
Turbulence, Heat and Mass Transfer 7
c©2012 Begell House, Inc.

Structural LES modeling using a high-order spectral
difference scheme for unstructured meshes
G. Lodato, P. Castonguay and A. Jameson
Department of Aeronautics & Astronautics, Stanford University,
Durand Building, 496 Lomita Mall, Stanford, CA 94305-4035, glodato@stanford.edu

Abstract — The combination of the high-order unstructured Spectral Difference (SD) spatial discretization
scheme with Sub-Grid Scale (SGS) modeling for Large-Eddy Simulation (LES) was investigated with particu-
lar focus on the implementation of similarity mixed formulations. A new class of constrained discrete filters to be
used with the SD scheme were developed. The novel discrete filters can be applied to any SGS model involving
explicit filtering and to a broad class of high-order discontinuous Finite Element (FE) numerical schemes. The
code was validated on turbulent channel flow at different Reynolds numbers, and results were compared against
Direct Numerical Simulation (DNS). The numerical experiments suggest that the results are sensitive to the use
of the SGS model, even when high-order numerical schemes are used, especially when the grid resolution is kept
relatively low, and mostly in terms of resolved Reynolds stresses. The use of a simple wall-modeling strategy in
conjunction with the SGS model is also reported.

1. Introduction
Notwithstanding the considerable effort which has been devoted to the development of accurate
and relatively reliable SGS models for LES, in most cases, the underlying numerical methods
rely upon highly dissipative schemes. The inherent numerical dissipation introduced by such
numerical schemes limits their ability to represent the spectrum resolved in LES. Hence it is
necessary to combine high order numerical schemes with advanced SGS modeling techniques in
order for LES to become a valuable and reliable tool for fundamental flow physics and industrial
applications. Unfortunately, most of the available high-order numerical schemes are designed
to be used on cartesian or very smooth structured curvilinear meshes and therefore they are
inadequate to simulate turbulent flows over complex geometries. In the current work, a high-
order unstructured mesh solver is combined with an explicit filtering LES method, thus allowing
highly accurate turbulent flow computations on realistic geometries.

High-order numerical schemes for solving the compressible Navier-Stokes equations on un-
structured grids have been widely studied during the last decade. By far the most mature and
widely used of these schemes are based on the Discontinuous Galerkin (DG) method [1, 2].
Recently, however, several alternative high-order methods have been proposed, including SD
type schemes [3–5] , which potentially offer increased efficiency compared with DG methods.
It is worthwhile mentioning that it has recently been demonstrated that, for the case of 1D linear
advection, both SD and nodal DG type schemes can be formulated within a unifying Flux Re-
construction (FR) framework [6–10]. Such a unifying framework is efficient, straightforward
to implement, and allows direct comparisons to be made between various SD and DG methods.
The SD method has been successfully applied to viscous compressible flows with shocks [11],
implicit LES of turbulent channel flow [12] and flow around circular cylinders [13], as well as,
transitional flows over an SD7003 airfoil [14]. The combination of the SD method with SGS
modeling techniques for explicit LES, on the other hand, has not been widely studied.
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In the context of the SD method for 3D unstructured hexahedral grids, the present study
addresses the implementation of a structural SGS model based on the scale similarity assump-
tion [15], with some preliminary results regarding the use of a simple wall-modeling approach.

2. Mathematical formulation
2.1. The numerical scheme
In the present work, the Navier-Stokes equations are solved using the high-order unstructured
SD method for spatial discretization. The formulation of the equations on hexahedral grids is
similar to the formulation by Sun et al. [16], which will be summarized below for completeness.
After introducing the bar filter operator and the density-weighted Favre filter operator tilde, the
unsteady compressible Navier-Stokes equations in conservative form are written as

∂U

∂t
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∂F

k

∂xk
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where ρ is the fluid’s density, uk is the velocity vector, e is the total energy (internal + kinetic),
µ is the dynamic viscosity, Aij is the deviator of the deformation tensor, cp is the specific heat
capacity at constant pressure and Pr is the Prandtl number. In particular, $ and ϑ̃ are the
filtered macro-pressure and macro-temperature [15, 17], these quantities being related by the
usual equation of state, i.e., $ = ρRϑ̃. τij and qk in Eq. (2) represent the usual unclosed SGS
terms (note that the superscript ‘d’ refers to the deviatoric part of the relevant tensor).

To achieve an efficient implementation, all elements in the physical domain are transformed
to a standard cubic element described by local coordinates ξ = (ξ1, ξ2, ξ3), with ξ ∈ [0 : 1]3.
The governing equations in the physical domain are then transferred into the computational
domain, and they take the form

∂U
∂t

+
∂Fk

∂ξk
= 0, (3)

where
U = | det(J)|U and Fk

= | det(J)|∂ξk
∂xj

F
j
, (4)

and det(J) represents the determinant of the Jacobian matrix Jij = ∂xi/∂ξj .
In order to construct a degree (N − 1) polynomial for each coordinate direction, solution at

N points are required. These N points in 1D are chosen to be the Gauss-Legendre quadrature
points, whereas the flux points were selected to be the Gauss-Legendre quadrature points of
order N − 1 plus the two end points 0 and 1. Using the N solution points and the N + 1 flux
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points, polynomials of degree N − 1 and N , respectively, can be built using Lagrange bases
defined as

hi(ξ) =
N∏

s=1,s 6=i

(
ξ − ξs
ξi − ξs

)
, and li+1/2(ξ) =

N∏
s=0,s 6=i

(
ξ − ξs+1/2

ξi+1/2 − ξs+1/2

)
. (5)

The reconstructed solution for the conserved variables in the standard element is then obtained
as the tensor product of the three one-dimensional polynomials,

U(ξ) =
N∑
k=1

N∑
j=1

N∑
i=1

U i,j,k

|Ji,j,k|
hi(ξ1)hj(ξ2)hk(ξ3), (6)

where i, j and k are the indices of the solution points within each standard element. A similar
reconstruction is adopted for the resolved fluxes Fk

.
The reconstructed fluxes are only element-wise continuous, but discontinuous across cell

interfaces. For the inviscid flux, a Riemann solver is employed to compute a common flux
at cell interfaces to ensure conservation and stability. In the current implementation, the Roe
solver [18] with entropy fix [19] was used. The left and right states here represent the solution
on both sides of the shared edge flux point. The viscous flux is a function of both the conserved
variables and their gradients, therefore, the solution gradients have to be calculated at the flux
points. The average approach described by Sun et al. [16] is used to compute the viscous fluxes.

2.2. LES modeling approach
In order to close the SGS terms a structural model based on the scale similarity assumption [20–
23] is adopted. In the perspective of developing a similarity mixed formulation [23–30] with
correct near-wall scaling, a WALE formulation [31] for the eddy-viscosity term was recently
proposed by Lodato et al. [15]:

τd
ij = 2ρνsgsÃij − ρ

( ̂̃uiũj − ̂̃uî̃uj)d
, (7)

qk = γρκsgs
∂ẽI
∂xk
− γρ

( ̂̃eI ũk − ̂̃eI ̂̃uk), (8)

where ẽI is the resolved internal energy and the hat operator represents filtering at cutoff length
α∆g, where ∆g is a measure of the actual grid resolution (see below), and α ≥ 1 with sufficient
localization in physical space [22]. the SGS kinematic viscosity, νsgs, and thermal diffusivity,
κsgs, are computed as [31]

νsgs = C2
w∆2

g
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ij s̃
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ij)

3/2

(ÃijÃij)5/2 + (s̃d
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, and κsgs =

νsgs
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, (9)

where Cw = 0.5, and s̃d
ij is the traceless symmetric part of the square of the resolved velocity

gradient tensor g̃ij = ∂ũi/∂xj . The sub-grid scale Prandtl number, Prsgs, is assumed constant
and equal to 0.5. [28, 30], and ∆g is computed from its counterpart in computational space,
namely ∆ = 1/N , following the same procedure suggested by Parsani et al. [32]:

∆(ξ) ∼
[
| det(J(ξ))|

N3

]1/3

= ∆| det(J(ξ))|1/3. (10)
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2.3. Constrained discrete filters for the SD method
When using similarity mixed SGS models, such as the WSM model used in this study, explicit
filtering represents a key ingredient to approximate sub-grid scale interactions. This is done by
assuming similarity within a narrow band of frequencies in the vicinity of the cutoff frequency.
Similarity is assumed between the SGS scales and the smallest resolved scales, which are eval-
uated as the difference between the filtered and the twice-filtered field. Hence, the explicit filter
should be designed (a) to have sufficient localization in physical space; (b) to ensure a certain
selected cutoff length-scale. In the present study, sufficient localization in physical space is
achieved by setting ∆c = 1.5∆.

In order to develop a mixed similarity formulation to be applied with the SD method, the
above ideas need to be generalized in a way which is numerically consistent with the use of SD
elements. In particular, since the SGS model terms are evaluated at the flux points, the filtered
quantities needs to be evaluated at the same flux points starting from the discrete solution at the
solution points. This can be achieved by filtering the solution at the solution points first, and then
extrapolating the filtered quantities at the flux points using the same Lagrange polynomials used
to reconstruct the fluxes (cf. Eq. (5)). A particularly desirable feature in building discrete filters
is that the filter stencil does not lie across elements. Moreover, the non-uniform spacing of the
solution points should be taken into account. The above considerations lead to the particularly
challenging task of designing asymmetric non-uniform discrete filters with a fixed cutoff length-
scale.

For the 1D SD element, the discrete filter for a generic quantity φ is defined as [33]

φs =
N∑
i=1

wsiφi, (s = 1, . . . , N), (11)

where the s index refers to a quantity at the N solution points. For the case of hexahedral
elements as in the present study, the generalization to three dimensions follows immediately by
tensor product of 1D filtering operators. The spectral signature of the above discrete filter is
characterized by its transfer function in Fourier space [34], which is readily obtained as

Ĝs(k) =
N∑
i=1

wsi exp(−jβsi k∆), with βsi =
ξi − ξs

∆
, (12)

where k is the wavenumber and j =
√
−1; ξs represents the location of the solution points,

whereas ∆ = 1/N is assumed to be the actual resolution within the SD element (cf. Eq. (10)).
A possible strategy to build discrete filters can be devised by exploiting the resolution prop-

erties of polynomials of different order, thus performing the explicit filtering operation by ap-
plying the Restriction-Prolongation (RP) technique in each computational cell [11, 35]. Based
on Eq. (12), for instance, the real part of the Fourier transform of the discrete filters constructed
using the Restriction-Prolongation (RP) technique [11] for N = 3 and 4 is plotted in figure 1(a,
d), where the Gaussian filter, with cutoff length equal to 1.5∆, is also represented for refer-
ence. As it is immediately evident, the cutoff frequency for each solution point is different and
thus the overall effective cutoff frequency is unpredictable. Furthermore, for N = 4, the most
asymmetric filters have a relatively pronounced over-shoot in the low frequency range, a feature
which may lead to non-physical growth of energy. [33]
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In order to overcome these problems, two sets of constrained filters have been developed.
One of these sets of filters (CD1) features strict positivity but is only applicable to standard
elements with a specific distribution of solution points, whereas the other set (CD2) can be
applied to arbitrary distributed points. Both sets of discrete filters are completely local inside
the standard element, therefore they are straightforward to implement in a parallel environment.

2.3.1. CD filters by Gauss quadrature integration (CD1)
By exploiting the properties of the Gauss-Legendre quadrature points, a discrete filter can be
obtained by analytical integration of a selected filter kernel. In particular, the 1D discrete filter
is obtained under the assumption that the convolution integral can be approximately restricted
within the SD element

φ(η) =

∫ +∞

−∞
φ(ξ)G∆(η − ξ)dξ '

N∑
i=1

wG
i φiG∆(η − ξi), (13)

where G∆ is the convolution kernel associated with the filter operation at cutoff length ∆, and
wG
i are the Gaussian quadrature weights associated with the N solution points ξi. Choosing the

Gaussian filter [36], the discrete filter weights are immediately obtained as

wsi = KwG
i exp

[
−γ(βsi /αs)

2
]
, (14)

where γ is generally taken to be equal to 6, βsi is given by Eq. (12), K is a normalization coeffi-
cient and αs∆ is the desired cutoff length scale. Since the Gauss quadrature weights are strictly
positive, the resulting filter weights are all positive as well, thus making this filter particularly
well behaved for numerical simulations. The parameter αs, in particular, is iteratively deter-
mined beforehand for each of the N solution points, such that the estimate of the actual cutoff
length of the filter based on the second order moment of the filter kernel [37, 38] is as close as
possible to the selected value of α0 = 1.5. Finally, the normalization coefficient is computed
such that the preservation of a constant property is satisfied, viz.

∑N
i=1w

s
i = 1. The real part of

the kernels of CD1 filters for SD elements of order 3 to 6 are plotted in figure 1(b, e).

2.3.2. CD filters for arbitrarily distributed points (CD2)
The method used to derive these CD filters is based on the work of Vasilyev et al. [33]. In
particular, starting from Eq. (12), the N filter weights wsi for the s-th solution point can be
determined by providing N constraints. More precisely, a first obvious condition is related to
the preservation of a constant variable, namely

∑N
i=1w

s
i = 1. Then, starting from the idea of

building filters whose kernels are as close as possible to that characterizing the Gaussian filter
of width ∆c = α∆, the condition

Re[Ĝs(kc)] =
N∑
i=1

wsi cos(βsi kc∆) = exp

(
−∆2

ck
2

4γ

)∣∣∣∣
k=kc

= exp(−π2/24), (15)

is enforced, with kc = π/∆c, therefore constraining the relevant cutoff length-scale. The re-
maining conditions are obtained by constraining the discrete filter to have N − 2 vanishing
moments, thus achieving formal commutation with difference operators. [33] The real part of
the kernels of these CD2 filters for SD elements of order 3 and 4 are plotted in figure 1(c, f).
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(f) CD2 filter, N = 4

Figure 1: Real part of the transfer function Ĝ(k∆/π) of RP (a, d), CD1 (b, e) and CD2 (c, f)
filters for different SD discretization orders N ( , analytical Gaussian filter).

Reτ Rec Lx × Ly × Lz nx × ny × nz N DoF ∆+
x ∆+

y ∆+
z

180 3 440 4πδ × 2δ × 2πδ 12× 12× 12 5 216 000 38 2.0–10 19
395 8 106 2πδ × 2δ × 1πδ 13× 9× 9 5 131 625 38 2.1–33 28
590 12 686 4πδ × 2δ × 1πδ 20× 12× 12 6 622 080 62 3.4–33 26
590∗ 12 686 2πδ × 2δ × 1πδ 18× 8× 8 5 144 000 46 19.6–38 46

2 000∗ 48 958 2πδ × 2δ × 1πδ 32× 16× 16 5 1 024 000 79 17.8–82 79

Table 1: Grid size and resolution for channel flow computations (resolution is estimated as the
element size divided by the number of solution points; DoF = Degrees of Freedom).

3. Results
The behavior of the new discrete filter operators, with the WALE similarity mixed model and
the SD method at different orders, is assessed in the following sections on the turbulent channel
flow at Reτ = 180, 395 and 590 (based on the friction velocity uτ and channel half-width δ) in
the case of wall-resolved LES, and at Reτ = 590 and 2 000 in the case of a (preliminary) attempt
of wall-modeled LES. Results are validated against DNS data [39, 40]. All computations were
performed at Mach number 0.3, which is low enough to allow comparison with incompressible
DNS [41]. Grid dimensions and resolutions for the computations are summarized in table 1,
where the last two rows refer to the wall-modeled computations.

3.1. Wall-resolved channel flow
A first check was done on the behavior of the developed filter operators compared with the ex-
isting RP filters. The Reτ = 395 channel flow was selected as a test bench and computations
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Figure 2: Mean velocity (a) and RMS of velocity fluctuations (b) for the channel flow at Reτ =
395, using the SD scheme (N = 4) and the WSM model [15]: ◦ , LES with CD1 filter; ×, LES
with CD2 filter; • LES with RP filter [11]; solid lines, DNS data [39]. ◦ , u+

rms; , v+
rms; 4 , w+

rms.

were performed using the SD scheme with order 4 and the WSM model, where the similarity
term was computed using CD1, CD2 and RP filters. The relevant results are shown in fig-
ure 2. Although results obtained with different filters are similar in trends, the computation
performed with the RP filters shows unphysical numerical oscillations, which are particularly
evident on the second-order moments. These numerical artifacts appear to be located at the ele-
ments interfaces, and are supposedly strictly related with the over-shoots observed in the kernel
of the filters which are applied at those locations (see figure 1(d)). Both CD1 and CD2 filters
are numerically better behaved, and the relevant results are almost indistinguishable, proving
that these filters provide a complete set of discrete operators to be used with a broad range of
high-order discontinuous Finite Elements (FE) methods.

Results from computations performed with the WSM model using the CD1 filter are com-
pared against implicit LES (i.e. without SGS model) for the three mentioned Reynolds number
in figure 3. For reference, DNS data [39] are plotted as well. In terms of average profiles, the
improvement resulting from using the SGS model is marginal. All the plots show good agree-
ment with DNS. The use of the SGS model lead to a slightly better agreement on the intercept
of the logarithmic region, which is more evident at Reτ = 180 and 395. Reynolds stresses, and
in particular velocity fluctuations, appear to be much more sensitive to the SGS model. The im-
plicit LES results show a marked tendency to overestimate fluctuations, especially close to the
wall and in the streamwise direction, for which the peak is over predicted. Better agreement is
obtained with the WSM model with the new proposed filter, which performs consistently better
at the three Reynolds numbers.

3.2. Wall-modeled channel flow
In order to gauge the behavior of the implemented WSM model with the new discrete filters
in the case that wall-modeling approaches are used, a three-layer Law-of-Wall (LoW) [42] was
also tested at Reτ = 590 and 2 000 (see table 1, last two rows). In particular, the LoW was used
inside each wall element, where the wall shear stress was evaluated using information from the
farthest solution points from the wall. The relevant results are very encouraging (cf. figure 4),
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Figure 3: Mean streamwise velocity (a,c,e) and RMS of velocity fluctuations (b,d,f): open
symbols, LES with WSM model (◦ , U+ or u+
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rms; 4 , w+

rms);×, implicit LES; lines, DNS
data [39].
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Figure 4: Mean streamwise velocity (a,b) and RMS of velocity fluctuations (c,d): open symbols,
LES with WSM model and law-of-wall (◦ , U+ or u+

rms; , v+
rms; 4 , w+

rms); lines, DNS data [39,
40].

especially in consideration of the simple approach used. Above the modeled region (indicated
by a vertical line in the plots), both average profiles and Reynolds stresses are extremely well
captured. Even within the modeled region (i.e. x+

2 < 100), both computations show the remark-
able ability to correctly reproduce trends and peaks of velocity fluctuations (especially in the
streamwise direction). As shown in figure. 5, no unphysical numerical artifacts were observed
between the LoW modeled layer and the LES resolved region above.

4. Concluding remarks
A similarity mixed model for wall bounded flows was tested in conjunction with the spectral
difference scheme. For the similarity mixed formulation used in the present study, in particu-
lar, existing filtering approaches based on solution projection over low-order polynomial bases
proved to be inadequate, and keen to develop spurious numerical artifacts at the elements inter-
faces. Hence a new class of discrete filter operators has been developed and tested on the turbu-
lent channel flow at different Reynolds numbers. In the tests performed, the newly developed
discrete filters did not lead to any similar unexpected and unphysical behavior throughout the
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(a) Reτ = 590 (b) Reτ = 2000

Figure 5: Contours of velocity magnitude over planes at x+
2 = 100 from wall-modeled LES.

computational domain. The proposed constrained discrete filters of arbitrary order, proved to be
numerically stable at any tested order (up to N = 7 in other tests not included here) and allow a
relatively straightforward implementation into high-order SD schemes (or any other discontin-
uous finite element numerical method) of any SGS model which relies upon the use of explicit
filtering or dynamic procedures [43, 44]. Overall, the performance of the SD scheme with the
WSM model and the new discrete filters is extremely satisfactory. In the tests performed, the
benefits resulting from the use of the model were marginal on the average profiles and more
pronounced on the second-order statistical moments. Preliminary tests of wall-modeled LES of
channel flow, using an extremely simple three-layers LoW have shown remarkable capabilities
to correctly reproduce average profiles and Reynolds stresses even within the modeled region,
where turbulent fluctuations are surprisingly well captured in their trends and peaks. The com-
bination of the high-order spectral difference scheme with the SGS modeling approach used in
the present study, and the discrete filters developed for this purpose, appears to be a powerful
tool for LES of complex geometries.
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