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The primary objective of this work is to develop and test a new convergence acceleration
technique we call multicloud. Multicloud is well-founded in the mathematical basis of
multigrid, but relies on a meshless operator on coarse levels. The meshless operator
enables extremely simple and automatic coarsening procedures for arbitrary meshes using
arbitrary fine level discretization schemes. The performance of multicloud is compared
with established multigrid techniques for structured and unstructured meshes for the
Euler equations on two-dimensional test cases. Results indicate comparable convergence
rates per unit work for multicloud and multigrid. However, because of its mesh and scheme
transparency, multicloud may be applied to a wide array of problems with no modification
of fine level schemes as is often required with agglomeration techniques. The implication is
that multicloud can be implemented in a completely modular fashion, allowing researchers
to develop fine level algorithms independent of the convergence accelerator for complex
three-dimensional problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The increasing use of computational fluid dynamics for engineering design and analysis demands highly efficient solution
methods. To address the need for efficiency, multigrid algorithms have been developed over the past few decades to improve
the convergence rate of iterative solvers. Fedorenko [13] formulated first true ‘‘multigrid” algorithm for the standard five
point discretization of the Poisson equation on a square. He showed that multigrid is truly an OðNÞ work algorithm. Brandt
[5] formulated multigrid algorithms for linear and non-linear PDEs of elliptic and mixed type. His approach was practical,
with applicability to aerodynamics problems. Ni [36] first applied multigrid to the Euler equations, including transonic flow
applications. Furthering the work of Ni, Jameson [17,18] combined multigrid with a multistage explicit scheme, which was
designed to efficiently damp high frequency modes.

While the aforementioned work was applied to structured grids, unstructured multigrid algorithms were also formulated
in pioneering works by Perez [40], Löhner and Morgan [31], Mavriplis and Jameson [33], and Lallemand [26]. A major diffi-
culty for unstructured multigrid is efficiently obtaining coarse grids. Several approaches to generating coarse grids have been
proposed in the literature. Perez [40] advocated starting with a coarse mesh and refining successively to form fine levels.
While this approach is automatic, it often produces low-quality fine meshes, which may not adequately resolve complex
geometry. Mavriplis and Jameson [33] used meshes which were independently generated. Unfortunately, this places a bur-
den on the user to generate coarse meshes, requiring search algorithms to define grid transfer operations. The work of Venk-
atakrishnan and Mavriplis [50] is an example of agglomeration, which automatically fuses fine level volumes to form coarse
level volumes. With agglomeration, the fine grid discretization must often be generalized to handle arbitrary polyhedra
which appear on the coarse levels. Agglomeration most often requires edge fusing to eliminate multi-faceted coarse
volumes. Other fully automated methods of recursive coarsening include the retriangulation algorithm of Chan and Smith
. All rights reserved.
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[6] and the edge collapse algorithm of Crumpton and Giles [8]. In the retriangulation approach, a subset of the fine level
nodes are selected for the coarse level. This subset is then triangulated to form a coarse level. In edge collapse, edges are
selected on a fine level and ‘‘collapsed” to form a node to which the edge neighbors are connected to form larger volumes.

The algorithms above may be categorized as geometric multigrid algorithms since they rely on problem geometry in the
form of mesh information to obtain coarse levels. Other algebraic multigrid approaches have been proposed, which do not
explicitly use the problem geometry [43,49,51]. Rather, algebraic multigrid uses the information contained in a system of
algebraic equations itself as a basis for reducing the dimension of the problem. Thus no coarse grid definitions or discreti-
zations are needed. Algebraic multigrid may be used as a ‘‘black box” solver for problems in which geometric coarsening is
difficult or impossible, such as purely discrete problems. Additionally, algebraic multigrid works on linear systems (which
may have been derived from non-linear systems), and most often requires the storage of the corresponding large, sparse
matrices. There are some indications that the use of geometry when available will produce superior results than a purely
algebraic approach [49]. Discussion of the comparative advantages and disadvantages of geometric and algebraic multigrid
approaches is, however, beyond the scope of this paper.

The multicloud algorithm described in this work follows a geometric approach, efficiently obtaining coarse levels and
operators for arbitrary mesh types. Like agglomeration, edge collapse, and retriangulation, multicloud uses a fully automated
coarsening strategy to obtain coarse levels. However, multicloud is unique in that it relies upon a meshless discretization on
the coarse levels, which use point clouds in place of a mesh. Thus, we bypass the meshing steps other methods use to gen-
erate coarse meshes (e.g. retriangulation, edge fusing, mesh smoothing). While a detailed comparison of the work needed to
form the meshless clouds versus the work to produce coarse volumes with other methods is difficult to make, the coarsening
strategy we present here is straightforward and simple. Since multicloud is truly meshless, it may be implemented for arbi-
trary mesh topologies and discretization schemes on the finest level. As with many coarsening strategies, multicloud may be
utilized with no modifications to fine level schemes, supporting modularity in code development. Since multicloud is based
on a meshless operator, it will likely be unable to reuse fine level discretization routines unless the fine level is also meshless.
Consequently, extra development effort to code the meshless discretization for the coarse levels is required in order to
implement multicloud. However, this initial effort could potentially save substantial work over time, since in principle mul-
ticloud could be used with any type of mesh topology or discretization strategy without further modification.

The paper begins with a formulation of a meshless algorithm based on radial basis functions. Next, the automatic coars-
ening procedure to obtain point clouds is discussed. Following the coarsening procedure, methods of prolongation and
restriction on clouds of points are developed. Finally, two-dimensional results of the Euler equations are presented and ma-
jor conclusions are drawn. While the results of this work are limited to two dimensions, the power of the algorithm will be
fully realized in three dimensions. However, the two-dimensional work represented here has served as a proof of concept for
future work.
2. Meshless scheme for coarse levels

The power of multicloud is derived from a robust meshless scheme. While a number of excellent meshless schemes have
been proposed in the literature [3,39,37,34,2,38,42,32,48,29,15,30,4,12], their popularity has remained relatively low. This is
most likely for two reasons. First, meshless schemes have not been shown to relieve mesh generation difficulties since point
cloud generation seems to be nearly as difficult. Consequently, many meshless schemes have used meshes as a starting point
for point clouds, which has been a common source of criticism. In this work, point clouds for the meshless scheme are used
only on coarse levels for purposes of convergence acceleration. The point clouds are generated automatically and, unlike
many previous works, do not represent a mesh in the traditional sense. Second, no meshless scheme has been shown to
be discretely conservative. In this work, formal conservation on the coarse levels is irrelevant, since the meshless operator
is only used to accelerate convergence. The fine level solution is entirely independent of the coarse level algorithm.

The meshless scheme operating on coarse levels for multicloud is based on radial basis functions applied to the strong
form of a given partial differential equation. While radial basis functions approximate the solution on the global domain,
shown in Fig. 1(a), they are constructed on local sets of nearest neighbors to a point, called local clouds, shown in
Fig. 1(b). In the method described here, partial derivatives on scattered data are reduced to weighted sums over local point
clouds. Because the strong form is used, weights depend purely on geometric considerations and may be computed in a pre-
process step for use throughout the computation.

A radial basis function is any function which satisfies
hðxÞ ¼ hðkxkÞ; ð1Þ
with the norm usually taken as the Euclidean distance. Commonly used radial basis functions include Gaussians, thin plate
splines, logarithmics, and multiquadrics. Franke [14] concluded that multiquadrics converged most rapidly and produced
the least error of nearly all radial basis functions used for scattered data interpolation at the time. This conclusion has led to
widespread use of radial basis functions for the discretization of partial differential equations [23,24,16,41,27,46,44,52,11,
10,7,47]. The use of the multiquadric radial basis function is also used here and may be expressed in two dimensions as
hiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ

2 þ r2

q
; ð2Þ



Fig. 1. Global and local cloud representations for the meshless method.
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where the basis function is centered at xi, and r is a free parameter. Unfortunately, there exists no analysis to guide in the
selection of r. In the context of multicloud, r may be selected to enhance convergence. Setting r proportional to the average
nodal spacing of the local cloud has proven effective.

In the radial basis method, we seek to construct a local approximation, /̂ðxÞ, to an unknown function /ðxÞ. For the Euler
equations, the unknown function will be the flux vectors. While /ðxÞ is unknown, its discrete values are known at the n
nodes in the local cloud surrounding node 0. The discrete values are denoted /i ¼ /ðxiÞ, where i ¼ 0; . . . ;n. The approximat-
ing function takes the form
/̂ðxÞ ¼ tTðxÞkþ pTðxÞa; ð3Þ
where t and p are the vectors of radial basis functions and appended polynomials, respectively, and k and a are the corre-
sponding unknown weights for which we seek. The vectors t and p take the form
tTðxÞ ¼ ½ h0ðxÞ h1ðxÞ � � � hnðxÞ �; pTðxÞ ¼ ½p1ðxÞ p2ðxÞ � � � pmðxÞ �:
The appended polynomials are necessary to ensure a solution to the approximation problem of Eq. (3), as shown by Schaback
and Wendlend [45]. For the multiquadric function, monomials up to at least linear terms should be added. In addition, linear
terms ensure exact reproducibility of linear functions, as shown by Liu and Gu [28]. This may be seen by expanding the one-
dimensional multiquadric function in a Taylor series:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ x2

p
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~x2

p
¼ c 1þ

~x2

2
þ

~x4

8
þ

~x6

16
þ � � �

� �
: ð4Þ
It is clear that the multiquadric basis function omits all odd powers of the independent variable, including the linear terms.
Therefore, adding a linear polynomial to the approximation of Eq. (3) enables linear consistency and the reproduction of a
linear function exactly. It should also be noted that linear polynomials are needed to accurately represent rigid body trans-
lation and rotation for some classes of problems, as in solid mechanics or the mesh deformation algorithm of de Boer et al.
[9]. In this work, we set
pTðxÞ ¼ ½1 x y �:
The unknown weights, k and a, in Eq. (3) may be obtained by invoking the following nþ 1 equations and m constraints:
/̂ðxiÞ ¼ /i; i ¼ 0; . . . ;n;
Xn

i¼0

kipjðxiÞ ¼ 0; j ¼ 1; . . . ;m: ð5Þ
The resulting system may be recast as
T PT

P 0

" #
k

a

� �
¼

/

0

� �
; ð6Þ
where
TT ¼ ½ tðx0Þ tðx1Þ � � � tðxnÞ �; P ¼ ½pðx1Þ pðx2Þ � � � pðxnÞ �; /T ¼ ½/0 /1 � � � /n �:
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Writing the inverse of the matrix in Eq. (6) as
T PT

P 0

" #�1

¼ A BT

B C

" #
; ð7Þ
the approximation of Eq. (3) becomes
/̂ðxÞ ¼ ðtTðxÞAþ pTðxÞBÞ/: ð8Þ
The derivatives of /̂ at x0 may be obtained directly from
@/̂ðx0Þ
@x

¼ @tTðx0Þ
@x

Aþ @pTðx0Þ
@x

B
� �

/ ¼ aT/;

@/̂ðx0Þ
@y

¼ @tTðx0Þ
@y

Aþ @pTðx0Þ
@y

B
� �

/ ¼ bT
/;
where a and b are vectors of constants independent of /i. It is only the metric vectors, a and b, which are computed and
stored in the preprocessing step. Owing to linear reproducibility, the derivatives may be expressed as
@/̂ðx0Þ
@x

¼
Xn

i¼0

ai/i ¼
Xn

i¼1

aið/i � /0Þ;
@/̂ðx0Þ
@y

¼
Xn

i¼0

bi/i ¼
Xn

i¼1

bið/i � /0Þ: ð9Þ
The use of radial basis functions to approximate field variables on scattered data generally requires the inversion of larger
matrices than least squares methods [3,39]. The size of the matrix in Eq. (7) is ðnþmþ 1Þ by ðnþmþ 1Þ, where n is the
number of points in the local cloud surrounding node 0, and m is the number of added monomials. However, our numerical
experiments indicate that radial basis methods are significantly more stable and less sensitive to local node movement and
position than least squares methods. While it is difficult to prove any order of accuracy with radial basis functions, this is not
particularly relevant, since the method will only be used on coarse levels within the multicloud scheme.

The partial derivative estimates of Eq. (9) may be substituted directly into the flux derivatives of the Euler equations in
strong form,
@w
@t
þ @f
@x
þ @g
@y
¼ 0: ð10Þ
Approximating the spatial derivatives leads to
@f
@x
þ @g
@y
�
Xn

i¼1

ðaiðf i � f 0Þ þ biðgi � g0ÞÞ ¼
Xn

i¼1

ðF i � F0Þ; ð11Þ
where F ¼ af þ bg is a directed flux. A stable scheme may be obtained by invoking the Local Extremum Diminishing (LED)
principle of Jameson [19]. First order scalar diffusion is sufficient since accuracy is of little concern on coarse levels. A dif-
fusive term, di, may be added to each node of a local cloud of the form
di ¼ jkmaxjðwi �w0Þ; ð12Þ
with kmax ¼ jaiuþ biv j þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2
i

q
, where u, v, and c are the Cartesian velocity components and speed of sound, respectively.

Boundary conditions may be enforced by reflecting interior nodes across normal lines of boundaries and injecting the
resulting ghost nodes with solutions consistent with the physics of the problem [3]. For the Euler equations, slip conditions
are enforced at solid surfaces, while one-dimensional Riemann invariants are used to solve for the conditions at the far field.

The result of the aforementioned spatial discretization is a coupled system of ordinary differential equations of the form
@wi

@t
þ Ri ¼ 0; Ri ¼ Q i � Di: ð13Þ
Here, the convective ðQ Þ and diffusive ðDÞ portions of the residual ðRÞ may be integrated separately using the modified
Runge–Kutta scheme of Jameson et al. [21] to effectively damp high frequency error. In addition, local time stepping,
enthalpy damping, and implicit residual smoothing may be used to further accelerate convergence.

3. Coarse point cloud distributions

The meshless method of the previous section, which is used on the coarse levels in multicloud, is designed to damp errors
from the fine level discretization scheme, which can be a mesh-based scheme. In this work, no assumption is made on the
mesh topology of or the specific spatial discretization of the fine level. Instead, a general procedure for obtaining coarse lev-
els of point clouds automatically from any fine level mesh is developed. The coarsening procedure, which is critical to the
success of multicloud, follows a two-step process:



A. Katz, A. Jameson / Journal of Computational Physics 228 (2009) 5237–5250 5241
(1) determine the subset of fine level points which form the coarse level points, and
(2) form a local cloud of nearby neighbors for each of the coarse level points selected in the previous step.

The procedure may be made mesh transparent by noting that any mesh in any number of spatial dimensions may be
expressed as an edge-vertex list. Actually, meshless point clouds may also be expressed implicity using edges if the two
vertices forming an edge belong to the local clouds of one another [25]. This fact enables the two-step coarsening procedure
described above to be applied recursively.

The first step of the coarsening procedure is illustrated in Fig. 2(a), and is similar to the algorithm of Chan and Smith [6] to
color a maximally independent set of vertices. Each fine level point is first initialized as ‘‘valid.” The list of fine level points is
then traversed. If a fine level point is not blanked, the nearest neighbors in its local cloud are blanked. The next point is then
tested, until all the points have been traversed and labeled ‘‘valid” or ‘‘blanked.” The set of valid points is not independent of
the order in which the points are traversed. In order to preserve the domain boundaries as much as possible, the boundary
nodes are traversed first, followed by the interior nodes. For two-dimensional boundaries, this results in the selection of
every other fine level node for the coarse level boundary definition. The result of this simple procedure is a subset of the fine
level nodes, illustrated as the filled nodes in Fig. 2(a), whose nearest neighbors are all blanked. This subset of nodes forms the
next coarse level.

The second step in the coarsening procedure, illustrated in Fig. 2(b), departs from the method of Chan and Smith [6]. In-
stead of triangulating the coarse level points, we group them into local clouds to apply the radial basis method. While most
local cloud definition procedures have focused on nearest neighbor search methods, such as quadtrees and bin searches
[48,32,1], these methods can incur significant overhead for all but the simplest problems. A simple and much cheaper ap-
proach based on edges is taken here. An edge in the meshless sense is simply a connection between two nodes which contain
each other in their local clouds. A global list of edges completely defines local cloud definitions. For each blanked point on the
fine level, the valid nearest neighbors in its local cloud are connected to form an edge for the coarse level. It is possible that
the blanking procedure performed in the first step could result in a single valid point in the local cloud of a blanked point on
the fine level, as shown in Fig. 3. In this case, the status of the blanked point is changed to ‘‘valid,” and an edge between this
Fig. 2. Point coarsening procedure.
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Fig. 3. Changing the status of a fine level point when only one valid point lies in its local cloud.
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new valid point and the single valid nearest neighbor is added to the coarse level. The above procedure is much simpler and
faster than agglomeration techniques and is entirely mesh transparent. For cases tested so far the procedure has shown to be
robust, producing good quality point distributions up to five levels deep.
4. Prolongation and restriction operations

Of course, suitable coarse levels upon which to apply the meshless method are only part of the multicloud framework.
Additionally, prolongation and restriction operators between successive levels must be defined. In the context of multicloud,
the finest level, which is actually a mesh, is considered a collection of point clouds and treated exactly the same as the coarse
levels. This establishes a common method of transfer for all levels. The only difference present on the fine mesh is in the case
of a cell-centered scheme, in which nodal values of the solution and residuals should first be obtained via conservative vol-
ume weighting procedures.

The multicloud algorithm proceeds along the lines of the Full Approximation Storage (FAS) algorithm of Brandt [5]. First,
the solution variables are restricted from a fine cloud level, k� 1, to a coarse cloud level, k, with a solution coarsening oper-
ator, Tk;k�1:
wð0Þk ¼ Tk;k�1wk�1: ð14Þ
Likewise, the residuals are restricted to a coarse cloud level with a residual coarsening operator Q k;k�1. A forcing function, Pk,
is computed such that
Pk ¼ Qk;k�1Rk�1ðwk�1Þ � Rkðwð0Þ
k Þ: ð15Þ
The forcing function, Pk, represents the difference between the aggregated fine cloud residuals, and the residuals computed
with the coarse cloud solution. Subsequently, RkðwkÞ is replaced by RkðwkÞ þ Pk at each stage of the iterative time stepping
scheme. In this manner, the coarse level iterations are driven by the fine level residuals. At convergence on the fine mesh, the
coarse levels do nothing to alter the converged solution.

An iteration on a coarse level results in a corrected solution, wþk . Coarse level corrections, based on the difference between
the corrected solution and the original solution transferred from the fine level, are then interpolated back to the fine grid
with a prolongation operator, Ik�1;k,
wþk�1 ¼ wk�1 þ Ik�1;kðwþ
k �wð0Þk Þ: ð16Þ
The three operators, T, Q, and I, illustrated in Fig. 4, will now be described in detail. First, the solution coarsening operator, T,
is simply an injection of the fine level solution to coarse level points since all coarse level points are coincident with fine level
points. This is a consequence of the fact that coarse level points are subsets of fine level points. The injection process is
shown in Fig. 4(a).

The other two operators involve coincident and non-coincident points. It can be seen from Fig. 2 that all fine level points
are either coincident with a coarse level point, or have at least two coarse level points in their local cloud. This is a conse-
quence of our coarsening and cloud definition procedures. The coarsening procedure selects a subset of the fine level points
for the coarse level, resulting in many fine level points that coincide with coarse level points. Furthermore, the cloud defi-
nition procedure connects two coarse level points which reside in the local cloud of a common fine level point. As explained,
if there is only a single coarse level point in the cloud of a given blanked fine point, the fine point is then selected for the
coarse level, making it coincident with a coarse level point. Therefore, all fine level points are either coincident with a coarse
level point, or have at least two coarse level points in their local cloud.
Fig. 4. Illustration of multicloud transfer operators.
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For fine level points, i, coincident with or neighboring a coarse level point, j, in its local cloud, inverse distance weight
coefficients may be defined:
ci ¼
jri � rjj�1 for i – j ðnot coincidentÞ;
1 for i ¼ j ðcoincidentÞ:

(
ð17Þ
Both the residual transfer operator and the correction transfer operator rely on the distance weights of Eq. (17). While we could
have used the radial basis function of Eq. (2) for transfer operations, our numerical experiments have shown that the simpler
distance method based on Eq. (17) works equally well for this particular case. Therefore, we have chosen to transfer residuals,
solution variables, and corrections using convex combinations of surrounding values with weights based on Eq. (17).

The residual transfer operator involves distributing the residual at each fine level point to the valid coarse level points in
its local cloud with a weighting, as shown in Fig. 4(b). The aggregated coarse level residual at node j, denoted ðQRÞj, may be
obtained from the coincident and surrounding fine level residuals, Rj and Ri, from
ðQRÞj ¼ ajRj þ
X

i

biRi; ð18Þ
where aj ¼ ðdsfj=dscjÞ2 is the ratio of the average edge lengths of fine and coarse clouds at the coincident node, j, and
bi ¼
1� ajP

kck

� �
ci ð19Þ
is a normalized inverse distance weight. The residual at the coincident node is scaled with the ratio of the average edge
lengths to obtain the correct amount of residual on the coarse level.

We can gain insight into the meshless residual transfer operator by considering nodal restriction for a Cartesian mesh,
shown in Fig. 4. Typically for a nodal scheme on a Cartesian mesh, the weight on the coincident node would be 1/4, which
would be the value of aj. Also, from Fig. 4, it can be seen that the corner nodes, which are further away from the side nodes,
would carry less weight, contributing 1/16 instead of 1/8 of their residuals. The inverse distance weights of Eq. (17) attempt
to mimic this behavior for the Cartesian mesh. Additionally all the weights influencing a coarse level node in the figure sum
to one, forming a partition of unity, which forms the basis for many meshless schemes [12]. We desire to maintain the par-
tition of unity for the meshless transfer, which can be verified by noting that aj þ

P
ibi ¼ 1 for the transfer coefficients.

The prolongation operator is similar to the residual restriction operator, with the exception that the direction of transfer is
coarse to fine instead of fine to coarse, as shown in Fig. 4(c). A corrected fine cloud solution at fine level node i is computed
with a weighted sum over its valid nearest neighbor coarse level points, j, by
wþi ¼ wi þ
P

jcjðwþ
j �wð0Þj ÞP
kck

: ð20Þ
If the fine level point, i, is coincident with a coarse level point, j, the corrections are a simple injection since c ¼ 1 for coin-
cident points.

It can be seen that all coefficients are based on weights which may be computed in a preprocess step and stored in a
linked list for use in transfer subroutines. It should be noted that no search algorithms are used in either the coarsening
procedure or any of the multicloud transfer operators. This makes the multicloud procedure extremely fast to set up for
an arbitrary mesh (see Fig. 5).
1/4

1/16

1/8

1/161/8

1/8

1/8

1/16

1/16

Fig. 5. Node centered residual restriction weights for a Cartesian mesh.



Fig. 6. Results of coarsening procedure for NACA 0012, showing three coarsened cloud levels and corresponding edge connectivity. Number of nodes: level
1 – 5903; level 2 – 1941; level 3 – 728; level 4 – 282.
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5. Results

To highlight the capabilities of multicloud, two-dimensional Euler computations for airfoils are given. First, the results of
the automatic coarsening procedure for a NACA 0012 airfoil containing 5903 nodes is shown in Fig. 6. The fine level is an
unstructured mesh obtained from the delaundo package [35]. The coarsened global point distributions are shown in the right
column, while the edge connectivity, which defines local clouds is shown in the left column. Levels 2–4 are not meshes, but
collections of edges. A close inspection of the coarse level edges shows edges crossing and other features unacceptable for a
mesh. This, however, presents no problem for the meshless method, which easily accommodates this more general definition
of connectivity. It should be noted that the number of nodes coarsens by roughly a factor of three between successive levels
for this case. This is significantly lower than the ideal coarsening factor of four obtained from structured coarsening. While
not ideal, the efficient damping of the meshless operator seems to compensate for the non-ideal coarsening, resulting in
excellent convergence rates, as will be shown. However, it would be desirable to more closely obtain the ideal coarsening
to save on memory. Future research will focus on obtaining more ideal coarsening rates.

Multicloud was used to accelerate three fine level discretization schemes, illustrated in Fig. 7(a)–(c). While the spatial
discretization varied among these three schemes, the method of achieving steady state was held constant to test the mul-
ticloud convergence properties. In all cases, the modified Runge–Kutta scheme of [21] was used in conjunction with multi-
cloud. The first scheme tested was a high resolution meshless (HRM) scheme based on the method of Katz and Jameson [25],
Fig. 7. Illustration of multicloud test schemes.
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as shown in Fig. 7(a). The semi-discrete form of the HRM scheme at node 0 with local surrounding nodes, k, may be ex-
pressed as
dw0

dt
þ
X

k

ðF0k � F0Þ ¼ 0; ð21Þ
where F ¼ af þ bg is the flux projected in the direction of the radial basis weights, a and b, of Eq. (9). Here, the edge midpoint
flux may be defined as
F0k ¼
1
2
ðF0 þ FkÞ �

1
2

d0k; ð22Þ
where d0k is a diffusive flux based on the CUSP scheme of Jameson [19].
The second fine level scheme which used multicloud was a nodal finite volume (NFV) scheme, illustrated in Fig. 7(b). The

NFV scheme was implemented similar to the unstructured scheme of Jameson [19], in which nodal volumes are taken to be
the union of triangles sharing a common node. For a node 0 surrounded by neighboring nodes k, as defined by the triangu-
lation, the semi-discrete form may be expressed as
V0
dw0

dt
þ
X

k

ðFk;k�1 � dk0Þ ¼ 0; ð23Þ
where the directed flux, Fk;k�1, is defined as
Fk;k�1 ¼
1
2
ðgk þ gk�1Þðxk � xk�1Þ �

1
2
ðf k þ f k�1Þðyk � yk�1Þ:
Fig. 8. Flow over NACA 0012, M ¼ 0:5; a ¼ 3:0� .
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The diffusive flux, dk0, is also based on the CUSP scheme and is proportional to the metrics 1
2 ðxkþ1 � xk�1Þ and 1

2 ðykþ1 � yk�1Þ, as
shown in Fig. 7(b).

The third fine level scheme tested with multicloud was a cell finite volume (CFV) scheme, as shown in Fig. 7(c). In the CFV
scheme, the flow variables are stored at the cell centers, and the semi-discrete form of the Euler equations at cell 0 sur-
rounded by neighboring cells k, may be expressed simply as
V0
dw0

dt
þ
X

k

F0k ¼ 0; ð24Þ
where the directed flux, F0k, is defined in Eq. (22). The artificial diffusion term is again based on the CUSP scheme. Recon-
struction of left and right states is performed by first transferring the solution to the nodes with a conservative weighting
procedure, as described by Jameson and Vassberg [22]. Subsequently, estimates of the change in the solution on either side
of a given edge may be obtained from the nodal values opposite the edge.

A structured finite volume (FV) scheme using structured multigrid, shown in Fig. 7(d), was used as a baseline for com-
parison. The FV scheme was implemented using the conservative numerical flux approach of Jameson [19,20], in which
the semi-discrete form of the Euler equations at cell ði; jÞ may be expressed as
Vij
dwij

dt
þ hiþ1

2;j
� hi�1

2;j
þ hi;jþ1

2
� hi;j�1

2
¼ 0; ð25Þ
where the numerical flux is defined as
hiþ1
2;j
¼ 1

2
ðF i;j þ F iþ1;jÞ �

1
2
ðdi;jþ1

2
Þ:
The artificial diffusion term, di;jþ1
2
, is again based on CUSP.
Fig. 9. Flow over NACA 0012, M ¼ 0:85; a ¼ 1:0� .
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The dramatic effect of multicloud acceleration using four levels for the NFV scheme may be seen in Figs. 8–10. The figures
show surface pressure, residual history, and convergence of both lift and drag for three separate test cases. For all cases
tested, multicloud reduced the amount of time to attain steady state lift and drag within 1% by a factor of around 20. The
performance of multicloud for these three cases was compared with the FV structured multigrid algorithm. The results of
this comparison are shown in Table 1. As the table indicates, convergence rates per unit work with four levels of multicloud
are comparable to those obtained with the FV scheme. Here, a work unit is the CPU time spent on the fine grid, assuming
each node requires the same CPU time regardless of level. This is particularly promising, since the FV scheme is based on
structured multigrid, which is a proven and well-established method [17]. It should be emphasized that since convergence
rates are expressed per unit work, the effect of the non-ideal coarsening of Fig. 6 has been factored into the comparison,
showing no adverse effects.

Finally, Table 2 highlights the fact that multicloud works well for all three fine level schemes described in this section. The
HRM, NFV, and CFV schemes were tested using multicloud for the NACA 0012 at M ¼ 0:8 and a ¼ 1:25�. In addition, the CFV
scheme was tested for the same case but using conventional non-nested multigrid, in which separate triangulations were
generated independently. The structured FV multigrid scheme was also used as a baseline for comparison. As the table
Fig. 10. Flow over KORN airfoil, M ¼ 0:75; a ¼ 0:0� .

Table 1
Comparison of convergence rate per unit work for the unstructured NFV scheme with multicloud versus the FV scheme with nested multigrid.

Case tested Multicloud (NFV) Multigrid (FV)

Single grid Four-levels Single grid Four-levels

NACA 0012, M ¼ 0:5; a ¼ 3:0� 0.981 0.872 0.982 0.880
NACA 0012, M ¼ 0:85; a ¼ 1:0� 0.989 0.916 0.990 0.926
KORN, M ¼ 0:75; a ¼ 0:0� 0.985 0.945 0.987 0.940



Table 2
Comparison of convergence rate per unit work for various fine level schemes for the NACA 0012, M ¼ 0:8, a ¼ 1:25� .

Fine level scheme Convergence accelerator Single grid Four-levels

HRM Multicloud 0.983 0.921
NFV Multicloud 0.986 0.922
CFV Multicloud 0.990 0.955
CFV Non-nested multigrid 0.992 0.959
FV Nested multigrid 0.988 0.932
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shows, multicloud was effective at accelerating convergence with all three schemes. The cell-centered scheme was signifi-
cantly slower than the meshless or nodal schemes, but this is more likely a property of the scheme itself rather than
multicloud, since the CFV scheme with non-nested multigrid showed similar behavior. Once again, convergence acceleration
was as dramatic for multicloud as for the established structured multigrid observed with the FV scheme. One of the most
notable features of multicloud is its transparent ability to accelerate convergence for a variety of fine level schemes. While
algebraic methods offer similar mesh transparency, multicloud offers a geometric approach to achieve a similar goal.

6. Conclusions

In conclusion, multicloud represents a powerful convergence accelerator for iterative schemes, which appears to work
equally well for a variety of fine level algorithms. The scheme transparency of multicloud will allow researchers to develop
accurate schemes independent of any convergence accelerator, since multicloud is a versatile, modular algorithm. Since no
assumptions are made regarding the topology of the fine level mesh, multicloud can be implemented on arbitrary mesh
types in a mesh transparent manner. While coarsening procedures used in multicloud result in non-ideal coarsening ratios,
this does not appear to degrade convergence when compared per unit work with established methods. The two-dimensional
results presented here indicate the vast potential of multicloud to accelerate complex three-dimensional cases in the future.
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