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Abstract

This dissertation focuseson the problem of wing planform optimization for transonic
aircraft basedon ow simulation using Computational Fluid Dynamics(CFD) com-
bined with an adjoint-gradient basednumerical optimization procedure. The adjoint
method, traditionally usedfor wing sectiondesignhasbeenextendedto cover plan-
form variations and to compute the sensitivities of the structural weight of both the
wing section and planform variations. The two relevant disciplines accouried for
are the aeradynamics and structural weight. A simplied structural weight model
is usedfor the optimization. Results of a variety of long range transports indicate
that signi cant improvemen in both aeradynamics and structures can be achieved
simultaneously The proof-of-conceptoptimal resultsindicate large improvemeris for
both drag and structural weight. The work is an \enabling step” towards a realistic

automated wing designedby a computer.
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Chapter 1

In tro duction

1.1 Wing design

The wing is the most important componert of an airplane. The wing a ects not
only its own performance,but alsothe performanceof the entire airplane. From an
aeradynamic perspective, the main sourceof the airplane drag is assaiated with the
wing. As illustrated in gure 1.1, two-thirds of the total drag is related to the wing.
Thereforea large emphasisshould be placed on the aeradynamic wing-design.

Figure 1.1: Typical drag breakdavn by primary airplane componerts of transport
aircraft at cruise conditions [46].
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A standard approad usedin the past to designa wing involvestwo main steps.
The rst step was to establish the generalwing shape, airfoil types, approximate
thicknessratio, designlift coe cient, and designMach number from a designopti-
mization study. The secondstepwasto designa minimum weight wing while achiev-
ing as much of the two-dimensionalairfoil performanceas possible,minimizing any
parasite or induced drag penalties, and satisfying all of the other generaldesigncri-
teria suc as good drag characteristics, su cien t fuel volume, and minimum weigH.
Referenceg70, 55, 61, 37] provide excellen descriptionsfor this standard approad.

For modern wing design,the procedurestill followsthe standard approad, but in-
volving the useof computational uid dynamics(CFD) codesto systematically study
variations of shape, airfoil type, thickness,twist, etc. CFD solwesthe compressible
Euler and Navier-Stokesequationsand is mainly usedto provide better understand-
ing of the ow over the wing, but not to drive the wing designprocess. The wing
re nement is donebasedon the intuition and experienceof the designer.

Recernly, CFD has beenreceiving attention as a designoptimization tool. Nu-
merical optimization hasbeenconbined with CFD. While there exist numerouswell-
deweloped optimization techniques, sud as those descriked in reference[11], most
techniquesare not practical to the CFD-basedoptimization problemsdue to the dif-
ferert nature of the problems. The standard optimization problemsgenerallyassume
that the function ewaluation of the \ gure of merit" (or the \cost function”) canbe
evaluated easily and at low computational cost. The standard gradiert-based op-
timization further expect similar simplicity of the \sensitivity information” (or the
\gradient") evaluation. Moreover, they are mainly deweloped for problemsof a small-
to-moderate number of designparameterscomparedto the number of cost functions
and constrairts. The CFD-basedoptimization problems,on the other hand, require
solving a non-linear systemof partial di erential equationsto calculatethe costfunc-
tion and usually involve a large number of designparameters,esgecially for a design
in transonic ow. Transonic ow is very sensitive to small shape perturbations. In
order to achieve \shock-free" wing-sections,it generally requiresa large number of
parameters O(10%) to represen the wing surface. In an extremecase,the wing can
be treated as a \free"surface. Therefore,the optimization algorithms that require a
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large number of function evaluations are not well suited to the wing designproblem.

Early attempts to combine CFD with numerical optimization madeuseof nite-
di erence calculationsto obtain sensitivity information. This technique can be used
to obtain the derivatives of all the ow quartities with existing ow solwers. One
problemwith this approad is the computational time required. To obtain the design
sensitivities for a systeminvolving n design parametersusing one sided di erence
requires a well-corverged solution of n + 1 ow analysis problems. This becomes
prohibitive whenn becomedarge.

A practical method for CFD-basedoptimization emergedn 1988when an adjoint
method was rst appliedto the governing equationsof transonic o w by Jameson20].
The method applied cortrol theory techniquesto a systemof partial di erential equa-
tion and reducedthe costof gradiert calculationsto only two o w analysesyegardless
of the number of designparametersn. This breakthrough enabledmany more de-
sign variables than was previously practical for gradiert-based aeradynamic shape
optimization problem.

During the last decade,adjoint methods have been extensiwly dewloped and
provento bevery e ectiv e for improving wing sectionshapesfor xed wing-planform.
The framework has been well deweloped by Jameson[30 26, 62]. He applied the
adjoint method to redesignairfoils and wing sectionsin transonic ow. By using
surface mesh points as the design parameter, the adjoint method to calculate the
gradiert information, and an iterative method to improve the shape in ead iteration,
he was able to adchieve a shack-free-wing.

1.2 Planform optimization

1.2.1 Motiv ation to integrate shock-free wing section design
with planform design
The capability to produce shock-free airfoils for a given wing planform, sud as the

method descriked in section 1.1, is very crucial. When integrating shock-free wing
sectionswith planform design, it can enable planform con gurations which would
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previously have beenrestricted by strong compressibiliy drag.

Conventionally, wingsof transonicaircraft requirealargesweepor a smallthickness-
to-chord ratio of the wing sectionto lower the local Mach number and prevernt strong
shack wave formation. By implemening the shack-free concept, it is possibleto
wealken the compressibiliy drag without requiring as large a sweep or as small a
thickness-to-biord ratio as cornvertionally designed.The sweepreduction and thick-
nessincremen will reducethe wing structural weight, as will later be discussedin
section1.2.2. The bene t onweight saving canbe usedto increasethe spanto reduce
the induced drag. Becausethe induced drag is the largest component of drag, as
illustrated in gure 1.1, the wing planform optimization has the potertial to yield
large drag savings without any penalty on the structural weight. Therefore,in this
dissertation, we exploit the shack-free-wingtechnologyin the conbination with plan-
form designto \cheat" the corvertional intelligenceof the planform design. With the
right implemertation, it may revolutionize wing design.

As a historical note, although the shock-free-wing method has only been newly
deweloped during the last decadeand has yet to be implemerted to the real-world
airplane, the idea of exploiting the shack-free airfoil to improve wing designis not
new. A classicexampleoccurred when Whitcomb [75, 76] introduced his famoussu-
percritical airfoil. Sincethe airfoil producedthe sameamourt of lift at lower negative
pressurepeak, comparedto thoseof the corvertional airfoil, the shack formation can
be delayed. The transonic wingsthat were designedwith the supercritical airfoil gen-
erally have lesssweepand are structurally lighter comparedto those designedwith
convertional airfoils.

1.2.2 Planform characteristics

Planform optimization can be consideredaslarge scaledesign,comparedto a section
shape design. It a ects both aeradynamic and structural characteristicsof the wing.
To formulate the optimization problem properly, it is important to understand how
planform parametersa ect drag and wing wight. A detailed discussioncan also be
found in reference[37).
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First we de ne the planform parameters. There are many de nitions for wing
planform, depending on the designprocess.In someliterature, the term \planform"
is used interchangeably with \wing shape". In this dissertation, we use the term
\planform" to collectively represen span,chord distribution, thickness-to-tiord ratio,
aspect ratio, and sweepba&[55]. Next we discusshow these parametersa ect the
wing.

Span e ects

Spangenerallya ects drag and weigh in the following ways:

When the spanis increased;t reducesthe induceddrag, regardlessof wing area
changes.If the increasedspanenlargesthe wing area, the skin friction drag will
be increased.

The wing weight will be increasewhenwe increasethe span,both by the longer
spanand the increasedbending load.

In general, the induced drag varies quadratically with the inverse of span, as
illustrated here. Considerthe induceddrag coe cien t

_ C
o = AR
The induced drag can be written as
D, = CDiql Sref
_ Lift?
T e

whereb is spanlength and e is spane ciency.

Becausethe induced drag is the largest portion of airplane drag as shown in
gure 1.5, whenwe make the spanlonger (keepingthe areaconstart), we canreduce
the airplane drag dramatically but we also make the wing heavier. This relationship
revealsthe trade-o betweendrag and wing weight. This discussionalsoimplies that
pure aeradynamic optimization without span constrairts will lead to an excessie
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span. On the other hand, if a maximum span length is imposedas a constrairt,
we can clearly seethat this constraint will always be active and there is no need
for the optimization. By including the trade-o betweendrag and wing weight, this
problem can be avoided. Thereforewe proposean optimization that employs a trade-
0 betweendrag and wing weight to minimize a weighted sum of drag and weight.

Sweep e ects

Increasingsweepanglein uences drag and weight as follows:
It reducescompressibiliyy drag by reducingthe local Mach number.

It increaseghe wing weight by increasingthe structural spanand tip loading.
When we sweepthe wing more badkward, the spanloadtendsto shift outboard
asshawvn in gure 1.2. This increaseshe bendingload and thus wing weiglt.

lift >

span

Figure 1.2: E ect of sweepon wing loading

Thic kness e ects

Thicknessis generally descriked in terms of thickness-to-bord ratio t=c. The e ect
of t=c changesis asfollows:

Larger t=c increaseghe drag slightly by increasingthe velocities, the adversity
of the pressuregradierts, and the compressibiliy drag.
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T rt

c
s Cc

S
(@ (b)

Figure 1.3: E ect of thicknessvariation on a simpli ed wing structure.

Larger t=c alsoreducesthe wing weigh.

Figure 1.3 (a) shows a cross-sectiorof a simpli ed wing structure that carriesa
wing bending load. The height of this beamis limited by the thicknessof the wing
(t). For a fully-stressedstructure, the upper and low skin thicknessts satis es the
relation

M = aiowtsCst

whereM is bendingload, ¢s is structural chord, and 40w IS the allowable stress. If
we increasethe wing thicknessby a factor of r while keepingthe structural chord c
constart, the new skin thicknesst? of the thicker wing will be reducedby

1
t9 = -t

to support the samebending momert at the fully stressedcondition. The material
cross-sectionahrea of the thicker wing is reducedby a factor of r from the original
area. Therefore, from this simple analysis,the wing will be lighter whenwe increase
the wing thickness.

Chord e ects

Increasingthe chord length at xed wing thicknesscertainly reducesthe thickness
to chord ratio. Howewer if the thicknessto chord ratio is xed, increasingthe chord
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T rt

Cc rc
S S

Figure 1.4: E ect of chord variation on a simpli ed wing structure.

leadsto the following:

It increaseghe drag by increasingthe area. A simpleanalysisof skin friction [37]
indicates that skin friction drag varies linearly with wetted area. Increasing
chord length makesthe wing arealarger, giving higher drag.

Howe\er, it reducesthe wing weigh.

In gure 1.4 we increasethe chord length and the wing thicknessby a factor r,
keepingthe ratio t=c constart. We can perform a simple analysis,similar to the one
doneearlier, for the e ects of chord on the thicknessof beamsection. This resultsin
a new skin thickness:

1
t = St

and the new material cross-sectionahreagets smaller

Areane, = 2tocs (1.1)
2t

= ;CS (1.2)

_ Areaom . (1 3)

r

For a real wing structure, the analysisis certainly more complicated. Howeer, a
good wing structure will follow this trend. The e ects of sweep,span, thickness,and
chord variation indicate that drag and wing weight are driven in opposite directions.
In other words, this shavs trade-o s betweenthem. There trends shows that it may
be possibleto optimize the weighted sum of drag and wing weigH.
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1.2.3 Early work on planform optimization

There is extensive work on planform optimization, ranging from an analytical ap-
proad to high- delit y numerical optimization. A classicanalytical approad includes
Prandtl's elliptical planform [59, 60], which minimized the induceddrag. McGeer[51]
extensi\ely studied planform characteristicsfor low speedsubsonicwingsthat led to
the minimum induceddrag for di erent constrairts, using Fourier seriesand algebraic
expressiondo govern ow and structure models. McGeer also extendedhis method
to high-speedsubsonicplanform designwhere empirical expressionsvere usedto es-
timate compressibiliy drag [52]. The analytical approad works quite well when the
governing equationscan be solved analytically and the number of constrairts is small.

When the number of constrains becomeslarge, various methods to conbine a
numerical optimization with governing equationshave beenproposed. Hutchison [15]
proposeda method for high-speedcivil transport wing design,using algebraicequa-
tions to estimate aircraft weight, supersonicdrag, friction drag, and drag due to
lift. Wakayama's[73, 74] optimizes drag and weight of commercialaircraft wings by
conbining numerical optimization with simplied ow and structural models. This
method handlesnumerousconstraints quite well and becamea major optimization
tool when Boeing designedthe uncorvertional BlendedWing Body [72 43].

For transonic ow, there is very limited work that truly employs the full Euler
or Navier-Stokes as the ow model to optimize the planform [57, 67]. The main
reasonis the computational costwhich becomegrohibitiv ely expensie for sensitivity
calculation as we discussedearlier in section1.2.1.

It is not until the introduction of the cortrol theory approat to designin the
transonic ow by Jameson[20]that Euler and Navier-Stokesbased-optimizationsbe-
camepractical [31]. The cortrol theory approad is usually called an adjoint method
becauseit requiresus to solwe the adjoint equation. Sincethen the adjoint method
has beenwidely usedto optimize airfoils and wings. This breakthrough enablesthe
gradiern-basedaeradynamic shape optimization to handlemany moredesignvariables
than waspreviously practical. This featureis important for shock-free designbecause
transonic ow is very sensitive to small shape changes. To handle subtle geometry
changesfor shack wealkening, it generally requiresa large number of parametersfor
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the control geometry During the 1990sand 2000s,the adjoint method has beena
very active researb topic. Numerousresearbershave beenfocusingon the useof ad-
joint methodsin many di erent areas[1, 10, 35,49, 53, 63, 66]. Howewer, noneclearly
exploits the benet of this shock-free capability to redesignthe wing planform. In
this dissertation, we extend the adjoint method to cover planform design,and blend
in shack-free designto dewelop a designmethodology that hasthe potential to yield
large improvemerts in aeradynamicswithout penalizingthe structural weigh.

1.2.4 Wing planform optimization with simplied structural
weight

From the earlier discussion the two relevant disciplinesare aeradynamicsand struc-
tural weight. Therefore we minimize a combination of drag and wing weight. This
optimization not only makesthe designmorerealistic, but we can alsoeliminate some
constrairts sud asa thicknessconstrairt that is requiredfor pure aeradynamic shape
optimization, without which the thickness-to-tiord ratio would keepreducingto an
extert that would make it impossibleto t a su cient structure box or have enough
volume to store the fuel inside the wing. Thus we mainly target the minimization of

Il = 1Cp + 2Cw (1.4)

weight
Gr Sref

a non-dimensionalweight coe cient. This choice of cost function emphasizeshe

Here ; and , are properly chosenweighting constaris, and Cy =

trade-o betweenaeradynamicsand structures. For designof a long rangetransport
aircraft, equation(1.4) actually certers around the idea of improving the rangeof the
aircraft.

Considerthe well known Breguet range equationwhich providesa good rst esti-
mate of the range of the airplane

VL, We+ W
R= ——In—_—"

=~ CD We (1.5)

whereV is the speed, C is the speci ¢ fuel consumption of the engine,L=D is the
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lift to drag ratio, W, is the landing weight, and Ws is the weight of the fuel burnt.
During the last few decadesthe meansto improve the e ciency of an airplane has
certered around reducing the fuel consumption C of the engine,increasingVL=D,
and reducing the airplane weight. The last two methods together imply that the
constarts ; and , in the equation (1.4) can be estimated from the range equation
(1.5).

Notice that the rangeequationalsostresseshe importanceof transonic igh t for a
long rangeaircraft. Sinceairplanesshould y at the condition that maximizesV L=D
and the typical drag variation is similar to that in gure 1.5, this meansthat the

155) d

0 Mcr Mdd 1.0 Moo

Figure 1.5: Typical variation of airplane drag with Mach number. M and Mgq
represen the critical and drag divergenceMach numbers respectively.

cruising speedshould be increaseduntil the onsetof drag rise dueto the formation of
strong shack waves (point bin gure 1.5). Consequetly, the best cruise speedis the
transonic regimeand for any wing designmethod/to ol to be useful, the tool must be
able to handle a designthat involvesthe transonic o w.

1.3 Scope and contribution

In this dissertation, we dewelop a framework of planform designthat makesuseof the
shock-free methodology extensively deweloped during the last decade. The key idea
certers aroundthe capability to weakenthe shock and tune the trade-o betweendrag
and structural weight of the designvariablesto improve the overall designwithout



CHAPTER 1. INTRODUCTION 12

leadingto any unrealistic result. Becausedi erent designparametersa ect drag and
weight to a di erent degree,we exploit this hierarchy to gain improvemers in drag
without a correspnding weight penalty or producing an unrealistic shape.

To accomplishthis we employ the wing planform as well asthe wing sectionsas
the designparametersand focus on the aeradynamic optimization with a simpli ed
structural weight. During this dewelopmen we aim to answer whether it is possible
to take advantage of the shock-free feature.

Becausewe are more interested in exploring the bene t of the shack-free wing
and to demonstrate how to implemert the adjoint method for the weight, a quick
implemertation is to usean analytical expressiorto model the structure weight. This
low- delit y structural model senesthe proof-of-conceptpurpose. It alsoestablishesa
guideline for higher- delity dewelopmen. Thereforethis work is the \enabling step”
towards a realistic automated wing designedby a computer.

We follow the framework of aeradynamic shape optimization initially deweloped
for wing section design by Jamesonand extend the method to include planform
design. To fully exploit the key advantage of the adjoint method on computational
costsaving of sensitivity calculation, we extendthe adjoint method to handlemethods
for planform sensitivity.

Along this line of dewelopmen, we have cortributed the following:

Dewelopmen of aeradynamic sensitivities to planform changesusing the ad-
joint method. This may be consideredas large scaleoptimization, comparedto
section optimization.

Alternativ e gradiert calculation that is lesserror-prone.

Adjoint sensitivity of a simpli ed weight model for both sectionand planform
design.

With the use of an adjoint method for both section and planform design, the
computational costis very low. It is solow that it allows the designto be doneon
a laptop computer. Actually, most inviscid results demonstratedin chapter 4 were
doneon the author's laptop (Athlon 3.2 GHz) in lessthan half an hour.
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Finally, it is important discusscriteria that are outside the scope of this disserta-
tion. At this \enabling step”, we focuson exploring the bene t of the shock-free wing
and to demonstratehow to enablethe implemenation of the adjoint method, beyond
just aeradynamics. As a result, we have limited our study to aeradynamic design
with a simplied weight model. Moreover, we use a relatively simple cost function
which minimizesdrag and weight. No explicit constrairts, other than xed lift, were
imposedin this study.

In real airplane design, of course,there are many other criteria: multiple design
points, fuel distributions, stability-and-cortrol e ects, aero-elasticsgtc. A survey by
Lynch[46] indicates someof the generaldesigncriteria that must be met in the design
of any e cient transonic wing. Theserequiremerns include:

1. Good drag characteristics (parasite, induced, compressibiliyy) over a range of
lift coe cients, i.e. CLdesign 0:1 at M¢ryise

2. No excesgenaltiesfor installation of nacelle-gylons, fairing, etc.

3. Bu et boundary high enough(1:3g margin required)to permit cruisingat design
lift coe cients.

4. No pitch-up tendenciesnear stall and bu et boundary.
5. Cortrol surfacee ectivenessmust be maintained.
6. No unsatisfactory o -design performance.
7. Su cient fuel volume for designrange.
8. Structurally e cient (to minimize weigh)
9. Must provide su cient spaceto housemain landing gear.
10. Must be compatible with selectedhigh-lift system.
11. Must be consistem with airplane designfor relaxed static stability.

12. Must be manufacturable at a reasonablecost.
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Of course,it would be next to impossibleto take into accourt all of thesecriteria
to perform an optimization. Newertheless,the designmethodology presened in this
work providesthe basisfor an extensionto form a more completewing designtool.

1.4 Outline

The rest of this dissertation starts with the description of ow and structure mod-
els. Chapter 2 descriesthe mathematical formulation of this dissertation, including
formulation of the adjoint equation for a variety of cost functions. Chapter 3 applies
the basicidea of the adjoint method to planform design. A technique to determine
planform gradiert that is independern of the number of planform variablesis alsode-
scribed in the samechapter. It alsocortains gradiert comparisonsbetweenthe nite

di erence and adjoint methods for validation purpose. Chapter 4 shows results for
both inviscid and viscousdesignsfor compressibleo w. Casestudiesto improve air-
plane performanceare also shavn, and reveal an important trend to improve many
existing wings for long range transport aircraft. Finally, chapter 5 concludesthis
dissertation.



Chapter 2

Mathematical form ulation

2.1 The adjoint approac h to wing design

The adjoint method hasbeenproposedfor shape designsince1974[58 but it did not
have much impact on aeradynamic designuntil its application to transonic o w[20].
The major impact arosefrom its capability to e ectiv ely handlea designproblemthat
involvesa large number of designvariablesand is governedby a complexmathematical
model, such as uid ow.

Let us considera wing designproblem:

M inimiz ing I (w;S) (2.1)
writ S (2.2)
subjectedto  R(w;S)=0 (2.3)

wherew isthe ow variable, S is the vector of wing designparameters,and R(w; S) =
0 is the ow equation.

For instance, for a drag minimization problem we can take | = Cp which is
an integral of ow w (pressureand shear force) over the wing S (represered by
parameterssud as airfoils and planform). We modify S (the airfoils and planform)
to reducethe drag. The pressureand shearforce are obtained from the o w equation
R = 0usingCFD. (Later in chapter 3, we will setthe costfunction | asa comnbination

15



CHAPTER 2. MATHEMATICAL FORMULATION 16

of drag, structural weight, and inversedesign.)
A changein S resultsin a change

@ ' @
| = — w+ — S; 2.4
@v @ (24)
and w is determinedfrom the equation
@R @R
R= — w+ — S=0 2.5
@v @ 25)

The nite di erence approad attempts to solve w from equation (2.5) and sub-
stitute it into equation(2.4) to calculate | . Howewer, aswe discussedn section1.1,
when the dimensionof S is large, this approacy becomesmpractical.

For an adjoint approad, we try to avoid solving for w. This is done by intro-
ducing a Lagrangemultiplier , and subtracting the variation R from the variation

I without changingthe result. Thus, equation (2.4) can be replacedby

_ e, 1 @& @®
I_(@v W+@ )S (@VW+@)S
T T
= % T% w + % T% S (2.6)

Choosing to satisfy the adjoint equation,

@ ' @
= - 2. 2.7
av a (2.7)
the rst term is eliminated, and we nd that
| =G S; (2.8)
where T
GT = Q T @
@ @

The advantage is that equation (2.8) is independernt of w, with the result that the
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gradiert of I with respect to an arbitrary number of designvariables can be deter-
mined without the needfor additional ow- eld evaluations.

Oncethe gradiert vector G hasbeenestablished,it may now be usedto determine
a direction of improvemen. The simplestprocedureis to make a stepin the negative
gradiert direction (steepest desceh method) by setting

S= G

where is positive and small enoughthat the rst variation is an accurate estimate
of |. The variation of the costfunction then becomes

= G'G

More sophisticatedseart proceduresmay be usedsud as quasi-Newton methods,

which attempt to estimate the secondderivative @%Sj of the cost function from

changesin the gradiert % in successi® optimization steps. These methods also

generallyintroduceline seartiesto nd the minimum in the seart direction which is

de ned at eat step. Referencdl11] providesa good description for thosetechniques.
Howewer, not all the techniques are practical for our wing design problem. Line
seardes,for example,would require extra ow calculations,which we try to avoid.

2.2 Flow equation

In section 2.1, the ow variables and the geometry are related by the governing
equationR(w; S) = 0. This sectiondiscusseshe details of thesegoverning equations.

For a computational method to be usefulin the designprocess,t must be based
on a mathematical model that represets signi cant featuresof the ow sud asshack
waves, vortices, and boundary layers. Throughout this dissertation, both the Euler
and Navier-Strokes equationsare usedto model the ow. We will usethe Navier-
Strokes(NS) equationsto derive the governing adjoint equations. The Euler equation
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can be simply done by dropping the viscousterms of the NS equations.

It provescorveniert to denotethe Cartesiancoordinatesand velocity componerts
by X1, X2, X3 and ug, u,, uz, and to usethe corvention that summation over i =
1 to 3is implied by a repeatedindex i. Then, the three-dimensionalNavier-Stokes
equationsmay be written as

@V @I @vi
@ @ @&

wherethe state vectorw, inviscid ux vectorf andviscous ux vectorf, aredescribed

%

in D; (2.9

respectively by

N

NN O

e

u, = uiuz+ piz _ fvi = i j2 , (2.10)
g Usg uu3+p,3 i j3 g
E up j + k% ’
where j is the Kroneder delta function. Also,
1
p=( 1) E Suiti (2.11)
and
H=EH+p (2.12)

where is the ratio of the speci ¢ heats. The viscousstressesnay be written as

@I @j + B @k .

i & & G (2.13)

where and arethe rst and secondcoe cients of viscosity. The coe cient of
thermal conductivity and the temperature are computed as

=2 1=F (2.14)
Pr’ R
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n2=1
g
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Physical Domain

Computational Domain

Figure 2.1: Physical and computational domains

wherePr is the Prandtl number, ¢, is the speci c heat at constart pressure,and R
is the gasconstart.

Using a transformation to a xed computational domain as shavn in gure 2.1,
the Navier-Stokes equationscan be written in the transformed coordinates as

@Jw) N @Fi Fu)

@ @, =0 inD; (2.15)
wherethe inviscid terms have the form
% = @@? (Si fi);
the viscousterms have the form

and S; = JK; ' are the coe cients of the Jacobianmatrix of the transformation,
which represem the projection of the ; cell facealongthe x; axis.
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2.3 Structural weight model

Wing weight is directly given by the wing structure, which is sizedby aeradynamic
load, allowable de ection, and failure criteria sud as buckling. Dierent methods
to estimate wing weight have been proposed, ranging from empirical expressionto
complexFinite Elemert Analysis. At the detaileddesignlevel, oncethe wing structure
has beenlaid out, structure engineersuse nite elemen analysisto sizethe interior
structure to satisfy various criteria. Then the material weight of ead componert is
addedup to calculatethe structural weigh.

When the detailed structure layout is not known, which is usually the casefor
conceptualand preliminary designlevels, it is very di cult to predict the structural
weight correctly. There is much active researb [4, 45, 50 focusing on the optimum
structural designfor a given wing. Most works extensiwely use nite elemen analysis
and couple high- delity ow solutionsto capture the aero-elastice ects.

Although the use of high- delit y methods to estimate the wing weight certainly
gives more accurate weight prediction, the focus of this dissertation is mainly on
demonstratingthe newbene t of using shack-free technologyto gain a largeimprove-
mert in aeradynamic performancewithout a penalty on structural weight, regardless
of the delity of the structural model. The quickest approad is to selecta struc-
ture model that can be expressedanalytically. Howewer, in order to demonstrate
the adjoint method approad to structural-weight sensitivity, this model should be
sensitive to the aeradynamic loads as well. For future implemertation with a high
delit y weight model, the approad will needto be augmered by the addition of
structural-adjoint equations.

An analytical model to estimatethe minimal material to resistmaterial and buck-
ling failures has been deweloped by Wakayama [73]. When shear and buckling ef-
fects are small, they may be neglected,resulting in a simpli ed model deweloped by
Kroo [38] and McGeer[5]. In this dissertation, we follow the analysisdeweloped by
Kroo and McGeer, which combinesanalytical expressionwith empirical expression.

The wing structure is modeledby a box beam[56], whosemajor structural material
is the upper and lower box skin. The skin thickness(ts) varies along the spanand
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S

(a) swept wing planform (b) sectionA-A
Figure 2.2: Structural model for a swept wing

resiststhe bendingmomert causedby the wing lift. Then, the structural wing weight
Wiing Can be calculatedon the basisof the skin material.

Considerthe box structure of a swept wing whosequarter-chord sweptis andits
cross-sectiomA-A asshawvn in gures 2.2. The skin thicknesstg, structure box chord
Gs, and overall thicknesst vary along the span, sud that the local stressis equal
to the maximum allowable stresseverywhere. The maximum normal stressfrom the
bendingmomen at a sectionz is

_M(@z)
ttsCs

The correspnding structural weight of this box beamis is
Z
Wying,,, =  matQ 2tcsdl
structual span
matJ £ % M (Z )
coy)

b

2

Z
matJ 2

o) o tz)
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and
VVwing
C = b ox
Wo QJ. Sref
b
2 M
= *M@z) Z; (2.16)
cof) o tz)
where
— 4 matg .
QJ. Sref ’

mat 1S the material density, and g is the accelerationdue to gravity.
The bending momert can be calculated by integrating pressuretoward the wing
tip. Ignoring the end e ects due to the rotated axis of the box beam,

‘o2z z)

M(z) = ) dA
b
Popae 2)
= dxdz
. coq)
wing
e 21 pxa 2)
Cu= oy E . | oy dxdzdz (2.17)
wing

For the subsequen derivation of the carrespnding adjoint boundary condition
in_section B.6, Cyw, must be expressedas ,dB in the computational domain, or
dxdz in a physical domain to match the boundary term of equation (2.25).

To switch the order of integral of equation (2.17), introduce a Heaviside function

0 z<z
1, z> 7z
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Then equation (2.17) can be rewritten as

o g 2
ZvZy | _
271 pdHE z2)z z)
o o t(z)
wing
Zy
= cof) 2 p(x; z)K (z)dxdz; (2.18)
wing
where
Zy
K(2) = H(z z)(z z)dZ
ZO t(Z )
_ ‘z 2z dz
o t(z)
In the computational domain,
I
(2.19)

Cw, = cof) 2 , P( 15 3)K( 3)Sz2d 1d 3;

and K (' 3) is a one-to-onemapping of K (z).
Finally, to accoun for the weight of other wing material sud asribs, spars,webs,

sti eners, leadingand trailing edgesslats, aps, main geardoors, primer and sealan,

we multiply Cy, of equation (2.19) by a correction factor K o p.
Moreover, statistical correlation over the range of aircraft type indicates a rela-

tionship betweenW,,ing=S and Wy,ing, . =S as a linear function, shavn in gure 2.3.
A good referencecan be found in reference[3) Therefore we add another term to

accourt for area-degndert wing weight
| o
JS22jd 1d 37 [Spo) = Sz Sy

(2.20)

Cw, = =—
Ws T Sref B



CHAPTER 2. MATHEMATICAL FORMULATION 24

A ¢ indicates different airplan
Wwing
S
00 Wwing box
S

Figure 2.3: Statistical correlation of the total wing weight and the box weigh based
on wing loading over the range of aircraft type.

along with a correction factor K ¢orr.s. Thus

Cw = Kcorr;bCWb + Keorr:sCws (2.21)

2.4 Design using the Euler and Navier-Strok esequa-
tions

Supposewe chooseto minimize the cost function of a boundary integral
Z Z
l= M(w;S)dB + N (w;S)dB

B B

where M (w; S) could be an aeradynamic cost function, e.g. drag coe cient, and
N (w; S) could be a structural cost function, e.g. structure weight. A shape change
producesa variation in the ow solution w andthe metrics S, which in turn produce
a variation in the costfunction

Z Z

| = M (w;S)dB + N (w;S)dB ;
B B
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with

[MW]| w+ My and

N [NW]| w+ Ny :

Here we continue to usethe subscriptsl and Il to distinguish betweenthe cortribu-
tions assaiated with the variation of the ow solution w and those assaiated with
the metric variations S respectively. Thus [M ], and [Ny], represen % and %
with the metrics xed, while M ;, and N, represeh the cortribution of the metric
variations Sto M and N.

In the steady state, the constraint equation (2.15) speci es the variation of the
state vector w by

@

@
Here F; and F,; can also be split into cortributions assaiated with  w and S
using the notation

(Fi Fu)=0

Fi
I:vi

[Fiw]| W+ I:iII

[Fviw]| w+ I:vill:

Multiplying by a co-statevector , which will play an analogousrole to the Lagrange
multiplier, and integrating over the domain produces
Z
'— (F F,)dD =0

D |

If is di erentiable this may be integrated by parts to give

z Z o
n; T (Fi Fvi)dB = (Fi I:vi)dD =0 (222)

B D i

Sincethe left hand expressions equalto zero,it canbe subtracted from the variation
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in the cost function to give
Z
| = M+ N n " (FF F,) dB
ZB
@ T
+ — (Fi Fvi) dD : (223)
D i
Now, since isanarbitrary di erentiable function, it canbe chosenin sud a way that
I no longerdependsexplicitly on the variation of the state vector w. The gradiert
of the costfunction canthen be evaluated directly from the metric variations without
having to recomputethe variation w resulting from the perturbation of ead design
variable.
The variation w may be eliminated from (2.23) by equatingall eld terms with
subscript\ 1" to producea di erential adjoint systemgoverning
@’ :
——[Fiw  Fuwl, =0 inD: (2.24)
|

The correspnding adjoint boundary condition is producedby equatingthe subscript
\'I" boundary terms in equation (2.23) to produce

n; T [Fiw I:viw]| = [M W]| + [NW]| on B: (225)

The remaining terms from equation (2.23) then yield a simpli ed expressionfor the
variation of the costfunction which de nes the gradiert

z
My+ Ny n "[F Fyl, dB
B
)
¥ @ [F Fa, d; (2.26)
I

D

N 1l

By choosing to satisfy the adjoint equation with appropriate boundary condi-
tions depending on the cost function, the explicit dependenceon w is eliminated.
This allowsthe costvariations to be expressedn termsof S and the adjoint solution.
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Thus we obtain 7
| = G Sd =hG Si

where G is the in nite dimensionalgradiernt (Frechet derivative) at the cost of one
ow and one adjoint solution. Then one can make an improvemen by setting

S= G

Although G can be obtained directly from equation (2.26), the explicit form of
equation (2.26) is usually cumbersometo represeh A more compact form can be
obtained by integrating the last term of equation (2.26) by parts
Z

My+ Ny n T[F Fy], dB
B Z
+ nin T[F  Fyl,dB T—i [Fi  Fu], dD (2.27)

B D

N I

The middle terms canceland equation (2.27) reducesto

Z Z
| = f M, + N||gdB T R||dD (228)
B D
Mathematically equations(2.26) and (2.28) are equivalert. Howewer from a program-
ming viewpoint, equation (2.28) is much more compactand easierto program.

2.5 Adjoin t equation and boundary conditions

In this sectionwe selectan inversedesignproblemin the inviscid ow to illustrate how
to dewlop the adjoint equation and the correspnding boundary conditions. Then
we summarizethe adjoint equationand boundary conditions for various optimization
problem, including minimization of drag and structural weight. The full derivation
of adjoint formulation is quite complicated. The detailed derivations can be found in
appendix B.
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2.5.1 Inviscid inverse design: lllustration

For the inversedesignproblem, we seard for the wing shape that matchesa desired
pressuredistribution py. The cost function is expresseds
z

(b pa)°ds (2.29)

NI =

For simplicity, we will assumethat the wing surfaceis mapped from a physical
domain to a computational coordinate surface , = 0, asshowvn in gure 2.1, which
is the areasurroundedby points A; B;C;D;E; andF. On this , = 0 surface,

n1:n3:0; n, = 1; dB :d1d3:

Following the notation S; to represem the projection of the computational ; cell
facealongthe physical x; axis, a wing areavector can be written as

8 9
3 SuZ

In this computational domain, the cost function (2.29) is transformedto
ZZ
(P pa)’iSz dd 3 (2.30)

Bw

NI =

wherethe quartity 0
1S2) = S35y

denotesthe faceareacorrespndingto aunit elemen of faceareain the computational
domain.
To derive the adjoint equation and boundary condition of this inverse design
problem, considerthe variation of the cost function (2.30)
ZZ 1 ZZ
= (p p)iSipdida+s (P p)’ (Siduda (231)

Bw Bw
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Also recall the inviscid portion of equation(2.22)

Z Z @7
n ' FdB FdD = 0O (2.32)

B D @I
We assumethat the boundary cortributions at the far eld may either be neglected
or elseeliminated by a proper choice of boundary conditions. Moreover becausethe
wing is restricted to the , = 0 surface,the only non-zeron; is n,. Therefore we
consideronly the variation F, for the boundary integral of equation (2.32). Recall

the explicit form of F,

U,
Uous + pSy
Uouz + pSe
Uous + pS3

U,H

F2:

VWA AR OO
= VAN IMXRXAN/ O

Becauseof the ow tangencyboundary condition, we set U, = 0 and the variation of
the inviscid ux at the wing boundary is reducedto

(2.33)

Therefore,equation(2.32) canbe simpli ed and then subtracted from equation(2.31)
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to give
ZZ ZZ

o 1 o
= (P PiSd pdads+ > (p po)° S duds
ZZz% B

( 2So1+ 3S;+ 4Sz3) pdada
zZ8
P( 2 Sa1+ 3 S+ 4 Sp) dads
z B z
@T. @ QT
—Sj— wdD + — S;f; dD: 2.34
@ @y s @ (2:34)
To eliminate the ow dependencies p and w from the variation of the cost
function (2.34), we can choose to satisfy
@ '@

= -0 inD; (2.35)

Si oV @

and s s s
i + ﬁ + ﬁ = on By;
SN TN I !
which is equivalent to
j+1Nj =P Pa; (2.36)

wheren; are the componerts of the surfacenormal given by:

Sy
ng = —
RS

Equation (2.35) is calledthe "adjoint equation”, which is linear in termsof . Be-
causeit is derived from the ow equation, which arethe partial di erential equations,
the adjoint equation requiresan adjoint boundary condition (2.36).

Oncethe adjoint variables satisfy the adjoint equationand boundary condition,
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the variation of the cost function (2.34) is reducedto
L ZZ
= 5 (P p)° iSdids

Zz Buw
P( 2 S;a+ 3 Spot 4 Sp3) dds
Bw
z %
+ S a Sij fj dD : (237)

This form is quite complicated and could be error-prone. We can make it more
compactas proposedin section2.4 by integrating the last term by parts to give

7z z
(P Ppa)® [Szjdids T@ S;f; dD : (2.38)

Bw D

NI =

To calculatethe gradiert of a designparameterF , we perturb the shape with respect
to the parameterF to produce S onB,, and S; on D then useequation (2.38) or
(2.37) to calculate I. Then the gradiert is

I

- (2.:39)

We repeat the sameprocessfor ead di erent designparameter. Howewer the advan-
tage of equations(2.38) and (2.37) is that they are independen of ow variations
p and w. Therefore,we are not required to re-sohe the ow equation. This gives
us a large advantage for gradiert calculation, especially when the number of design

variablesis large as we have in full wing optimization.

2.5.2 Practical design cost functions

Following the sameprocedure,the adjoint equation for the designusing the Navier-
Stokesequationscan be written as

fi 7 .
S”_v:/ % M ¥C =0 inD; (2.40)
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where
(C ) = %1@@? hS” @% o
(E i = @@?ns” h %;Jr % o %E io
t e S ui@%J“ U + juge
i Si o for i=1,23
(C )s = l@@? Sjj @% :

and L; C: andM are transformations which relate the conserative variables to the

primitiv e variables. Their explicit form can be found in appendix B.
The form of the adjoint boundary conditions dependson the costfunction. Table

2.1 summarizessomeof the commonly usedcost functions.

Table 2.1: Adjoint boundary conditions for various cost functions

Minimizing Cost function | Adjoint B.C.
R
Drag Cpo = Bq ,dS k = Gk
Weight | Cw = 35" gPf 11 9K (0)Seed 1d s | jualy = 52K
+ o plS2id ad 5
, R 2
Inverse 5> g(P pg)°dS j+1Nj =P Pd

2.5.3 Combined cost function

Notice that the adjoint equationis linear in

and the costfunction term only appears

at the boundary condition. Therefore when we optimize a combined cost function
sud asa weighted sumation of drag and weight, we only modify the adjoint boundary



CHAPTER 2. MATHEMATICAL FORMULATION 33

condition. For example,if we chooseto minimize
Il = 1Cp+ 2Cw

The adjoint equationstill retainsthe form of equation(2.40) and the adjoint boundary
condition becomes

= + — K
k 16k 2005() S 2

2.6 Optimization technique

Generaloptimization procedurestypically involve two steps;calculation of the gradi-
ent and line seartiesalongthe direction of steepest desceh or an improved direction
basedon an estimation of the Hessian. This method works quite well aslong asthe
cost function can be ewvaluated easily This is not the casefor the designusing the
Euler or Navier-Strokesequations. Herewe try to minimize the number of evaluations
of the cost function.

The adjoint method is a strategy to reducethe cost of the gradiert calculation.
In order to avoid line seartes, we use a cortinuous descen processwith gradiert
smaothing as presened below.

2.6.1 Contin uous descent

The basicideais to treat the seart processas a time dependen processin pseudo

time
ds _

e
where S is the vector of designvariables, asillustrated in the sketch for two design

G

variablesin gure 2.4
A sequencef small stepscorrespndsto a forward Euler discretization in pseudo
time
shtt = gn G

The cortinuous desceh processcan be analyzedas follows [3(]. Supposethat the
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stdescent path

Continuous path

Figure 2.4: Continuous descen for two designvariables

optimum is at S . Near the optimum the costl canbe represeted as
1 T
I(S)=I(S)+§(S S)YA[S S)+:::

wherethereis no linear term becausehe gradiert G(S ) is zero,and A is the Hessian.
Also the gradiert nearthe optimum is

G(S)=A(S S)+:::
Thus the cortinuous processbecomes

d (S S)= A(S S)

dt -
SinceA is positive de nite at a minimum, it can be expectedthat

A= RMR'
whereM is a diagonalmatrix of the eigervalues ¢ and R is a unitary transformation
R'TR=RR" = |

Then setting
v=R'(S S)

we nd that
dv

N oM
a -
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Now the maximum allowable time stepis t = n%ax while the rate of decy is
dominated by the slovest modee mn !,
In orderto improve the rate of convergencewe canpreconditionthe descen process

as
ds _

9
An ideal preconditioner is the inverse HessianA 1. Howewer this is prohibitiv ely

PG

expensi\e to calculate. Moreover whenit is estimatediterativ ely from changesin the
gradiert at eat step, asin the well-known quasi Newton methods, we have both to
perform exactline sear©iesand to calculatethe gradiert very accurately

2.6.2 Gradien t smoothing

In fact, the gradiert G obtained from section 2.4 is generally of a lower smoothness
classthan the shape S. Henceit is important to restorethe smaothness. This may
be a ected by passingthis gradiert G to a Sololev inner product of the form
Z
@ @

hu;vi = (uv+ @@)d

This is equivalert to replacing G by G, wherein one dimension

@ @5 :
G — — =G, G= zeroat end points
@ @ P
and making a shape change S = G. Then for small positive

hG G

guararteeing an improvemen.

This gradiert smaothing provesto be an e ective preconditioner, basedon the
understandingthat the gradiert is in a lower smaothnessclassthan the initial geom-
etry. It is shovn by Jamesonand Vasslerg[34]that for problemsin the calculus of
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variations, it canyield convergencein a number of stepsindependert of the number
of designvariables. Moreover the cortinuous descenh processhasthe advantage that
it doesnot require accurate gradierts to achieve an improvemen at eat step. The
descen direction only needsto be within 90 degreeof the true gradiert. Thusit is
not necessaryto solve the ow or the adjoint equationsto full corvergenceat eat
step. This e ectively reducesthe optimization to a \one-shot" process.

The e ciency of gradiert smoothing stemsfrom the fact that when the mesh
points are usedasthe designvariables,they cannot be moved independertly without
violating the requiremert of maintaining a smaoth shape. Convertional optimization
methods, on the other hand, assumethat the designvariables are completely inde-
penden. It appearsthat gradiert smoothing may be a superior method for shape
and trajectory optimization problemswhere smaothnessis critical. It should alsobe
noted that this method is basedertirely on driving the gradiert to zero,and doesnot
directly measurethe cost function. It is of coursepossiblethat the gradiert could
read zeroat a local minimum. In two-dimensionaloptimization studiesof airfoils in
inviscid transonic o w this never seemso occur, sincethe drag is almost invariably
reducedto zero,correspnding to a shack free shape. In this casethe optimum shape
is ertirely non-unique,andthe nal optimized shape will depend on the initial shape.
In three-dimensionaldesignthe possibility of reading a local minimum which is not
the global optimum cannot be ruled out. If this situation is suspected, it may be
prudert to start optimizations from alternative initial con gurations. As in the two-
dimensionalcasethere may alsobe at regionsof the designspacewheresigni cantly
di erent shapeshave equal performance.

2.7 Discretization of the o w equations

Both the ow and the adjoint equations are discretized using a semi-discretecell-
certered nite volume sdheme. The corvective uxes acrosscell interfacesare rep-
reseried by simple arithmetic averagesof the uxes computed using valuesfrom the
cells on either side of the face, augmened by arti cial diusiv e terms to prevert
numerical oscillationsin the vicinity of shack waves.
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The numerical convective ux acrossthe interfacebetweencellsA and B in athree
dimensionalmeshhasthe form

1
hag = ESABJ- fa + fg dag ;

whereSyg, is the componert of the faceareain the | th Cartesiancoordinate direction,
fa, and fg, denotethe ux f; asdened by equation (2.10) and dag is the
di usiv e term. To include the viscousterms of the Navier-Stokes equationsinto the
spatial discretization shemeit is necessaryto approximate the velocity derivatives
%ﬁ which constitute the stresstensor ;. Thesederivatives may be ewvaluated by
applying Gauss'formula to a cortrol volumeV with boundary S.

Throughout this dissertation we use a multistage explicit stheme, belongingto
the generalclassof Runge-Kutta schemes[7]. Rapid corvergenceto a steady state
is achieved via variable local time steps,residual averaging,and a full appraximation
multi-grid scheme.

The detailed description of the discretization including corvergenceacceleration
techniques sud as multi-grid, local time stepping, and residual averaging can be
found in appendix A.

2.8 Discretization of the adjoin t equations

The adjoint di erential equationsfor the Navier-Stokesformulation have beengiven
by equation (2.40). To nd the solution of the adjoint equations, we introduce a
time-like derivative term, which will vanish at the steady state solution of equation
(2.40). Thus, the adjoint equations(2.40) can be written as

@ T @ 1T .

— C' —+ M C =0 inD: 241
@ '@ (2.41)

The main di erences betweenthe ow equationsand the time-like adjoint equations

(2.41) are that the adjoint equationsare linear equationsand they are not in strong

consenration form. Howeer, they correspnd closelyto the linearized o w equations
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with the wave propagating in reverse directions. Thus similar discretization tech-
niques that have been applied earlier to the ow equations can be applied to the
adjoint equations. Also similar arti cial di usiv e terms are introduced in the dis-
cretization of the adjoint equation, but with the opposite sign becauseof the reversal
of the the wave directions. The detailed description for the adjoint discretization can
alsobe found in appendix B.

2.9 Flow and adjoint solvers

The baseline ow and adjoint solver used in the discretization are "syn88" and
"syn107". Thesecodeswere deweloped by Jamesonet.al.[31, 26, 23, 24]. The ow
solver soles the three dimensional Euler(syn88) and Navier-Stokes (syn107) equa-
tions, by employing the JST sdheme[33, together with a multi-step time stepping
stheme. Rapid cornvergencelo a steadystate is achieved via variable local time steps,
residual averaging, and a full approximation multi-grid sdheme. The adjoint solver
solves the correspnding adjoint equationsusing similar techniquesto those of the
ow soher. In fact, much of the software is sharedby the ow solver and adjoint
soler.



Chapter 3

Implemen tation

3.1 Design variables

As we discussedn chapter 1, both wing sections(airfoils) and wing planform have
a large impact on the drag and weight of the wing. In this dissertation, we employ
both wing sectionsand wing planform aswing designparameters.

3.1.1 Section design variables

Surface meshpoints as design variak

Figure 3.1: Sectiondesignvariablesand meshmovemen direction

In computational uid dynamics, a wing is generally represeted by boundary

39
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meshpoints. Therefore,the simplestway to selectsectiondesignvariablesis to use
the surfacemeshpoints on the wing as the designvariables. This choice of design
variableshas an advantage that it doesnot require surface tting, sud asthe spline
or polynomial function, which is important whenthe computational grid is provided
without detailed information of how the grid is generated. This type of geometryis
call "CAD free" geometry

Oncethe gradiert information of ead point is provided, e.g. by the solution of an
adjoint method, we can move the surfacepoints to improve the design. For a small
meshperturbation, which is normally the casefor the wing design,it is not necessary
to regeneratethe mesh. Instead we can perturb it smoothly along the meshlines
emanating from the surface,as shovn in gure 3.1. This can avoid cross-@er of the
perturbed grid.

3.1.2 Planform design variables

From the trade study, the parametersthat lead up to a basic designwhich satis es
the generaldesigncriteria include[44:

wing shape area

span sweep

aspect ratio taper ratio
airfoil types airfoil thickness

Becausesomeof these parametersdo not de ne the wing geometry uniquely, we
employ another set of design parametersthat still represeih these parametersbut
can be extracted from surfacemeshpoints. In this dissertation we model the wing
of interest using six planform variables: root chord (c;), mid-span chord (c,), tip
chord (c3), span(b), leading-edgesweep( ), and wing thicknessratio (t), asshavn in
gure 3.2. This choiceof designparameterswill leadto an optimum wing shape that
will not require an extensiwe structural analysisand can be easily manufactured.

In the industry standard, it may require upto three hundred parametersto com-
pletely descrike the wing planform. Although we demonstrateour designmethodology
using the simpli ed planform, our designmethod is still applicable to the industry
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Figure 3.2: Planform designvariables

standard becausethe adjoint method is independen of the number of design vari-
ables. Thus our method can be easily extend to cover many parameterswithout a
large increasein computational cost.

3.2 Cost function for planform design

As proposedin sectionl1.2.4,in this work we minimize the weighted sum of drag and
a simpli ed wing weight

Il = 1Cp + 3Cw

using the Navier-Stokesequations(NS). Howewer, aswe will shavn in chapter 4, the
computational cost of the designusing the NS is one order higher than the design
using the Euler equations. The problem comesfrom the slower rate of corvergence
due to the limited time step that is required for a highly stresscell to resole the
boundary layer. Moreover the number of computational cells required for the NS
calculation are four to v e times higher that that of the Euler calculation. One way
to reducethe computation cost of the designis to start the optimization using the
Euler equationto obtain an intermediate shape. Then we perform the Navier-Stokes
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designon this redesignedshape.

Howeer, without the viscosily, the optimization tool cannot preven steepadverse
pressuregradiert, which will leadto ow separationif the viscosity is presen. We
add an inversedesignterm to addressthis problem. Thereforewe optimize

Z
1
| = 1Cp + 25 (p pd)2d5+ 3Cw (3.1)
B

wherepy is the target pressurewhich can be set by smaothing the existing pressure,
and ;, », and 3 are weighting constaris. The relative importance of drag and
weight are represeted by the coe cients ; and 3. The choice of theseweighing
constarts is discussedn detail in section3.6.

3.3 Wing weight estimation

From our discussionin section2.3, the expressionof wing weight cortains terms that
correspnd to bending-load-carryingmaterial and two correction factors; K ¢or:p and
Kcorr:s. TO estimate thesecorrection factors, we can rewrite the expression(2.21) as

Wwing_ %_’_
S ‘s ?

(3.2)

whereW,,ing is the total weight of the wing, W, is the weiglt of the wing box, and S is
a grosswing area. When there is information from more than two aircraft, we canuse
the \least-square” curve- tting strategy to calculate ; and ,. For this dissertation,
due to the restricted accesdo proprietary aircraft weight information, only two sets
of data are available; the Boeing 747 and McDonnell DouglasMD-11. Howe\er, this
is enoughestimatethe correctionfactors. The relevant data is shavn in table 3.1. In
this table, W\ is load-carryingstructure. It consistsof sparcaps,inter-spar coverings,
sparwise sti eners, spar webs, spar sti eners, and inter-spar ribs. The term W, is
our computedbending-carryingmaterial, which is calculatedby using CFD. We rst

compute Cy, of equation (2.19) and then multiply this non-dimensionalweight by
the free-streamdynamic pressureat 33,000feet and the correspnding referencearea.
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Table 3.1: Structural weight data [3]

Aircraft S W, Wie | Wuing
(ft*) | (Ibg | (Iby | (lby

B747 5,023| 44,705| 50,395| 88,202

MD11 | 3,293| 33,292| 35,157| 62,985

Table 3.2: Flight conditions for wing weight estimation

Aircraft | S | Mach | C. | Nyt
(ft2)

B747 5,825 .85 | .45|3.75

MD11 | 3,648, .83 |.50]| 3.75

The ight conditions are shown in table 3.2.

By comparing our computed W, with the real weight W in table 3.1, we can
seethat our box-weigh estimation is quite closeto the load-carrying structure. As
expected, we underestimatethe box weight becausehe wing is not fully stressedand
our calculation doesnot accour for the weight of spar websand ribs.

To compute ; and ,, we solwe a system of two equationsand two unknowns.
Theseequationshave the form of equation(3.2) but with di erent valuesof WWT”Q and
%o This gives

1= 1:30 and ;= 6:03 (Ib=ft?):

Comparedto reference[37] which givesan estimation of , = 4:22, our estimation is
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reasonable.Howe\er, the total wing weight estimation will be inexact becauseof the
limitation of aircraft number. Finally, K corr:p @and K ¢orr:s Can be computed by

= _ 2
Keonrb = 1 and Kcor:s = olT

3.4 Planform gradient calculation

The gradiert with respect to planform variation can be computed by integrating
point-gradients projected in the planform movemern direction. Recall the compact
form of the gradient calculation (2.28)

Z Z
| = f M + N||gdB T R||dD

B D

wherethe adjoint variables satisfy the adjoint equation (B.10). The discreteform
of this equationis

I (w;S) = 2(8) Z
= (M, + Ny)dB T RdD
(M+ Njy) B T R
X
(M + Nyy) B " Rjs+ s Rjs ;
B D

whereRjs and Rjs: s are volume weighed residualscalculated at the original mesh
and at the meshperturbed in the designdirection.

Provided that hasalready beencalculatedand R can be easily calculated, the
gradiert of the planform variables can be computed e ectively by rst perturbing
all the mesh points along the direction of interest. For example, to calculate the
gradiert with respect to the sweepbak&, move all the points on the wing surfaceas
if the wing were pushedbadward and also move all other ass@iated points in the
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computational domain to match the new location of points on the wing. Then re-
calculate the residual value and subtract the previous residual value from the new
valueto form R. Finally, to calculate the planform gradiert, multiply R by the
co-statevector and add the cortribution from the boundary terms.

This way of calculating the planform gradiert exploits the full bene t of knowing
the value of adjoint variables with no extra costof ow or adjoint calculations.

3.5 Gradien t validation

3.5.1 Inviscid planform gradients

To verify the accuracyof the gradierts calculated by the method descriked in sec-
tion 3.4, we compare these gradierts with the gradierts computed by the nite-
di erence method.

For the purposeof this comparison,we xed angleof attack to eliminate the e ect
of pitch variation on the gradiert. We chosethe wing-fuselageof the Boeing 747 at
Mach 0.87,and wing angleof attack 2.3 degrees.We performeda designoptimization
by allowing sectionchanges.At ead designiteration, we calculatedboth the adjoint
and nite dierence gradierts. Figure 3.3 shows one of thesecomputational meshes.

For the nite di erence calculation, we useda forward di erencing technique with
a moderate step sizeof 0.1%of planform variablesto achieve both small discretization
error and small cancellationerror.

Figures 3.4 and 3.5 show the planform gradiert comparisonwherethe cost func-
tions are Cp and Cy respectively. It can be seenthat the results from both adjoint
and nite di erence methods match ead other within the 15% error range. This
error, especially for the weight sensitivity of sweepchanges,arisesfrom the neglected
terms at the far- eld boundary which we generally assumeto be small [3G. More
accurate error can be obtained by accourting those terms or enlarging the far eld
of the computational domain. Howeer, as we will shav in the next chapter, these
gradierts are practical enoughto achieve improvemers in the design. Newertheless,
this result indicatesthat the adjoint method providesa moderately accurateplanform



CHAPTER 3. IMPLEMENT ATION 46

A

AN
R
Wﬁ}}}}?ﬁ\\\\\\l\l\l\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\l\\\\\\\lll

LT 1]
s#:#::;g‘:‘s‘:‘l‘“‘ lﬁ...Hgii’i’:%%%’;’;’;’;’:’l’l’l’l,l’l,l#IIIIIIIIIIIIIlI I!il=l=l===
E““i&?“ﬁi}.. ||||\\\mmmmm“\\\\\\\\\\\j‘i‘:“‘ll
e i

Jilth

i
==—72_) " i

Figure 3.3: Computational grid of the B747 wing fuselagefor the Euler calculation

gradiert while reducing the computational cost by a factor of the number of design
parameters.

3.5.2 Viscous planform gradien ts

In this section,we performeda similar comparisonfor the planform viscousgradiert.
We chosethe same Boeing 747 wing-fuselage,but useda four times ner grid to
resole the boundary layer. The sizeis 256x64x48.

Figure 3.6 plots gradierts from the adjoint and nite di erence methods for both
drag and structural weight. The comparisionindicates that the adjoint and nite
di erence gradierts match within the range of %20 error. Comparedto the accura
of the inviscid gradiert in the previous section, an additional error comesfrom the
accuracyof ow and adjoint solutions. The highly stretch computational cells of the
Navier-Stokesdesignrestrict the convergenceof the ow solutionsto the level that is
worsethan those of the inviscid solutions. Howewer, this proofs to be good enough
for the designpurpose.
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Figure 3.4: Inviscid gradiert comparison:drag sensitivities.
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Figure 3.5: Inviscid gradiert comparison:wing weight sensitivities.
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Figure 3.6: Viscousgradiert comparison.

49



CHAPTER 3. IMPLEMENT ATION 50

3.6 Choice of weighting constants

3.6.1 Maximizing the range of the aircraft

The choiceof ; and 3 greatly a ects the optimum shape. We can interpret ; and
3 as how much emphaseswe give to drag and wing weigft. If - is high, we focus
more on minimizing the drag than the weight and we tend to get an optimum shape
that haslow Cp but high Cy .
An intuitiv e choice of ; and 3 can be made by consideringthe problem of
maximizing range of an aircraft. Considerthe simpli ed rangeequation (1.5)

where W, is the grossweight of the airplane without fuel and W; is weight of fuel
burnt.
If we take

k=
1

We

g
I

then the variation of the weight can be expresseds
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If we minimize the costfunction de ned as
| = Cp + Cw;

where is the weighting multiplication, then choosing

C
= 7'30; (3.3)
W1
szlnm

correspndsto maximizing the range of the aircratft.

3.6.2 Pareto front

In orderto presen the designerwith a wider rangeof choices,the problem of optimiz-
ing both dragand weight canbe treated asa multi-ob jective optimization problem[8].
In this senseone may also view the problem as a \game", where one player tries to
minimize Cp and the other tries to minimize Cy,. In order to comparethe perfor-
manceof varioustrial designs,designatedby the synbol X in gure 3.7,they may be
ranked for both drag and weight. A designis un-dominatedif it is impossibleeither
to reducethe drag for the sameweight or to reducethe weight for the samedrag. Any
dominated point should be eliminated, leaving a set of un-dominated points which
form the Pareto front. In gure 3.7, for example,the point Q is dominated by the
point P (samedrag, lessweigh) and alsothe point R (sameweigh, lessdrag). So
the point Q will be eliminated. The Pareto front canbe t through the points P, R
and other dominating points, which may be generatedby using an array of di erent
valuesof ; and 3 in the costfunction to computedi erent optimum shapes. With
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Figure 3.7: Cooperative gamestrategy with drag and weigh as players

the aid of the Pareto front the designerwill have freedomto pick the most useful

design.

3.7 Design cycle

The designcycle starts by rst solvingthe ow eld until at leasta 2 order of mag-
nitude drop in the residual. The ow solution is then passedto the adjoint solwer.
Second,the adjoint solver is run to calculate the costate vector. Iteration cortinues
until at least a 2 order of magnitude drop in the residual. The costate vector is
passedto the gradiert module to ewvaluate the aeradynamic gradiert. For the point-
wise gradierts of eat surfacemesh points, the we calculate the Sololev gradierts
and usethis Sololev gradierts to update the shape. Then, the structural gradiert is
calculated and addedto the aeradynamic gradiert to form the overall gradiert. The
steepest desceh method is usedwith a small step sizeto guarartee that the solution
will convergeto the optimum point. The designcycleis shovn in gure 3.8.
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Chapter 4

Wing planform optimization
results

In this chapter, we presen results of the wing planform optimization to show the ad-
vantage of integrating shack-free sectiondesignwith wing planform optimization. The
designmethodology is de ned in chapter 3. We also demonstratethat using trade-
0 s betweenaeradynamicsand a simpli ed wing weigh model allows usto eliminate
the maximum thicknessconstrairts that were required for a pure aeradynamic wing
optimization.

The proposeddesign strategy employs both the Euler and Navier-Stokes opti-
mizations. While the Navier-Stokes equationsprovide more insight to the ow phe-
nomenonand wing design,the computational cost of the viscousdesignis an order
of magnitude greater than the inviscid design. This is due to seeral reasons. The
number of meshpoints must be increasedby a factor of four (or more) to resohe the
boundary layer. There is alsothe additional costof computing the viscousterms and
turbulence model. Finally, the Navier-Stokescalculationscorvergemuch more slowly
than the Euler calculationsdue to the highly stretch cellsusedin most models.

Thus, it is more practical and economicalto employ the inviscid designtool in
ow phenomenawhere viscouse ects are not dominart, e.g. a wing at low angle
of attack and high Reynoldsnumber, sud as an airplane at cruise condition. This
leadsus to suggesta time-saving strategy which initiates the viscousdesignwith the
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a result from the inviscid design.

4.1 Inviscid redesign of the Boeing 747 wing

We rst applied our inviscid designtool to the wing of the Boeing 747. The com-
putational grid was createdfor the wing fuselagecombination asshown in gure 3.3
to provide e ects of fuselagedisturbance on the wing. On this 192x32x32grid, the
wing sectionswere represeted by 2037 surfacemesh points and six planform vari-
ables (leading edgesweep, span, chords at three span stations, and wing thickness)
are extracted from these meshpoints. The redesignswere done at the cruise con-
dition Mach 0.85and xed lift coe cient C_ = 0:45. Becausea planform variation
can lead to a variation of wing area, and to avoid any confusion, throughout this
dissertation we calculate all the force coe cients sud asC_, Cp, and Cy, basedon
a xed referencearea. Thus a constart C_ implies a constart total lift.

For areferencewe rst simulated ow over the baselinewing. The result is shovn
in gure 4.2. The pressurecortours show strong shock wavesover the wing, indicated
by a region of densecortour lines. Theseshocks can be eliminated by modifying the
wing sections,resulting in a reduction of Cp from 112 courts to 103 courts while
Cw remainsconstar, asshowvn in gure 4.3. The capability to redesignfor shock
free wings has beendemonstratedby Jameson[2030, 26, 62] during the last decade.

We now extend the redesignto use section changestogether with variations of
sweep angle, span length, chords, and section thicknesssimultaneously The ratio
—f was chosenaccordingto formula (3.3) sud that the cost function correspndsto
maximizing the rangeof the aircraft. Moreover, we eliminated the maximum thickness
constrairts that wereimposedon the previousdesign.

In twernty-two designiterations the drag coe cien t ¥ wasreducedfrom 112courts
to 92.2 courts at the sametime the weight C,y was also reducedfrom 546 courts
to 533 counts. The further reduction in drag is the result of the increasein span
from 212ft to 235ft, which reducesthe induceddrag. The redesignedgeometryalso

1 counts = 0.0001
YC_, Cp, and Cy are calculated basedon the xed referencearea.
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Figure 4.1: C-H grid of the Boeing 747 wing-fuselage.
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hasa lower sweepangleand a thicker wing section,which both reducethe structural
weight, thus compensatingfor the weight increasedue to the increasein span. There
was only a slight growth in the chords. This may seemdoubtful becausewithout
the viscosily there is no strong medanism to prevert an excessie growth in the
chord length. Howewer, if we considerthe history of the cost function, there was
very slow improvemert as the designiterations cortinued. For a practical purpose,
the optimization would cut-o the designiterations when it obtains no signi cant
improvemen. This ambiguity doesnot arisein viscousoptimization.

The redesignedgeometry is shovn in gures 4.4 and 4.5. Overall, the redesign
with planform variations givesimprovemers in both aeradynamic performanceand
structural weight, comparedto the previous

Notice that the only constrairts applied herewere xed C_. There were no con-
straints on the planform parametersor minimum section-thikness. The designitera-
tions werestopped whenthere wereno appreciableimprovemerts of the costfunction,
asshowvnin gure 4.6. This correspndsto the gradiert beingreducedto sud a small
value that no signi cant improvemen could be achieved by movemert in the nega-
tive gradiert direction. The redesignedplanform still has nite spanand its sweep
angleis lessthan 90 degrees.Moreover, the wing sectionsdo not have zerothickness.
This result hasshavn a successfutrade-o betweenthe aeradynamicsand structures,
preventing unrealistic designresults.

This inviscid redesignedresult in this section can be useful if shack and vortex
drag are the main focusof the optimization. The result canalsobe usedasa starting
point for viscousoptimization.

4.2 General comments for inviscid design

While the inviscid designmethods have proven usefulfor the designof transonicwings
at the cruise condition, the required changesin the sectionshape are comparablein
magnitude to the displacemen thicknessof the boundary layer. The usershouldalso
recognizethat some o w physicshave beenneglectedand it is important to know the
limitations of the designtool.
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BOEING 747 WING-BODY
Mach: 0.850 Alpha: 2.676
CL: 0450 CD:0.01117 CM:-0.1321 CW: 0.0546
Design: 0 Residual: 0.1005E+01
Grid: 193X 33X 33

LE Sweep: 42.11 Span(ft): 212.43
C1(ft): 48.16 C2: 28.28 C3: 10.79
I: 0.01936

y

= Cp=-20 + +

Tip Section: 88.1% Semi-Span
Cl: 0.434 Cd:-0.02784 Cm:-0.1538 T(in):13.015(0

4
— Cp=-20 ¥ ¥
-
| + +
-

Root Section: 16.1% Semi-Span
Cl: 0.398 Cd:0.04640 Cm:-0.1545 T(in):58.0070

— Cp=-20 E E
— + +
+ +

Mid Section: 50.4% Semi-Span
Cl: 0.643 Cd:0.00595 Cm:-0.2217 T(in):23.8124

Figure 4.2: Pressuredistribution over the baselineBoeing 747 at cruiseM .85, using

the Euler calculation.
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BOEING 747 WING-BODY

Mach: 0.850 Alpha: 2.634

CL: 0.450 CD:0.01033 CM:-0.1352 CW: 0.0546
Design: 5 Residual: 0.1726E-01

Grid: 193X 33X 33

LE Sweep:42.10 Span(ft): 212.43

C1(ft): 48.13 C2: 28.27 C3: 10.78

I: 0.01852

Cp=-2.0 + +

Cl: 0.456 Cd:-0.02705 Cm:-0.1805

T(in):12.9982

Root Section: 16.1% Semi-Span
Cl: 0.397 Cd:0.04616 Cm:-0.1535 T(in):57.9653

Cp=-2.0 + +

Mid Section: 50.4% Semi-Span
Cl: 0.643 Cd:0.00474 Cm:-0.2261 T(in):23.8738

Figure 4.3: Inviscid redesignedwing sectionsof the Boeing 747 with xed planform.
Dashedand solid linesrepreseh pressuredistributions of the baselineBoeing 747 and

redesignedcon guration respectively.
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— Cp=-20 + +
BOEING 747 WING-BODY
Mach: 0.850 Alpha: 1.799
CL: 0.450 CD:0.00922 CM:-0.0934 CW: 0.0533
Design: 22 Residual: 0.1398E-01 7
Grid: 193X 33X 33
LE Swwwp:36.07 Span(ft): 235.45
C1(ft): 48.65 C2: 29.47 C3: 10.92 B . .

I: 0.01721

l Tip Section: 88.1% Semi-Span
Cl: 0.392 Cd:-0.01796 Cm:-0.1871 T(in):12.8786¢

— Cp=-20 - + | Cp=-20 - -

Root Section: 16.1% Semi-Span Mid Section: 50.4% Semi-Span
Cl: 0.349 Cd:0.03647 Cm:-0.1297 T(in):62.0272 Cl: 0.552 Cd:0.00106 Cm:-0.2146 T(in):24.9553

Figure 4.4: Inviscid redesignof both sectionsand planform of the Boeing747. Dashed
and solid lines represen pressuredistributions of the baselineand redesignedcon g-
urations respectively.
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L

(a) Isometric (b) front view
(c) side view (d) top view

Figure 4.5: Geometrychangesof the B747wing usingthe Euler optimization; baseline
(green/light) and redesignedsection-and-planform(blue/dark).
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Convergence history
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Figure 4.6: History plot of the Boeing 747 planform optimization cost function.

Three concernsmissingfrom the previous casestudy are discussecdhere:

Viscous(skin friction) drag
Flow separation

Excessie incremert of chords

The redesignresult of the Boeing 747 shaws large improvemert in drag, mostly
due to the elimination of shocks and reduction of vortex drag. Howewer, because
the designtool was basedon the Euler calculation, the skin friction drag has been
neglected. It is well known that the skin friction drag is proportional to the wetted
area. Thus the redesignedBoeing 747 wing will have higher skin friction drag. In
sections4.3, we will shav that the reduction in vortex drag generally outweighsthe
increasein skin friction drag. Moreover when the viscosily e ect is included, the
trend of the planform improvemeris is similar to that for the inviscid calculations.

The secondconcerndealswith o w separation. Although the inviscid calculation
cannot predict ow separation,the pressuredistribution can indicate the risk of the



CHAPTER 4. RESULTS 63

separation. Nearthe trailing edge,the ow must decelerateto recover the free stream
pressure.In this region of adversepressuregradiert, it is advisableto avoid a design
result that hassteeper gradierts comparedto thoseof the baseline.So, provided that
the issueof premature separationis recognized the inviscid tool can be usefulfor the
wing designproblem, esgecially when fast turn around is an important factor.

The last concerncan be recalledin the discussionfrom section1.2.2. Without the
presenceof viscosily, wing areacan grow excessiely. While the area-dendert term
in the weight formula (2.21) may help, the equilibrium point usually hastoo much
area. This did not happen in our inviscid design, mainly becausethe chord growth
rate wasvery small and the optimizer stopped the designprocesswhen no signi cant
improvemert is gained. Howe\er, if sud a caseoccurs, an additional constrairt on
maximum chord must be imposed. This could be necessaryto allow the wing to t
onthe xed fuselagefairing. Howewer, aswe will show in the section4.1, this did not
happen becausehe slow rate and limitation of meshmovemer.

Another great advantage of a design using inviscid calculation is its fast turn-
around. A entire designprocesscan be completed within an hour. With the con-
tinuing improvemen in computer performance,inviscid planform optimization does
not require a workstation level of computer. The results shovn in section4.1 were
performed on author's laptop in about half an hour. With this advantage, we nd
anotherbene t of exploring the designspacewith inviscid optimization. For example,
to validate the results of the Boeing 747 planform designwe could perform a series
of optimization at xed dierent spans,but allowing variations of sweep, thickness,
and chords.

The next sectionsdescrile a designstrategy using the ReynoldsAveragedNavier-
Stokes (RANS) equations. Viscousdesignprovides increasedrealism, and alleviates
shacks that would otherwiseform in the viscoussolution over the nal inviscid design
becauseof the failure to accoun for the boundary layer displacemeh e ect. Accurate
resolution of viscouse ects sudt as separationand shack/b oundary layer interaction
is alsoessetial for optimal designencompassing -design conditions.



CHAPTER 4. RESULTS 64

4.3 Viscous redesign of the Boeing 747 wing

The designin this sectionaccouris for viscouse ects on the design. In thesecalcula-
tions the ow was modeled by the Reynolds AveragedNavier-Stokes equation, with
a Baldwin Lomax turbulence model. This turbulence model was consideredsu cien t
becausethe designpoint was at cruise condition with attached ow. We investigate
the samegeometryasin section4.1, which is the Boeing 747 wing fuselagecombina-
tion at normal cruising Mach 0.85and a lift coe cient C, = 0:45. On this 256x64x48
grid, the wing sectionswererepreseted by 4224surfacemeshpoints and six planform
variables. Similarly to in the inviscid case,all coe cien ts are calculatedwith a xed
referenceareabasedon the initial con guration. Thus an increasein skin friction due
to an increasein wetted areawill appearasan increasen the friction drag coe cien t.

As a referencepoint, we rst modi ed only the wing sectionsto eliminate the
shack drag, while planform of the baselineB747 was kept unchanged. Figure 4.7
shows the redesignedcalculation. Herein 30 designiterations the drag was reduced
from 137 courts to 127 courts (7.3% reduction) and the weight remained roughly
constart.

We implemert both section and planform optimization in viscousdesign, using
the inviscid-redesignedving shaovn in gure 4.4 asa starting point. Figure 4.8 shavs
the e ect of allowing changesin sweepba&, span, root chord, mid-span chord, and
tip chord. The parameter 3= ; was again chosento maximize the range of the
aircraft. In 30 designiterations the drag wasreducedto 117 courts (14.5%reduction
from the baselineB747), while the dimensionlessstructure weight was decreasedo
516 courts (6.1% reduction), which correspnds to a reduction of 4,8001bs. The
planform changesare shavn in gure 4.9. This viscousredesignedving haslessdrag
and structural weight than the xed planform viscousredesignedwing.

When we comparethis planform with the redesignby inviscid optimization in
section4.1 asshaovn in gure 4.10,we can seethat the e ect of viscosity is to shrink
the areaof the inviscidly redesignedplanform. This trend is to be expected because
skin friction drag variesroughly linearly with the area. By reducingthe area,we can
reducethe skin friction drag. Another benet of using the viscousoptimization is
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that we can prevernt separation. Notice that the steepinversepressuregradiert in
gure 4.4is now removed.

The results from the both inviscid and viscousplanform optimizations yield large
drag reduction without structural weight penalty in a meaningful way. They shawv
the following basictrends:

Increasewing spanto reducevortex drag,
Reducesweepbut increasesection-thiknessto reducestructural weigh,
Use section optimization to minimize shack drag.

Although the suggestedstrategy tends to increasethe wing area, which increases
the skin friction drag, the pressuredrag drops at a faster rate, dominating the trade-
0. Overall, the combined results yields improvemerts in both drag and weigh.

4.4 Pareto front

The problem of optimizing both drag and weight can be treated as a multi-ob jective
function optimization. A dierent choiceof ; and 3 will resultin a di erent opti-
mum shape. The optimum shapesshould not dominate ead other, and thereforelie
on the Pareto front. The Pareto front can be very usefulto the designerbecauseit
represems a set which is optimal in the sensethat no improvemern can be acieved
in one objective componert that doesnot lead to degradationin at least one of the
remaining componerts.

Figure 4.11 shaws the e ect of the weighting parameters( ;; 3) on the optimal
design. As before,the designvariablesare sweepbak, span,chords, sectionthickness,
and mesh points on the wing surface. In gure 4.11, ead point correspndsto an
optimal shape for one speci ¢ choiceof ( ;; 3). By varying ; and 3, we capture
a Pareto front that boundsall the solutions. All points on this front are acceptable
solutions, and choosing the nal designalong this front depends on the nature of
the problem and se\eral other factors. The optimum shape that correspndsto the
maximum Breguet range is also marked in the gure. In this test case,the Mach
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number is the current normal cruising Mach number of 0.85. We allowed section
changestogether with variations of sweep angle, span length, chords, and section
thickness. Figure 4.7 shows the baselinewing. Figure 4.8 shows the redesigned
wing. The parameter - was chosenaccordingto formula (3.3) sud that the cost
function correspnds to maximizing the range of the aircraft. Here, in 30 design
iterations the drag was reducedfrom 137 courts to 117 courts and the structural

weight was reducedfrom 546 courts (88,2021bs) to 516 courts (83,3561bs). The

large reduction in drag is the result of the increasein span from 212.4ft to 231.7
ft, which reducesthe induceddrag. The redesignedgeometryalsohas a lower sweep
angle and a thicker wing sectionin the inboard part of the wing, which both reduce
the structural weight. Moreover the section modi cation prevents the formation of
shack. The baselineand redesignedplanforms are showvn in gure 4.10, together
with the planform which resulted from inviscid optimization. Overall, the redesign
with variation planform givesimprovemers in both aeradynamic performanceand
structural weight, comparedto the previousoptimization with a xed planform.
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- Cp=-20 + +
B747 WING-BODY

Mach: 0.850 Alpha: 2.533

CL: 0.449 CD:0.01270 CM:-0.1408 CW: 0.0546
Design: 30 Residual: 0.5305E+00 7
Grid: 257X 65X 49

LE Sweep:42.11 Span(ft): 212.43
cl(ft): 48.17 c2: 29.11 c¢3: 10.79
I: 0.02089

Tip Section: 92.5% Semi-Span
Cl: 0.431 Cd:-0.02153 Cm:-0.1873 T(in):12.1865

— Cp=-20 - + | Cp=-20 - -

+ — + I ——

Root Section: 13.6% Semi-Span Mid Section: 50.8% Semi-Span
Cl: 0.373 Cd:0.05530 Cm:-0.1449 T(in):66.1586 Cl: 0.647 Cd:0.00557 Cm:-0.2398 T(in):23.8498

Figure 4.7: Wing-section optimization of Boeing 747 at xed baseline-planform.
Dashedand solid lines represen pressuredistributions of the baselineBoeing 747
and redesignedcon guration respectively.
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— Cp=-20 + +
B747 WING-BODY

Mach: 0.850 Alpha: 2.287

CL: 0.448 CD:0.01167 CM:-0.0768 CW: 0.0516
Design: 30 Residual: 0.3655E+00 7
Grid: 257X 65X 49

LE Sweep: 36.61 Span(ft): 231.72

=
ci(ft): 47.17 c2: 28.30 c3: 10.86 z | . .

I: 0.01941 /

\ — .
Tip Section: 92.5% Semi-Span
Cl: 0.390 Cd:-0.01648 Cm:-0.1736 T(in):12.0445

+ — Cp =-20 + +

Root Section: 12.7% Semi-Span Mid Section: 50.5% Semi-Span
Cl: 0.347 Cd:0.06011 Cm:-0.1224 T(in):74.0556 Cl: 0.582 Cd:0.00213 Cm:-0.2154 T(in):25.3014

Figure 4.8: Complete optimization of Boeing 747. Both wing-sectionand planform
are optimized to maximize the Breguet range, using inviscid-redesignedlanform as
a starting points.
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.9: Geometrychangesof the B747wing usingthe Navier-Stokesoptimization;
baseline(green/light) and redesignedsection-and-planform(blue/dark).
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Figure 4.10: Comparison of Euler-redesigned(red) and NS-redesignedplanforms

(blue). The Euler-redesignedblanform haslarger area.
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Figure 4.11: Pareto front of sectionand planform modi cations. The ratios of - are
marked for eat optimal point.
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4.5 Viscous redesign of the McDonnell Douglas
MD-11 wing

In order to validate the trends suggestedyy the previoustest case,we selectanother
airplane in the long-rangetransportation category Herethe casechosenis the MD11
wing fuselagecombination at cruising Mach number 0.83and a lift coe cient C_ =
0:50.

The baselineand redesignedwings are shavn in gures 4.12(a) and 4.12(b) re-
spectively. The geometry changesare showvn in gure 4.13. Again, the parameter
-2 was chosento maximizing the range of the aircraft. In 30 designiterations the
drag was reducedfrom 180 courts to 164 courts, while the wing weight was slightly
reducedfrom 654 courts (62,985Ibs) to 651(62,696Ibs). Spanincreasesrom 174.4ft
to 184.2ft, sweepslightly reducedfrom 37.9to 36.9degreesand the sectionthickness
increases.The increaseof spanreducesvortex drag while the decreaseof sweepand
the increaseof section depth reducethe structural weight. These results are very
similar to those obtained for the Boeing 747.

4.6 Viscous redesign of BAe MDO DATUM wing

To further validate this planform-and-sectiontrend, we selectthe BAe MDO DATUM
wing. At its cruising Mach number .85, this wing has low sweep angle and high
thickness-to-biord ratio sections.

This test casepreserts a technical challengeto the optimization becausethe BAe
and B747 are designedto operate at the same ight condition and their planforms
are sizedcloselyin the samerange. Howewer the original sweep of BAe is already
smallerthan the optimum sweepof B747 and its wing spanis already longerthan the
optimum spanof B747.

Figures 4.14(a), 4.14(b), and 4.15 show the original wing, optimized wing, and
their planformsrespectively. Despitethe low-sweep,long-span,and thick-wing-sections
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MD-11 WING/BODY + 4.5FT WINGTIP EXT
Mach: 0.830 Alpha: 2.325

CL: 0501 CD:0.01798 CM:-1.8527 CW: 0.0654
Design: 0 Residual: 0.1802E-04
Grid: 257X 65X 49

LE Sweep:37.87 Span(f): 174.37
ci(ft): 38.48 c2: 2401 c3: 8.90
I: 002779
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Tip Section: 92.5% Semi-Span
Cl: 0.450 Cd:-0.02810 Cm:-0.1900 T(in): 8.6270

+ +
Root Section: 14.5% Semi-Span
Cl: 0.442 Cd:0.08541 Cm:-0.1329 T(in):53.2052

PN

R R —

Mid Section: 51.1% Semi-Span
Cl: 0672 Cd:0.00543 Cm:-0.2431 T(in):22.5928|

MD-11 WING/BODY + 4.5FT WINGTIP EXT
Mach: 0.830 Alpha: 2.119

CL: 0500 CD:0.01638 CM:-1.8638 CW: 0.0651
Design: 30 Residual: 0.1514E-04
Grid: 257X 65X 49

LE Sweep: 36.79 Span(f): 184.23
ci(ft): 39.06 c2: 24.49 c3: 939
I: 002614

Cp=20 - +

—

Tip Section: 92.5% Semi-Span
Cl: 0.409 Cd:-0.02083 Cm:-0.1920 T(in): 9.3007

R s —

Root Section: 14.0% Semi-Span
Cl: 0.408 Cd:0.08390 Cm:-0.1141 T(in):58.6158

(a) Baseline

Mid Section: 50.9% Semi-Span
Cl: 0613 Cd:0.00013 Cm:-0.2304 T(in):24.2333]

(b) Redesign

Figure 4.12: Pressuredistribution of the McDonnell DouglasMD 11 wing.
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.13: Geometry changesof the MD11 wing using the Navier-Stokesoptimiza-
tion; baseline(green/light) and redesignedsection-and-planform(blue/dark). The
redesignedwing haslonger span, lesssweep, and thicker wing sections.
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CL: 0.453 CD:0.01639 CM:-0.3121 CW: 00574 CL: 0.452 CD:0.01447 CM:-0.3046 CW:0.0570
Design: 0 Residual: 0.2236E-04 Design: 30 Residual: 0.7512E-04
Grid: 257X 65X 49 Grid: 257X 65X 49

LE Sweep: 35.50 Span(ft): 252.97 LE Sweep: 34.92 Span(ft): 260.55

c1(ft): 54.30 c2: 3226 c3: 1193

I:0.02500 = b I: 0.02302 & b N N
|
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Cl: 0.342 Cd:0.05873 Cm:-0.1799 T(in):81.5015 Cl: 0515 Cd:0.00281 Cm:-0.2800 T(in):32.5177 Cl: 0332 Cd:0.05689 Cm:-0.1584 T(in):83.4629 Cl: 0.498 Cd:-0.00221 Cm:-0.2606 T(in):32.7338|

Figure 4.14: Pressuredistribution of the BAe MDO Datum wing.

of the original wing, the optimal wing has lesssweep,longer span, and thicker wing
sections. But the changesin the planform are not large. With these changes,the
optimum wing shavs improvemert in both drag and weight. The drag is reduced
from 164 courts to 145 courts, and the weigh is reducedfrom 574 courts (87,473
Ibs) to 570 courts (86,863Ibs). This redesignedBAe wing strongly agreeswith the
trend suggestedrom the B747 and MD11 cases.

4.7 Discussion

It canbeseenfrom the resultsin this chapter that both inviscid and viscousoptimizers
can improve the performanceof the wing by reducing drag without any penalty on
the structure weight. The changesthat were madeto accomplishthis were done by
the optimizer in a meaningfulsense.The weigh reduction wasthe consequenceesult
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.15: Geometry changesof the BAe MDO Datum wing using the Navier-
Stokes optimization; baseline (green/light) and redesigned section-and-planform
(blue/dark). The redesignedwing has longer span, slightly lesssweep, and thicker

wing sections.
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of sweep reduction and thicker wing section. The drag reduction was the result of
wealkened shock wave and wealer induced drag. These planform changesmove in
the samedirection, howewer at di erent magnitude. In the caseof the Boeing 747,
we seelarge changes. Thesechangesget smaller for the BAe wing. The Boeing 747
wing was designedduring the 1970s,while the BAe wing was designedduring the
1990s. The improvemert in the airfoil technology de nitely makesthe wing better.
Therefore, the improvemen we can achieve should be lessfor a newer wing. Our
optimizer con rms this expectation.



Chapter 5
Conclusion

This dissertation focuseson the problem of wing planform optimization for transonic
aircraft basedon the solution of Computational Fluid Dynamics (CFD) conbined
with an adjoint-gradient based numerical optimization procedure. It exploits the
shock-free-wing technology, extensiwely deweloped during the past decadefor wing
sectiondesign,to \cheat" the corvertional wisdom of the planform design. The inte-
gration of the shock-free conceptand planform optimization enablesa range of plan-
form con gurations previously prohibited by the strong compressibiliy drag. This
extended freedom can lead to a large reduction in both structural weight and the
induceddrag.

In order to incorporate this idea, we employ the wing planform as well as the
wing sectionsas the design parameters. Becausethe two relevant disciplines are
aeradynamicsand weight, we focuson the aeradynamic optimization with a simpli ed
structural weight model, treating a wing asfully-stressedandrigid. This choiceof cost
function not only increaseghe reality of the designbut alsopreverts unrealistic results
by exposingthe trade-o betweenthe aeradynamicsand structures. To formulate our
designtool, we extend the aeradynamic shape optimization tool that was initially
deweloped for wing sectiondesignto include the planform optimization. The original
tool was deweloped by conmbining CFD with gradiert-based numerical optimization,
and applied the adjoint formulation to calculategradierts of a large number of design
parametersat very low computational cost, allowing the wing be treated as a \free"

s
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surfaceto adiieve a shack-free shape. Then we extend the adjoint method to cover
the planform variations and to compute the sensitivities of the structural weigh of
both the wing sectionand planform variations.

Results of a variety of long range transports at xed-altitude cruise conditions
indicate that signi cant improvemen in both aeradynamics and structures can be
achieved simultaneously They alsoreveal a similar trend from theseimprovemers;
by utilizing the shack-free concept,the compressibiliy drag canbe weakenedand thus
the wing doesnot require aslarge a sweepor assmall a thickness-to-tiord ratio asone
that is convertionally designed. The sweepreduction and thicknessincremen help
reducestructural weight, which canbe traded for a longerspan. The increaseof span
reducesthe induceddrag, which is a large portion of drag at the cruisecondition, and
thereforeresultsin large drag reduction without a penalty on the structural weigh.
Finally, inclusion of the structural weight and area-degenden viscosily preverts any
unrealistic result.

This wing planform optimization is the \rst step” in the right direction beyond
the pure aeradynamic shape optimization usingthe adjoint method for xed planform.
The proof-of-conceptoptimal results indicate large improvemerns for both drag and
structural weight. The next step may require the incorporation of a higher- delity
structural model, which can capture aero-elastianteraction and structure failure, and
the implemertations of constrains to satisfy performance,stability-and-cortrol, and
manufacturing requiremens within the designenvelope. It is important to note that
additional constrairts will certainly a ect the results preseited here. Yet, the design
methodology presettied in this work provides the basisfor an extensionto form a
more completewing designtool.
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Discretization of the o w equations

The discretization of the spatial operators is accomplishedby using a cell-cenered
nite volume scheme. The ow domain is divided into a large number of small
subdomains, and the integral form of the conseration laws

Z Z

—@ wdV + F dS=0

@ o, B

is applied to ead subdomain. Here F is the ux appearingin equation (2.15) and
dS is the directed surfaceelemen of the boundary B of the domain D. The use of
the integral form hasthe advantage that no assumptionof the di erentiabilit y of the
solution is implied, with the result that it remainsa valid statemen for a subdomain
cortaining a shack wave. In generalthe subdomainscould be arbitrary, but in this
work we usethe hexahedralcells of a body-conforming curvilinear mesh.

To include the viscousterms of the Navier-Stokes equationsinto the spatial dis-
cretization shemeit is necessaryto approximate the velocity derivatives @J which

@
constitute the stresstensor ;. These derivatives may be evaluated by applying
Gauss'formula to a cortrol volumeV with boundary S:

Z Z
@dv = undS;
\Y, @j S

79
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wheren; is the outward normal. For a hexahedralcell this gives

X

<|k

Ui n; S; (A.1)
faces

9|9

whereT; is an estimate of the averageof u; over the face,n; is the j™ componert of
the normal, and S is the facearea.

Discretization of this type reduceto certral di erences on a regular Cartesian
grid, and in order to eliminate possibleodd-ewen decouplingmodes allowed by the
discretization of the corvective terms, someform of arti cial dissipation must be
added. Moreover, when shack waves are presen, it is necessaryto upwind the dis-
cretization to provide a non-oscillatory capture of discortinuities. The e ects of
numerical di usion, which may be intro ducedeither explicitly to avoid decouplingor
implicitly by meansof upwind formulas, could adverselyimpact the overall accuracy
of the solution. Thus, extreme care in devising an appropriate numerical di usion,
or upwind method is required. The next section gives somedetails on the baseline
formulation currertly implemerted in our solers.

A.1 Upwinding and numerical viscosity

Over the last twenty years, Jamesonet.al. have dewloped a large classof shack
capturing sthemesincluding High Resolution Switched, Symmetric Limited Positive
(SLIP) and Upstream Limited Positive (USLIP) sdhemes[22, 23, 68]. SLIP and US-
LIP sthemeswereimplemerted and testedusing seeral forms of ux-splitting includ-
ing scalar, characteristic, and Convective Upstream Split Pressure(CUSP) schemes.
Careful comparisonswith analytical results for laminar boundary layers [69] clearly
indicate that the limiting processplays a greaterrole than the ux-splitting in deter-
mining the quality of viscousresults. Howewer, new trade-o s betweenthe di erent
forms of ux-splitting arisewhene\er crisp resolution of shacks becomesmportant.
Roe hasshawvn that characteristic splitting canyield an optimal discreteshack res-
olution with only oneinterior point [65]. More recertly, Jameson[24] hasshavn that



APPENDIX A. DISCRETIZATION OF THE FLOW EQUATIONS 81

a discrete shock structure with a single interior point can, in general,be supported
by arti cial di usion which both:

1. producesan upwind ux if the ow is determinedto be supersonicthrough the
interface betweenthe left and the intermediate state,

2. satis es a generalizedeigervalue problem for the exit from the shack.

Thesetwo conditionscanbe satis ed by both the characteristicand CUSP schemes
whereasscalardi usion fails to satisfy the rst condition.

At this time CUSP basedsdiemes,which conbine perfect one-point shock cap-
turing of stationary shacks with high resolution of boundary layers, are consideredio
be the best compromise.

For simplicity we consideronly the generalone dimensionalconseration law for
a systemof equationswhich can be expresseds

av @ _ A
@ g w=o (A.2)

Herethe state and the ux vectorsare
0

0 1 1
u
W=%u§;f=%u2+p§;
E uH

where is the density, u is the velocity, E is the total energy p is the pressure,and
H is the stagnation enthalpy. If is the ratio of speci ¢ heatsand c is the speed of

soundthen
u2
p=( 1) E >
=P
_ p_ & v
H=E+ T= 1+ 5"

In a steady ow H is constart. This remainstrue for the discretesthemeonly if the
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numerical di usion is constructedsothat it is compatible with this condition.
It is well known that whenthe ow is smooth it canbe represeted by the quasi-
linear form
Qv + A(W)@ =0
@ @&
whereA(w) = %, and the eigervaluesu, u+ candu c of the Jacobianmatrix A are
the wave speedsfor the three characteristics. Dependingonthe initial data, there may
not be a smooth solution of the conseration law (A.2). Nonlinear wave interactions
along converging characteristicsmay lead to the formation and propagation of shack
waves, while cortact discontinuities may alsoappear.
The consenation law (A.2) is appraximated over the interval (0;L) on a mesh
with aninterval x by the semi-discretescheme
dw

x—L+h,: h

It ; 1=0; (A.3)

N

wherew; denotesthe value of the discretesolutionin cellj, and h;, 1 is the numerical
ux betweencellsj andj + 1.
The numerical ux can be taken as
— 1 .
hj+%_ E(fj+l+fj) dj+%’ (A4)
wheref; denotesthe ux vectorf (w;) evaluated for the state w;, andd;, 1 isadiu-
sive ux which is introducedto enablethe sdhemeto resolhe discontinuities without

producing oscillationsin the discrete solution.
A rather generalform for the di usive ux is

i j+%Bj+%(Wj+l w;);

NI =

d,.=
t3

wherethe matrix B; 1 cortrols the numerical di usion and determinesthe properties
of the scheme, and the scaling factor j+ i is included for corvenience. Notice that
sincew;.; w; approximates x&', the di usiv e ux introducesan error proportional
to the meshwidth. Henceall of these sdhemeswill be rst order accurate unless
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compensatinganti-di usiv e terms are introduced.
With this notation, scalardi usion is producedby setting

Bj,1=1; (A.5)
while the characteristic upwind sdiemeis producedby setting
— — HE 1.
Bj.i= AL: =Tj T % (A.6)

In equation (A.6), AH%(W,- +1;W;) is an estimate of the Jacobianmatrix % obtained

by Roe linearization, with the property that the equation
fj+1 fj:Aj+%(Wj+1 Wj)
is satis ed exactly, and T is a similarity transformation sud that
Ai=T TH (A7)

Thus, the columnsof T are the eigervectors of Ajst and is a diagonal matrix
cortaining its eigervalues. The symbol A, i1 is usedto represei the matrix obtained
by replacingthe eigervaluesby their absolutevalues.

An intermediate classof sdhemeswhich can be formulated by de ning the rst
order di usive ux asa combination of di erences of the state and ux vectorsare
given by

1 1
dj+ =5 j+%C(Wj+1 Wj)'*'é j+%(fj+1 fi) (A.8)

1

2 2

wherethe factor c is included so that is dimensionless.Sthemesof this classare
fully upwind in supersonic ow if onetakes je1 = 0 and je1 = sign(M) whenthe
absolute value of the local Mach number satises jMj > 1. In order to support a
stationary discrete shack structure with a single interior point, and cannot be
chosenindependerly. It turns out that once is chosen, is uniquely determined

by the equilibrium at the exit of the shak, leading to a one parameter family of
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schemessatisfying the relation
=1+ )1 M)

whenM > 0 [24].

A.2 CUSP form ulation

Very accurateschemesof this classcanbe basedon a decompsition of the ux vector
f obtained by setting

f=uw+fy; (A.9)
where 0 1
0
fp= % p §: (A.10)
up
Then

fior fp=uW W)+ w(Uu.a  u)+f fos (A.11)

Pj +1

whereu and w are the arithmetic averages
1 1
u= é(ujﬂ +U);, W= é(wjﬂ + W)

If the corvective terms are separatedby splitting the ux accordingto equations
(A.9), (A.10) and (A.11), then the total e ective coe cient of convective di usion is

c= c+ U

The choice c¢ = u leadsto low di usion near a stagnation point, and also leadsto
a smooth cortinuation of convective di usion acrossthe sonicline since = 0 and

= 1whenjMj > 1. The schememust alsobe formulated sothat the casesofu > 0
and u < O are treated symmetrically. Using the notation M = Y = u g this

c!
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leadsto the di usion coe cients

= jMj (A.12)
8
3 +max O = ifo M 1
=5y max O ) if 1 M 0 (A.13)
' sign(M) if jMj L
Near a stagnation point may be modied to = % o+ “"'32 if M) is smaller

than a threshold . The expressionfor in subsonic o w can alsobe expresseds

max(0;2M 1) foO M 1
min (0;2M + 1)  if 1 M O

Equation (A.13) remainsvalid whenthe CUSP sdhemeis modi ed asdescrited below
to allow solutionswith constart stagnationerthalpy. The coe cients (M) and (M)
are displayed in gure A.1l for the casewhen o= 0. The cuto of whenjMj < %

aMm) b(M)

Figure A.1: Di usion coe cien ts.

togetherwith  approading zeroasjM | approadeszero,is alsoappropriate for the
capture of cortact discortin uities.
An important property of this stheme can be illustrated by introducing a Roe
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linearization and by rewriting the di usive ux as

cl + Aj+% (Wj+1 Wj)Z

N[

Introducing the characteristic decompsition (A.7), the diusive ux can now be
represeted as
d.:=RMR Wi wy):

The matrix M is diagonalwith eigervalues c; ,C; 3C given by
1= M+ M= = JMJ
3 Mj if jMj< 2

2 = + if % M 1
iM + 1] if Mj 1

8
3 Mj if Mj< 3
3= 3 if % M 1

iM Y ifjMj 1

Thesevaluesare displayed in gure A.2.

Figure A.2: Eigernvaluesof di usion matrix
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In the regionjMj 2, 1 = , = 3 = jMj, while in the region jMj < 1
2<JM +1j; 3<jM 1. Thusthe shemehaslower di usion than the standard
characteristic upwind sceme. Strict positivity is not enforced,but at a shack

f=A w=S w

whereS is the shock speed. Thus  w must be an eigervector correspnding to one of
the eigervaluesu ¢, and positivity is enforcedfor the correspnding characteristic
variable.

In steady ow the stagnation erthalpy H is constan, correspnding to the fact
that the energy and massequations are consisten when the constart factor H is
removed from the energyequation. Discrete and semi-discreteshemesdo not neces-
sarily satisfy this property. In the caseof a semi-discreteshemeexpressedn viscosity
form - equations(A.3) and (A.4) - a solution with constart H is admitted if the vis-
cosity for the energy equation reducesto the viscosily for the cortinuity equation
with  replacedby H .

In order to extend the CUSP formulation to allow for iserthalpic solutions, we
introducethe linearization

fr fL=An(Why Wh);

where w;, is a modi ed state vector with H replacing E . The matrix A, may
be calculatedin the sameway as the standard Roe linearization. In particular, by

introducing the vector 0 1
p_

v=%p_u §;

P
all quartities in both f and w, are products of the form v; v which have the property
that a nite dierence ( v;v) betweenleft and right statescan be expresseds

(Vij):Vj Vi + Vi
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wherey; is the arithmetic mean 3(vjr + vj.). Therefore,
w=B v; f=C v=CB ' w;

whereB and C canbe expressedn terms of appropriate meanvaluesof the quartities
v;. Thus, by de ning

o mvet P PoeHe e PoHL
P_R+ IJ_L ' P_R+ IJ_L ’
and r
u2
c= HH  —);
( DH )
it follows that 0 1
0 1 0
— +1 y? +1 1
A
uH H u
The eigermvaluesof A, areu, * and where
S
+1 +1 ¢z u?
= ——u (e : (A.14)

Note that * and have the samesignasu+ c and u ¢, and changesign at
the sonicline u = c¢. The correspnding left and right eigervectors of A,, can be
computed, and are given in [24].

Using the modi ed linearization the CUSP sdhemecan be reformulated asfollows
to admit iserthalpic steadysolutions. The di usive ux is expresseds

d.

NI

1cw+1 f:
2 hto

where denotesthe di erence fromj + 1to j. The split is rede ned as

f = uw,+ fp;
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where 0 1
fh=Bpk

and the di usiv e ux canbe expresseds

o T O

NI =

N

As before, and are de ned by equations(A.12) and (A.13), using the modi ed
eigervalues  de ned in equation (A.14). This splitting correspndsto the Liou-
Ste en splitting [44, 71], denotedas H-CUSP formulation.

A.3 Implemen tation of limiters

In the caseof a scalar conseration law, high resolution sdhemeswhich guarartee
the presenation of the positivity or monotonicity of the solution can be constructed
by limiting the action of higher order or anti-di usiv e terms, which might otherwise
causeextremato grow. Typically, these shhemescomparethe slope of the solution
at nearby meshintervals. The uxes appearingin the CUSP scheme have di erent
slopesapproading from either sideof the sonicline, and useof limiters which depends
on comparisonsof the slopes of these uxes can lead to a lossof smoothnessin the
solution at the entrance to supersoniczonesin the ow. This problem can be avoided
in the implemertation of the CUSP sthemesby forming the di usive ux from left
and right states at the cell interface. These are interpolated or extrapolated from
nearby data, subject to limiters to presene monotonicity. In a similar mannerto the
reconstructionof the solution in Van Leer'sMUSCL sdeme[40], we usethe following
construction.
De ne the limiter

u v

juj + jvj

R(u;v) =1 (A.15)

where g is a positive power which is set equal to two in the presen study. Clearly
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R(u;v) = 0 whenu and v have opposite sign. Also de ne the limited average
1
L(u;v) = ER(U;V)(U + V): (A.16)

Let wK) denotethe kth elemen of the state vectorw. Now de ne left and right states
for ead dependern variable separatelyas

K K K) . k
w® = W,-()+ L( W(+)g’ W,-( )%)
K) _ k k) . k) y.
Wée) = Wj(+)1 _I—( W(+)3, Wj( )%),
where
Then
k K k k k
w wl = Wj(+)% L( W(+)3; WJ.( )%)

which in the caseof a scalarequationreducesto the SLIP formulation [23].

For the CUSP sthemesthe pressuresp, and pr for the left and right statesare
determinedfrom w,_ and wg. Then the di usiv e ux is calculatedby substituting w,
for w; and wg for wj.; to give

oW W)+ 5 (Fwe) f (w0):

wld = (k)+ R( w

N[~

(k)
i+ 31
wi R( W(k) . (k)

3 1 W. 1
J j+ 1

(k)

Wity

) w (k)
)

=
Py
I

hasbeenfound to yield essetially idertical resultsfor calculationsof steady o ws.
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A.4 Time stepping scheme

When the spacediscretization procedure is implemerted separately from the dis-
cretization in time, it leadsto a set of coupledordinary di erential equationswhich
can be written in the form

c(ij_v;/ + R(w) = 0; (A.17)

wherew is the vector of the ow variablesat the meshlocations, and R (w) is the
vector of the residuals,consistingof the ux balancesde ned by the spatial discretiza-
tion togetherwith the addeddissipative terms. If the objective is simply to read the
steady state and details of the transient solution are immaterial, the time-stepping
sdhememay be designedsolely to maximize the rate of corvergence.

Throughout this dissertation we use a multistage explicit stheme, belongingto
the generalclassof Runge-Kutta sthemes[7]. Sdhemesof this type have proved very
e ectiv e for awide variety of problems,and they have the advantagethat they canbe
applied equally easilyon both structured and unstructured mesheg33,17,18, 64, 29].

If one reducesthe linear scalar model problem correspnding to (A.17) to an
ordinary di erential equation by substituting a Fourier mode W = €P*i | the resulting
Fourier symbol hasan imaginary part proportional to the wave speed,and a negative
real part proportional to the di usion. Thus, the time steppingsdiemeshouldhave a
stability regionwhich contains a substartial interval of the negative real axis, aswell
as an interval alongthe imaginary axis. To adieve this we treat the corvective and
dissipative terms in a distinct fashion. Thus, the residualis split as

R(w) = Q(w) + D(w);

where Q(w) is the corvective part and D (w) the dissipative part. Denote the time
level n t by asuperscript n. Then the multistage time steppingstemeis formulated
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as

w(n+i:0 -

W
W(n+1;k) = W C t Q(k 14 D(k 1)
Wn+1 - W(n+1;m).

wherethe superscript k denotesthe k-th stage, ,, = 1, and

QY = Qw"); D@ =DWw"
Q(k) = Q wn+1:k)
D& = D wn+lk) 4 (1 k)D(k 1.

92

The coe cients ¢ arechosento maximize the stability interval alongthe imaginary
axis, and the coe cients | are chosento increasethe stability interval along the

negative real axis.

The coe cien ts of a v e-stagestheme [47]which hasbeenfoundto be particularly

e ective are tabulated below.

12711 1=1
2:% 2=0
3= 3 3=056:
4:% 4=0
s5=1 5=044

(A.18)
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A.5 Convergence acceleration

A.5.1 Multigrid metho d

Radical improvemerts in the rate of corvergenceto a steady-state solution can be
realized by the multigrid time-stepping technique. The concept of accelerationby
the introduction of multiple grids was rst proposedby Fedorenlo [9]. There is
by now a fairly well-deweloped theory of multigrid methods for elliptic equations
basedon treating the updating schhemeas a smoothing operator on ead grid [5, 12].
This theory, howewer, does not hold for hyperbolic systems. Newertheless,it seems
that it ought to be possibleto acceleratethe ewlution of a hyperbolic systemto a
steady state by using large time stepson coarsegrids so that disturbancescan be
more rapidly expelled through the outer boundary. Various multigrid time-stepping
shemesdesignedto take advantage of this e ect have beenproposed[54, 16, 13, 19,
6, 2, 14, 32, 39].

The multigrid sdhemeusedin this work has beenoriginally deweloped by Jame-
son[16] for the Euler equation and then extendedto the Navier-Stokes equation by
Martinelli and Jameson[48]. This method usesa sequenceof coarsermeshesyener-
ated by eliminating alternate points in ead coordinate direction. In orderto give a
precisedescription of the multigrid steme, subscripts may be usedto indicate the
grid level. Se\eral transfer operations needto be de ned. First the solution vector
on grid k must be initialized as

0 _ .
W;E) = Tex Wk 1

wherewy ; is the currernt valueon grid k 1, and Ty 1 is a transfer operator. Next
it is necessaryto transfer a residual forcing function sud that the solution on grid
k is driven by the residualscalculatedon grid k 1. This can be accomplishedby
setting

h [
Pc= Qux 1Rk 1(Wk 1) Re w ;

where Qg 1 is another transfer operator. Then Ry(wy) is replacedby Ry (wg) + Py
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in the time- stepping stheme. Thus, the multistage sthemeis reformulated as

h |
W, = w® 41 t R2+ P :

The resulting wl((m) then providesthe initial data for grid k + 1. Finally, the accunu-
lated correction on grid k hasto be transferredbad to grid k 1 with the aid of an
interpolation operator 1, 1.«. With properly optimized coe cien ts, multistage time-
stepping shemescan be very e cient drivers of the multigrid process. A W-cycle

of the type illustrated in gure A.3 provesto be a particularly e ective strategy for

< :

4 Levels

4 Level Cycle 4 Level Cycle

5 Levels

Figure A.3: Multigrid W-cycle for managingthe grid calculation. E, ewaluate the
changein the ow for onestep; C, collect the solution; T, transfer the data without
updating the solution.
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managingthe work split betweenthe meshes.In a three-dimensionalcasethe number
of cellsis reducedby a factor of eight on eat coarsergrid. Upon examination of the
gure, it can therefore be seenthat the work measuredin units correspnding to a
stepon the ne grid is on the order of

1+ 28+ 4=64+ < 4=3;

and consequetly the very large e ective time step of the complete cycle costsonly
slightly more than a singletime stepin the ne grid.

A.5.2 Local time stepping

Once the time step limit for the schemeis estimated, the minimum time step can
be usedfor computationsin the ow eld. Howewer this choicemay not be e ective
sincetypical computational meshesisedfor aeradynamic problemsare stretched away
from solid surfaces. This problem is particularly seerein grids designedto resolhe
the viscousphenomenain the boundary layer.

On the other hand, if the nal steadystate ow eld in the limit of large time
is the only desiredresult, then one can chooseto advance every computational cell
at its own stability limit. This choicefrequertly leadsto faster corvergenceof both
explicit and implicit schemesand has beenusedfor the solution of the steady Euler
and Navier-Stokesequationsto acceleratethe corvergence.

A.5.3 Implicit residual smoothing

The rate of corvergenceof a multistage sdheme can also be enhancedby implicit

residual smoothing. The generalidea behind this technique is to increasethe time

step limit by replacingthe residualat onecellin the ow eld by a weighed average
of the residualsat the neighboring cells. The averageis calculatedimplicitly and can
be expressedn the three-dimensionalcase:

(1 i xx)(l i yy) (1 k zz)Ri;j;k = Ri;j;k ; (A-lg)
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where ;, j, and  cortrol the level of smoothing, and R ;;« isthe updated value of the
residualthat is obtainedby solvingthe equationimplicitly in ead coordinate direction
usinga tridiagonal solver. A completediscussionof the stability characterand overall
bene t of this accelerationmethod is provided by Jamesonand Baker [19, 2§].



App endix B

Adjoin t equations and
discretization

This appendix descrikes the formulation of the adjoint equationsbasedon cortrol
theory for aeradynamic shape designin viscouscompressible ow modeled by the
Reynolds-AweragedNavier-Stokes(RANS) equations. The extensionto aeradynamic
shape designwith a simpli ed structural weigh is also preseted.

The detailed derivation of the adjoint equationsand adjoint boundary conditions
as deweloped by Jameson,Martinelli, and Pierce[3]] is preserted, together with the
extensionto inclusion analytical structural weight model by Leoviriy akit [41, 42].

B.1 Design using the Navier-Stok es equations

Recallthe generalformulation for the designusingthe Euler and Navier-Stokesequa-
tion described in section 2.4. Here we minimize the cost function of a boundary
integral 7 7

l= M (w;S)dB + N (w;S)dB (B.1)

97
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whereM (w; S) is an aeradynamic cost function, and N (w; S) is a structure weigh.
Also, the ow variablesw and geometry S satisfy ow equation

Q (Fi Fu)=0 (B.2)

which canberegardedasthe constraint equation. To eliminate the dependencyof ow
variations w from the sensitivity of the costfunction |, we introducethe Lagrange
multiplier  and integrate over the domain

Z
'— (F Fy)dD =0 (B.3)

D |

Assuming is di erentiable, equation (B.3) can be integrated by parts to give

Z Z

n (R R &

) D@i (Fi Fy)dD =0 (B.4)

Using the property that equation(B.4) is equalto zero,it canbe subtractedfrom the
variation form of the cost function B.1 without altering the value to give
z
= M+ N n " (Ff Fy) dB
ZB
@ T
+ — (F Fy) dD: (B.5)
D i
Since is an arbitrary di erentiable function, it can be chosenin sud a way that
I no longerdependsexplicitly on the variation of the state vector w. The co-state

variable then satisfy the adjoint equation

@T

‘@ [Fw Fuul =0 inD: (B.6)

The co-state variable that hasthis property must also satisfy the adjoint boundary
condition
n T [Fiw I:viw]| = [M w]| + [NW]| on B:
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The explicit for of the adjoint equation and boundary condition will be shavn as
follow.

B.2 Adjoin t boundary conditions

Due to the additional level of derivativesin the stressand heat ux terms, it is more
practical to derive the cortributions from the inviscid and viscousterms separately
following the work of Jameson[3]
In order to derive the adjoint equationin detail, equation (B.4) can be expanded
as Z
T(Syfj+Sy f)dB

B

YA T
D%( Sijfj + Sij fl)dD
Z

T Syfy + Sy fy; dB
B

Z @7
+ — Sij fvj + Sij fvj dD =0 (B.7)

D @i
It is convenient to assumethat the shape modi cation is restricted to the coordinate
surface , = O0sothat n; = nz3 = 0, and n, = 1. Furthermore, it is assumedthat
the boundary cortributions at the far eld may either be neglectedor elseeliminated
by a proper choice of boundary conditions as previously shavn for the inviscid case

[21, 25].

B.3 Deriv ation of the Inviscid Adjoin t Terms

In equation (B.7) the inviscid ux variation can be expandedby setting

Q@ .
ij@W.

Taking the transposeof equation (B.7), it can be seenthat in order to eliminate the

Sij fj:S

explicit dependenceon w in the absenceof viscosily e ect,  should be chosento
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satisfy the inviscid adjoint equation

1@ _

C =
'@

0 in D; (B.8)

wherethe inviscid Jacobianmatricesin the transformed spaceare given by

@.
Ci = Sij @J:
In order to designa shape which will lead to a desiredpressuredistribution, the
natural choiceis to set L 7
=5 (b p)°ds
B

wherepyq is the desiredsurfacepressure,and the integral is evaluated over the actual
surfacearea. In the computational domain this is transformedto
ZZ
=5 (P Po)'iSddad s
Bw
wherethe quartity

R ¢
1S = S5y

denotesthe faceareacorrespndingto a unit elemen of faceareain the computational
domain. Now, to cancelthe dependenceof the boundary integral on p, the adjoint
boundary condition reducesto

i =P Pd (B.9)

wheren; are the componerts of the surfacenormal, given by:

Syi
n = —:
LS

This amourts to a transpiration boundary condition on the co-state variablescorre-
sponding to the momertum componerts. Note that it imposesno restriction on the
tangertial componert of at the boundary:.
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B.4 Deriv ation of the viscous adjoin t equations

The viscousterms are derived belov under the assumptionthat the viscosiy and
heat conductioncoe cients andk are essetially independen of the ow, and that
their variations may be neglected. This simpli cation hasbeensuccessfullyusedfor
may aeradynamic problemsof interest. Howe\er, if the ow variations could result
in signi cant changesin the turbulent viscosily, it may be necessaryto accour for
its variation in the calculation.

The derivation of the viscousadjoint terms can be simpli ed by transforming to
the primitiv e variables

W' = (; Ug;Ug; Us; p);

becausethe viscousstressesdepend on the velocity derivatives %‘, while the heat

ux canbe expresseds

Q@ p
@
where = £ = src - The relationship betweenthe conserative and primitiv e

variations is de ned by the expressions

w=Mw w=M *w

which make use of the transformation matrices M = % and M 1 = % These
matrices are provided in transposedform for future corvenience
2 3
1 up U uz “5°
0 0 0 wu;,
MT=g0 0 0 u,
0 0 O Us
00 0 0 %
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2
1 W uz us 12)UiUi
o o0 0 ( Du
MT=8B0 0o ¥ 0 ( 21u
0 0 0 Y ( 1us
0O O 0 0 1

The consenative and primitiv e adjoint operatorsL and C correspnding to the vari-

ations w and w are then related by
Z Z
w'L dD = w'C dD;
D D
with
C=MTL;

sothat after determining the primitiv e adjoint operator by direct evaluation of the
viscousportion of equation (B.7), the consenative operator may be obtained by the
transformationL = M 1"[C. Sincethe cortin uity equationcortains no viscousterms,
it makesno cortribution to the viscousadjoint system. Therefore,the derivation pro-
ceedshy rst examiningthe adjoint operators arising from the momenium equations
and then the energyequation. The details may be found in [27].

In orderto make useof the summationcorvertion, it is corveniert to set j.; =

forj = 1;2;3and 5= . Collecting togetherthe cortributions from the momenum
and energyequations,the viscousadjoint operator in primitiv e variablescanbe nally
expresseds

(C) = %n@@' P o i

(C Jiex = @@?nsljh @—J'+@—JI + ij%t i

+ @@? Sij Ui@%‘Ir UJ% t i Uk,
i Si o for i=123
(C)y = l@@? Si; @%
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The consenative viscousadjoint operator may now be obtainedby the transformation
L=M ''r:

Finally, the resulting adjoint equations for the Navier-Stokes equations are as
follows:

@
cr=
' @

The rst and the secondterms comefrom the cornvective and di usiv e terms of the

M ¥Cc =0 inD: (B.10)

Navier-Stokesequationsrespectively. The adjoint equation, a linear set of equations,
is solved by marching the co-state variablesin time after a time-like derivative has
beenadded.

B.5 Viscous adjoint boundary conditions

The boundary term that arisesfrom the momenium equationsincluding both the w
and S componerts equation (B.7) takesthe form
Z
k (Sy(kp+ «))dB:
B
Replacingthe metric term with the correspnding local faceareaS, and unit normal

n; de ned by

S J— Sy
S = S . S i =
J 2] 2j 2 nj JSZJ

then leadsto 7

k (1S2inj (p+ ))dB:
B

De ning the componerts of the total surfacestressas

k=N (Pt )
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and the physical surfaceelemen
dS=jS;jdB ;

the integral may then be split into two componerts

z Z

k k] SpjdB + Kk «kdS; (B.11)
B B

whereonly the secondterm cortains variations in the ow variablesand must conse-
qguenrtly cancelthe w terms arising in the cost function. The rst term will appear
in the expressionfor the gradien.

A general expressionfor the cost function that allows cancellation with terms

cortaining ¢ hasthe form 7
Il = 1()dS; (B.12)
B
correspnding to a variation 7
| = Q de’
B @k
for which cancellationis achieved by the adjoint boundary condition
_ @,
k — — -
@«

Natural choicesfor | arisefrom force optimization and are a measureof the deviation
of the surfacestressedrom desiredtarget values.
The forcein a direction with cosinesg hasthe form

If we take this asthe cost function (B.12), this quartity gives

Il =g i:

Cancellationwith the ow variation termsin equation (B.11) thereforemandatesthe
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adjoint boundary condition
k = Gk

Note that this choice of boundary condition alsoeliminatesthe rst term in equation
(B.11) sothat it neednot be includedin the gradiert calculation.

In the inverse design case,where the cost function is intended to measurethe
deviation of the surfacestressedrom somedesiredtarget values,a suitable de nition
is

l .
|():§a|k(| a) (k)

where 4 is the desiredsurfacestress,including the cortribution of the pressure,and
the coe cien ts ax de ne a weighting matrix. For ow variation cancellation of

k k= ak(r  d) «

we can choosethe boundary condition

k=ak(1  a): (B.13)

Assumingarbitrary variations in , this condition is also necessary
In order to control the surfacepressureand normal stressone can measurethe
di erence

nif i+ 4P P)Y;
wherepy is the desiredpressure.The normal componert is then
n=NkNj «xj + P Pa
sothat the measurebecomes

2
n

() =

NIFRNI -

NNpN o+ m (P P9t s+ (P Pa)D
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This correspndsto setting

i = NNk

in equation (B.13). De ning the viscousnormal stressas
vn = NNy k5
the measurecan be expandedas

1
1

5 (N i+ M im) (P Pa)
1 2

+§(p pd)

1 1
= ot wP p)+ 30 po)’:

For ow variation cancellationof the boundary terms,

k(N G+ P = NN m+NE(P Pa) Nk(Nj & + Nk P)

leadsto the boundary condition

k=Nk(wmt+tpP Pa):

In the caseof high Reynoldsnumber, this is well approximated by the equations

k=Nk(P Pa);

106

(B.14)

which should be comparedwith the single scalar equation derived for the inviscid

boundary condition (B.9). In the caseof an inviscid ow, choosing

1O=50 b’
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requires
Kk P= (P PN P=(P Pa) P

which is satis ed by equation (B.14), but represets an over-speci cation of the
boundary condition since only the single condition (B.9) needsto be specied to
ensurecancellation.

The form of the boundary terms arising from the energyequation dependson the
choice of temperature boundary condition at the wall. For the adiabatic case,the

boundary cortribution is 7 @
k T—dB ;
g @
while for the constart temperature casethe boundary term is
z

2@, S @
B J @ J @
One possibility is to introduce a cortribution into the cost function which depends
onT or % sothat appropriate cancellationwould occur. Sincethere is little physical
intuition to guide the choice of sut a cost function for aeradynamic design,a more

natural solution is to set

in the constart temperature caseor

@ .
@

in the adiabatic case.Note that in the constarnt temperature case,this choiceof on

0

the boundary would also eliminate the boundary metric variation terms in
Z
(Szj Qj ) dB :
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B.6 Adjoin t boundary condition for the structural
weight

For simplicity, it is assumedthat the portion of the boundary that undergaesshape
modi cations is restricted to the coordinate , = 0. Then equation (B.7) may be

simpli ed by incorporating the conditions
nn=n3=0, n,=1 and dB =d 1d 3;

sothat only the variation F, needsto be consideredat the wall boundary. Moreover,
the condition that there is no ow through the wall boundary at , = 0is equivalent

to
and

when the boundary shape is modi ed. Consequetly,

8 9 8 9
I,
% Sy 3 % Sy =

Fo= p_ S»p _*P Sy (B.15)
P5.% §osof
T 0 T 0

Following the derivation in section2.3, the simpli ed weight model can be written as
Cw = Kcorr;bCWb + Kcorr;sCWs;

whereK ¢orr:p and K ¢or:s are constarts,

Cw, = cod) 2 P( 15 3)K( 3)Sx2d 1d 3;
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and I

1 _
Cw, = Sref Blszzld 1d 3t

The variation of Cy is

K Sz K Sy
W COl ,Ib B pcoq) 2 p COS() 2 1 3
KCOTI"S . .
: B.1
Sref 4 ]S22jd 1d 3 (B.16)

Since F, and Cy, depend only on the pressure,it allows a complete cancellation
of dependencyof the boundary integral on p, and the adjoint boundary condition

reducesto
K corr;b

cog) 2

Notice that since Cy,, cortains no ow variables, no cortribution from the area-

2Sp1+ 3Sp;t+ 1Sy = K'Sy, (B.17)

dependent weight appearsin the adjoint boundary condition.

B.7 Discretization of the adjoint equations

The adjoint di erential equationsfor the Navier-Stokesformulation have beengiven
by equation (B.10). To nd the solution of the adjoint equations,introduce a time-
like derivative term, which will vanishat the steady state solution of equation (B.10).
Thus the adjoint equations(B.10) can be written as

@ @ M1t =0 inD: (B.18)

@ '@
The main di erence between (B.18) and the correspnding ow equation (2.15) is
that (B.18) is a linear equation which is not in strong conseration form.

Basically, the samediscretization methodology discussedin appendix A for the
ow equationsis usedfor the ux balanceof the adjoint equation. For the inviscid
terms in Equation (B.18), straightforward certral di erencing is applied with C[
ewvaluated at the cell certers. This di erencing is essetially the samediscretization
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descriked in appendix A for the inviscid ux balanceof the ow equations.
To ewaluate the viscousadjoint uxes, the pseudostresstensor of the co-state
variable canbe de ned by

- @ @, ) _@k-
i = j + i + " (B.19)
i = ui_@j + U —% +  jjU— ’g-k; (B.20)

and their derivative terms are obtained in the samemannerdescribed in appendix A
using the sameauxiliary cortrol volume.

Becausecertral di erencing applied to the inviscid adjoint uxes permits odd-
even decoupling, the adjoint system has beenaugmened with arti cial dissipation
just aswasdonefor the Navier-Stokesequations. The last componert of the ; vector
(i = 4 for two dimensions,for example)is usedwithout modi cation for the arti cial
dissipation in this case. For the ow equations, the dissipation is applied to H
instead of E .

B.8 Solution Metho dology and Convergence Ac-
celeration for the Viscous Adjoin t Equation

The multistage Runge-Kutta time-stepping procedure descriked in section A.4 is
reusedhere to solwe the adjoint equations. Furthermore, the corvergenceacceler-
ation techniquesof sectionA.5 are alsousedhere.

B.9 Discrete Adjoin t Boundary Conditions

In order to make useof the summation corvertion, it is corveniert to set ;. =

forj = 1,2,3and 5= asbefore.
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B.10 Discrete Adjoin t Wall Boundary Conditions

While the boundary conditions for the o w equationsare basedon physical phenom-
enathat occurs at the boundaries, the adjoint boundary conditions are basedon
mathematicsand depend upon the cost function usedfor designoptimization.
For example,the adjoint wall boundary condition (B.9) has beenformulated for
the inversedesignproblem with the costfunction
z
NG Pa)* dS;

which is the Euclideannorm of the di erence betweenthe current pressuredistribution
and a desiredtarget pressure,py.
This boundary condition is restated hereas

inn=p ps =123 (B.21)

which meansthat the normal componert of is equal to the di erence between
the current pressureand target pressureat a solid wall. the mathematics of this
derivation imposesno restrictions on the tangertial componert of the vector. A
variety of di erent treatments for this tangertial componert could be devised. A
gradiernt accuracy study sut as the one conductedin chapter 2 could be carried
out for eadth alternative treatment and the one producing highestaccuracygradierts
can be selectedas the preferredoption. Three di erent typesof boundary condition
treatments were tried for inverse problems and the gradiert accuracy studies were
performedby Reuther [63]. The type descriked hereis preferreddue to its simplicity
and gradiert accuracyand was selectedfor usein this researd.

First, equation (B.21) is applied to the boundary cellsshovn in gure B.1 for the

cell certered nite-v olume schemeas
!
N
it

5 n=p pa j=123 (B.22)

where superscript * indicatesthe valuesin the cellsright above the boundary and
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Solid wall

Figure B.1: Solid Boundary for the Finite-Volume Scheme

indicatesthe valuesin the halo cellsright below the boundary. Additional conditions
are imposedon the tangertial componert of

+

non = ni n (B.23)

j i

which represets that the tangertial componerts of above and belown the wall are
the same. The following expressionis obtained for  from the above relations

(= 7 +2 (/@ pa) Mo (B.24)

For the rst costatevariable ;, the discreteboundary condition is given by

aswasgivenfor of the ow equations.
For the last costatevariable , the samerelation is found as

basedon the adiabatic wall boundary condition descrited in sectionB.5.
Thus, for an inverseproblem, a set of discrete boundary conditions at the wall
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may be summarizedas

= 7*t2((® p) Tmion; j=123 (B.25)

For the force optimization casessud asthe drag minimization and lift maximiza-
tion, the adjoint wall boundary condition hasbeenderivedin sectionB.5. It is simply

restated here as
Kk = G (B.26)

Unlike the boundary condition for the inverseproblem, no additional constrairts are
necessarysincewe have the samenumber of equationsas costatevariables, .
Equation (B.26) can be written for the computational cellsas

+
2

+
k k

= (B.27)

and now the discretewall adjoint boundary conditions are given by
L =26 g (B.28)

For force optimization problems, ; and are obtained in the sameway as was
descriked for the inverseproblem.

B.11 Discrete Adjoin t Far Field Boundary Condi-
tions

While various choicesfor the discretization of the far eld boundary conditions for
the viscousadjoint equationsare possible,in this work ; 5 weresimply speci ed as
the initial value, which is typically zero,which is equivalert to assumingthat the far
eld boundary is very far from the geometryof interest.
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