aerodynamic flow that satisfies the Euler equations. The controllers we use are steady normal jets at the wall that affect the behavior of the flow by simulating a shape change. We would like to devise a feedback based control algorithm [22]. By feedback based we mean that the control correction required of the controller at any point in time is a function of the then state of the system. The control law thus derived has the following advantages:

1. Works at any operating condition. Open loop control algorithms are usually effective only in the neighborhood of the design conditions.

2. Higher robustness in the context of uncertainties in state measurements. Since the control correction required is dependent on state at any point in time, the resilience to noise is higher.

3. No control input needed at equilibrium points.

Objectives: The chief objectives of this chapter are as follows:

1. Establish that a feedback based control problem can be formulated as an equivalent optimization problem.
2. Formulate the generalized flow control problem as an optimization problem and discuss its solution using Adjoint based sensitivities.

3. Highlight the computational advantages offered by the Adjoint method over a finite difference method for the calculation of sensitivities.

4. Specialize the control law thus derived for the case of Virtual Aerodynamic Shaping, and highlight its feedback nature.

5. Discuss 2- and 3- dimensional Virtual Aerodynamic Shaping results.

3.1 Feedback Based Control

Consider a system similar to the one shown in Figure 3.1. The transfer function of the system is F. Thus, for any control input u, the output of the system is given by

$$y = F(u).$$ \hfill (3.1)

Now suppose that it is desired to choose a particular value of u, that will produce an output y_d. This is a difficult problem and requires detailed knowledge of the plant’s transfer function. It is conceivable that a value of u could be chosen by trial and error. This is not a very robust way of choosing u, especially if there is plant and sensor noise.

Thus, we choose instead to implement a closed loop controller as in Figure 3.2. This feeds back the current state of the system y, and the correction $(y - y_d)$ determines the control input required. The objective is to drive the difference $(y - y_d)$ to zero, and this is what the controller is designed to accomplish.

The task of choosing the value of u that drives y to y_d is thus transferred from the designer to the controller. The question then is: how does one design such a controller? We try to achieve this by posing the control problem as an optimization problem. Consider
CHAPTER 3. FLOW CONTROL USING ADJOINT SENSITIVITIES

Figure 3.2: Block diagram of a closed loop system with Plant Transfer Function F and Controller Transfer Function G

Figure 3.3: Plant Transfer Function F
an optimization problem of the form

\[
\text{Minimize:} \quad I = (y - y_d)^2 \\
\text{Subject to:} \quad y = F(u).
\]

Clearly, when \(I \) is minimum,

\[
\frac{\partial I}{\partial u} = 2(y - y_d) \frac{\partial F}{\partial u} = 0. \tag{3.2}
\]

If this optimization problem is solved using a Newton iteration, the updated value of \(u \), based on the current value of \(y \) is given by the Newton step

\[
u_{n+1} = u_n - \mathcal{H}^{-1} \mathcal{G}(y - y_d), \tag{3.3}
\]

where \(\mathcal{H} \) is the Hessian of the plant transfer function and \(\mathcal{G} \) is the gradient. If the controller transfer function is chosen as above, the system automatically chooses that value of \(u \) that drives \(I \) to zero.

An example transfer function is shown in Figure 3.3. Here the input variable is \(x \), and
the output is P. Consider now the problem of choosing x such that $P = P_d = 0.6$. An open loop equivalent of this would be to choose that particular value of x that satisfies our requirement. As discussed earlier, this is possible only if we have apriori knowledge of the system dynamics. We will instead re-phrase the control problem as an optimization problem. When the problem is written as an optimization problem, where $(P - P_d)^2$ is required to be minimized, the system automatically settles down at one of the two local minima, both of which are equally satisfactory for our purposes. This can be seen in Figure 3.4.

Thus it is clear that the feedback control problem can be recast as an optimization problem.

3.2 Optimal Fluid Flow Control

Following along the lines of the argument made in the previous section, the Flow Control problem can be posed as the following optimization problem:

$$\text{Minimize: } I(w, u),$$ \hspace{1cm} (3.4)

where w is the vector of state variables and u is the vector of control variables. I represents the quantity being controlled. It could be a measure of the drag, expressed as a difference between the current surface pressure distribution and an ideal surface pressure distribution that has minimum drag. I could also be a measure of the deviation from an equilibrium condition. For example, in the case of flutter control, I is chosen to be a measure of the plunge and pitch of the wing. Minimizing I in this context is equivalent to bringing the system back to equilibrium.

The state vector w consists of the Euler state variables at each Finite Volume in the domain. Thus, if there are a million cells in the domain, the dimension of w is five million for a 3-d flow. The control vector u in our case, consists of the surface normal mass fluxes at every cell along the surface of the wing. The dimensionality of the control vector u is much smaller than that of the state vector w.

The optimal control u is one that minimizes the cost function (3.4). The first derivative
of the cost function with respect to the control variables u is

$$\frac{dI}{du} = \frac{\partial I}{\partial w} \frac{\partial w}{\partial u} + \frac{\partial I}{\partial w}.$$

(3.5)

While the second term is fairly straightforward to evaluate, the first is not. This is because the state w and the control u are related by the Euler equations which are of the form

$$R(w, u) = 0.$$

(3.6)

We now present two ways to evaluate the required sensitivity, and highlight the computational advantages presented by using the Adjoint method.

3.2.1 Direct Sensitivity Analysis

First we try to estimate the required sensitivity directly. We note that the constraint Equation (3.6) is invariant with respect to u

$$\frac{dR}{du} = \frac{\partial R}{\partial w} \frac{\partial w}{\partial u} + \frac{\partial R}{\partial w} = 0.$$

(3.7)

Thus

$$\frac{\partial w}{\partial u} = - \left[\frac{\partial R}{\partial w} \right]^{-1} \frac{\partial R}{\partial w}.$$

(3.8)

The required sensitivity is then

$$G = \frac{dI}{du} = \frac{\partial I}{\partial u} - \frac{\partial I}{\partial w} \left[\frac{\partial R}{\partial w} \right]^{-1} \frac{\partial R}{\partial u}.$$

(3.9)

3.2.2 Adjoint Sensitivity Analysis

In the Adjoint framework, we do not evaluate the partial derivative $\frac{\partial w}{\partial u}$ explicitly. We first note that Equation (3.7) is identically zero. Therefore, it is permissible to multiply it by a Lagrange multiplier Ψ and add it to Equation (3.5). This gives

$$\frac{dI}{du} = \frac{\partial I}{\partial w} \frac{\partial w}{\partial u} + \frac{\partial I}{\partial w} + \Psi \left[\frac{\partial R}{\partial w} \frac{\partial w}{\partial u} + \frac{\partial R}{\partial u} \right].$$

(3.10)
Rearranging the terms in Equation (3.10) we get
\[
\frac{dI}{du} = \left[\frac{\partial I}{\partial w} + \Psi^T \frac{\partial R}{\partial w} \right] \frac{\partial w}{\partial u} + \left[\frac{\partial I}{\partial u} + \Psi^T \frac{\partial R}{\partial u} \right].
\] (3.11)

Now \(\Psi \) is an arbitrary multiplier. We can choose it to make the coefficient of \(\frac{\partial w}{\partial u} \) zero. This is called the Adjoint equation
\[
\frac{\partial I}{\partial w} + \Psi^T \frac{\partial R}{\partial w} = 0.
\] (3.12)

Thus,
\[
\Psi = - \left[\frac{\partial R}{\partial w} \right]^{-1} \frac{\partial I}{\partial w}.
\] (3.13)

The expression for the gradient of the cost function then becomes,
\[
G = \frac{dI}{du} = \frac{\partial I}{\partial u} - \frac{\partial I}{\partial w} \left[\frac{\partial R}{\partial w} \right]^{-1} \frac{\partial R}{\partial u}.
\] (3.14)

3.2.3 Computational Advantages of the Adjoint Method

It can be seen from Equations (3.9) and (3.14) that both methods yield the same value for the gradient. It is instructive to see how the Adjoint framework presents a substantial computational advantage in our case.

In the direct method, we have to evaluate the derivative \(\frac{\partial w}{\partial u} \). Given that the dependence of the state variables \(w \) on the control variables \(u \) cannot be expressed directly, the above derivative can only be evaluated using a Finite Difference technique. If there are \(m \) control variables \(u \), the required derivative can be evaluated only if the Euler equations are solved \(m + 1 \) times: once for the baseline case, and \(m \) times for a perturbation in the direction of each control variable.

In the Adjoint method, we have to evaluate the Adjoint variable \(\Psi \). This is readily obtained as a solution to the Adjoint equation, whose solution is approximately of the same level of complexity, computationally speaking, as that of the Euler equations.

Thus, the computational work required to calculate the gradient is substantially less when the Adjoint method is used. Thus, the Adjoint method is used to calculate sensitivities throughout this thesis. A detailed derivation of the Adjoint equations for the Euler equations with blowing/suction at the walls is presented in Appendix B.
3.2.4 Smoothed Gradient

It makes physical sense that the blowing/suction velocities at the wall increase or decrease smoothly, as a function of distance along the surface. However, this is not necessarily reflected when the gradient is evaluated. Numerical experiments conducted by Jameson and Vassberg [42] show that smoothing the gradient, stabilizes the optimization algorithm, and usually leads to faster convergence, even when a Steepest Descent method is used. The smoothed gradient \(\tilde{G} \) is evaluated implicitly using a Laplacian method as follows

\[
\tilde{G} - \frac{\partial}{\partial \xi} \frac{\partial}{\partial \xi} \tilde{G} = G.
\]

(3.15)

3.2.5 Optimization by the Continuous Descent Method: Convergence

Figure 3.5 outlines the continuous descent optimization procedure

Figure 3.5 outlines the optimization algorithm used in this thesis: The Continuous Descent Method. The change in the cost function at any point is given by

\[
\delta I = \tilde{G}^T \delta u.
\]

(3.16)

In the continuous descent method, we choose the step \(\delta u \) to be proportional to the gradient

\[
\delta u = -\lambda \tilde{G},
\]

(3.17)

where \(\lambda \) is an arbitrarily small positive value. Obviously, this choice for \(\delta u \) is guaranteed to minimize \(I \)

\[
\delta I = -\lambda \tilde{G}^T \tilde{G} \leq 0.
\]

(3.18)
Thus the continuous descent method is always guaranteed to converge to a local minimum.

3.3 Optimization Algorithm

The optimization algorithm is fairly straightforward and is outlined in Figure 3.6. We need to calculate the flow solution about the nominal point first. We then solve the Adjoint equation to obtain the gradient. We then smooth the gradient as shown in Equation (3.15). The control variables are then readjusted according to the continuous descent method. This procedure is repeated till convergence.
3.4 Virtual Aerodynamic Shaping

We test the flow control algorithms formulated in the previous sections on a Virtual Aerodynamic Shaping problem. Here, we take an aerodynamic configuration, and try to make it behave like another aerodynamic configuration under the same free stream conditions by implementing surface flow control.

A basic review of ideal fluid aerodynamics reveals that including a mass source on the surface of an airfoil has the effect of increasing the curvature and including a mass sink has the opposite effect. Given that, for a pre-determined performance measure, every operating condition has an optimum shape, it follows that a combination of a shape that is optimal for one operating condition, combined with suitably placed sources and sinks will result in a system that meets optimum performance criteria for a wide range of operating conditions.

For the purposes of this study, steady jets are used in order to simplify numerical modeling. Mass flows are prescribed at the wall, and the jets are modeled so as to satisfy the normal velocity/flux conditions at the wall. In addition, the nett. mass flow through the wall is assumed to be zero.

\[\int_{B_\xi} \rho q_n dB_\xi = 0. \]

(3.19)

3.5 Feedback Nature of Adjoint Based Control

The Feedback nature of the Adjoint based control laws thus derived become clear, when the Adjoint boundary conditions are examined.

3.5.1 The Adjoint Boundary Conditions for Virtual Aerodynamic Shaping

We postulate that the behavior of any aerodynamic configuration, at any freestream condition, is defined by its surface pressure distribution \(P_d(\xi, \eta) \). Thus, when we talk about virtually shaping one configuration to behave like another, what we really mean to do is to places mass sources and sinks at suitable locations on the configuration such that the resulting pressure distribution \(P(\xi, \eta) \) is the same as the target pressure distribution.

To achieve this, we try to minimize a cost function of the form

\[I = \frac{1}{2} \int_{B_\xi} (P - P_d)^2 dB_\xi, \]

(3.20)
where P is the pressure at the surface with no controls, and P_d is the desired target pressure. Observe that this cost function is a special instance of the more generic cost function described in Equation (B.1). We can choose our computational co-ordinates such that $\psi_1 = \psi_3 = 0$, and the normal direction is along ψ_2. When the blowing velocities prescribed at the wall are very small, the Adjoint boundary condition (Equation (B.12)) reduces to

$$\frac{\partial M}{\partial P} = \psi^T \frac{\partial F_2}{\partial P}, \text{on } B_\xi.$$ \hfill (3.21)

For Virtual Aerodynamic Shaping, this is simply

$$(P - P_d) = \psi_2 S_{21} + \psi_3 S_{22} + \psi_4 S_{23}. \hfill (3.22)$$

The corresponding Adjoint gradient (following from Equation (B.14)) is then

$$\delta I = -\int_{B_\xi} \left(\psi_1 + \psi_2 u + \psi_3 v + \psi_4 w + \psi_5 \left(E + \frac{P}{\rho} \right) \right) \delta \rho q_n dB_\xi.$$ \hfill (3.23)

It can be seen from Equation (3.22) that the Adjoint boundary condition is dependent on the difference between the desired state of the system P_d and the current state of the system P. Moreover, Equation (3.23) clearly shows that the Adjoint Gradient depends only on the flow variables at the boundaries. Thus, it is clear that the Adjoint based control thus derived is Feedback based.

It should be noted however, that the Adjoint equation is solved using the computed state of the flow field and not the measured state. This bypasses the need for global measurements of the flow-field.

3.6 Results

3.6.1 2-d results

An RAE-82 airfoil was optimized for minimum drag at a Mach number of 0.77. The airfoil was constrained to operate at a C_L of 0.6. The pressure distribution of the optimized section was used as the target distribution for the flow control case, where blowing and suction is used to mimic the shape changes that lead to the desired pressure changes. The flow calculations were done on a 192×32 grid.

The original (solid) and optimized (dotted) airfoil are shown in Figure 3.7. The blowing
and suction velocities that produce the same pressure distribution are shown in Figures 3.8 and 3.9. As expected, the controller implements blowing on the lower surface and suction on the upper surface. This corresponds very well with the shape change being represented, where the curvature is increased on the lower surface and decreased on the upper surface.

The Pressure distributions before and after applying flow control are shown in Figures 3.10 and 3.11. It can be seen that the flow control algorithm derived for the virtual aerodynamic design case achieves the desired results.

3.6.2 Reduction in the number of actuators: Design Trade-off

The results included in the previous section were for the case where blowing and suction is implemented continuously along the surface of the airfoil. Implementing this is not practical. We therefore try to reduce the number of actuators.

We would prefer to automatically arrive at the optimum number of actuators needed, and their locations. We do this by looking at the Adjoint gradient. The Adjoint gradient represents the sensitivity of the cost function with respect to the control variables. The
Figure 3.8: RAE-82: Flow control velocities on the lower surface for Virtual Aerodynamic Shaping

Figure 3.9: RAE-82: Flow control velocities on the upper surface for Virtual Aerodynamic Shaping
Figure 3.10: Pressure distributions: target (solid) and actual (dotted) before flow control

Figure 3.11: Pressure distributions: target (solid) and actual (dotted) after flow control
numerical values of the gradient derived thus indicate which controller locations are most effective and which controller locations are least effective.

In order to frame this mathematically, we chose to include all locations where the control input required was at least 70 percent of that where the effort was maximum, and set the blowing/suction velocities at all other locations to zero.

\[\text{if } \rho q_n(\xi) \leq 0.7 \max \rho q_n \Rightarrow \rho q_n(\xi) = 0. \] \hspace{1cm} (3.24)

It can be seen from Figures 3.12 and 3.13 that, suction control is applied only between about 5 percent chord and 30 percent chord on the upper surface, and no control is applied otherwise. The magnitude of suction required is about the same as that in the continuous control case (3.9).

Design Trade-off: The results of this experiment can be seen in Figure 3.14. It can be seen that the desired pressure distribution is almost obtained. The match between the desired and actual pressure distributions are quite close especially at the leading edge where the control is applied. In general, we make a compromise when we move from infinite dimensional control to finite dimensional control. The trade-off between the level of control accuracy desired and the number/location/size of the controllers that can be implemented is a design choice. The current section merely presents the algorithm that one would use to study the ramifications of such a tradeoff.

3.6.3 3-d Results

Finally, we check to see if we can achieve similar results in 3 dimensions. The Surface Pressure distribution of an ONERA M6 wing, constrained to operate at a C_L of 0.3 and a Mach number of 0.84 is shown in Figure 3.15. We try to achieve the same surface pressure distribution at the same freestream conditions for another wing that has a NACA 0012 section. The flow calculations are performed on a $192 \times 32 \times 48$ grid. It can be seen from Figure 3.16 that, after 5 control iterations, the surface pressure distribution resembles that of the ONERA M6. The pressure distributions along the front portions of the wing are almost identical. The pressure distributions along the trailing edge exhibit a slight difference. The original pressure distribution on the NACA 0012 wing is shown in the dotted lines.
Figure 3.12: RAE-82: Flow control velocities on the lower surface for Virtual Aerodynamic Shaping – reduced number of actuators

Figure 3.13: RAE-82: Flow control velocities on the upper surface for Virtual Aerodynamic Shaping – reduced number of actuators
Figure 3.14: Pressure distributions: target (solid) and actual (dotted) after flow control - Reduced number of Actuators
Figure 3.15: Cp distribution over the surface of an Onera M6 wing at $M = 0.84$ and $C_L = 0.3$.
Figure 3.16: Virtual Aerodynamic Shaping of a NACA 0012 wing to match the surface pressure distribution of an Onera M6 wing at $M = 0.84$ and $C_L = 0.3$.
Chapter 4

Structural Optimization

Flutter is an instability that arises out of adverse transfer of energy from the fluid to the structure and vice versa in an aero-elastic system. While we ultimately seek an active control solution, that addresses this issue, it is instructive to look at passive means first.

Passive flutter control would involve redesigning the structural layout of the airplane wing so that the flutter regime is pushed beyond the envisioned flight regimes. While good designers have reasonable intuition as to how things could be redesigned to achieve this shift, it is helpful to have an algorithmic way of doing this redesign.

We have the mathematical model of a system undergoing flutter. Our first approach therefore should be to see if it is possible to redesign the structure to move the flutter point further beyond the flight regime. We do this, again, by defining a suitable cost function, and finding the optimum structural properties using a continuous descent methods and Adjoint sensitivities.

Objectives: In this chapter, we alter the aero-structural behavior of a problem that is much simpler than full wing aero-elastic flutter. Our main objective is to demonstrate the effect of changing the structural properties, in the aero-structural behavior of a system.

We study the supersonic flow past a nonlinearly deforming plate. This results in non-linear Limit Cycle Oscillations under certain freestream conditions. We try to increase the maximum amplitude of the oscillations by altering structural properties. This problem was solved as part of a project with the Wright Patterson Air Force Base at Dayton, Ohio. The ultimate aim of this study was to design wing sections of micro air vehicles with flapping wings. Increasing the amplitude of oscillation was identified as one means of extracting the
maximum possible nonlinear cyclical lift from the wings.

4.1 Optimal Control of Limit Cycle Oscillations in a Nonlinear Panel

One of the most frequently encountered phenomena in aero-structural interactions amongst aerospace systems is the occurrence of Limit Cycle Oscillations (LCOs). An LCO occurs when the system being described reaches a periodic steady state where there is a constant exchange of energy between the various degrees of freedom, in this case: the Aero and Structural components. LCOs represent the nonlinear nature of the system being observed. These might prove harmful if the amplitudes of oscillation are fairly high.

Some widely studied LCO problems in aero-elastic systems are that of an airfoil with a cubic nonlinear restoring force and a nonlinear panel interacting with supersonic flow. Beran et al. [8] have developed sophisticated computation algorithms for studying LCOs in general and have studied these problems in great detail.

The nonlinear nature of a system, however, is akin to a knife that cuts both ways. Ways have been studied where the nonlinear nature of a system can be exploited to our advantage. For instance, Blackburn et al. [13] show that combined translational and rotational motion can be used to propel a bluff body in quiescent fluid. It can be envisioned therefore that the nonlinear nature of aero-elastic systems can be harnessed so that the resulting behavior is beneficial to us. Such studies have a lot of potential in the design of Micro Air Vehicles (MAVs), whose operation is inspired by the flight of insects.

In this chapter, we try to alter the structural properties of a nonlinear panel that undergoes LCOs. Minimization of LCO amplitudes is a problem that is of relevance in the aerospace industry, viz. flutter suppression, etc. The enhancement of the amplitude of oscillation is a problem that is relevant to the design of MAVs and is studied herein. This is important because, at the conditions under which MAVs are operated, there are some very unique nonlinear phenomena that occur that can be exploited to our advantage.

4.2 Mathematical Model

The supersonic flow past a nonlinearly deforming panel is an interesting problem that has been studied in the past by Dowell et al. [17], and is especially relevant now in the context
of performance enhancement and control system design for MAVs, that expect to harness inherent nonlinear advantages of the aero-structural interactions. This also serves as a good multi disciplinary model on which our algorithms can be tested.

4.2.1 Structural Model

The nonlinear nature of the system arises because of the large scale deformations of the structure, which are modelled by von Karman’s large-deflection plate equations. [23] and [76].

The equations of motion for the structural displacement of the system are as follows:

\[
\frac{\partial^2 M_x}{\partial x^2} - F_x \frac{\partial^2 w}{\partial x^2} + \rho h \frac{\partial^2 w}{\partial t^2} = q - F_{AZ}, \tag{4.1}
\]

\[
\frac{\partial F_x}{\partial x} = 0, \tag{4.2}
\]

where

\[
F_x = \frac{Eh}{1-\nu^2} \left[\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right],
\]

\[
M_x = D \frac{\partial^2 w}{\partial x^2}, \tag{4.3}
\]

\[
D = \frac{Eh^3}{12(1-\nu^2)}.
\]

Here \(M_x\) and \(F_x\) are the moments and forces respectively in the \(x\) direction, \(E\) is the Young’s modulus, \(h\) is the thickness of the structure, \(\rho\) is the density and \(\nu\) is the Poisson’s ratio. \(F_{AZ}\) is the applied force in the \(z\) direction and \(q\) is the transverse applied load. \(q\) is zero in our case. \(u\) and \(w\) are the displacements in the \(x\) and \(z\) directions respectively.

4.2.2 Aerodynamic Model

The aero component comes from the forcing term \(F_{AZ}\) in (4.1). This is modeled using Piston theory [12] (page 363) as follows

\[
P - P_\infty = \frac{2q_\infty}{\sqrt{M_\infty^2 - 1}} \left[\frac{\partial w}{\partial x} + \left(\frac{M_\infty^2 - 2}{M_\infty^2 - 1} \right) \frac{1}{U_\infty} \frac{\partial w}{\partial t} \right]. \tag{4.4}
\]
Here P_∞ is the freestream pressure and P is the pressure on the upper surface of the panel undergoing oscillations. q_∞ is the freestream dynamic pressure and U_∞ is the freestream velocity.

The above partial differential equations are discretized on a grid and values of the displacement w_i and velocity s_i are collected in a state vector \mathbf{x}:

$$\mathbf{x} = [s_1, w_1, \ldots, s_N, w_N].$$ \hspace{1cm} (4.5)

Now, Equations (4.1), (4.3) and (4.4) are simplified and non-dimensionalized:

$$x \equiv x/L, \quad \tau \equiv tU_\infty/L, \quad w \equiv w/h,$$

$$\lambda = 2q_\infty L^3/D \sqrt{M_\infty^2 - 1},$$

$$\mu = \rho L/\rho_m h.$$ \hspace{1cm} (4.6)

Here λ is a parameter that represents the aero-structural coupling of the system.

$$\lambda = \frac{24 q_\infty L^3 (1 - \nu^2)}{E h^3 \sqrt{M_\infty^2 - 1}}.$$ \hspace{1cm} (4.7)

As can be seen from Equation (4.7), λ depends on the freestream dynamic pressure q_∞ and the material Young’s Modulus E and the plate thickness h. Changing any one of these directly influences the nonlinear oscillatory behavior of the system. Thus λ is chosen to be the control parameter for the aero-structural optimization.

In the case of the passive performance enhancement method, λ is assumed to take on an average value of $\bar{\lambda}$ throughout the length of the panel, with a perturbation λ'. The simplification involved assumes that the perturbation λ' is relatively small. Having made this assumption, and non-dimensionalizing, Equations (4.1), (4.3) and (4.4) can be written in the form of Equation (4.9) and the sensitivity analysis of Section 4.3 applies directly to the panel problem.
4.2.3 Computational Solution of the Nonlinear Equations

The nonlinear dynamical equations of an autonomous system can be written as

$$\frac{dx}{dt} = f(x, \lambda).$$ \hfill (4.8)

Here \(t \) is the time, \(x(t) \) is an \(N_f \) dimensional array of real variables, and \(f \) is an \(N_f \) array of nonlinear functions dependent on \(x \) and \(\lambda \), an \(N_d \) array of design parameters. Time is scaled by the LCO period, \(T \), so as to yield a set of evolutionary equations in terms of the scaled system time, \(s \).

$$\frac{dx}{ds} = T f(x, \lambda).$$ \hfill (4.9)

This equation set is then solved using the cyclic method due to Beran et. al. [8]. This is done by expressing the time derivative in (4.9) as a second order central difference of the state vector at that instant in time. \(M \) such time instances are chosen to form the collocated vector \(X \), which is a collection of the values of \(x \) at \(M \) different time instances.

$$X = (x_1, x_2, \ldots, x_M).$$ \hfill (4.10)

The LCO equations are then

$$G(X, T, \lambda) = 0.$$ \hfill (4.11)

4.3 Adjoint Based Structural Optimization

As discussed earlier, different control objectives are sought for different physical problems. The one potentially most relevant to the design of MAVs is that of LCO amplitude amplification, and will be studied here. A suitable cost function for the case of LCO amplification would then be

$$I = \left(\frac{1}{2} X^T Q X \right)^{-1} + \frac{1}{2} \lambda^T R \lambda',$$ \hfill (4.12)

where

$$\lambda' = \lambda - \bar{\lambda},$$ \hfill (4.13)

where \(\bar{\lambda} \) is an average value of the design parameter, and \(\lambda' \) is the deviation about the average. \(Q \) and \(R \) are suitable symmetric integration matrices. Minimizing the above cost function seeks to maximize the LCO amplitude. The first term in the expression for the cost
function, (4.12) ensures that the LCO amplitude is maximized over the entire time period, and the second term ensures that the values of the design variables don’t grow boundlessly.

Taking a variation of the cost function I described in (4.12), we get

$$\delta I = -\frac{X^T Q \delta X}{(X^T Q X)^2} + \lambda'^T R \delta \lambda'. \quad (4.14)$$

Variation of the constraint function described by (4.11) yields

$$\delta G = \frac{\partial G}{\partial X} \delta X + \frac{\partial G}{\partial T} \delta T + \frac{\partial G}{\partial \lambda'} \delta \lambda' = 0. \quad (4.15)$$

We now subtract $\Psi^T \delta G = 0$ from (4.14), where Ψ is an arbitrary co-state vector. This co-state vector spans all the LCO states at all instants of time. We then re-arrange to separate variations of solution variables from the variation of design variables as follows

$$\delta I = -\frac{X^T Q \delta X}{(X^T Q X)^2} - \Psi^T \frac{\partial G}{\partial X} \delta X - \Psi^T \frac{\partial G}{\partial T} \delta T + \left(\lambda'^T R - \Psi^T \frac{\partial G}{\partial \lambda'}\right) \delta \lambda'. \quad (4.16)$$

The co-state vector Ψ is then chosen to eliminate the first three terms in the RHS of (4.16) by satisfying

$$-\frac{X^T Q \delta X}{(X^T Q X)^2} - \Psi^T \frac{\partial G}{\partial X} \delta X - \Psi^T \frac{\partial G}{\partial T} \delta T = 0. \quad (4.17)$$

Equation (4.17) is called the Adjoint equation. With this selection δI is expressed only in terms of variations in the design variables as follows

$$\delta I = \left(\lambda'^T R - \Psi^T \frac{\partial G}{\partial \lambda'}\right) \delta \lambda', \quad (4.18)$$

leading to the identification of the gradient g in the optimization problem:

$$g^T = \left(\lambda'^T R - \Psi^T \frac{\partial G}{\partial \lambda'}\right), \quad (4.19)$$

$$\delta I = g^T \delta \lambda'. \quad (4.20)$$

It should be noted that this is the first time that an Adjoint based sensitivity analysis procedure has been developed for a model of an LCO.
4.4 Results

The equations described in the previous section were set up computationally and solved using a steepest descent method. The mean value of $\bar{\lambda}$ as specified in Equation (4.13) is set to 4288.75. λ' is initially set to zero, and an optimum design value of λ' is sought. First of all, a comparison was made between the gradients calculated using the Adjoint method and the gradients calculated using the Finite Difference method. The results are presented in Figure 4.1. As can be observed from the figure, the two curves are almost identical. The difference in the numerical values of these gradients is shown in Figure 4.2.

The infinity norm of the gradient is plotted in Figure 4.3. As can be seen the changes in the gradient become smaller and smaller with increasing iteration numbers.

The constant property panel ($\lambda' = 0$) and the optimized panel are allowed to undergo LCO and their maximum deflection curves are compared in Figure 4.4. We wanted the amplitude of the oscillations to increase and it can be seen that this is exactly what happens.

Finally, the values of the perturbations in λ are plotted in Figure 4.5. It can be seen that these perturbations are fairly large. Another important observation that can be made is the fact that the optimizer, in order to passively enhance the oscillation amplitudes, increases the flexibility at the $3/4$ th point which is where the amplitude of oscillation is maximum.
Figure 4.2: Difference between the *Adjoint* and Finite Difference gradients

Figure 4.3: Gradient Convergence
Figure 4.4: Comparison of maximum deflection curves of the base and enhanced panels

Figure 4.5: Values of λ' vs. x on the optimized Panel
Chapter 5

An Algorithmic Approach to Flutter Control

The structural design of an airplane is guided by static and dynamic factors. The more stringent constraints on the structural design are due to dynamic loads, caused by aero-elastic interactions. One of the most commonly encountered problems in aeroelasticity is flutter [12], a term that is used to recognize the transfer of energy from unsteady aerodynamics associated with the surrounding fluid to the wing structure, resulting in rapidly divergent behavior. If flutter can be controlled at cruise speeds, we can design lighter wings and consequently more efficient airplanes. It is therefore, in the aircraft designers best interest to design innovative ways in which flutter can be controlled without making the resulting structure too heavy.

There are three important choices to make while designing active control strategies for suppressing flutter. The first is the choice of actuator. In this thesis, the actuators we use are jets in the walls through which there is a small mass flow, either by way of blowing or suction. The second is to define a clear control objective. Finally, we need to design a control law that will make suitable state measurements and drive the actuators so that the desired control objective is achieved.

Objectives: In this chapter, we derive a control law for controlling flutter, based on the theory of optimal control. We describe the underlying control theory, and then show how to apply the control law thus derived to control flutter. We also discuss aspects of model order reduction and state linearization using Adjoint sensitivities. We demonstrate control of a
2-d model, and then show how this technique can be extended to a complete aero-elastic wing configuration.

5.1 Optimal Control of Nonlinear Dynamical Systems

One of the most commonly encountered problem in Control Theory is that of finding the optimum path taken by a system to reach a given state [15]. Consider a nonlinear dynamical system represented by the following set of ordinary differential equations:

$$\dot{x} = f(x(t), u(t)). \tag{5.1}$$

The evolution of the system depends on its state at any given point of time: $x(t)$, an n-vector, and a user chosen control function: $u(t)$, an m-vector. The optimal control problem is then one of choosing $u(t)$ such that a cost function of the form

$$J = \int_0^T L(x(t), u(t)) \, dt + M(x(T)) \tag{5.2}$$

is minimized. The cost function can be seen to be dependent on the integral of a function of the state x and the control u. This is because we eventually want the state to reach the desired control target. Also we want to do this expending as little control effort as possible. In some cases, the control input might take only a few specific forms (e. g. Bang-Bang control). These are cases in which the form of the control input might need to be constrained to follow certain trajectories. This is reflected in the cost function chosen above. Taking the first variation of (5.1), we get

$$\frac{d}{dt} \delta x = f_x \delta x + f_u \delta u. \tag{5.3}$$

Similarly, taking the first variation of the cost function gives

$$\delta J = \int_0^T (L_x \delta x + L_u \delta u) \, dt + M_x^T \delta x(T) \tag{5.4}$$

Multiplying (5.3) by a Lagrange Multiplier Ψ, and adjoining it to (5.4) gives

$$\delta J = \int_0^T (L_x \delta x + L_u \delta u) \, dt + M_x^T \delta x(T) - \int_0^T \Psi^T (\delta \dot{x} - f_x \delta x + f_u \delta u) \, dt. \tag{5.5}$$
Integrating this by parts and collecting terms gives

$$
\delta J = \int_0^T \left(L_x + \Psi^T f_x + \dot{\Psi}^T \right) \delta x \, dt + \left(M^T_x - \Psi^T (T) \right) \delta x(T) + \int_0^T \left(L_u + \Psi^T f_u \right) \delta u \, dt. \quad (5.6)
$$

It can be seen that the variation of the cost function depends on the variation in the state, δx. This dependance can be eliminated by choosing the Lagrange multipliers Ψ, such that they satisfy the following *Adjoint* Equation:

$$
\dot{\Psi} + f_x^T \Psi + L_x^T = 0, \quad (5.7)
$$

with the following boundary condition

$$
\Psi(T) = M_x. \quad (5.8)
$$

This results in the following expression for δJ,

$$
\delta J = \int_0^T g^T \delta u \, dt, \quad (5.9)
$$

where

$$
g^T = L_u + \Psi^T f_u. \quad (5.10)
$$

5.2 Optimal Control of Linear Dynamical Systems: LQR Control

In the previous section, we designed an *Adjoint* based control algorithm for a nonlinear system. It has to be noted that this is extremely difficult to solve computationally. This is best seen from Equations (5.7) and (5.8). Given that the boundary condition is terminal, the above *Adjoint* equation can only be integrated in reverse time. If f_x, L_x and M_x are functions of x, the solution to this equation set is extremely unwieldy, given that the state x can be obtained only through a forward integration. Moreover, every time the control information is included in the solution of the state trajectories, the state trajectory changes necessitating re-computation of the *Adjoint* equation, and so on till the state-*Adjoint* equation system converges. If the dimensionality of x and u is large, as it is for the case of the flutter control problem, this becomes intractable. Therefore, we resort to a
linearization of the system. Consider the following Linear Dynamical System
\[
\dot{x} = Ax + Bu,
\] (5.11)
The control \(u \) is chosen so that the following cost function
\[
J = \frac{1}{2} \int_0^T (x^T Q x + u^T R u) \, dt
\] (5.12)
is minimized. Here \(Q \) is chosen to be positive semi-definite, and \(R \) is chosen to be positive definite. Theoretically, any system is controllable provided an infinite amount of control is applied. This is not possible in practical systems, of course. A suitably chosen \(R \) will help circumvent this problem by imposing a cost on the control effort required. The relative magnitudes of the eigenvalues of \(Q \) and \(R \) determine the relative importance of control accuracy required versus control effort possible.

Based on the above system description, we note that
\[
f_x = A, \quad f_u = B, \quad L_x = x^T Q, \quad L_u = u^T R.
\] (5.13)
The Adjoint equation is then given by
\[
\dot{\Psi} + A^T \Psi + Q x = 0, \quad \Psi(T) = 0.
\] (5.14)
The optimality condition is
\[
g = R u + B^T \Psi = 0.
\] (5.15)
This gives
\[
u = -R^{-1} B^T \Psi.
\] (5.16)
For a linear system,
\[
\Psi = P x.
\] (5.17)
Substituting (5.17) in (5.14), we get
\[
P \dot{x} + \dot{P} x + A^T P x + Q x = 0,
\] (5.18)
or
\[PAx + PBu + \dot{P}x + A^TPx + Qx = 0. \]
(5.19)

Substituting for \(u \),
\[PAx - PBR^{-1}B^TPx + \dot{P}x + A^TPx + Qx = 0. \]
(5.20)

This gives the Riccati equation:
\[PA - PBR^{-1}B^TP + \dot{P} + A^TP + Q = 0. \]
(5.21)

For all times \(t \) not close to the horizon \(T \) of the problem of interest the above differential equation reduces to the algebraic Riccati equation:
\[A^TP_{ss} + P_{ss}A - P_{ss}BR^{-1}B^TP_{ss} + Q = 0. \]
(5.22)

This equation can be solved to find the steady state value \(P_{ss} \). The optimal control \(u(t) \) can be represented as a feedback control
\[u(t) = K_{ss}x(t), \]
(5.23)

where
\[K_{ss} = -R^{-1}B^TP_{ss}. \]
(5.24)

Thus, any linear dynamical system of the form \(\dot{x} = Ax + Bu \) can be controlled by a control law of the form given in Equation (5.23) over an infinite time horizon.

5.3 2-d Flutter Control

5.3.1 Typical Wing Section: Mathematical Model

In the present section we will investigate the aeroelastic behavior and control of a 2-d airfoil whose schematics is shown in Figure 5.1. A 2-d airfoil model can be shown to be a fair representation for flutter prediction as shown by Theodorson and Garrik [77] of a straight wing of a large span by giving it the geometric and inertial properties of the cross-section three quarters of the way from the centerline to the wing tip. The equations of motion of
this simple system can be shown to be as follows.

\[m \ddot{h} + S_{h} \ddot{\alpha} + K_{h} h = -L \] \hspace{1cm} (5.25)
\[S_{h} \ddot{h} + I_{\alpha} \ddot{\alpha} + K_{\alpha} \alpha = M_{ea} \] \hspace{1cm} (5.26)

\(K_{h} \) and \(K_{\alpha} \) are representative of the bending and torsional stiffness of the wing about its elastic axis.

The elastic axis is the locus of points about which, if a force is applied, doesn’t result in any rotation about that point. \(m \) and \(I_{\alpha} \) are the mass and moment of inertia of the wing section about the elastic axis. \(S_{\alpha} \) is the coupling term which depends on the relative position of the center of gravity and the elastic axis.

We assume that the structural properties are fixed and we have some amount of control of the right hand sides of Equations (5.25) and (5.26) via blowing and suction. The objective is to find a suitable control law which will modify the aerodynamic terms so as to prevent flutter.

5.3.2 Computational simulation

The flow is simulated by solving the unsteady \textit{Euler} equations. The \textit{Euler} equations are solved using a dual time stepping method, using a third order backward difference formula in time, and a symmetric Gauss Seidel scheme for solving the inner iterations. The above mentioned flow simulation code is integrated with a two degree of freedom structural model given by Equations (5.25) and (5.26). The coupled aero-structural system is integrated.
using the Newmark scheme. The simulation techniques are discussed in detail in Chapter 2 and Appendix B.

5.3.3 System Linearization and Model Order Reduction

In Equations (5.25) and (5.26), the structural parameters are constant. The lift \(L \) and the moment \(M \) are complex nonlinear functions of the system state \(w, \alpha, \dot{\alpha}, h \) and \(\dot{h} \). Moreover, \(\alpha, \dot{\alpha}, h \) and \(\dot{h} \) are itself functions of the system state \(w \). Here the state \(w \) is the vector consisting of all the Euler states at all finite volumes used in the simulation. Thus

\[
L = L(w, u), \tag{5.27}
\]
\[
M = M(w, u). \tag{5.28}
\]

Linearizing about the nominal operating point, we get

\[
L = \frac{\partial L^T}{\partial w} \delta w + \frac{\partial L^T}{\partial u} \delta u, \tag{5.29}
\]
\[
M = \frac{\partial M^T}{\partial w} \delta w + \frac{\partial M^T}{\partial u} \delta u. \tag{5.30}
\]

It should be noted that for a simulation with one million finite volumes, the dimension of \(w \) is four million for a 2-d simulation and five million for a 3-d simulation. Thus evaluating the above derivatives is a formidable computational challenge. It is also important to recognize that not all the derivatives are significant in the above representation. Consider, for example, a cell in the far-field. The value of the state variables there is not going to change by much, however rapid the oscillations. Therefore, it is of very little use evaluating these derivatives in our linearized model.

Instead, we choose to obtain a suitable reduced order model that captures the essential physics. The most obvious reduction that we can obtain is in terms of \(\alpha, \dot{\alpha}, h \) and \(\dot{h} \). We therefore work with a model of the form:

\[
L = L_\alpha \alpha + L_\dot{\alpha} \dot{\alpha} + L_h h + L_{\dot{h}} \dot{h} + \frac{\partial L^T}{\partial u} u, \tag{5.31}
\]
\[
M = M_\alpha \alpha + M_\dot{\alpha} \dot{\alpha} + M_h h + M_{\dot{h}} \dot{h} + \frac{\partial M^T}{\partial u} u. \tag{5.32}
\]

Equations (5.31) and (5.32) assume that the nominal values of \(\alpha, \dot{\alpha}, h \) and \(\dot{h} \) and \(u \) are
zero, respectively. Thus for the flutter control problem being studied, the following state vector is used:

\[
x = [\alpha \ \dot{\alpha} \ h \ \dot{h}]^T \tag{5.33}
\]

5.3.4 System Identification: Evaluation of Sensitivities

In our aero-structural model (5.25) and (5.26), the lift \(L\) and the moment \(M\) depend on the complete system state \(w\). However, using a full order state model to design a controller is not feasible, given the extremely high dimensionality of the system. We therefore, formulate a reduced order model of the system as shown in Equations (5.31) and (5.32). In order for this model to be complete, we need to evaluate the sensitivities with respect to the reduced order state \(x\) and the control variables \(u\).

Sensitivities with respect to the state variables

The sensitivities of the lift and moment with respect to the state variables are evaluated in two different ways.

Theodorsen theory: First, we use theoretical results from Theodorsen [12]. Theodorsen theory assumes that the airfoil under consideration is thin, and is oscillating in an incompressible flow. Under these considerations

\[
L_\alpha = \pi \rho v_\infty^2 c, \quad L_\dot{\alpha} = \pi \rho v_\infty c^2, \\
L_h = 0, \quad L_\dot{h} = \pi \rho v_\infty c, \\
M_\alpha = \frac{\pi \rho v_\infty^2 c^2}{4}, \quad M_\dot{\alpha} = 0, \\
M_h = 0, \quad M_\dot{h} = \frac{\pi \rho v_\infty c^2}{4},
\]

Here \(\rho\) is the freestream density, \(v_\infty\) is the freestream velocity and \(c\) is the chord of the airfoil.

Least-Squares Method: In the second method, we evaluate the sensitivities, by studying the unforced response of a pitching airfoil, and then estimating the sensitivities by a least-squares technique. The aero-structural response of the system over a period of time is similar to the unforced response reproduced in Figures 5.4, 5.5, 5.6 and 5.7. These simulations
provide numerical values for

\[
\alpha = f_1(t) \\
\dot{\alpha} = f'_1(t) \\
h = f_2(t) \\
\dot{h} = f'_2(t) \\
L = f_3(t) \\
M = f_4(t)
\]

We now try to fit the data thus obtained to functions of the form

\[
L = L_\alpha \alpha + L_\dot{\alpha} \dot{\alpha} + L_h h + L_{\dot{h}} \dot{h}, \\
M = M_\alpha \alpha + M_\dot{\alpha} \dot{\alpha} + M_h h + M_{\dot{h}} \dot{h}.
\]

Our goal is to evaluate the sensitivities \(L_\alpha, L_\dot{\alpha}, L_h, L_{\dot{h}}, M_\alpha, M_\dot{\alpha}, M_h \) and \(M_{\dot{h}} \). We do this using a least-squares technique.

It can be seen from the simulation results that both techniques work quite well. The system identification by the least-squares technique, works slightly better, in the sense, it achieves faster stabilization. This can be attributed to the fact that this represents the nonlinear system more closely.

Sensitivities with respect to the control variables

We also need to evaluate the sensitivities of \(L \) and \(M \) with respect to the blowing and suction velocities \(u, \frac{\partial L}{\partial u} \) and \(\frac{\partial M}{\partial u} \) respectively.

We do this are using an *Adjoint* method as outlined in Chapter 3.

5.3.5 Flutter Control: Formulation of the Objective Function

We can define the flutter velocity as that point where we have sustained oscillations of the system. Let us define the state vector \(\mathbf{x} \) as follows

\[
\mathbf{x} = [\alpha \quad \dot{\alpha} \quad h \quad \dot{h}]^T
\]

(5.34)
The control vector \(\mathbf{u} \) is the vector of blowing/suction velocities at the wall. The dynamics of the system is represented by (5.25) and (5.26). For the purposes of designing a controller, we model the lift \(L \) and the moment \(M \) using a reduced order model as presented in Equations (5.31) and (5.32). The system model used to design a controller is then

\[
\begin{align*}
\ddot{m}h + S_{a\alpha} + K_{h}h &= - \left(L_{a\alpha} + L_{\dot{a}\alpha} + L_{h\alpha}h + L_{h\dot{h}}h + \frac{\partial L^T}{\partial \mathbf{u}} \mathbf{u} \right) \\
S_{a\alpha} + I_{a\alpha} + K_{\alpha}\alpha &= \left(M_{a\alpha} + M_{\dot{a}\alpha} + M_{h\alpha}h + M_{h\dot{h}}h + \frac{\partial M^T}{\partial \mathbf{u}} \mathbf{u} \right).
\end{align*}
\]

This can be re-phrased in state space form as follows:

\[
M\dot{x} = \hat{A}x + \hat{B}u. \tag{5.35}
\]

Here the matrix \(\hat{B} \) represents the sensitivities of the state vectors with respect to the control variables. This can be obtained by solving the Adjoint equations. Inverting \(M \), we get a system of the form

\[
\dot{x} = Ax + Bu. \tag{5.36}
\]

It is possible to design a controller for the system (5.36) using LQR techniques as discussed in Section 5.2. The objective of the problem is to control the system given by (5.36), so that the final value of the state vector is given by

\[
x_f = [\alpha_f \ 0 \ h_f \ 0]^T. \tag{5.37}
\]

If this is rephrased as an optimization problem, the objective would be to minimize the following function:

\[
J = \frac{1}{2} \int_0^T \left((x - x_f)^T Q (x - x_f) + u^T R u \right) \, dt \tag{5.38}
\]

where \(Q \) is a positive semi-definite weighting matrix and \(R \) is a positive definite matrix. In our case,

\[
Q = I, \quad R = \varepsilon I,
\]
where I is the identity matrix, and ε is a small positive constant. R is required to be positive definite, to ensure that the control computed is not of unreasonable magnitudes.

5.3.6 Backsubstitution of the Control Law into the Nonlinear System

A *Feedback* control gain matrix of the form 5.24 is then derived for the flutter control problem. Now, the aero-structural system is simulated with blowing and suction control applied at the actuator locations. The magnitude of control required at each actuator location is given by the control gain matrix K_{ss}

$$u = K_{ss}x. \quad (5.39)$$

It can be seen that this control law was successful in stabilizing the system. The results are presented in the next section.

5.3.7 Results

The following experiments were conducted on a symmetric NACA 0012 airfoil at a freestream Mach number of 0.3. A 160×32 grid was used for the CFD simulation.

The structural properties were chosen as follows: $I_{\alpha} = 60$, $M = 60$, $K_{h} = 60$, $K_{\alpha} = 60$, and $S_{\alpha} = 30$. Our nominal rest point is $\alpha = 0^\circ$ and $h = 0$.

Adjoint Gradients

As discussed in the last section, the *Adjoint* method is used to find the gradients of lift and moment with respect to the control variables, namely the blowing and suction velocities on the surface. It should be noted that this is done using a steady flow assumption about the nominal rest point of the system. We used a symmetric NACA 0012 section. So for our case, this nominal rest point was at $\alpha = 0$, and $h = 0$. These gradients are shown in Figures 5.2 and 5.3.

Application of Feedback Control to the Nonlinear Flutter Problem

The uncontrolled and controlled aero-structural simulations are represented in Figures 5.4, 5.5, 5.6, and 5.7. It should be noted that even though the *feedback* law is derived from a linearized model of the system, the control is applied to a complete nonlinear model.
Figure 5.2: Gradient of lift with respect to control mass fluxes

Figure 5.3: Gradient of moment with respect to control mass fluxes
Two different methods are used to find the aerodynamic derivatives. It can be seen that the least-squares method does a better job than the Theodorsen method for flutter control. This is obvious because this represents the nonlinear system more accurately. The corresponding blowing/suction velocities are shown in Figure 5.8. It should be noted that the freestream value of ρq_n in our simulation was 1. So the values of blowing and suction controls required is quite small. Moreover, we need zero control input at the equilibrium point, which is what we desire.

Time step refinement studies

To ensure that the flutter control simulations are correct, the time step for the nonlinear aero-structural solver is made smaller and smaller and the controlled behaviour is observed. It can be seen that the pattern of variation of the angle of attack with time is fairly well predicted by the solver. (See Figure 5.9).
Figure 5.5: Variation of C_m with time: controlled and uncontrolled cases

Figure 5.6: Variation of plunge h/c with time: controlled and uncontrolled cases
Figure 5.7: Variation of C_l with time: controlled and uncontrolled cases

Figure 5.8: Blowing/Suction mass fluxes at the Leading Edge
CHAPTER 5. AN ALGORITHMIC APPROACH TO FLUTTER CONTROL

5.4 Reduction in the number of Actuators

Our next step is to specialize the control law thus derived to work when the number of actuators is finite. It was found that flutter could be controlled with as few as four actuators: one each in the leading and trailing edges and one each in the middle of the upper and lower surfaces. The fact that there are only four actuation points is represented by zeroing out the gradient shown in Figures 5.2 and 5.2 everywhere except at these four locations. (Every location is represented by a small cluster of CFD cells to prevent numerical instability and damping of the actuation values.)

The entire procedure outlined in the previous section is then repeated to derive the feedback gain matrix K_{ss}. It can be seen from Figures 5.10, 5.11, 5.12 and 5.13 that the matrix has non-zero values only at the desired locations of the controllers. Consequently, actuation is performed only at these sites. This is equivalent to controlling the problem with a finite number of actuators.

It can be seen from Figure 5.14 that flutter is controlled successfully even with a finite number of actuators. This is an important result, as it implies that this system can be implemented on a practical aerodynamic configuration.
Figure 5.10: Coefficient of rotation angle vs. actuator number in the feedback gain matrix

Figure 5.11: Coefficient of plunge vs. actuator number in the feedback gain matrix
CHAPTER 5. AN ALGORITHMIC APPROACH TO FLUTTER CONTROL

Figure 5.12: Coefficient of rotation angle rate vs. actuator number in the feedback gain matrix

Figure 5.13: Coefficient of plunge velocity vs. actuator number in the feedback gain matrix
5.5 3-d Results

We then try to control the flutter of a realistic airplane wing. The wing is unswept and the cross-section is that of a 6 percent thick airfoil obtained by scaling down a NACA 0012 airfoil. The semi-span of the wing is 11.5 inches, and the chord is 4.56 inches. This corresponds to an aspect ratio of about 5.

Structurally, the wing is modeled as a plate of thickness 0.065 inches that is placed along the centerline of the wing-section. The density of the material of the wing is 0.003468 slug/sq. inch. The Young’s modulus is 9.848×10^6 slug/sq. inch and the torsional rigidity is 3.639×10^6 slug/sq. inch.

The wing was operated under a freestream Mach number of 0.79 and a freestream dynamic pressure of 5241 Pascal.

The aero-structural integration was performed as discussed in Chapter 2. The structure is modeled using 50 plate elements. The aerodynamic simulation is done on a $96 \times 32 \times 48$ grid. It can be seen from Figure 5.15 that the uncontrolled system diverges fairly rapidly. In the time frame considered, the plunge diverges from a negligible amount to 10 percent
Our task, now, is to design a controller using the techniques described in the previous sections. It has been shown that the flutter of a wing can be studied by studying the dynamics of a section three quarters of the distance from the wing center-line to the tip. We identify the structural properties of the section located at this point, and model it using the typical section wing model, discussed previously. Following the techniques in the previous section, we quickly derive the feedback gain matrix K_{ss} for this section.

We make the assumption that this matrix is valid throughout the wing. This is a valid assumption, as the control is implemented in a feedback fashion. The tip is expected to go through the maximum deflection, and therefore will be subject to the maximum amount of control. (Since the control is proportional in nature). The root does not move at all, and thus there is no control applied at the root. The results of this simulation are shown in Figure 5.15. It can be seen that the control law thus derived is successful in controlling flutter. The mass fluxes at an actuator location at the tip, along the trailing edge are shown in Figure 5.16. Again, it can be seen that the mass fluxes required for control, when compared to the freestream mass flux of $\rho q_n = 1$ are very small.

![Figure 5.15: Variation of plunge h/c with time: controlled and uncontrolled cases](image)

Figure 5.15: Variation of plunge h/c with time: controlled and uncontrolled cases
Figures 5.17 and 5.18 show results from the complete 3-d simulation at identical times for the uncontrolled and controlled cases respectively. It can be seen, especially from the last pictures in both sequences that the deflections in the controlled case are smaller than those in the uncontrolled case. In fact, in the controlled case the wing settles into a limit cycle oscillation of small magnitude as can be seen from Figure 5.15. This is in spite of the fact that an approximate structural model was used in the calculation of the control law.
Figure 5.17: Uncontrolled simulation (Plunge variation at the tip shown in Figure 5.15)
Figure 5.18: Controlled simulation (Plunge variation at the tip shown in Figure 5.15)
Chapter 6

Conclusions and Future Work

The primary objective of this thesis was to develop a computational framework for designing control laws for flow control problems. A strong emphasis was placed on deriving a generic control law. This affords extensions to multiple specific cases with very little effort.

The control law thus derived was specialized for the case of Virtual Aerodynamic Shaping. Here the surface controls on the surface of an airfoil/wing were adjusted so that the surface pressure distribution resembled that of another airfoil/wing. In doing so, we obtained the following result for the Adjoint gradient

$$\delta I = -\int_{B_\xi} \left(\psi_1 + \psi_2 u + \psi_3 v + \psi_4 w + \psi_5 \left(E + \frac{P}{\rho} \right) \right) \delta \rho q_n dB_\xi. \quad (6.1)$$

The Adjoint boundary condition is given by

$$(P - P_d) = \psi_2 S_{21} + \psi_3 S_{22} + \psi_4 S_{23}. \quad (6.2)$$

Here P is the current surface pressure, and P_d is the desired (target) surface pressure. The variables ψ represent the Adjoint co-state variables. As can be seen from Equation 6.2, the Adjoint boundary condition is directly proportional to the difference between the current and the desired pressures, and becomes zero when the pressures become identical. This implies that the control law thus derived is feedback in nature.

Having established the framework for developing control laws, we try to develop techniques for flutter control. Flutter is inherently an aero-structural instability. This can be controlled by structural and aerodynamic damping.
We first demonstrated the fact that the aero-structural behavior of a system can be affected passively by structural optimization. We studied the case of enhancement of LCOs in a panel flutter problem. This is because of its immediate relevance to the design of micro air vehicles with flapping wings. However, the techniques developed are equally valid for LCO amplitude reduction.

Finally, we developed a feedback algorithm for the control of flutter. We demonstrated the effectiveness of this control law in 2-d and 3-d simulations. We also explored possibilities for the reduction in the number of actuators.

All the simulations in this thesis were done using an inviscid model. The next obvious step is to implement the control laws derived in this thesis in a fully viscous simulation. This will allow us to test the validity of our current simulations. It will also allow us to study the class of control problems where viscosity plays an important role: separation, transition, buffeting, etc.

Finally, in order for a feedback control system to be practical, it should be capable of generating control input in real time. To do this, it becomes necessary to work with reduced order models. The main problem here is that almost all reduced order models don’t model the actuator dynamics sufficiently well. If this problem can be solved, online control based on a reduced order model will be a realistic possibility.
Part I

Appendix
Appendix A

Computational Algorithms

Most of the flow situations discussed in this thesis can be adequately represented by an inviscid flow model. The Euler equations (2.1), derived in the previous section are reproduced below for reference

$$\frac{\partial w}{\partial t} + \frac{\partial f_j}{\partial x_j} = 0.$$

(A.1)

These are highly unsteady, nonlinear equations, and in most cases a closed form solution cannot be obtained. It, therefore, becomes necessary to resort to a computational simulation to study the features and the dynamics of the flow. Depending on the flow conditions, we might expect the presence of shocks and other such contact discontinuities.

A.1 Numerical Solution of Partial Differential Equations

The numerical integration of flows with singularities is tricky and special algorithms have to be used. Another important factor that needs to be considered in the large scale simulations of unsteady flows is speed of solution. Special techniques are used for solution convergence acceleration. The different stages involved in a numerical solution of the unsteady Euler equations are shown in Figure A.1. These algorithms are discussed in this Appendix Section.

A.1.1 Convergence

Theorem (Lax): If a numerical scheme is consistent and stable, then it is convergent.

This was proved by Lax in [45]. Consistency refers to the fact that the leading order
APPENDIX A. COMPUTATIONAL ALGORITHMS

Mathematical Model:
The Euler Equations

Spatial Discretization:
Finite Volumes

Time Accurate Integration:
3rd Order BDF

Pseudo Time Integration:
RK 5 schemes

Spatial Integration:
Upwind Schemes with Artificial Dissipation

Convergence Acceleration:
Multigrid Techniques, Variable Local Time Stepping, Enthalpy Damping, Implicit Residual Smoothing

Modified Steady State Problem:
Dual Time Stepping

Figure A.1: Numerical Simulation of the Euler Equations
terms of a Taylor Series discretization of the difference scheme reduce to the differential equation whose solution is required. Stability of the scheme refers to the property that any identifiable error term in the difference equation does not grow without bounds. For more detail, the reader is referred to the textbook by Isaacson and Keller [29].

The solution of transonic flow past airplanes has been the main driver for the development of algorithms for CFD over the last twenty years. This is because of the presence of discontinuities in the solutions (like shocks). Unless adequate care is taken in formulating a numerical scheme, the numerical solution develops oscillations that could lead to instability. Numerical schemes developed for the solution of transonic flow depend on Total Variation Diminishing (TVD) or the Local Extremum Diminishing (LED) principles. Algorithms based on variants of these principles were developed by Godunov [27], Harten [28], Van Leer [46], Osher and Chakravarthy [58] and Roe [70]. In this thesis, we use the JST and CUSP schemes developed by Jameson [34, 35].

A.2.1 Stability of a Numerical Scheme: The LED principle

Consider a one dimensional conservation law of the form

\[
\frac{\partial v}{\partial t} + \frac{\partial}{\partial x} f(v) = 0.
\]

(A.2)

This could be written in semi-discrete form as

\[
\frac{\partial v_j}{\partial t} = \sum_k c_{jk} v_k,
\]

(A.3)

where \(v_k\) are the points around \(v_j\) which contribute to the difference scheme. \(v_k\) can be expanded in a Taylor Series about \(v_j\). If this is done for all \(v_j\), then on comparison with Equation (A.3), it can be seen that

\[
\sum_k c_{jk} = 0.
\]

(A.4)
It should be noted that this is true only if there is no source term. Now, without loss of
generality, Equation (A.3) can be rewritten as
\[
\frac{\partial v_j}{\partial t} = \sum_k c_{jk} (v_k - v_j).
\] (A.5)

Equation (A.5) presents a very important result. If the coefficients \(c_{jk} \) were non-negative,
then it can be seen that if \(v_j \) is a minimum, then it always remains a minimum, and if \(v_j \) is a maximum then it always remains a maximum. Moreover, if \(c_{jk} = 0 \) if \(j \) and \(k \) are
not nearest neighbors, then a local minimum can never increase and a local maximum can
never decrease. This property is known as the \textit{Local Extremum Diminishing} property, and
any scheme satisfying the LED property will be bounded and stable.

\subsection*{A.2.2 Finite Volume Discretization of the Governing Equations}

We use a cell-averaged finite volume scheme for all the solutions in this thesis. The domain
of interest is divided into a large number of finite-volumes. The \textit{Euler} equations can be
integrated over any one of these finite volumes as follows
\[
\frac{\partial}{\partial t} \int \omega \, dV + \int \nabla \cdot \mathbf{f} \, dV = 0.
\] (A.6)

Using the \textit{Gauss Divergence Theorem}, the above equation can be rewritten as
\[
\frac{\partial \omega V}{\partial t} + \int \mathbf{f} \cdot \mathbf{n} \, dS = 0,
\] (A.7)

where \(\omega \) now represents the cell-average value. If the cells are polyhedral in shape, (A.7)
can be approximated by
\[
\frac{\partial \omega V}{\partial t} + \sum_{i=1}^{n} f_i S_i = 0,
\] (A.8)

where \(S_i \) is the area and \(f_i \) is the average flux through the the \(i^{th} \) face. The areas \(S_i \) and
volumes \(V \) are functions of the spatial discretization chosen. It is common to use both
structured and unstructured grids for CFD purposes. All calculations in this thesis were
performed on structured grids. The state vector \(\omega \) is a cell average value, and consequently
is assumed constant within the cell. The fluxes at the surface should be evaluated with
adequate care to prevent undesirable oscillations, which might lead to instability. This will
be discussed in Section A.2.3.
A.2.3 Upwind Schemes with Artificial Dissipation

Consider a finite volume discretization of Equation (A.2), written in the j\(^{th}\) cell:

\[\Delta x \frac{\partial v}{\partial t} \bigg|_{j} + h_{j+\frac{1}{2}} - h_{j-\frac{1}{2}} = 0. \]

(A.9)

Here \(h_{j+\frac{1}{2}} \) is the flux between cells \(j \) and \(j + 1 \). A simple estimate for the flux \(h_{j+\frac{1}{2}} \) is

\[h_{j+\frac{1}{2}} = \frac{1}{2} (f_j + f_{j+1}) - \alpha_{j+\frac{1}{2}} (v_{j+1} - v_j) \]

(A.10)

The second term is a dissipative term, which stabilizes the numerical scheme. We rewrite equation (A.10) as

\[h_{j+\frac{1}{2}} = f_j + \frac{1}{2} (f_{j+1} - f_j) - \alpha_{j+\frac{1}{2}} (v_{j+1} - v_j) \]

(A.11)

\[= f_j + \left(\frac{1}{2} a_{j+\frac{1}{2}} - \alpha_{j+\frac{1}{2}} \right) (v_{j+1} - v_j) \],

where \(a_{j+\frac{1}{2}} \) is a numerical estimate of the wave speed. Similarly,

\[h_{j-\frac{1}{2}} = f_j + \left(\frac{1}{2} a_{j-\frac{1}{2}} + \alpha_{j-\frac{1}{2}} \right) (v_{j-1} - v_j) \],

(A.12)

Now,

\[h_{j+\frac{1}{2}} - h_{j-\frac{1}{2}} = \left(\frac{1}{2} a_{j+\frac{1}{2}} - \alpha_{j+\frac{1}{2}} \right) (v_{j+1} - v_j) - \left(\frac{1}{2} a_{j-\frac{1}{2}} + \alpha_{j-\frac{1}{2}} \right) (v_{j-1} - v_j) \]

(A.13)

The positivity condition (A.5), that ensures the stability of the above scheme prescribes that

\[\alpha_{j+\frac{1}{2}} > \frac{1}{2} \left| a_{j+\frac{1}{2}} \right|, \]

(A.14)

for stability. The diffusive flux is then given by

\[d_{j+\frac{1}{2}} = \frac{1}{2} \left| a_{j+\frac{1}{2}} \right| \Delta v_{j+\frac{1}{2}}, \]

(A.15)

where

\[\Delta v_{j+\frac{1}{2}} = v_{j+1} - v_{j}. \]

(A.16)
The disadvantage of using a dissipative flux as in Equation is that it is extremely dissipative, and so reduces the order of accuracy also in regions where stability issues are not expected.

A.2.4 The JST scheme

The JST scheme [41], overcomes the difficulty encountered above, by adding anti-diffusive terms in smooth regions. The JST flux is of the form

\[d_{j+\frac{1}{2}} = \epsilon^{(2)} \Delta v_{j+\frac{1}{2}} - \epsilon^{(4)} \left(\Delta v_{j+\frac{3}{2}} - 2\Delta v_{j+\frac{1}{2}} + \Delta v_{j-\frac{1}{2}} \right), \]

(A.17)

where the second term approximates a fourth order derivative. The co-efficients \(\epsilon^{(2)} \) and \(\epsilon^{(4)} \) are chosen such that the diffusion levels in smooth regions is minimal, and the combination of diffusive terms ensures that positivity is satisfied in the regions where extrema are present.

A.2.5 Integration in pseudo-time: Runge-Kutta Methods

Having successfully represented the spatial derivatives, Equation (A.8) can now be written as the following system of ODEs.

\[\frac{\partial w}{\partial t} + R(w) = 0. \]

(A.18)

Our task is now to integrate Equation (A.18) to steady state. Here again we have a choice between several different methods. We choose an explicit method based on a Runge-Kutta scheme [32]. When a Fourier mode \(we^{ip\theta} \) is inserted into the one-dimensional form of the model problem above (A.18), the resulting Fourier symbol has an imaginary part proportional to the wave speed and a negative real part proportional to the diffusion. Thus the integration scheme chosen should have a stability region that covers substantial portions along the real and imaginary axes of the stability diagram. To achieve this, it is convenient to split the residual into a convective part and a dissipative part

\[R(w) = Q(w) + D(w), \]

(A.19)

where \(Q(w) \) is the convective part and \(D(w) \) is the dissipative part. The Runge-Kutta method used can then be written as a multistage method of the form:

\[w^{(n+1,0)} = w^{(n)}, \]
\[w^{(n+1,k)} = w^{(n)} - \alpha_k \Delta t \left[Q^{(k-1)} + D^{(k-1)} \right], \]
\[w^{(n+1)} = w^{(n+1,m)}, \]
(A.20)

where \(\alpha_m = 1 \), and

\[Q^{(k)} = Q\left[w^{(n+1,k)}\right], \]
\[D^{(k)} = \beta^{(k)} D\left[w^{(n+1,k)}\right] + (1 - \beta^{(k)}) D^{(k-1)}. \]
(A.21)

The coefficients \(\alpha_k \) and \(\beta_k \) are chosen so as to maximize the stability region of the integration scheme. In this thesis, a five stage scheme with three evaluations of the dissipative terms is adopted:

\[
\begin{align*}
\alpha_1 & = 1/4 & \beta_1 & = 1 \\
\alpha_2 & = 1/6 & \beta_2 & = 0 \\
\alpha_3 & = 3/8 & \beta_3 & = .56 \\
\alpha_4 & = 1/2 & \beta_4 & = 0 \\
\alpha_5 & = 1 & \beta_5 & = .44
\end{align*}
\]

A.3 Acceleration of Convergence to Steady State

A.3.1 Multigrid Acceleration

The use of multigrid techniques for convergence acceleration was first demonstrated by Federenko. [20]. There is now a huge body of knowledge devoted to the study of multigrid techniques. Their successful application to the solution of elliptical partial differential equations has been proven and well documented. Here, the multigrid operator is treated as a smoothing operator on each grid. This theory, however, has not been proved for hyperbolic systems. Still, it has been experimentally verified that multigrid techniques work quite well for hyperbolic problems. This is because, on coarse grids bigger time steps can be used which help to expel disturbances away rapidly. The multigrid scheme used in this thesis was developed for the Euler and Navier-Stokes equations by Jameson et al. [37]. This method uses a sequence of coarser meshes that are generated by eliminating alternate points along each coordinate direction. The grid level is indicated by the subscript \(k \), with higher values
of \(k \) representing successfully coarser meshes. To make mathematical representation of the multigrid scheme easier, it is useful to define the collection and interpolation operators. When moving from a fine grid to a coarser grid, the solution vector on grid \(k \) is represented as

\[
\mathbf{w}_k^{(0)} = T_{k,k-1} \mathbf{w}_{k-1}
\]

(A.22)

Conversely, when moving from a coarser grid to a finer grid, the accumulated correction on grid \(k \) is transferred back using the interpolation operator \(I_{k-1,k} \). At grid level \(k \), a residual forcing function is defined such that the multistage scheme on grid \(k \) is driven by the residuals calculated on grid \(k - 1 \). This is of the form

\[
P_k = Q_{k,k-1} R_{k-1}^{(0)}(\mathbf{w}_{k-1}) - R_{k} \left[\mathbf{w}_k^{(0)} \right],
\]

(A.23)

where \(Q_{k,k-1} \) is another transfer operator. In the multistage Runge-Kutta scheme described in the previous section, \(R_k(\mathbf{w}_k) \) is then replaced by \(R_k(\mathbf{w}_k) + P_k \).

\[
\mathbf{w}_k^{(0)} = T_{k,k-1} \mathbf{w}_{k-1},
\]
\[
\begin{align*}
\ldots \\
\boldsymbol{w}_k^{(q)} &= \boldsymbol{w}_k^{(0)} - \alpha_q \Delta t_q \left[R_k^{(q)} + P_k \right], \\
\ldots \\
\boldsymbol{w}_k^{(0)} &= T_{k+1,k} \boldsymbol{w}_k^{(m)}, \quad (A.24)
\end{align*}
\]

and so on till the coarsest mesh is reached. At that point, the corrections are transferred back to the finer meshes using the respective interpolation operators. It has been shown that the above scheme works well when used in a W-cycle as shown in Figure A.2. Finally, it is important to understand the extent of acceleration obtained by using the multigrid method. In the case of a three dimensional grid, the number of cells in each coarser grid is reduced by a factor of eight. Assuming the work done per time step on the finest grid is 1, the total work done is then of the order of

\[1 + 2/8 + 4/64 + \ldots < 4/3. \quad (A.25)\]

Thus it can be seen that the large improvement in convergence acceleration that is obtained as a result of using a multigrid algorithm has a computational cost that is only slightly more than a calculation on the finest grid.

A.3.2 Variable local time stepping

The most intuitive approach to the solution of a collection of ordinary differential equations obtained as a result of discretization of a partial differential equation, is to advance the solution in each cell by the same time step. This ensures that the solutions at all domain points are at the same time level at all times. The time step chosen in such a scheme would be the largest time step that will not cause instability in any one of the cells. This translates to advancing the solution over the entire domain by a time step that might be significantly lower than that permitted by the Courant-Friedrichs-Lewy condition at any cell volume.

If, only the steady state solution is desired, it might not be very important to capture the transients accurately. Also, it becomes unnecessary to propagate the solution forward in time such that all the volumes are always at the same time level.

In calculations performed in this thesis a variable local time step is used in each cell, such that the solution in each cell can be advanced at the fastest rate possible for that cell without being constrained by limits imposed at other parts of the domain.
A.3.3 Implicit Residual Smoothing

The use of an explicit scheme to integrate the Euler equations imposes severe restrictions on the maximum allowable time step during the integration process. This indirectly affects the speed of convergence. It has been shown by Jameson and Baker [38] that using a smoothed residual instead of the calculated residual can help increase the maximum allowable CFL number. This is somewhat similar to the Pade class of schemes, and achieves the objective of increasing the maximum allowable CFL number by increasing the stencil to include all the cells in the domain. The residual smoothing operation is of the form

\[(1 - \epsilon_i \delta_{xx}) (1 - \epsilon_j \delta_{yy}) (1 - \epsilon_k \delta_{zz}) \bar{R}_{i,j,k} = R_{i,j,k}, \]

(A.26)

where \(\bar{R}_{i,j,k} \) is the smoothed residual, obtained by using a tri-diagonal solver in each coordinate direction. The values of the smoothing coefficients \(\epsilon_i, \epsilon_j \) and \(\epsilon_k \) can be chosen to control the level of smoothing.

A.4 Dual Time Stepping

The dual time stepping algorithm for solving an unsteady flow physics problem was first discussed by Jameson [32]. Equation (A.8) can be written down as follows:

\[\frac{\partial wV}{\partial t} + R(w) = 0. \]

(A.27)

When (A.27) is discretized in time, we get the difference equation given by

\[D_t(w^{(n+1)}V^{(n+1)}) + R(w^{(n+1)}) = 0, \]

(A.28)

where \(D_t \) is a \(k^{th} \) order accurate backward difference operator. Calculations performed in this thesis were done using a third order backward difference formula. Consider the following second order backward difference formula

\[\frac{3}{2\Delta t}(w^{(n+1)}V^{(n+1)}) - \frac{2}{\Delta t}(w^{(n)}V^{(n)}) + \frac{1}{2\Delta t}(w^{(n-1)}V^{(n-1)}) + R(w^{(n+1)}) = 0. \]

(A.29)
The solution to (A.29) is obtained as the steady state solution to a problem of the form
\[
\frac{\partial w}{\partial t^*} + R^*(w) = 0,
\] (A.30)
where \(R^*(w) \) is a modified residual with source terms.

\[
R^*(w) = \frac{3}{2\Delta t} (w^{(n+1)} V^{(n+1)}) - \frac{2}{\Delta t} (w^{(n)} V^{(n)}) + \frac{1}{2\Delta t} (w^{(n-1)} V^{(n-1)}) + R(w^{(n+1)}). \] (A.31)

Equation (A.30) can then be solved using a multigrid based algorithm for the solution of steady flows as discussed in the previous sections.
Appendix B

The Adjoint Equations for Fluid Flow Control

Techniques for Aerodynamic Shape Optimization based on Optimal Control Techniques have been well developed by Jameson and his colleagues [33, 39, 54, 47, 75] over the last few years. The concept of flow control discussed in this thesis follows closely along these lines.

We assume that we are trying to minimize a cost function of the form

\[I = \int_{\mathcal{B}_\xi} \mathcal{M}(\mathbf{w}, \rho q_n) \, d\mathcal{B}_\xi, \]

(B.1)

where \(\rho q_n \) is the normal mass flux at the surface. Our task is to find the value of the normal mass flux at the surface that minimizes the above cost function (B.1), such that \(\mathbf{w} \) and \(\rho q_n \) satisfy the steady Euler equations (2.1).

The steady state Euler equations can be expressed in conservative form as follows

\[\int_{\mathcal{B}} n_i \phi^T \mathbf{f}_i(\mathbf{w}) \, d\mathcal{B} = \int_{\mathcal{D}} \frac{\partial \phi^T}{\partial \mathbf{x}_i} \mathbf{f}_i(\mathbf{w}) \, d\mathcal{D}, \]

(B.2)
where \(\phi \) is any test function. If a transformation is made from physical space \(x_i \) to computational space \(\xi_i \), defined by the mapping functions

\[
K_{ij} = \left[\frac{\partial x_i}{\partial \xi_j} \right], \quad J = \det(K), \quad K^{-1}_{ij} = \left[\frac{\partial \xi_i}{\partial x_j} \right], \quad (B.3)
\]

and

\[
S = JK^{-1}, \quad (B.4)
\]

the Euler Equations (B.2) become

\[
\int_{B_\xi} n_i \phi^T S_{ij} f_j(w) \, dB_\xi = \int_{D_\xi} \frac{\partial \phi^T}{\partial \xi_1} S_{ij} f_j(w) \, dD_\xi. \quad (B.5)
\]

We can choose our computational coordinate system so that \(\xi_1 = \xi_3 = 0 \) at the physical boundary. The boundary conditions for the case where we have blowing or suction at the boundary can then be prescribed in terms of the normal mass flux as follows

\[
F_2 = \begin{bmatrix}
\rho q_n \\
\rho q_n u + S_{21} P \\
\rho q_n v + S_{22} P \\
\rho q_n w + S_{23} P \\
\rho q_n H
\end{bmatrix}, \quad (B.6)
\]

where \(\rho q_n \) is initially set to zero in the design problem. Equation (B.5) is true for any test function \(\phi \). We choose it to be the Adjoint function \(\psi \). We can then add the constraint given by the Euler Equations to (B.1) to form the augmented cost function given by

\[
I = \int_{B_\xi} \mathcal{M}(w, \rho q_n) \, dB_\xi
- \int_{B_\xi} n_i \psi^T S_{ij} f_j(w, \rho q_n) \, dB_\xi
+ \int_{D_\xi} \frac{\partial \psi^T}{\partial \xi_1} S_{ij} f_j(w, \rho q_n) \, dD_\xi. \quad (B.7)
\]
Taking the first variation of the augmented cost function (B.7) we have

\[
\delta I = \int_{B_\xi} \left(\frac{\partial M}{\partial w} \delta w + \frac{\partial M}{\partial q_n} \delta (\rho q_n) \right) dB_\xi - \int_{B_\xi} n_i \psi^T S_{ij} \left(\frac{\partial f_j}{\partial w} \delta w + \frac{\partial f_j}{\partial q_n} \delta (\rho q_n) \right) dB_\xi + \int_{D_\xi} \frac{\partial \psi^T}{\partial \xi_i} S_{ij} \left(\frac{\partial f_j}{\partial w} \delta w + \frac{\partial f_j}{\partial q_n} \delta (\rho q_n) \right) dD_\xi.
\]

(B.8)

Equation (B.6) gives the flux at the surface.

\[
F_2 = \begin{bmatrix}
\rho q_n \\
\rho q_n u + S_{21} P \\
\rho q_n v + S_{22} P \\
\rho q_n w + S_{23} P \\
\rho q_n H
\end{bmatrix},
\]

(B.9)

Therefore,

\[
\delta F_2 = \begin{bmatrix}
1 \\
u \\
v \\
w \\
E + \frac{P}{\rho}
\end{bmatrix} \delta (\rho q_n)
\]

(B.10)

\[
+ q_n \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
-\gamma & 1 & 0 & 0 & 0 \\
-\gamma & 0 & 1 & 0 & 0 \\
-\gamma & 0 & 0 & 1 & 0 \\
(\gamma - 1) (u^2 + v^2 + w^2) - \gamma E & -(\gamma - 1) u & -(\gamma - 1) v & -(\gamma - 1) w & \gamma
\end{bmatrix} \delta (w)
\]

\[
+ (\gamma - 1) \begin{bmatrix}
0 \\
S_{21} \\
S_{22} \\
S_{23} \\
0
\end{bmatrix} \begin{bmatrix}
\frac{1}{2} (u^2 + v^2 + w^2) - u - v - w \\
1
\end{bmatrix} \delta (w)
\]
So far, the choice of ψ has been arbitrary. We choose ψ to satisfy the Adjoint equations

$$
S_{ij} \frac{\partial f}{\partial w} \frac{\partial \psi}{\partial w} = 0, \text{ on } D_\xi, \quad \text{(B.11)}
$$

and

$$
\frac{\partial M}{\partial w} = \psi^T \frac{\partial F_2}{\partial w}, \text{ on } B_\xi. \quad \text{(B.12)}
$$

We also observe that

$$
\frac{\partial f_j}{\partial \rho q_n} = 0, \text{ on } D_\xi. \quad \text{(B.13)}
$$

The expression for the Adjoint gradient then becomes

$$
\delta I = \int_{B_\xi} \left(\frac{\partial M}{\partial \rho q_n} \delta(\rho q_n) \right) dB_\xi \quad \text{(B.14)}
$$

$$
- \int_{B_\xi} \left(\psi_1 + \psi_2 u + \psi_3 v + \psi_4 w + \psi_5 \left(E + \frac{P}{\rho} \right) \right) \delta \rho q_n dB_\xi
$$

$$
= \int_{B_\xi} G^T \delta \rho q_n dB_\xi
$$

The gradient is then modified to account for the fact that the net mass flow through the boundaries is zero.

From Equations (B.12) and (B.14) it is clear that the Adjoint gradient depends only on the flow and Adjoint Variables at the Boundaries. Therefore this is clearly a case of feedback control, where the feedback is the values of the state variables at the boundary.
Bibliography

