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ABSTRACT

The satisfaction of a well known sufficient
condition for sensitivity reduction by use
of feedback, is shown to imply severe re-
strictions on the feedback control law, and
also on the weighting matrix in the integmal-
square criterion for closed=loop sensitvity
reduction.

L INTRODUCTION

Let the vector ©6x(t) be a first-order
variation of x(t), the state trajectory
of a system, due to first-order variations
BL(t) of a vector of parameters u(t).
Let 8%, and ©6x. denote the respective
variations of a pair of nominally equiva-
lent open=-loop and closed-loop systems.
criterion of sensitivity reduction in the
closed-loop system is the inequality

A
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t t
ﬁxTZBX dt > ﬁxT25x dt
oo = o ¢
%o ‘o (1.1)
all t’ > ty >
where Z 1is a nonnegative weighting matrix.

This criterion drew considerable attention
since its introduction by Cruz and Perkins
in 1964, because it is most suitable for
small variations analysis, and because of
its revealing relationship to the Bode sen-
sitivity function (see for details and
references) .t

We consider systems described by a vector
differential equation
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é f(e,x,u3n)
(1.2)

x(to,u) = xo(u) 3

where t 1is time, x the n-dimensional
state, u 1is the m-dimensional control,
and | 1is a vector of continuous time-

varying parameters. In an open-loop system
the control vector u 1is a predetermined
function of time assumed to be independent

of p, and in a closed-loop system u 1is
a feedback control law

u = =k(t,x) , (1.3)
which now depends on p via (1.2). Assum=

ing £ and k are continuously differen-
tiable in all arguments, the first-order
variation &x 1is given by the variational
equation

5x = fxﬁx + fuﬁu + fubu ,

(1.4)
ﬁx(to) = E »

where f_ is the nxn matrix (3fj/dx3) eval-
uated afong the nominal x(t), u(t), and
w(t); £, and f, are similarly defined.

In a pair of nominally equivalent open-
loop and closed-loop systems, the control
of the open-loop system is given by

u(t) = -k(t,x(t)) ,

where x(t) 1is the solution of (1.2, 1.3).
Let the subscripts o (to be distinguished
from the subscript zero) and c¢ denote
quantities of a pair of nominally equiva-
lent open-loop and closed~-loop systems,

{L:9)

ik 2 -
Superior numerals refer to similarly-numbered references at the end of the paper.
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respectively. Then from (1.4) and (1.3),
and since B&uy(t) = 0,
ox, = £.06x + £ou L&
bxo(to) =£
Bxc = (fx - fukx)ﬁxC + fuﬁu s L.7)
6x, (ty) = €
The quantity wv(t)
v(t) = 5xo(t) - Bxc(t) 5 (1.8)

is readily found to satisfy

v = fxv + fukxﬁxc ¥ v(to) =0 . (1.9

It then follows that (1.1) holds if and
only if the inequality

’

t

T T
(26xc2v + v'Zv)dt > 0 ,

(1.10)

all t' > ty

is satisfied. It is customary to replace
the continuously differentiable 6&x,,
which is given by (1.7) and depends on
B(t), by an arbitrary continuously dif=-
ferentiable m-vector =z(t). Then (1.10)
and (1.9) become

t!

(ZzTZv + vTZv)dt >0 ,

o (1.11)
all t' > tog >
where Vv replaces v and satisfies
Vo= fxv + fukxz 5 v(to) =0 (1.12)

Condition (1.11), called a sensitivity in=-
equality, is sufficient, but is generally
no longer necessary for (1.1) to hold; how-
ever, (1.11) is independent of 6&x_ and is
thus more amenable to theoretical dnalysis.
In particular, for linear time-invariant

systems,

x = AQW)x + B(Wu , (1.13)

u= -Kx |, (1.14)
the condition (1.11) can (by completing the
square and %s§ng Parseval's theorem) be put
in the form{l

[T+ (-jol- &) 'BRITZ(1+ (GoI- &) 1BK]
(1.15)

>2Z , all real w

first derived by Cruz and Perkins.(z)

It first appeared that sufficient condi~-
tions like (1.11) and (1.15) could be used
to design feedback systems for sensitivity
reduction according to (1.1) with some pre-
scribed weighting matrix Z. However, we
have shown(3) that under the assumption
that on every interval [tg,t’] the pair
of matrices [f ,fu] is completely con-
trollable and the Tows of k, are linearly
independent, Z must be of the form

T

Z = k:Mk (1.16)

X X
for some nonnegative definite matrix M.
This simply means that the sensitivity re=-
duction should, in general, be measured in
terms of the quantity 1,

n=kox , (1.17)

that is being fed back, rather then by &x.

By use of (1.16) and (1.17) in (1.1), (1.11)
and (1.12), we find that for closed-loop
sensitivity reduction according to

’

t’ t

T T
N M Bt 2 n M de

o

(1.18)

all t' > to <

the following condition is sufficient? the
inequality



t
T T.T
(2v kav + v kkaxv)dt >0 ,

t

0 (1.19)

all i’ > ty
must hold for every solution v(t) of
v o= £V+Eo , v(t) =0 (1.20)

where now v replaces z, and is an
arbitrary continuously differentiable func-
tion of t of dimension m.

By completing the square, (1.19) can be
written in the symmetric form

. r

t C

o +k ) ME+k e 3 [ oTwede

(L:21)

all %> to

For linear time-invariant systems, (1.21)
becomes (1

[I+ K(~jwI~- A)'lslTM[I-+K(jm1 -a)"18]
(1.22)

>M , all real o,

We observe that (1.22) is in terms of an
mxm Hermitian matrix, while (1.15) is in
terms of an nxn matrix; the matrix

I+ K(joI - A)'lB is seen as a generalized
return difference for the loop opened at
the control input, while I+ (jwI - A) 1BK
is the return difference for the loop
opened at the state output,

In this paper we show, in the next Section
2, that the sensitivity inequalities (1.21)
or (1.22) can be satisfied only for M of
a particular structure, and that ky must
have certain properties. The implications
of these restrictions are discussed in
Section 3.

2. RESULTS

THEOREM 2.1. For the sensitivity inequali-
ty (1.19) to hold, the mxm matrix Mkyf,
must for all t > tgp be symmetric and non-
negative definite.

Proof. The symmetry of Hkxfu is proved
in the Appendix. The symmetry of MKB in
the linear time-invariant case follows as a
corollary; however, it is of interest to
present an independent proof in a manner
essentially pointed out to us by B. D. O.
Anderson. An expansion of (1.22) in powers
of 1/jw yields

1/jw[MKB - (MKB)T] . O S

For large |w| this term dominates and it
must therefore be a nonnegative definite
Hermitian matrix for both positive and
negative w; this implies it must be zero,

i.e.,
MKB = (MKB)® (2.1)
To prove that Mkyf, 6 > 0, Ilet
o(t) = g(t=t%p)y (2.2)

where g(t-t%;p) is a continuously differ-
entiable scalar function that as p —= 0
approaches an impulse at t = t©, and is
zero outside the interval ([tO-¢, t%€];
y is a m-vector. Letting t' = tO + ¢,
(1.19) yields

yMK £y + h(p,e) 2 0 , (2.3)
where h(p,e) =0 as p— 0, ¢ = 0. Thus
Mkyf,, must be nonnegative definite. Q.E.D.

In most cases, the weighting matrix M in
(1.18) is taken to be positive definite.
For M > 0, Theorem 2.1 implies

THEOREM 2.2. For the sensitivity inequality
(1.19) to bold with M > 0, the mxm
matrix (kyfy)', or equivalently k.f,,
must for all t > t; have m linearly in-
dependent real eigenvectors, and nonnegative

real eigenvalues. Furthermore, M must be
of the form
T
M= VIV |, (2.4)

where the columns of V are eigenvectors of
(kgfy)t and I is a real, symmetric, posi-
tive definite matrix that commutes with the
diagonal matrix /A of eigenvalues of

(ke £) or K £,

Proof. Let LTL = M > 0 be such that
Mkyf, is symmetric and nonnegative defi-
nite. Then
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T

-1 -1 1
L) M £ L

= kafuL

is symmetric and nonnegative definite, and
it is similar to kyf,. Thus, the eigen-
vectors and eigenvalues of k,f, bhave the
same properties as a symmetric nonnegative
definite matrix, namely, those claimed.

The same holds for (kyf,)", as can be
seen by applying the preceeding argument to
the symmetric matrix (kxf,)TM. To prove
(2.4), we note that since (kyfy)T has
linearly independent eigenvectors, the re=

lation (kygf,)TV = VA yields
T -1
(kxfu) = VAV i (2.5)
which we substitute into the symmetry
condition
T
kafu = (kxfu) Mo, (2.6)
to obtain
1= -
mv-L avt = vavTiw . (2.7)

Multiplying on the right by (VT)-I and on
the left by V-1, (2.7) becomes

T T
viw ™t = aviiwt

(2.8)
Letting
T
el el A
viwt Er (2.9)
we have that
CA = AT (2.10)
and M 1is given by (2.4). Q.E.D.
Note that the proof of (2.4) used only the
nonsingularity of V; thus if V is non-

singular, M > 0 must be of the form (2.4).
By a lengthy proof (to be published in a
different context) it can be shown that
Theorem 2.2 is valid for M > 0, except
that the eigenvectors of (kxfu)T may be
linearly dependent, [ need only be non-
negative definite, and only those eigen-
values which correspond to the eigenvectors
that comprise the columns of V in (2.4)
must be real and nonnegative.

For single-input systems, where the feed=-
back control law k(t,x) is a scalar and
k, an n-vector, the requirements of
Theorem 2.2 reduce to a simple scalar in-
equality, i.e., for_the sensitivity

13k

inequality (1.21), now reduced to

! ’

t t
(o +kv)lae y | ofae
%o %o
(2.11)
axl e’ 3 ty >
to hold, k(t,x) must be such that
KE >0 for all t > t.. (2.12)
Xxu - ? 2 - 0- 2

The properties of the matrix kxfu apply,
of course, to KB in the linear case.

3. DISCUSSION

The restrictions the form (2.4) imposes on
the weighting matrix M are quite severe.
If the eigenvalues of kyf,; [KB in the
linear case] are distinct, then I must

be diagonal, amounting to no more than_a
scaling of the eigenvectors of (kgf,)

(of course, for a given V, the sensitivity
inequality might be satisfied only for some
such T'). Thus, the freedom of choosing an
M is very limited. For M > 0, the neces-
sary conditions on ky given in Theorem 2.2
are also restrictive, in particular that

all eigenvalues of kyf,; must be real and
nonnegative; for M > 0, kify, must have

at least one such eigenvalue.

There is nonetheless a large class of feed-
back systems (1.2, 1.3) that satisfies the
sensitivity inequality, a certain class of
optimal systems. In fact, the most ef-
fective way to insure closed=-loop sensi-
tivity reduction according to (l.l) appears
to be the synthesis of an optimal system.

The restrictions on the weighting matrices

Z and M do not necessarily apply to (1.1)
and (1.18), because the sensitivity inequal-=-
ities (1.11) and (1.19) are only sufficient
conditions for (1.1) and (1.18), respec~
tively. It is only in systems where is
of full rank, and where therefore every con-
tinuously differentiable &x.(t) can be
produced by some 6&u(t), that the sens%-
tivity inequalities are also necessary. 3)
We have therefore an interesting reciprocal
relationship: the more restricted the class
of b6xc(t), the less restricted is the
class of possible weighting matrices Z
(1.1). For example, for linear optimal

in



systems where the plant is in phase vari=-
able form and remains so under parameter
variations, Z in (1.1l) can be an alm?its
arbitrary nonnegative definite matrix.\™:? )
APPENDIX: PROOF OF SYMMETRY OF Mk,f,

For convenience, we repeat equations (1.19)
and (1.20)

I

t
T T E
(2v kav + v kakxv)dt 20 ,
t
0 (a.1)
alll F & ty >

v = fv+Eo , v(g) =0 (A.2)
If vo(t) 1is a barmonic function of suffi-
ciently high frequency w, then the magni~-
tude of wv(t) is, approximately, of order
1/w smaller then that of wv(t); thus, for

large |w|, the first term in (A.1l) dom-
inates the second, and we must have
tn‘
T
v kaudt >0 (A.3)
%o
Let v(t) satisfy
v ¥ ofow 0 (A.4)
Substituting v = -1/02v  in (A.3), we have
tn‘
--T
- | 'k vae y o0, (A.5)
J -
‘o
and by integration by parts
£’ ,,t'
T hoc s - 8 ]
5 kav + D |at (ka) + kaijvdt
o %o
(A.6)
nt'
¥ Tk £ v > 0
X u
‘0
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The second term is, approximately, of mag-
nitude 1/w smaller then the last term,
and thus we must have

i’

ol t

+

=L « T
-0 kav D kafuu >0. (A.7)

t

0 t

0

We want to show that Mk f,, is symmetric
at an arbitrary time tO > tg where
M(tO)k, (O £,(t°%) & (Mk,£,)© # 0. Letting

v(t) = 0 on [tg,t°® = €], and setting
t’' = t9+ ¢, (A.7) becomes
t%4¢ t%¢
~5TMK v + ST (Mk_£ )%sdt
X X u
to-e to-e
(A.8)
+g(e) 20 ,
where g(e) represents the contribution

from the time-varying part of Mk,f, on
[t%-e,t%e]. Since the g(e) goes to zero
with e faster than the middle term, it

can be neglected. Recalling that v(tO~-¢) =
0, and choosing ¢ such that »(t%¢) =0,
we have
t°+e
o o
v (Mk £ )%dt > 0 (A.9)
t%=e
Let
o(t) = ¢ ¥ 4T IVt (A.10)

where c¢ 1is a complex vector and c
complex conjugate., Then (A.9) becomes

its

T
oo L o] o=
2ejuc ‘(Hkxfu) - (kafu) c +
% T(Mk £ )oc eijt (A.11)
X u
t°+e
=T o= =2jwt
- c (kafu) c e l >0



For sufficiently large |w| the first term
dominates, and since by a choice of ¢ its
sign can be reversed, we must have

T
Mk £= Ok £, (A.12)

for all ¢° > tg for which Mkxf, # 0,
proving the symmetry of Mkyf, for all
t 2 gp-
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