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Abstract 
 

 A method is presented which dramatically enhances 
convergence of discrete systems for a wide variety of 
discretizations, including finite difference, finite volume, 
and mixed element approaches.  The method, termed 
“multicloud,” was first introduced in a previous work by 
Katz and Jameson.[5]  This work concerns two major 
enhancements to multicloud: 1) The integration of 
multicloud procedures for arbitrary and mixed meshes, 
and 2) the development of automatic coarsening 
procedures to obtain coarse levels for the multicloud 
procedure.  The first enhancement involves the use of 
meshless scheme to damp out unresolvable high 
frequency modes present on a conventional mesh.  
Because the meshless scheme is only used on coarse 
levels, the final solution retains any and all conservative 
properties of the parent mesh.  The second enhancement 
allows for the automatic creation of coarse point 
distributions given a conventional mesh.  Thus, the 
multicloud procedure may be used with no extra mesh 
generation tools needed.  These two enhancements create 
a powerful convergence acceleration technique which is 
entirely mesh transparent, lending itself well to complex 
configurations in which mixed grid types are used and for 
which efficiency is of the utmost importance.   
 
1.  Introduction  
 
 The past two decades in computational aerodynamics 
have been dominated by vast improvements in 
algorithmic accuracy and efficiency.  A core component 
in the improvements in efficiency has been the wide 
spread use of multigrid algorithms.[2]  While first 
developed for structured meshes[1], multigrid has been 
extended to unstructured meshes with much success[7].  
Whatever the mesh topology, the basic ideas behind 
multigrid remain the same: solve a given problem on a 
series of coarse discretizations and transfer the resulting 
corrections back to the fine mesh.  The result of such a 

procedure is the accelerated damping of high frequency 
modes which are unresolvable on the finest mesh.  The 
power of multigrid is a result of the ability to take large 
time steps on coarse grids combined with minimal 
overhead due to small numbers of points contained in 
coarse meshes.   
 Underlying the principles of multigrid is the need for 
coarse meshes which optimally complement the fine 
mesh.  For structured meshes, the obvious solution is to 
eliminate every other node in each coordinate direction to 
obtain a coarse mesh.  This procedure may be performed 
recursively to efficiently obtain a series of coarse meshes.  
This procedure does not directly extend to unstructured 
meshes, which are often used to automatically 
accommodate highly complex geometry.  Instead, 
agglomeration procedures[9] are used which fuse fine cells 
into larger coarse cells.  The agglomeration proceeds by 
an advancing front technique in which the faces along the 
front are composed of the latest agglomerated cells.  The 
result of such procedures is a coarsened mesh consisting 
of large, multi-faceted control volumes.  While many of 
the facets maybe combined, coarse mesh solvers must be 
able to accommodate arbitrary polyhedra.  Though 
powerful, agglomeration requires sophisticated 
procedures to produce coarse meshes suitable for 
multigrid computations.   
 In this work, a meshless scheme is used on coarse 
levels in place of agglomerated finite volume methods.  
The use of the meshless scheme on coarse levels, termed 
“multicloud,” allows for much greater flexibility and 
efficiency in the generation of coarse point distributions 
than agglomeration procedures allow.  Coarsening 
procedures which produce suitable point distributions and 
connectivity are extremely simple and fast.  The only 
inputs to the coarsening procedure are a list of coordinates 
and edges of the fine grid.  Since all conventional mesh 
topologies may be expressed as lists of coordinates and 
edges, the multicloud procedure is entirely mesh 
transparent with the potential to impact structured, 
unstructured, prismatic, and mixed meshes.  Multicloud 
may also be used with  various discretization schemes.  In 
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this work, three schemes are tested with multicloud: 1) the 
meshless scheme of Katz and Jameson[5], 2) anode-
centered finite volume scheme, and 3) a cell-centered 
finite volume scheme.  In addition, since the meshless 
scheme is only used on the coarse levels, the fine mesh 
solution retains any and all of its own conservative 
properties.   
 This paper begins with a description of a simplified 
meshless scheme for coarse levels.  Subsequently, the 
point coarsening procedure is discussed, along with a 
description of multicloud transfer operators.  Finally, 
results are presented which show the effect of multicloud 
for two-dimensional (2D) inviscid flow problems.   

 
Figure 1. Domain discretization for least squares derivatives 
 
2.  Meshless Scheme for Coarse Levels  
 
 The derivation of the meshless scheme used on 
coarse levels follows closely to the method described by 
Katz and Jameson.[5]  Consider an arbitrary function 
φ(x,y) represented by a set of discrete nodal values in a 
2D domain, as shown in Figure 1(a).  Furthermore, 
consider node i surrounded by n nearby nodes as shown in 
Figure 1(b), forming a cloud nearest neighbors around i.  
The function φ may be expanded in a truncated Taylor 
series about ito all of its cloud points.  With a sufficient 
number of points, an over determined system of equations 
for the derivatives of φ results.  Derviatives to a specified 
order of accuracy maybe obtained as shown by Sridar.[8]  
For the sake of brevity, the details of the least squares 
problem may be found in a previous work by the same 
authors.[5]  It suffices to say that the result of the least 
squares procedure is that the gradient of φ may be 
expressed as weighted sums over the points j in the cloud 
of i:  

 ,
1

n

i ij ij
j

aφ φ
=

∇ ≈ Δ∑  (1) 

where Δφij=φj−φi , and the least squares coefficients, 
āij=(aij, bij), contain only geometric information obtained 
from solving the above least squares problem in a 
preprocess step.  Additionally, inverse distance weighting 
may be applied to the least squares problem to better 
condition the least squares matrix.[6] 

 The above least squares method for derivatives may 
be applied to the Euler equations in strong conservation 
law form:  
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In the above notation, ρ, u, v, P, E, and H are the density, 
velocity components, pressure, total energy, and total 
enthalpy.   
 Substituting the least squares framework directly into 
the spatial terms in Eq. 2 at a point i results in  
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or in terms of a directional flux, F= af + bg,  
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Eq. 4 represents a non-dissipative, unstable discretization.  
Stabilization maybe conveniently introduced via a 
numerical flux function defined for each edge ij 
connecting two meshless points.  Using the midpoint flux 
at 1

2j +  leads to the following discretization of the spatial 
derivatives,  

1
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j
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where the factor of two is needed since the expansion is 
only taken to the midpoint of the edge.  A general 
framework for stable schemes is obtained by averaging 
the endpoint fluxes, augmented with diffusive terms:  

 ( )1 1
2 2

1 1
2 2i jj jF F F d+ += + −  (5) 

Since the meshless scheme is only used on coarse levels, 
first order scalar dissipation may be used to save 
computational effort:  

 ( )1
2

,ij j ijd w wα+ = −  (6) 
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where αij is proportional to the spectral radius of the 
directed flux Jacobian for the edge.   
 Finally, the semi-discretized form of the Euler 
equations may be expressed as a system of ODE’s of the 
form  

 0,i
i

w
R

t
∂

+ =
∂

 (7) 

where  
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Here, the convective (Q) and diffusive (D) portions of the 
residual (R) are treated separately for use with the Runge-
Kutta schemes for steady state problems derived by 
Jameson.[3] 
 Local time stepping may be used by employing a 
local CFL estimate at each node:  

 
( )2 2

1

,i
n
j ij ij ij ij

CFLt
a u b v a b c=

Δ =
∑ + + +

 (8) 

where u, v, and c are the local velocities and speed of 
sound.  Along with local time stepping, implicit residual 
smoothing[4] was used to accelerate convergence.  Implicit 
residual smoothing was implemented in a manner similar 
to that of edge-based unstructured grid algorithms:  

 2
i i iR R R= + ∇ε  (9) 

The solution of Eq. 9 is costly to obtain in general, but 
two Jacobi iterations were sufficient to increase the 
allowable CFL by a factor of two.   
 
3.  Point Coarsening Procedure  
 
 The power of the above meshless scheme hinges on 
the ability to automatically coarsen a given mesh to obtain 
a suitable point distribution.  In the context of the 
meshless scheme, a suitable point distribution means 
obtaining points and edges which produce well 
conditioned least squares problems and accurate 
derivatives.  Thus the coarsening process is two-fold: 1) 
From a fine level, obtain a subset of points which 
represents the coarse point distribution, and 2) connect 
this subset of points to form edges which implicitly define 
a local cloud for each point.   
 The first step of the coarsening procedure is 
illustrated in Figure 2(a).  Each fine level point is first 
initialized as “valid.”  The list of fine level points is then 
traversed.  If a fine level point is not blanked, its nearest 
neighbors are blanked.  The next point is then tested, until 
all the points are traversed and labeled “valid” or 
“blanked.” The set of valid points is not independent of 
the order in which the points are traversed.  In order to 

preserve the domain boundaries as much as possible, the 
boundary nodes are traversed first, followed by the 
interior nodes.   

 
Figure 2. Point coarsening procedure 

 
 The second step in the coarsening procedure, 
illustrated in Figure 2(b), is to connect the valid coarse 
level points.  For each blanked point, the valid nearest 
neighbors are connected to form an edge.  It is possible 
that the blanking procedure performed in the first step 
could result in a single valid point among the nearest 
neighbors of a blanked point.  In this case, the status of 
the blanked point is changed to “valid,” and an edge 
between this new valid point and the single valid nearest 
neighbor is added.   
 The above coarsening procedure is extremely simple 
and fast.  It may be applied to any mesh topology, since 
all conventional meshes may be expressed in terms of 
points interconnected with edges.  Moreover, the 
procedure may be invoked recursively to form a series of 
coarse levels.  So far, the procedure has shown to be 
robust, producing good quality point distributions up to 
five levels deep.  Results from the procedure for four 
levels are shown in Figure 4.   
 While the finest level may consist of a mesh, it 
should be emphasized that the coarse levels are not 
meshes, but clouds of points defined implicity by edges.  
An edge in the meshless sense is simply two neighboring 
nodes that belong to the local clouds of one another.  A 
list consisting of local clouds of neighboring nodes for 
each node in the domain completes the connectivity for 
meshless schemes.  In this work, the list of local clouds is 
expressed as an edge list for ease of implementation.  
Note that edges often cross during the coarsening 
procedure.  This presents no difficulty since the coarse 
level algorithm is entirely meshless. 
 
4.  Multicloud Transfers  
 
 Of course, suitable coarse levels upon which to apply 
the meshless method is only part of the multicloud 
framework.  Additionally, transfer operators between 
successive levels must be defined.  In the context of 
multicloud, the finest level, which is actually a mesh, is 
considered a collection of point clouds and treated exactly 
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the same as the coarse levels.  This establishes a common 
set of transfer operators for all levels.  The only difference 
present on the fine mesh is in the case of a cell-centered 
scheme.  For a cell centered scheme, residuals and 
solution variables are first transferred to the nodes by a 
conservative volume weighting procedure.  The 
multicloud transfers are invoked as usual.  Finally, the 
nodal corrections obtained on the fine grid are 
interpolated back to the cell centers, completing the 
process for a cell-centered scheme.   
 The multicloud algorithm proceeds by first 
transferring the flow solution from a fine cloud level, k−1, 
to a coarse cloud level, k, with a solution coarsening 
operator Tk,k−1:  

 ( )0
, 1 1.k kT − −= kkw w  (10) 

Likewise, the residuals are transferred to a coarse cloud 
level with a residual restriction operator Qk,k−1.  A forcing 
function, Pk, is computed such that  

 ( ) ( )( )0
, 1 1 1 .k kQ − − −= −k k k k kP R w R w  (11) 

The forcing function, Pk, represents the difference 
between the aggregated fine cloud residuals, and the 
residuals computed with the coarse cloud solution.  
Subsequently, Rk(wk) is replaced by Rk(wk)+Pk in the 
time stepping scheme.  In this manner, the coarse level 
iterations are driven by the fine level residuals.  At 
convergence on the fine mesh, the coarse levels do 
nothing to alter the converged solution.  An iteration on a 
coarse level results in a corrected solution, kw+ .  Coarse 
level corrections, based on the difference between the 
corrected solution and the original solution transferred 
from the fine level, are then transferred back to the fine 
grid with an interpolation-like operator, Ik−1,k,  

 ( )( )0
1 1 1, .k kI+ +
− − −= + −k k k kw w w w  (12) 

 In summary, the multicloud scheme above involves 
the construction of three operators:  

1. a solution coarsening operator, T,  
2. a residual restriction operator, Q, and  
3. a correction transfer operator, I.   

 These three operators, illustrated in Figure 3 will now 
be described in detail.  First, the solution coarsening 
operator, T, is simply an injection of the fine level 
solution to coarse level points since all coarse level points 
are coincident with fine level points.  The injection 
process is shown in Figure 3(a).  
 The other two operators involve coincident and non-
coincident points.  It can be seen from Figure 3 that all 
fine level points are either coincident with a coarse level 
point, or have at least two coarse level points as nearest 
neighbors.  Because the figure shows only a mesh patch, 
some nodes on the boundary of this patch may appear to 

have only one valid nearest neighbor.  If the entire mesh 
could be shown, two valid nearest neighbors would 
always be present.  This is enforced by the coarsening 
procedure itself.  For a fine level point, i, with coincident 
or nearest neighbor coarse level points, j, an inverse 
distance weight coefficient may be defined:  

 
( ) 22 2

1
qij

ij ij

c
x y

=
Δ + Δ

        if not coincident, (13) 

 cij=1        if coincident. (14) 
 Both the residual transfer operator and the correction 
transfer operator rely on the distance weights of Eq. 13.  
The residual transfer operator involves distributing the 
residual at each fine level point to the valid nearest 
neighbor coarse level points with a weighting, as shown 
in Figure 3(b).  The amount of residual given from fine 
level point i to coarse level point j is  

 ,
d

ij i i

j ij j

c R ds
c ds

⎛ ⎞
⎜ ⎟⎜ ⎟∑ ⎝ ⎠

 (15) 

where ds is the average edge length in the cloud at a 
point, and d is the spatial dimension of the problem.  The 
residuals are scattered with the ds weights similar to 
node-based residual scattering on a Cartesian mesh in 
which each fine grid node contributes a fraction 1

2d  of its 

residual to the coarse grid problem.   

 
Figure 3. Summary of multigrid transfer operators 

 
 The correction transfer operator is nearly identical to 
the solution transfer operator, with the exception that the 
direction of transfer is coarse to fine instead of fine to 
coarse, as shown in Figure 3(c).  A corrected fine cloud 
solution at node i is computed with a weighted sum over 
the valid nearest neighbor coarse level points j by  

 

( )( )0

.
j ij j j

i i
j ij

c w w
w w

c

+

+
∑ −

= +
∑

 (16) 

 Thus all operators are either injection or are based on 
simple normalized inverse distance weights, which may 
be computed in a preprocess step and stored in a linked 
list for use in transfer subroutines.  It should be noted that 
no search algorithms are used in either the coarsening 
procedure or any of the multicloud transfer operators.  
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This makes the multicloud procedure extremely fast to set 
up for an arbitrary mesh.   
 
5.  Results and Future Work  
 
 Results of both enhancements to multicloud 
discussed in this paper are given.  Results of the 
coarsening procedure are displayed in Figure 4.  The 
parent unstructured mesh around the NACA 0012 airfoil 
is shown, followed by three coarse levels of meshless 
clouds.  It can be seen that coarsening ratios remain 
around 3.0 for the four levels of coarsening shown.  Also, 
edge to node ratios, remain nearly constant for all levels 
of coarsening.  This appears to be an important factor in 
creating coarse levels which obtain maximum 
convergence.   

 
Figure 4. Level coarsening for NACA 0012 airfoil 

 
 Results showing the ability of multicloud to 
accelerate convergence for a variety of fine level 
discretization types, is shown in Figure 5.  The top row of 
figures shows convergence for a high-order meshless 
scheme, while the middle and bottom rows show 
convergence for a node-centered finite volume scheme 
and a cell-centered finite volume scheme, respectively.  It 
can be seen from these results, that multicloud is quite 
effective in accelerating convergence for the three 
schemes tested.  Table 1 shows nearly an order of 
magnitude speed up for all three schemes with the use of 
four levels of multicloud.  The results in Table 1 are based 
a definition of convergence dealing with the integrated 
global properties of lift and drag.  A solution was 
considered converged if the global quantities obtained the 

steady state value to within 1.0%.  The speed up in 
convergence of these integrated quantities was more 
dramatic than the speed up in residual.   
 

Table 1. Level coarsening summary 

Levels Nodes Edges 
Edge:node 

ration 

Nodal 
coarsening 

ratio 
1 4,848 14,336 2.96:1 — 
2 1,551 4,442 2.86:1 3.13 
3 510 1,467 2.88:1 3.04 
4 175 526 3.01:1 2.91 

 
 

 

 
 

Figure 5. Effect of multicloud on convergence for NACA 
0012, M=0.80, α=1.25° with various fine level schemes.  

Schemes plotted are meshless (top), node-centered finite 
volume (middle), cell-centered finite volume (bottom). 

 
 Results showing the speed up afforded by multicloud 
using the node-centered scheme on the fine level for a 
variety of test cases are shown in Figure 6.  All coarse 
levels use the meshless scheme discussed in this work.  
Convergence of the global quantities of lift and drag are 
summarized in Table 3 for four test cases.  The same 
convergence definition used in Table 2 was also used in 
Table 3.  While the effects of multicloud are somewhat 
case dependent, all cases showed a speed up of between 5 
and 8 times over a single level.   
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Figure 6. Effect of multicloud on convergence for the node-

centered finite volume scheme on four test cases.  Test 
cases include: NACA 0012, M=0.80, α=1.25° (top), NACA 
0012, M=0.85, α=1.0° (second from top), KORN, M=0.75, 
α=0.0° (second from bottom), RAE 2822, M=0.75, α= 3.0° 

(bottom). 
 

Table 2. Speed-up in CPU time for various fine level schemes 
for NACA 0012, M=0.80, α=1.25° 

Levels Meshless 

Node-
centered 

FV 

Cell-
centered 

FV 

1 1.00 1.00 1.00 

2 1.76 2.20 3.45 

3 4.68 5.18 8.36 

4 9.28 8.36 8.53 
 

Table 3. Speed-up in CPU time for various flow cases using 
4-level multicloud on a node-centered finite volume scheme 

 Multicloud cycles CPU time 

Levels 
cycles 
(1/4) 

speed-
up time (1/4) 

speed-
up 

NACA 0012, 
M=0.80, α=1.25° 

477/33 14.45 10.53/1.26 8.36 

NACA 0012, 
M=0.85, α=1.0° 

766/60 12.77 17.10/2.30 7.43 

KORN, M=0.75, 
α=0.0° 

928/98 9.47 24.33/4.42 5.50 

RAE 2822, 
M=0.75, α=3.0° 

452/43 10.51 12.02/1.96 6.13 

 

 These initial results are quite promising and prompt 
further investigation.  Future work will focus on 
improving the convergence rate through two main 
avenues:  

1. Obtain smoother coarse node distributions and 
point clouds, and  

2. Modifying transfer operators.   
 Other research goals include testing the robustness of 
the coarsening procedure on a variety of test cases, and 
performing direct comparisons of multicloud versus 
agglomeration multigrid in terms of convergence 
acceleration.   
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