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This paper concerns two key developments of a meshless method: (1) meshless dis-
cretization of the Navier-Stokes equations, and (2) embedding the the meshless method
within an overset grid context. First, the spatial and temporal discretization procedures for
the meshless method applied to the Navier-Stokes equations are given. Next, the meshless
method is shown to be well suited for overset grid applications. In the overset approach,
anisotropic viscous grids are applied near the body while isotropic cartesian grids cover the
remainder of the domain to the far field boundaries. In place of conventional interpolation
procedures, the meshless method accomplishes the task of inter-grid communication be-
tween near-body and off-body grid components. The meshless interface appears to provide
an attractive alternative to interpolation, potentially improving the accuracy and efficiency
of overset grid approaches. Two dimensional results are given for laminar viscous flows,
showing excellent agreement with established codes.

I. Introduction

D
ifficulties in obtaining quality meshes for viscous flow simulations has recently generated interest in
so-called meshless schemes. As the name implies, meshless schemes do not require the use of a traditional

mesh for the underlying spatial discretization. Instead, these schemes use local clouds of points from which
flow derivatives may be approximated for use in a set of governing partial differential equations. Often, the
method of least squares is employed on the local point clouds to compute derivatives for use in collocation
methods based on the strong form of the governing equations.

Underlying the development of meshless methods is the hypothesis that generating suitable point clouds
for a meshless scheme relieves to some degree the burden of obtaining a traditional mesh for complex
configurations. This hypothesis has yet to be proven in practice. However, the advancing point technique
of Löhner and Oñate1 demonstrated significant progress in point generation for meshless schemes. Their
work addressed one of the two underlying issues of discretization for meshless shemes: obtaining a suitable
point distribution in space. The second issue is the selection of local clouds of points within the distribution
such that solution representation on local scattered data is compact and accurate. Choosing suitable clouds
implies the identification of certain metrics to assess cloud quality. For least squares methods, the condition
number of the least squares matrix arising from the local cloud has been the most widely used metric for
determining the “goodness” of a local discretization.2, 3

Point generation aside, recent progress in the area of meshless methods for CFD computations has shown
great promise in terms of accuracy and efficiency.2–5 Katz and Jameson2 have shown that meshless methods
applied to inviscid problems in two dimensions produce accurate results compared to the FLO 76 finite
volume code of Jameson. The accuracy was shown for transonic flow problems, in which the meshless
method produced the correct shock jumps and locations despite the lack of a formal proof of conservation.
The method also exhibited good convergence with the development of “multicloud” within the meshless
framework. In addition, Luo, Baum, and Löhner4 have used a meshless method to compute boundary values
within a Cartesian mesh framework. Ghosh and Deshpande6 have applied a meshless method to inviscid
flow problems using a kinetic/Boltzman discretization. Sridar and Balakrishnan3 have developed an upwind
meshless solver which they demonstrated on subsonic and transonic test cases. An important aspect of

∗PhD Candidate, Department of Aeronatics and Astronautics, Stanford, CA, AIAA Member.
†Thomas V. Jones Professor of Engineering, Department of Aeronautics and Astronautics, Stanford, CA, AIAA Member.

1 of 18

American Institute of Aeronautics and Astronautics

38th Fluid Dynamics Conference and Exhibit<BR>
23 - 26 June 2008, Seattle, Washington

AIAA 2008-3989

Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



their work was a numerical demonstration showing highly accurate mass conservation even for random point
distributions.

This paper addresses both physical accuracy and domain discretization in the context of a meshless
method. First, the inviscid meshless scheme of Katz and Jameson2 is extended to viscous flows. An accurate
and stable algorithm for the discretization of the viscous flux terms of the Navier-Stokes equations is high-
lighted. Next, the meshless scheme is placed within the framework of an overset grid approach as a means
of communicating between multiple grids of varying type. The application of the viscous meshless scheme
to the overset method shows immense potential to solve real world problems of great complexity. The main
advantage of the overset approach is the ability to leverage different grid types to capture widely varying
scales and physics present in complex flows. The overhead associated with the use of multiple grid types
is largely reflected in the complex procedures used to communicate between grids. The meshless method is
shown to be extremely well suited for the task of grid communication, enhancing the efficiency and accuracy
of overset shemes. In fact, the meshless scheme may be thought of as yet another “grid” type present in a
Chimera scheme,7 seamlessly connected to other grids. The paper concludes with a several two-dimensional
test case results for steady laminar flows, which show excellent agreement with established methods, such as
Jameson’s FLO103 code, and the unstructured scheme of Mavriplis.8

II. Meshless Formulation for the Navier-Stokes Equations

For many classes of fluid flow problems, viscous effects account for a significant portion of flow features.
Examples of highly viscous problems are high angle of attack aerodynamics and low Reynolds number
flows. The Navier-Stokes equations are often employed to accurately model such flows. The non-dimensional
differential form of the Navier-Stokes equations in two dimensions may be expressed as
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where w is the vector of conserved variables, and fe and ge are the inviscid flux vectors defined as
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In the above notation, ρ, u, v, P , E, and H = E + P
ρ , are the non-dimensional density, velocity components,

pressure, total energy, and total enthalpy. Viscous effects are introduced by the viscous flux terms, fv and
gv, which are defined as
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(a) A local point cloud.
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(b) A typical edge connecting two point clouds.

Figure 1. Local meshless discretization

The shear stress and heat flux terms are expanded as

τxx = 2µux −
2

3
µ(ux + vy)

τyy = 2µvy −
2

3
µ(ux + vy)

τxy = τxy = µ(uy + vx)

qx = −κ
∂T

∂x

qy = −κ
∂T

∂y
,

where µ is the viscosity, κ is the coefficient of heat conduction, and T is the temperature. The Navier-Stokes
equations are completed by the equation of state and Sutherland’s law:

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2),

µ
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(

T
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)
3
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The computer simulation of the Navier-Stokes equations requires a consistent and stable discretization.
Here the paradigm of partial discretization in space, followed by the numerical solution of the resulting
ordinary differential equation in time is adopted. The details of the spatial and temporal aspects of the
discretization will now be discussed.

II.A. Spatial Discretization

Instead of volumes or point stencils typically used to discretize partial differential equations, the meshless
method makes use of clouds of neighboring points, as shown in Fig.(1(a)). As a preprocessing step, for each
point in the domain, a local set of nearest neighbors must be defined. As was demonstrated by Katz and
Jameson,2 the meshless clouds defined for each point may be implicity represented as a list of “edges,” or
connections between neighboring points. This set of edges completely defines the connectivity over the entire
domain.

A number of scattered data approximation schemes may be used to represent the dependent variables on
local clouds of points. Many of these schemes lead to the following form for derivatives of a property φ at
node i with n surrounding nearest neighbors:

∂φ

∂x
≈

n
∑

j=1

aij∆φij ,
∂φ

∂y
≈

n
∑

j=1

bij∆φij , (2)

where ∆φij = φj − φi, and aij and bij are metric coefficients arising from the local approximation. In this
work, a least squares method based on Taylor series is used. Detailes of the least squares procedure are
contained in Appendix A. In light of Eq.(2), the Navier-Stokes equations of Eq.(1) may be semi-discretized
as
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or using a directed flux, F = af + bg,
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Unfortunately, the dissipative nature of the viscous terms present in Eq.(3) is not sufficient to damp
instabilities due to odd/even decoupling and discontinuities in the solution arising from shock waves. In
order to construct a stable scheme, the LED criterion of Jameson9 is invoked, leading to additive artificial
dissipation terms. Consider an edge connecting two nodes, as shown in Fig.(1(b)). If the differencing is
extended to the midpoint of the edge (j + 1

2 ), Eq.(3) becomes
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Diffusive terms may be added by defining the midpoint Euler flux as

Fej+ 1

2

=
1

2
(Fei + Fej) −

1

2
dj+ 1

2

(5)

The diffusive term may be constructed from any number of schemes including scalar and characteristic
schemes. In this work Jameson’s CUSP scheme9 is used:

dj+ 1

2

= α∗c(wR − wL) + β(FeR − FeL). (6)

Left and right states are formed using SLIP9 reconstruction.
In addition to the Euler flux, the viscous flux must also be computed at the edge midpoint as required

by Eq.(4). If care is not taken, the discretized viscous terms may lead to odd/even decoupling and eventual
solution instability. A stable viscous discretization is obtained by carefully observing the nature of the viscous
fluxes. Unlike the Euler flux, the viscous flux terms contain gradients of the velocity and temperature, ∇u,
∇v, and ∇T . These gradients may be computed with the same least squares procedure as Eq.(2). If the
midpoint viscous fluxes are computed using an arithmetic average of these gradients, odd/even decoupling
will ensue as a result of the recycling of the gradients to form the flux derivatives. Instead, a modified
average of the velocity and temperature gradients may be computed as:10
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2

−
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)
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where ∇φj+ 1

2

= 1
2 (∇φi + ∇φj) is the average of the gradients at i and j using the least squares method

of Eq.(2), and ~sij =
~rj−~ri

|~rj−~ri|
is the unit vector in the direction of the edge. Here, φ represents velocity and

temperature. For example, the shear stress term, τxy, is computed as
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2
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1

2
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2
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2

),

where the derivatives of velocity are computed as shown in Eq.(7). Finally, the semi-discretized form of the
Navier-Stokes equations may be expressed as

∂wi

∂t
+ Ri = 0, (8)

where

Ri = Qi − Di, (9)
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2

. (10)
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It is widely recognized, and rightfully so, that meshless methods are not formally conservative. This is due
to the fact that the algorithm solves an uncoupled set of least squares problems over the domain, leading to
least-squares coefficients which are not aligned across edges. However, for certain specialized cases, meshless
methods are conservative, such as on a Cartesian mesh, where the derivatives reduce to central differences.
Though conservation is not attained in general, meshless schemes computed on well-conditioned local clouds
of points appear to mimic the behavior of conservative schemes, often obtaining the correct shock jumps at
the correct locations as compared with finite volume methods.2

II.B. Integration to Steady State

Equation (8) represents a system of ordinary differential equations, which may be integrated in psuedo-time
to reach steady state. In this work, Jameson’s modified Runge Kutta schemes for steady state integration
have been used.9 The schemes integrate the convective (Q) and diffusive (D) portions of the residual (R)
separately. An m-stage scheme may be expressed as

w(n+1,0) = wn

...

w(n+1,k) = wn − αk∆t
(

Q(k−1) + D(k−1)
)

...

w(n+1) = w(n+1,m),

where

Q(0) = Q(wn), D(0) = D(wn)

...

Q(k) = Q(w(n+1,k)), D(k) = βkD(w(n+1,k)) + (1 − βk)D(k−1).

The following five-stage scheme has been used with much success:

α1 =
1

4
β1 = 1

α2 =
1

6
β2 = 0

α3 =
3

8
β3 = 0.56

α4 =
1

2
β4 = 0

α5 = 1 β5 = 0.44

Local time stepping may be employed by estimating the spectral radius of the spatial operator at each
meshless node. The spectral radius of the inviscid flux for the meshless scheme, λI , may be approximated as

λI ≈

n
∑

j=1

(

|aijui + bijvi| +
√

a2
ij + b2

ijci

)

, (11)

where u,v, and c are the local velocities and speed of sound. Adapting the derivation of Mavriplis for
unstructured meshes8 to the meshless scheme, the spectral radius of the viscous flux, λV may be approximated
as

λV ≈
γ

3

2 M∞

Re∞Pr

n
∑
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µij
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(

a2
ij + b2
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)

, (12)
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where Pr is the Prandtl number and µij and ρij are the average viscosity and density across the edge
connecting nodes i and j. The local time step estimate for the meshless scheme is then

dti =
CFL

λI + λV
(13)

Using the above time step estimates, CFL = 3 was obtained. Additionally, implicit residual averaging
may be used to increase the support for each node, roughly doubling the allowable CFL number. The
smoothing procedure is performed in a manner similar to other unstructured grid solvers,11 replacing neig-
boring cells with points in the meshless cloud. In practice, CFL = 8 has been used in a variety of test cases
with the residual averaging procedure turned on.

III. Application to Overset Grids

While it has been shown that meshless methods provide accurate results quite efficiently, there should
be clear justification for preferring such a method over a conventional CFD approach. After all, formal
conservation is sacrificed using meshless methods. Additionally, distributing points and forming meshless
clouds in an optimal manner is non-trivial, potentially on the order of difficulty as generating a mesh.
While not entirely relieving the problems associated with mesh generation, meshless methods may provide
a significant advantage within some computational frameworks. This section highlights such a framework:
the application of a meshless method to overset grids as a means of coupling grid components together.

In the overset approach, the solution domain is decomposed into near-body regions, which extend a short
distance away from solid bodies, and off-body regions, which cover the remainder of the domain to the
far field boundaries.12 Near-body grids are typically unstructured, prismatic, or curvilinear grids capable
of anisotropic refinement to capture boundary layers. Off-body grids are typically composed of patches of
automatically generated Cartesian grids which present significant gains in algorithmic efficiency and low
memory requirements. The Cartesian grids are often adaptive, capable of refining to geometry and/or
solution features.13 The paradigm of using multiple grids of varying type facilitates solutions for complex
problems including simulations involving multiple bodies in relative motion.

Traditionally, domain connectivity for overset grids has been accomplished with linear interpolation. The
connectivity procedure involves the identification of donor cells and recipient nodes along grid boundaries.
Meakin14 has shown that spatial and temporal accuracy may be maintained using an interpolation method if
grids in the interpolation region are sufficiently refined, in spite of a loss of formal conservation. Because the
entire process of donor identification and interpolation can cost 10 to 20 percent of a flow solver iteration,15

efficiency in the domain connectivity algorithm is critical.
In this section, a novel approach to domain connectivity is proposed using the meshless method described

in the previous section. The meshless approach presents potential advantages in accuracy and efficiency
over interpolation. First, since the meshless method uses the fluid equations integrated in time just as
other grid components, potential time lagging errors for unsteady problems with implicit integration14 using
large time steps could be alleviated to some degree. Accuracy may also be improved in the presence of
solution discontinuities and high gradients, since the meshless method, unlike interpolation, obeys the proper
characteristic propagation of information. In addition to accuracy, the task of defining a meshless cloud,
as discussed in this section, appears to be less computationally demanding than donor cell identification,
leading to gains in algorithm efficiency. Though many of these claims require further investigation in a
variety of scenarios, preliminary results are encouraging.

III.A. Determining Meshless Clouds in the Interface Region

An efficient method for determining which points receive a meshless discretization and the selection of point
clouds will now be described. In short, all points in all grid components of the overset system that do
not have a complete stencil for their respective solution procedures are flagged as meshless. This means
these points will receive a meshless spatial discretization, while all other points receive a discretization from
their respective grid method. While overset grid simulations may contain multiple aerodynamic bodies
each containing multiple near-body grids, as well as an arbitrary number of off body Cartesian blocks, the
following procedure will be limited to a single body possessing a single near-body grid embedded in a single
off body Cartesian block. Future work will be generalized to handle more complex test cases. The steps for
determining the meshless points and clouds may be summarized as follows:
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1. Determine near-body meshless points

2. Determine Cartesian meshless points

3. Determine near-body support points

4. Determine Cartesian support points

The above steps will now be described in detail and are illustrated in Fig.(2).

III.A.1. Determine near-body meshless points

First, near-body meshless points are identified. Near-body meshless points are points within the near-body
which do not have a complete finite volume stencil arising from domain boundaries. For conventional second-
order methods, the near-body meshless points are the two outermost layers of the near-body grid system.
Near-body meshless points inherit the connectivity that is available from the near-body, as shown by the
edges in Fig.(2(b)). Once the near-body meshless points are identified, any number of Cartesian hole-cutting
algorithms may be employed to blank cartesian cells which lie within the near-body domain. In this work,
a ray-tracing based hole-cutting algorithm has been used.16

III.A.2. Determine Cartesian meshless points

Second, Cartesian meshless points are identified, and their connectivity to the near-body meshless points is
established. For each outermost near-body meshless point, the four Cartesian points which contain it are
identified. The (I, J) coordinates of the lower left Cartesian point may be found from

I1 = FLOOR

(

(xn − xL)

dx

)

(14)

J1 = FLOOR

(

(yn − yL)

dy

)

. (15)

Of the four Cartesian points containing the near-body point, those points that are not blanked from the
hole-cutting procedure are flagged as Cartesian meshless points, and their connectivity to the near-body
point which found them is established.

While the result of this procedure results in well-conditioned meshless clouds for all near-body points,
in general there will remain Cartesian points along the hole-cut boundary which do not connect to any
near-body point. These Cartesian points will remain poorly conditioned unless they are connected to nearby
near-body meshless points. The procedure to establish these connections is detailed in Fig.(3). First, the
blanked points within the vicinity of the hole-cut surface are flagged with their nearest near-body meshless
point. Next, connections are formed from the Cartesian points with incomplete stencils to the flag of the
blanked Cartesian point. This procedure is extremely fast, since proximity searches may be done from the
perspective of the near-body searching for Cartesian points in Cartesian index space, similar to Eq.(14)

III.A.3. Determine near-body support points

The previous two steps involved the determination of near-body and Cartesian meshless points. These points
receive a meshless discretization in space. The next two steps involve the determination of support points,
which do not receive a meshless discretization, but merely provide boundary condition layers for the meshless
points. The support points are owned by other grid components and receive the spatial discretization typical
of their respective grids.

Near-body support points are determined by the requirement that each near-body meshless node must
have a well-defined least squares stencil. Additionally, each of these nearest neighbors must have a well-
defined least squares stencil. These requirements would suggest picking points in the near-body grid corre-
sponding to the nodes in Fig.(2(d)). For structured near-body grids, determination of near-body support
points is trivial. Again, near-body support nodes inherit the connectivity of the near-body grid.
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(a) Overset region for NACA 0012.

(b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4

Figure 2. Procedure for determining the meshless interface
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Figure 3. Connecting Cartesian points to near-body points.

III.A.4. Determine Cartesian support points

Similar to near-body support points, Cartesian support points do not receive a meshless discretization, but
provide an adequate boundary region for the Cartesian meshless points. The selection of the Cartesian
support points is trivial and is performed by marching away from the Cartesian meshless nodes along
coordinate directions, until their meshless stencil requirements are met. The procedure results in adding the
nodes shown in Fig.(2(e)). Once again the connectivity for these nodes is borrowed from the Cartesian mesh
itself.

Once all meshless points, support points, and connecting edges have been identified, the condition number,
κ, of the least squares matrix at each node is computed to assess local cloud quality. In practice, for κ < 4,
stability and good convergence have been observed. The quality of local clouds as reflected in the condition
number appears to be strongly correlated to the discrepancy in resolution of near-body and off-body grid
components at the interface region. As the off-body spacing becomes more than a factor of about three larger
or smaller than the near-body grid, the condition of local clouds is greatly compromised. Clearly, matching
grid resolution in the interface is needed for stability and accuracy for the meshless approach just as for
interpolation. This is consistent with the findings of Meakin14 who found that accuracy for time accurate
overset problems is most strongly influenced by mesh resolution of grid components in the overlap region.

From the above procedures it is clear that all algorithms required to obtain suitable meshless clouds for
use in the overset scheme are quite simple and fast. These simple algorithms contrast with the complex
and relatively expensive bin or octree search techniques to find near-body donor cells for off-body Cartesian
grids.

III.B. Implementation using Python

It should be emphasized that for steady-state problems, the entire meshless connectivity routines may be
performed in a preprocess step and accessed throughout the computation. The problem of grid communi-
cation is then reduced to the proper injection of Dirichlet boundary conditions for each grid component in
the domain at each time step. Boundary conditions for each domain component are injected, the solution
is advanced in pseudo-time, and the computation proceeds until steady-state is acheived. In this work,
the iterative process is driven at the top level by a Python script. The Python script calls the necessary
solution procedures (near-body, off-body, and meshless), which have been compiled as shared object files to
give Python access to data at run time. This approach requires minimal modification to existing codes to
be placed in the context of a globally hybrid scheme, and has recently been implemented successfully by
Sitaraman et. al.13

A simplified version of the top level Python script used in this work is shown in Fig.(4). Note that each
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# import nece s sa ry modules
import f l o 103
import c a r t s o l v e r
import mesh less

# A l l o c a t i on and i n i t i a l i z a t i o n s t eps
f l o 103 . dimension ( )
f l o 1 03 . i n i t i a l i z e ( )
i f bc==−1:

c a r t s o l v e r . dimensionc ( )
c a r t s o l v e r . i n i t i a l i z e c ( )
mesh less . dimensionm ( )
mesh less . i n i t i a l i z e m ( )

# I t e r a t e un t i l steady s t a t e i s reached
time = 0
converged = False
whi l e not converged :

time = time+1
converged = f l o 103 . take s t ep ( )
i f bc==−1:

convergedc = c a r t s o l v e r . t ake s t epc ( )
convergedm = meshless . takestepm ( )

e l i f bc>=0:
f l o 103 . f a r f i e l d ( )

Figure 4. Top level Python driver for hybrid meshless scheme
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solution procedure is imported as a shared object and called as a Python routine. The near-body object is a
close variant of Jameson’s FLO103 two dimensional viscous code with only slight modifications to fit within
the Python framework. The off-body solver is also based on FLO103, but streamlined to handle Cartesian
meshes. The meshless object is precisely the viscous scheme described in this work. Note that FLO103
may be run stand-alone or in the hybrid context in this code infrastructure by simply switching the flag bc

to various values. In summary, the Python infrastructure is an extremely uninstrusive method of coupling
existing codes to form a hybrid scheme. Only minimal modifications to stand-alone source codes need to be
made, and only at the highest levels which are actually called by the Python script.

IV. Results and conclusions

The results in this section were obtained using the hybrid mesh shown in Fig.(5(a)) around the NACA
0012 airfoil. The near-body mesh was generated using the mesh generation package of FLO103, with certain
modifications to smooth the wake spacing behind the boundary layer. The objective of smoothing the wake
region was to provide even spacing from which to interface with the meshless scheme. All the results in this
section are for relatively low Reynolds number, so high reslution of the wake is only critical a short distance
behind the airfoil. For higher Reynolds numbers, the smoothing region should be extended several chord
lengths downstream to properly capture the wake.

Shown in Fig.(5(b)) is a close-up view of the interface region showing a shock in transonic flow. Note
the clean capturing of the discontinuity and the seamless transition across the meshless interface. This case
highlights one strength of the meshless scheme within the hybrid approach, that of capturing regions of
high solution gradients. Clearly, the meshless scheme is extremely well-suited to propagate fluid information
across meshes since it makes use of the underlying physical model (Euler or Navier-Stokes).

The hybrid scheme also performs extremely well at predicting separation compared with the scheme of
Mavriplis.8 The predicted separation point at 82.7% for the NACA 0012 at M = 0.5, α = 0o and Re = 5000
is in the middle of the range predicted by Mavriplis as shown in Fig.(6(a)) and displayed in Table 1. Contours
of Mach number for this case are shown in Fig.(6(b)).

The remaining figures, Figs.(7-10), containing solution contours and surface pressure plots, highlight the
accuracy of the hybrid meshless scheme for laminar viscous flows in two-dimensions. The surface pressure
curves for the hybrid scheme are overplotted with FLO103 stand-alone results, showing excellent agreement.
Accompanying each set of plots is a table of lift and drag coefficients due to pressure comparing the hybrid
scheme with FLO103, and when available, the viscous scheme of Mavirplis.8 The lift and drag coefficients
compare quite well for all cases tested. The conclusion to be drawn from these results is that the meshless
interface provides an accurate means of computing viscous flows for complex configurations within an overset
approach. Solution features are captured cleanly and seamlessly, as indicated by the solution contours. Global
accuracy is attained, as indicated by the lift and drag coefficients. The results appear very promising, and
encourage further investigation for more complex problems, such as high Reynolds number flows and flows
in three dimensions.
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Figure 5. Flow over NACA 0012, M = 0.8, α = 1.25o, showing mesh
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Figure 6. Flow over NACA 0012, M = 0.5, α = 0o, Re = 5000

Table 1. Comparison of separation point location

separation location

Mavriplis8 80.9%-83.4%

Hybrid 82.7%
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Figure 7. Flow over NACA 0012, M = 0.8, α = 10o, Re = 73

Table 2. Lift and drag coefficients due to pressure

cl cd

FLO 103 0.5480 0.2083

Mavriplis8 0.5886 0.2191

Hybrid 0.5446 0.2114
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Figure 8. Flow over NACA 0012, M = 0.8, α = 10o, Re = 500

Table 3. Lift and drag coefficients due to pressure

cl cd

FLO 103 0.4311 0.1421

Mavriplis8 0.4469 0.1474

Hybrid 0.4234 0.1420
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Figure 9. Flow over NACA 0012, M = 0.85, α = 0o, Re = 500

Table 4. Lift and drag coefficients due to pressure

cl cd

FLO 103 0.0000 0.0832

Hybrid 0.0000 0.0827
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Figure 10. Flow over NACA 0012, M = 0.85, α = 0o, Re = 2000

Table 5. Lift and drag coefficients due to pressure

cl cd

FLO 103 0.0000 0.0608

Hybrid 0.0000 0.0616
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VI. Appendix A: Linear least squares coefficients in two dimensions

Retaining only linear terms, a quantity φ may be expanded from i to j in a Taylor series as

∆φij = ∆xij
∂φ

∂x
+ ∆yij

∂φ

∂y
. (16)

Performing such an expansion at n points, a weighted least squares problem may be expressed as5

min

n
∑

j=1

wij

[

∆φij − ∆xij
∂φ

∂x
+ ∆yij

∂φ

∂y

]2

wrt
∂φ

∂x
,
∂φ

∂y
, (17)

where n ≥ D + 1, and D is the number of spatial dimensions. A simple inverse distance weighting function
of the following form may be used:

wij =
1

(∆x2
ij + ∆y2

ij)
p/2

, p ≥ 0. (18)

In this work, a value of p = 1 was used. Constructing the normal equations for the least squares problem in
Eq.(17) yields

AT Ad = AT b (19)

[

∑

w∆x2
∑

w∆x∆y
∑

w∆x∆y
∑

w∆y2

] [

∂φ
∂x
∂φ
∂y

]

=

[

wi1∆x1 wi2∆x2 · · · win∆xn

wi1∆y1 wi2∆y2 · · · win∆yn

]













∆φ1

∆φ2

...

∆φn













(20)

Computing (AT A)−1AT leads to the following linear approximation to the derivatives:

∂φ

∂x
≈

n
∑

j=1

aij∆φij , aij =
wij∆xij

∑

w∆y2 − wij∆yij

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)2
(21)

∂φ

∂y
≈

n
∑

j=1

bij∆φij , bij =
wij∆yij

∑

w∆x2 − wij∆xij

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)2
(22)

It is worth noting that solving the above least squares problem via the normal equations requires the division
by the determinant of AT A, which is O(∆x4), potentially leading to numerical instability. However, as
pointed out by Mavriplis,17 inverse distance weighting greatly improves the condition number of AT A,
resulting in a determinant which is O(1).
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