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Abstract

This dissertation revolves around algorithm development in the context of numerical meth-

ods for hyperbolic conservation laws and the compressible Navier-Stokes equations, with

particular emphasis on unstructured-mesh algorithms. Three distinct topics may be iden-

tified.

A New Kinetic Scheme for the Compressible Navier-Stokes Equations: Ki-

netic numerical schemes are based on the discretization of a probability density function,

whose moments define the dependent variables of the problem. In the context of fluid

flow such schemes have a natural basis rooted in the kinetic theory of gases. A significant

advantage of kinetic schemes is that they allow a compact, completely mesh-independent

discretization of the Navier-Stokes equations, which is attractive in the context of gen-

eral unstructured meshes. In this dissertation a new kinetic scheme for the compressible

Navier-Stokes equations is presented, based on the popular Xu-Prendergast BGK scheme.

In comparison, a dramatic reduction in computational cost is achieved, while also improv-

ing the physical modeling with respect to the underlying gas-kinetic theory, and clarifying

the analysis of the multidimensional formulation. Another significant contribution is con-

vergence acceleration for steady-state problems. For the first time a functional multigrid

formulation for a BGK-based scheme on unstructured meshes is presented.

Contributions to the Development of the Spectral Difference Method: In

many industrial applications numerical simulation on unstructured meshes has been dom-

inated by schemes of relatively low order of accuracy. Often, however, the mesh re-

quirements for low-order methods become prohibitive, while high-order methods poten-

tially produce higher accuracy with fewer degrees of freedom. Traditionally this has been

v



achieved only for modeling complex physics in relatively simple domains. This motivates

the formulation of high-order methods for unstructured meshes in order to make complex

domains amenable. The Spectral Difference Method offers a remarkably simple alterna-

tive to such high-order schemes for unstructured meshes as the Discontinuous Galerkin

and Spectral Volume Method. Significant contributions to the development of the scheme

have been made as part of this dissertation, including stability analysis, formulation for

the compressible Navier-Stokes equations, data limiting methodologies, and convergence

acceleration using h/p-multigrid for two-dimensional unstructured meshes.

Gibbs-Complementary Reconstruction for Nonlinear Hyperbolic Equa-

tions: Nonlinear hyperbolic conservation laws admit solutions that develop discontinuities

in finite time, even if the initial data is smooth. In particular for high-order numerical

schemes, the treatment of discontinuities is highly problematic. For (pseudo-) spectral

methods high-order filtering is often used to stabilize the solution, which ensures conver-

gence, but not in the pointwise sense. According to the theory of Gibbs-complementary

reconstruction, it is possible to extract the same order of convergence from the spectral

coefficients of a non-smooth function as for a smooth one, despite the presence of the Gibbs

phenomenon. In this work the concept is utilized in the context of high-order numerical

methods. A stable high-order scheme may contain enough information to recover the

full order of accuracy, even if it is not monotone. The information is extracted from the

spectral coefficients of the solution by re-projection onto a functional space endowed with

certain properties (called a Gibbs-complementary space), recovering pointwise high-order

accuracy, even at discontinuities. This dissertation includes a proof of concept validating

the technique on nonlinear hyperbolic PDE, such as the Burgers equation and the Euler

equations.
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Chapter 1

Introduction

Conservation laws arise naturally in mathematical models of physics in which conserved

quantities, such as energy, momentum, and mass are of interest. In particular hyperbolic

or nearly hyperbolic conservation laws receive undiminished attention among researchers

in applied mathematics. The numerical solution of nonlinear hyperbolic conservation laws

is particularly challenging, because such equations admit solutions that develop discon-

tinuities in finite time, even if the initial data is smooth. A well-known example is the

formation of shock waves in gas dynamics.

Numerical simulation of physics governed by conservation laws is ubiquitous in many

scientific environments and industrial applications, and is furthermore often desired for

rather complex geometries, often involving different scales. This has led to increased

popularity of unstructured meshes, which simplify the generation of numerical meshes

considerably.

This dissertation is the result of research in numerical algorithm development, geared

in particular toward improving the status quo in the realm of (hyperbolic) conservation

laws with emphasis on unstructured meshes.

1.1 Motivation and Contributions

The general motivation behind this research is improving the status quo in the numerical

treatment of conservation laws. Particular points of emphasis are numerical algorithms

1



2 CHAPTER 1. INTRODUCTION

for the solution of conservation laws on arbitrary meshes (in particular the Navier-Stokes

equations), hyperbolic equations and their inherent tendency to admit discontinuous so-

lutions, and solutions of conservation laws to high order of accuracy. In detail one may

identify the following three topics.

1.1.1 A New Kinetic Scheme for the Navier-Stokes Equations

Mesh-Transparent Algorithms

Meshing is one of the major bottlenecks in scientific computing. For example, in the

numerical simulation of high-Reynolds-number flow in complex geometry the cost of mesh

generation often outweighs the cost of computing the solution. The use of unstructured

and Cartesian meshes has alleviated the problem somewhat, but has also created the

situation that today many different mesh topologies are used: Body-fitted structured

meshes, (hybrid) unstructured meshes, and Cartesian meshes with cut cells.

Research efforts have been undertaken to devise computational tools that treat all these

mesh topologies as arbitrary polyhedral meshes [49]. This motivates the development of

algorithms which do not depend on the mesh topology. For the special case of the Navier-

Stokes equations, this has been achieved to some degree of success for the convective

terms, but not for the viscous terms. In this work the development of mesh-independent

numerical algorithms is approached via kinetic formulation of numerical schemes.

The Kinetic Approach

Kinetic schemes for the Navier-Stokes equations have advantages in the compactness of

the discretization stencil, offering a stable, mesh-independent discretization, and a sound

physical reasoning rooted in gas-kinetic theory. The main result reported in this disser-

tation is a new kinetic scheme, based on the popular Xu-Prendergast BGK scheme [56].

The new formulation dramatically reduces the incurred computational expense and also

improves the physical modeling with respect to the underlying gas-kinetic theory. Fur-

thermore, the analysis of the multidimensional formulation has been clarified. Another

significant aspect is convergence acceleration for steady-state problems. For the first time a
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functional multigrid formulation for a kinetic scheme on unstructured meshes is presented,

which makes the kinetic route more competitive for steady-state problems.

1.1.2 High-Order Methods for (Hyperbolic) Conservation Laws on Un-

structured Meshes

The Current Status Quo

In most industrial applications of computational physics, simulations on unstructured

meshes have been dominated by low order schemes. The simulation of compressible fluid

flow for complex geometry is one notable example. In many disciplines, however, extremely

high accuracy is required, for example in LES to avoid the masking of subgrid-scale dis-

sipation by numerical dissipation, and in problems of aeroacoustics and electromagnetics,

where one needs to track wave propagation over long distances. The resulting mesh re-

quirements for low-order methods are often prohibitive, while high-order methods promise

to provide higher accuracy with fewer degrees of freedom. Traditionally this has been

achieved for modeling complex physics in relatively simple domains. The popularity of

low order methods stems in part from the fact that in industrial applications the accuracy

requirements are often not excessive (“engineering accuracy”). Furthermore, low-order

schemes are very robust, while pertaining convergence acceleration techniques for steady-

state problems are mature and well understood.

However, the promise of high-order methods to provide superior performance at lower

computational cost is compelling and motivates the further research to extend the range

of applicability to complex computational domains (which motivates the formulation for

unstructured meshes).

The Development of the Spectral Difference Scheme

A significant contribution to the development of the Spectral Difference Method, which

was originally proposed by Liu, Vinokur, and Wang [46], is reported in this dissertation.

The Spectral Difference Method is a collocation-based high-order method designed for

hyperbolic conservation laws on unstructured meshes. It is remarkably simple in formula-
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tion, compared to such high-order schemes as the Discontinuous Galerkin (DG) [9], and the

Spectral Volume method [76], while sharing the property of arbitrary accuracy by means of

a local, high-order reconstruction on unstructured mesh elements. Contributions reported

in this thesis include linear and nonlinear stability analysis, and the extension to viscous

problems, such as advection-diffusion systems and the Navier-Stokes equations. Further-

more, a flexible data limiting methodology for two-dimensional unstructured meshes is

developed, as well as convergence acceleration techniques via h/p-Multigrid formulation.

1.1.3 An Alternative to Shock Capturing for High-Order Schemes

Capturing discontinuities is one of the most important design criteria for numerical

schemes for nonlinear hyperbolic partial differential equations (PDE). In particular for

high-order schemes, the treatment of discontinuities is highly problematic.

A viable path is the local reduction of the order of the reconstruction, sacrificing local

resolution, to avoid oscillations. While this approach is very widespread and accepted,

and also offers relatively simple nonlinear stability proofs, based for instance on TVD

theory [26, 27], it is certainly interesting to investigate alternatives that avoid the reduction

of accuracy.

Gibbs-Complementary Reconstruction

A technique to ensure a global, pointwise, high-order accuracy in the solution of hyperbolic

PDE even in the presence of discontinuities, based on the concept of Gibbs-complementary

reconstruction, pioneered by Gottlieb and coworkers [24], has been produced as part of

this thesis. The theory of Gibbs-Complementary reconstruction has established that it is

possible to extract the same order of convergence from the spectral coefficients of a non-

smooth function as for a smooth one. Furthermore, following Lax [44], one can argue that

as long as no explicit reduction of the order of approximation is carried out, a convergent

high-order scheme still contains the necessary accuracy, even if it is not monotone. The

problem is thus reformulated as a problem of information retrieval: The general idea is to

not enforce monotonicity of the solution during the computation, but rather extract the

necessary information from the spectral coefficients by re-projection of the solution onto
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a Gibbs-complementary functional space endowed with certain properties. This in fact

allows the recovery of pointwise accuracy, even in the presence of discontinuities. This

dissertation includes a proof of concept validating the technique on nonlinear hyperbolic

PDE, such as the Burgers equation and the Euler equations.

1.2 Organization of the Thesis

In chapter 2 a short overview of the mathematical models that are used in this work is

presented. This chapter is admittedly short, but it is hoped that it serves to orient the

reader in the relevant framework of physical gas-dynamics, conservation laws, hyperbolic

equations, and their numerical treatment. The following three chapters address the re-

search topics identified in section 1.1 above, and can be read independently of each other.

Chapter 3 introduces the new BGK-based kinetic scheme for the Navier-Stokes Equations.

In chapter 4 the contributions toward the development of the Spectral Difference Scheme

are reported, while the Gibbs-Complementary treatment of discontinuities in the numer-

ical solution of hyperbolic equations is presented in chapter 5. A short summary and

outlook is provided in chapter 6.

1.3 A Word on Notation

Generally the convention of summation over repeated indices applies, i.e. aibi means∑
aibi. However, often the summation sign is explicitly added to clarify the notation, in

particular for double summations.

Vector notation is generally omitted. It is felt that it can almost always be inferred

from the context whether a variables is scalar or a vector. On rare occasions, where this

is not the case, boldface, e.g. ui, is used to identify vectors.

Other than that, there are no special conventions used in this work, and the meaning

of all variables and symbols is explained as they appear.
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Chapter 2

Mathematical Models

An overview of the mathematical models that form the background of the thesis shall be

provided in this section. Relevant elements include the kinetic theory of gases, which has

considerable influence of the derivation of the numerical schemes discussed in chapter 3,

the mathematical theory of hyperbolic conservation laws and the numerical treatment of

such equations, which is highly relevant for all subsequent chapters.

Surely it is not advisable to attempt a self-contained account of the history and theory

of those fields. A rather short overview is given instead, frequently preferring conciseness

over completeness, while referring the interested reader to the relevant literature. It is

attempted to convey a coherent line of thought that first follows the path from kinetic

theory to special classes of macroscopic equations governing fluid flow in sections 2.1

and 2.2. Subsequently these equations are put in a broader context by introducing general

conservation laws and hyperbolic equations in section 2.3. The numerical treatment of

such equations is discussed in sections 2.4 and 2.5. Finally a full circle is completed when

in section 2.6 it is demonstrated how the concepts from kinetic theory may be used to

solve the macroscopic equations numerically.

2.1 Kinetic Gas Theory

The kinetic schemes discussed in chapter 3 are rather heavily influenced by the kinetic the-

ory of gases and the physical interpretation of relevant statistical concepts. The following

7
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discussion is restricted to mono-atomic gases mostly because of notational convenience.

For polyatomic gases internal degrees of freedom cause minor differences in the formalism,

see for example [72].

2.1.1 The Distribution Function

In kinetic gas theory a statistical description of fluid flow is employed, based on a

probability density function f(x,u, t). Here x is the Cartesian coordinate-vector, and

u = (u, v, w)T are the molecular velocities. The distribution function gives, depending on

the normalization, the specific mass of particles having velocity between u and u + du.

Macroscopic flow variables may be obtained by taking moments of the distribution func-

tion, which thus defines the entire fluid state. The state vector of specific mass, momentum

and energy of the fluid can be written

q(x, y, z, t) =



ρ

ρU

ρV

ρW

E


=
∫
φ f(x, y, z, u, v, w, t) dΞ , (2.1)

where dΞ = du dv dw, and ρ is the density of the fluid. The Cartesian components of the

velocity vector U are denoted by U , V and W , respectively, and E is the total energy.

Frequently we shall also use index notation to identify velocity components, i.e. U = Uiei,

where ei with i = 1, . . . , 3 is a unit vector. For mono-atomic gases the vector φ can be

written

φ =
(

1, u, v, w, 1
2uiui

)T
. (2.2)

The elements of the vector are often called the collisional invariants because they represent

molecular mass, momentum, and energy, which are conserved during molecular collisions.

Under the assumption that only binary collisions in the gas occur, the mean distance

between collisions is much greater that the molecular spacing, and intermolecular forces

are negligible (which essentially corresponds to the usual assumptions for an ideal gas),
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the evolution of the distribution function is given by the Boltzmann equation

∂f

∂t
+ ui

∂f

∂xi
= J(f(u, v, w), f(u′, v′, w′)) . (2.3)

Here J is the collision integral over du′dv′dw′, whose functional form shall be omitted

here, as it is not needed in the further discussion. Details regarding the derivation of

the Boltzmann equation, as well as the expression for the collision integral can be found

in [68]. A consequence of the conservation of the collisional invariants is that we have∫
φJ dΞ = 0 . (2.4)

The Boltzmann equation is an integro-differential equation. Because of its high dimen-

sionality and the complicated collision integral it is hardly tractable for most practical

problems, both analytically and numerically. It is shown below that approximate solu-

tions can be generated, and in particular well know macroscopic equations of fluid flow,

such as the Euler and Navier-Stokes equations can be derived as low-order approxima-

tions. A special solution can be obtained for the case J = 0. It can be shown that this

condition is satisfied by the Maxwellian distribution function, which may be written:

g = ρ

(
λ

π

)3/2

e−λ(Ui−ui)·(Ui−ui) , λ =
ρ

2p
. (2.5)

If the distribution function is given by the Maxwellian, f = g, and the macroscopic vari-

ables in Eq. (2.5) do not depend on the coordinates and time, the Boltzmann equation is

satisfied trivially. In this sense Eq. (2.5) may be regarded as the distribution corresponding

to thermodynamic equilibrium. However, the collision integral vanishes even if the macro-

scopic variables are not constant. Such locally Maxwellian solutions are also admitted.

In this case the left-hand-side of the Boltzmann equations imposes additional constraints,

which can be condensed into macroscopic transport equations (the Euler equations), which

is the subject of section 2.1.2. The important notion of local thermodynamic equilibrium

that is found so often in fluid mechanics and thermodynamics, comes from these locally

Maxwellian solutions.

Much research has been devoted to the simplification of the Boltzmann equation over

the course of the last century. Bhatnagar, Gross, and Krook replaced the collision integral
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with a simple relaxation term, thus arriving at the BGK equation [5]:

∂f

∂t
+ ui

∂f

∂xi
= −f − f0

τ
. (2.6)

In a rough rationalization the BGK equation can be thought of as modeling the distribution

function under the assumption that the flow will be driven to local equilibrium on a

time scale τ , the collision time. The BGK equation represents a drastic simplification

both mathematically (it is a linear hyperbolic PDE and possesses a closed-form analytic

solution) and physically. Nevertheless, it has some remarkable properties that are revealed

in the derivation of the macroscopic equations.

2.1.2 Establishing the Macroscopic Equations

Noting Eq. (2.4), it is a matter of formal integration of the Boltzmann equation against the

collisional invariants, Eq. (2.2), to obtain a set of equations for the macroscopic variables:

∂ρ

∂t
+
∂ρUj

∂xj
= 0 (2.7)

∂ρUi

∂t
+
∂(ρUiUj + Pij)

∂xj
= 0 (2.8)

∂ρE

∂t
+
∂(ρUjE + UkPkj + qj)

∂xj
= 0 . (2.9)

However, the tensor Pij and the vector qj remain specified only by the kinetic expressions∫
uiujf dΞ = Pij − pδij (2.10)∫

1
2
uiu

2f dΞ = qi + ujPij + ρuiE , (2.11)

which can only be resolved once the distribution function is known. A popular approach to

the closure of the macroscopic equations is given by a series expansion of the distribution

function along the lines of perturbation theory. The so-called Chapman-Enskog expansion

is perhaps the best known such technique, and can be applied to both the Boltzmann and

the BGK equation leading to the Euler, Navier-Stokes, and higher-order macroscopic

equations. This section focuses on the BGK equation. The algebra is far less complex

for the Chapman-Enskog expansion of the BGK equation compared to the Boltzmann

equation, while the idea is precisely the same, and yields remarkably similar results. An
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outline of the Chapman-Enskog expansion applied to the Boltzmann equation is found in

Appendix A.

Consider a characteristic molecular velocity uref , molecular time scale τref , which may

be chosen as the average time between molecular collisions, and a characteristic length of

the system under consideration, L. The nondimensional BGK equation may be written

as in Eq. (2.6), with τ replaced by ε, where

ε =
urefτref
L

=
λref

L
= Kn . (2.12)

Here λref is the mean free path, and Kn is the Knudsen number. The Chapman-Enskog

expansion can be carried out in the Knudsen number as expansion parameter, which leads

to an interpretation as a perturbation around the equilibrium for small Knudsen numbers.

It is obvious then that the gas-kinetic description is superior to macroscopic low-order

approximations for large Knudsen numbers. This is the case, whenever the molecular free

path becomes very large, i.e. in rarefied flow, or whenever shocks are present, because in

this case the local length scale of the system becomes small. Here the dimensional form

of the equations is preferred, and we treat ε as a small parameter. One may choose ε = τ ,

where τ is the characteristic time used in Eq. (2.6).

Assuming that the distribution function depends on the coordinates and time only

through the macroscopic variables, i.e. 1

f = f(u, q(x, t),∇q(x, t),∇2q(x, t),∇3q(x, t), . . . ) , (2.13)

an expansion of the following form is postulated:

f = f0(u, q) + εf1(u, q,∇q) + ε2f2(u, q,∇q,∇2q) + . . . . (2.14)

Similarly one expands the (as yet unknown) set of macroscopic equations as

∂q

∂t
= Φ0(q) + εΦ1(q,∇q) + ε2Φ2(q,∇q,∇2q) + . . . . (2.15)

Formally applying the chain rule,

∂f

∂t
=
∂f

∂q

∂q

∂t
+

∂f

∂∇q
∂∇q
∂t

+ . . . , (2.16)

1The superscripts of the nabla operator mean degrees of total differentiation, in the multi-index sense.
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both Eq. (2.14) and Eq. (2.15) can be substituted into the Boltzmann or BGK equation,

which leads, after matching like coefficients in ε, to a hierarchy of equations. For the

BGK equation, f0 is given by the Maxwellian distribution by definition, while the terms

for k ≥ 1 can be written∑
l+m=k−1

(
∂fl

∂q
Φm +

∂fl

∂∇q
∇Φm +

∂fl

∂∇2q
∇2Φm + . . .

)
+ ui

∂fk−1

∂xi
= −fk . (2.17)

In particular, we have for k = 1:

∂f0

∂q
Φ0 + ui

∂f0

∂xi
= −f1 . (2.18)

Note that by assumption
∂fl

∂∇jq
= 0 , for j > l . (2.19)

A straightforward computation reveals that the macroscopic variables as defined in

Eq. (2.1) can be obtained from the Maxwellian

q(x, y, z, t) =
∫
φ f0(x, y, z, u, v, w, t) dΞ . (2.20)

Since the parameter ε is free this necessitates∫
φ fk(x, y, z, u, v, w, t) dΞ = 0 , k > 0 . (2.21)

This in turn leads to ∫
φi
∂f0

∂qj
dΞ = δij (2.22)∫

φi
∂fk

∂qj
dΞ = 0 ,

∫
φi

∂fk

∂∇qj
dΞ = 0 , . . . , k > 0 . (2.23)

The constraint (2.21) means that the left-hand side in Eq. (2.17) vanishes upon integration

against the collisional invariants for all k. For the first order term, Eq. (2.18), one finds

immediately Φ0:

Φ0 = − ∂

∂xi

∫
φuif0dΞ . (2.24)

Because of the conditions (2.22) and (2.23) the same condition holds for k > 0. Hence the

macroscopic equations may be written.

∂q

∂t
+

∂

∂xi

∑
k

εk
∫
φuifk dΞ = 0 , (2.25)
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i.e.

Φk = − ∂

∂xi

∫
φuifk dΞ . (2.26)

The infinite sum in Eq. (2.25) may be truncated at any value of k. In particular for k = 0

only f0 appears, and one may verify by direct integration that Eq. (2.25) gives the Euler

equations. The term Φ0, obtained by Eq. (2.24), may be substituted into Eq. (2.18), to

obtain f1 by direct calculation:

f1 = −f0

{
cj

(
c2

2RT
− 5

2

)
∂ lnT
∂xj

+
1
RT

(
cicj −

1
3
c2δij

)
∂Ui

∂xj

}
, (2.27)

where ci = ui−Ui, and R is the specific gas constant, appearing in the equation of state2

p = ρRT. (2.28)

It may be verified that Eq. (2.27) is equivalent to

f1 = −
(
∂f0

∂t
+ uj

∂f0

∂xj

)
, (2.29)

if one uses the already established Euler equations to eliminate the time derivatives of

the Maxwellian. The term Φ1 can then be obtained from (2.26). Using k = 0, 1 in

Eq. (2.25), the Navier-Stokes equations are obtained, where it is understood that the

transport coefficients are not completely specified at this point, since the parameter ε is

still free. It can be appreciated how higher order terms can be computed successively by

going back and forth between Eq. (2.17) and Eq. (2.26).

For the Boltzmann equation the method is analogous, but calculating the functional

form of the fk is much more tedious, since they cannot be determined by direct calculation

as in Eq. (2.17). This is so, because the collision integral necessitates the solution of an

inhomogeneous integral equation in each step, see Appendix A. Remarkably, the term f1

has the same functional form as in Eq. (2.27), although different coefficients. This fact

leads to the often quoted assertion that both the BGK and the Boltzmann equation allow

the derivation of the Navier-Stokes equations. This is indeed true, although one has to

understand that the differences in the coefficients of the first nonequilibrium state do affect
2The assumption of an ideal gas is implicit in the kinetic model used here. The equation of state can

then be easily derived under a simple kinetic model
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the viscous transport coefficients. In particular, note that the ratio between the two terms

in the f1 state coming from the BGK equation, Eq. (2.27), is fixed. Upon integrating,

this means that the ratio of viscous momentum transport (proportional to the velocity

gradients) and heat flux (proportional to the temperature gradient), is fixed as well. Thus

both can only be simultaneously adjusted, using ε, to recover empirical values. This issue

is detailed in the next section, and needs to be addressed if a numerical scheme is based

on the Chapman-Enskog expansion of the BGK equation.

2.2 The Navier-Stokes Equations

A remarkable success of kinetic theory has been that in the macroscopic limit the empir-

ically derived Euler and Navier-Stokes equations could be recovered. The Navier-Stokes

equations are based on f = f0 + εf1, where f1 can be either Eq. (2.27) or the correspond-

ing distribution based on the Chapman-Enskog expansion of the Boltzmann equation,

Eq. (A.5) in Appendix A. The Navier-Stokes equations have the same functional form in

both cases, obtained from Eq. (2.25).

We have Pij − pδij = τij in Eq. (2.10). The tensor τij can be written

τij = µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)
+ λδij

∂Uk

∂xk
. (2.30)

If the Chapman-Enskog expansion is based on the BGK equation the viscosity coefficient

µ is directly related to the expansion parameter ε, which was chosen equal to the collision

time in section 2.1.2

µ = τp . (2.31)

The second coefficient of viscosity becomes λ = −2/3µ for mono-atomic gases, and λ =

−2/5µ for diatomic gases. For the expansion based on the Boltzmann equation, free

parameters in the viscosity remain, which can be resolved by applying more specific kinetic

models of the molecular collision process [41]. For air one often uses the Sutherland

law which corresponds to a kinetic model that assumes a weak attraction force between

molecules [62], and gives good agreement with experimental data for not too high pressures



2.2. THE NAVIER-STOKES EQUATIONS 15

and densities:

µ

µ0
=
(
T

T0

) 3
2 T0 +A

T +A
, (2.32)

where the constant A is usually taken as A = 100.3K, and T0 is a reference temperature

corresponding to the viscosity µ0.

For the heat flux vector q the Chapman-Enskog expansion recovers Fourier’s law of

heat conduction,

qi = −κ ∂T
∂xi

, (2.33)

where T is the temperature of the fluid, for which dT = cvdEint, and κ is the thermal

conductivity. Eint is the internal energy, Eint = E− 1
2ρUiUi. Again, the expansion based on

the Boltzmann equation allows one to adjust the coefficients such that the heat conduction

coefficient recovers empirical Prandtl numbers Pr, where

Pr =
µcp
κ

. (2.34)

The Prandtl number is a material constant for many fluids over a wide range of operating

conditions. For air it takes the value of Pr ≈ 0.72. In the Navier-Stokes equations based

on the BGK equation, however, the ratio between the transport coefficients is fixed, see

Eq. (2.27), and the Prandtl number is in fact always Pr = 1.

Finally the Navier-Stokes equations may be written in conservative form:

∂q

∂t
+∇ · {Fc − Fv} = 0 , (2.35)

where q is the state vector of conserved variables defined in Eq. (2.1), and Fc =

(Fc1 , Fc2 , Fc3)
T is the convective flux vector:

Fci =



ρUi

ρUiU1 + pδi1

ρUiU2 + pδi2

ρUiU3 + pδi3

Ui(E + p)


. (2.36)
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The viscous flux Fv = (Fv1 , Fv2 , Fv3)
T may be written as

Fvi =



0

τ1i

τ2i

τ3i

Ujτij − qi


. (2.37)

The assumption of a Newtonian fluid leading to the empirical derivation of the Navier-

Stokes equations, with stress tensor and heat flux given by Eqns. (2.30) and (2.33), respec-

tively, thus has a sound basis in kinetic theory and it is also clear that the Navier-Stokes

equations are a low-order approximation to the more accurate kinetic models. Neverthe-

less, they give a good description of fluid flow for many applications. However, if one

wishes to simulate flows with high degree of non-equilibrium, such as shock structure

computations, higher order approximations must be used.

2.3 Conservation Laws and Hyperbolic Equations

In the macroscopic realm of continuum mechanics, both the Euler and Navier-Stokes

equations can be derived as conservation laws, where different physical models are used

to express the conservation of mass, momentum, and energy. One may generally define a

conservation law as a balance equation for some quantity q, which is considered conserved

in the sense that the integral of q over a control volume Ω changes only due to transport

(or flux) of q through the boundaries of that domain, ∂Ω. Mathematically this notion is

most naturally expressed in integral form:

d

dt

∫
Ω
q dV +

∫
∂Ω
f · dΓ = 0, (2.38)

where Γ is some suitable parametrization of ∂Ω, and f is the flux function. In general, q

is an m-vector, which, in a three-dimensional problem means that f ∈ R3×m. Formally

applying the divergence theorem for sufficiently smooth functions the generic conservation

law (2.38) may be re-written
∂q

∂t
+∇ · f = 0 , (2.39)
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where the integration disappears entirely, due to the fact, that the domain Ω is arbitrary,

and the integrand (2.39) must vanish everywhere.

Consider the quasi-linear form of (2.39):

∂q

∂t
+Ai

∂q

∂xi
= 0 , (2.40)

whereAi = Dqfi is the flux Jacobian. Eq. (2.39) is called hyperbolic if any real combination

ξiAi has only real eigenvalues, and m linearly independent eigenvectors. Such hyperbolic

conservation laws are associated with physical transport processes, which can be illustrated

very easily in the scalar, one-dimensional case:

∂q

∂t
+
∂f

∂x
= 0 . (2.41)

In this case Eq. (2.40) becomes

∂q

∂t
+ c(q)

∂q

∂x
= 0 . (2.42)

The gradient of q projected onto the direction (t, x) = (1, c) vanishes, which means that q

is transported in this direction. Consider the linear equation, where c is a constant. One

may readily verify that Eq. (2.42) admits solutions of the form

q(x, t) = q0(x− ct) , (2.43)

where q0 = q(x, t = 0). The solution is thus transported along parallel straight lines x− ct

in the x-t plane, which are called characteristics.

One-dimensional systems can always be written as decoupled equations of the

form (2.42), by diagonalizing the flux Jacobian via similarity transformation (the Ja-

cobian matrix has real eigenvalues and a complete set of eigenvectors). The transformed

solution variables are called Riemann Invariants. While for multidimensional systems such

a decoupling is not in general possible, the inherent nature of hyperbolic systems is always

wave propagation along characteristic lines.

Consider again Eq. (2.42). In the nonlinear case the characteristics are no longer

parallel and may intersect. At that point the simple notion of the solution being trans-

ported along the characteristics obviously suffers a crisis, since it leads to multivalued
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solutions. Anticipating the formation of discontinuities in this situation, making the dif-

ferential form (2.39) useless (at least locally), one resorts to the concept of weak solutions

for which Eq. (2.39) is integrated against a smooth test function with compact support,

and one obtains after integration by parts:∫
R×R+

(
q
∂φ

∂t
+ f

∂φ

∂x

)
dxdt−

∫
R
q(x, 0)φ(x, 0) dx = 0 . (2.44)

The solution is thus no longer required to be differentiable. From here on it should be

understood that generally the notion of hyperbolic conservation laws admitting discontin-

uous solutions is meant in the sense of weak solutions. In the continuous case these are

obviously identical to the conventional “strong” solutions.

While mathematically there is little guidance as to what circumstances admit discon-

tinuous solutions, one may use physical concepts of entropy to motivate the admissibility

conditions for discontinuous solutions. In particular a convex entropy function U(q) with

(U)′′ > 0 may be defined, such that

F(q)′ = U(q)′f ′(q) (2.45)

holds, which actually means that Eq. (2.39) holds for smooth functions with q and f

replaced by U and F . Only such solutions are called admissible for which in the non-

smooth case ∫
R×R+

(
U ∂φ
∂t

+ F ∂φ
∂x

)
dxdt+

∫
R
U(q(x, 0))φ(x, 0) dx ≥ 0 (2.46)

holds. While the physical rationale condensed in Eq. (2.46) may not be completely obvious

at this point, further discussion is deferred to the literature (see, e.g. [18] for a discussion

of the mathematical notion of entropy, and the relation to the usual physical definitions).

Here we are merely interested in recalling that weak solutions are not unique, and the en-

tropy condition may be used to identify the physically meaningful solutions. The two most

important aspects particular to hyperbolic conservation laws that enormously influence

the design of numerical schemes are thus

• Transport processes are the nature of hyperbolic conservation laws in any dimension.

Many numerical schemes aim to track the flow of information along the characteris-

tics by adapting the discretization stencil accordingly (upwinding).
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• The formation of shockwaves has to be expected for nonlinear hyperbolic conserva-

tion laws. Any numerical scheme for such equations must be equipped to deal with

this situation.

2.4 Conservative Difference Schemes

The physical concept of conservation leads to the mathematical abstraction of conservation

laws. In this section this concept is carried over from section 2.3 and used to introduce

numerical approximations to equations of the form (2.39). Consider the one-dimensional

case:
∂u

∂t
+
∂f

∂x
= 0 (2.47)

for x ∈ I. In this section boundary conditions are of no concern, so we simply assume

I = R and initial data with compact support, or I ⊂ R with periodic boundary conditions.

Consider a partition of the domain into intervals Ij = (xj− 1
2
, xj+ 1

2
), and a sequence tn, for

n = 0, . . . , N . Define the numerical solution as piecewise constant on Ij × [tn, tn+1], and

denote the solution for any (x, t) in Ij × [tn, tn+1] as un
j .

Definition 2.4.1. Let ∆tn = tn+1 − tn and ∆xj = xj+ 1
2
− xj− 1

2
. A one-step, explicit

scheme for equation (2.47) is said to be conservative if it can be written

un+1
j = un

j − λ
(
hj+ 1

2
− hj− 1

2

)
, (2.48)

where λ = ∆tn/∆xj, and the numerical flux hj+ 1
2

is a consistent approximation to the

flux f(xj+ 1
2
) in Eq. (2.47).

Intuitively, such a formulation for the numerical scheme seems rational, due to the con-

sistency with the conservation law in integral form (2.38). In particular for weak solutions

of hyperbolic equations, the integral form is more fundamental than the differential form,

as discussed in section 2.3, and it is the basis for the pertaining mathematical framework,

including the formulation of shock jump conditions. Indeed, non-conservative schemes

often have incorrect shock speeds (for a simple example, see [45]).

The conservation form is also at the root of some now classic results in nonlinear

stability theory for conservation laws, also stemming from the mathematical theory of
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shock waves as formulated by Lax [43]. It is known that the total variation of the solution

to Eq. (2.47), defined by

TV =
∫

R

∣∣∣∣∂u∂x
∣∣∣∣ dx (2.49)

is nonincreasing. This has led to the theory of total-variation diminishing (TVD) the-

ory [26, 27], which attempts to establish a discrete analog to (2.49).

Definition 2.4.2. A numerical scheme is said to be TVD if the numerical solution satisfies

TV n+1 ≤ TV n for all n, where the total variation TV is defined by TV n =
∑

j |un
j+1−un

j |

Harten and others have given many useful results that use the concept of total variation

to prove stability of difference schemes [26, 27, 53, 54]. A now classic result is given by

Theorem 2.4.1 (Harten). Let h be a Lipschitz-continuous numerical flux. Then

scheme (2.48) can be written as

un+1
j = un

j + C+
j+ 1

2

(un
j+1 − un

j )− C−
j− 1

2

(un
j − un

j−1) , (2.50)

where the coefficients C±
j+ 1

2

are functions of u. The Scheme is TVD if for all j

C±
j+ 1

2

≥ 0 , (2.51)

C+
j+ 1

2

+ C−
j+ 1

2

≤ 1 . (2.52)

Proof. see [27]

Remark 2.4.1. in the semi-discrete analog of (2.48) the TVD condition is a property of

the spatial operator alone. In this case C±
j+ 1

2

≥ 0 is the only condition to be satisfied by

the spatial discretization on the right-hand side of the resulting ODE.

Remark 2.4.2. TVD implies convergence. For instance convergence in L1 sense to a weak

solution can be shown, which, if the scheme is consistent with the entropy inequality (2.46),

can be strengthened to convergence to the unique entropy solution [28, 27].

The form of the numerical flux h can be quite general. Here we consider only three-

point flux functions, e.g. hi+ 1
2

= h(ui+1, ui). Consistency requires h(u, u) = f , and for

global conservation one must have h(u, v) = −h(v, u). A particular class of flux functions
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are represented in so-called E-schemes, due to Osher, which allow proof of convergence to

the correct entropy solution [53]. E-schemes can be established by a practical condition

on the numerical flux hj+ 1
2
:

sgn(uj+1 − uj)(hj+ 1
2
− f(u)) ≤ 0 , (2.53)

for u between uj and uj+1. Of particular importance is the class of monotone (nonin-

creasing in its first argument and nondecreasing in its second) and Lipschitz-continuous

numerical flux functions. For such flux functions, which are a subset of E-fluxes, stability

estimates along the lines of theorem 2.4.1 are quite easily obtained. Example for monotone

fluxes include

• Godunov Flux:

h(u, v) =

 minv≤ξ≤u f(ξ) v ≤ u

maxv≥ξ≥u f(ξ) v > u
(2.54)

• Lax-Friedrich Flux:

h(u, v) =
1
2
{f(u) + f(v)− α (u− v)} (2.55)

where α ∼ maxξ f
′ and the maxξ can be taken locally, i.e. ξ between u and v, or

globally over the whole solution.

Generally, the TVD condition restricts schemes to first order accuracy. However, the the-

ory can be applied to high-resolution and even high-order schemes as well, see section 4.4.4

in this thesis and [9], with the provision that enforcing the TVD condition to guarantee

stability and convergence, locally degrades accuracy to first order (at steep gradients and

critical points), while high-order accuracy is retained in noncritical smooth regions.

The TVD concept does not trivially extend to multidimensional schemes. An alter-

native viewpoint, the concept of Local-Extremum-Diminishing (LED) has been given by

Jameson [35]:

Definition 2.4.3. A semi-discrete scheme of the form

duj

dt
=
∑
k 6=j

cjk(uk − uj) (2.56)
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is called Local-Extremum-Diminishing (LED) if cjk ≥ 0 for all k in the discretization

stencil for node j.

Such a scheme is stable in maximum norm, since a maximum cannot increase, and

a minimum cannot decrease, which holds for multiple dimensions. In one dimension, a

discretization that is LED is also TVD in the semi-discrete sense.

2.5 Finite-Volume Schemes

Finite-Volume Schemes shall be discussed here with particular emphasis on unstructured

numerical meshes. Consider a conservation law, such as the Navier-Stokes equations, in a

domain Ω ⊂ Rd in integral form (2.38), along with a decomposition of the domain into N

nonoverlapping control volumes, denoted Vi, for i = 1 . . . N , such that
⋃

i Vi = Ω, which we

call an unstructured numerical mesh. Finite-volume schemes are based on the application

of the conservation law for each control volume Vi. Upon introducing the volume average

to second order accuracy,

qi =
1
Vi

∫
Vi

q dV , (2.57)

the conservation law may thus be written

qi(t1)− qi(t0) +
1
Vi

∫ t1

t0

∫
∂Vi

H · dΓi dt = 0 , i = 1, . . . , N , (2.58)

where the key numerical step is to introduce the numerical flux function H, which ap-

proximates the true flux f in a consistent manner, along the lines discussed in section 2.4

for general conservative difference schemes. In fact, if boundary conditions are neglected,

the finite-volume scheme in one dimension becomes formally identical to Eq. (2.48) in

Definition 2.4.1, which means that whether such a scheme is considered a finite difference

or a finite-volume scheme is entirely a matter of interpretation. In higher-dimensions,

and for general meshes, however, the formulation (2.58) is not readily applied to general

difference schemes (which are often not conservative).

In practice, the multidimensional numerical fluxH is most often based on the projected

flux f ·n, associated with the solution of the one-dimensional Riemann problem in direction

n, where n is the local normal to the boundary ∂V . For this reason one frequently denotes
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the multdimensional numerical flux as H = H(qr, ql;n). For example, the Lax-Friedrich

flux becomes

H(qr, ql, n) =
1
2

{(
F (ql) + F (qr)

)
· n− αn

(
qr − ql

)}
, (2.59)

where αn is proportional to the spectral radius of the local projected flux Jacobian, for

example αn ∝ |qn| + c in the case of the Euler equations, where qn is the local projected

velocity q · n, and c is the local speed of sound.

It is obvious that this form is particularly well suited for approximating conservation

laws. If H(u, u, n) = f(u) · n and H(u, v, n) = −H(v, u,−n), one has local consistency

with the conservation law, and global conservation in the sense that Eq. (2.58) is satisfied

for the whole domain Ω (with F replaced by some suitable H on the boundary).

2.6 Kinetic Schemes

Most applications of computational fluid dynamics are based on the solution of the Euler

or Navier-Stokes equations. Both can be derived as low-order approximations to the

Boltzmann or BGK equation, which govern the evolution of a single gas distribution

function describing the entire fluid state, as outlined in section 2.1.

The gas-kinetic description of flow physics offers an interesting alternative in the con-

struction of numerical schemes. If a distribution function is constructed up to the Navier-

Stokes level of accuracy, which is usually accomplished on a simple two-point discretization

stencil, then in a finite-volume context, the complete Navier-Stokes fluxes can be obtained

by taking suitable moments (see below in this section). This means that the terms which

give rise to the stress tensor (2.30) and heat flux vector (2.33) are computed as natural

parts of a gas distribution function on the same stencil as convective fluxes, avoiding ad-

ditional viscous discretization. This facilitates mesh-transparent formulation of numerical

schemes considerably, which makes the gas-kinetic route particularly attractive for the

implementation on general unstructured meshes.

Here we shall outline the fundamental concepts behind kinetic schemes. If it is assumed

that the local direction x and corresponding phase-space velocity u are normal to the face
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(one can work with rotated coordinates at each face), one obtains for the numerical flux

on the boundary of cell i, upon formally integrating Eq. (2.6) or (2.3) against φ and

comparison with Eq. (2.58):

H · dΓ =
∫
uφf(~xl, ~u, t) dΞ dΓ . (2.60)

Here ~xl = (xl, yl, zl)T is the face coordinate. In deriving Eq. (2.60) we have made use of

the fact, that the moments with φ of the right-hand side of both the Boltzmann and the

BGK equation vanish.

The task remains to provide a valid approximation to the time-dependent flux func-

tion at the face. To illustrate a very basic approach to this problem, consider the BGK

equation (2.6). A two-step approach may be used in the derivation of kinetic schemes,

considering the collisionless equation as a starting point of the discretization, and subse-

quently modeling the collision process by enforcing the conservation constraint, i.e. 3∫
φ(f − f0)dΞ = 0 . (2.61)

Consider the one-dimensional problem for simplicity. The collisionless kinetic equation

may be used as a starting point for discretization by considering for some fixed u ∈ R and

(x, t) ∈ [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] the initial value problem

∂tf + u∂xf = 0

f(x, tn;u) = ψ(x;u) ,
(2.62)

where for example ψ(x;u) = f0(x, tn;u) − τf1(x, tn;u) and f1 = ∂tf0 + u∂xf0 is the first

order BGK-based Chapman-Enskog expansion of the distribution function at time t = tn.

If Eq. (2.62) is discretized as

fn+1 = fn − u∆t
∆x

{
fn

i+ 1
2

− fn
i− 1

2

}
, (2.63)

and the numerical flux for the distribution function is computed by upwinding based on

u, i.e.

fi+ 1
2

=

 fi u > 0

fi+1 u < 0
, (2.64)

3This does not necessarily depend on kinetic gas theory. The BGK equation used with unspecified

collisional invariants may be viewed as general kinetic model equation
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a kinetic scheme can readily be written by noting Eq. (2.61):

Qn+1
i = Qn

i −
∆t
∆x

{
Fi+ 1

2
− Fi− 1

2

}
, (2.65)

where Q = 1/∆xi

∫
q dx, and F = F+ + F−, where

F+
i+ 1

2

=
∫

u>0
uφfi dΞ , F−

i+ 1
2

=
∫

u<0
uφfi+1 dΞ . (2.66)

More generally, one may approximate the flux using time-dependent reconstructed distri-

bution functions to the left and right of the interface i + 1
2 , which may be constructed

by a more sophisticated approach than the one shown here. In particular it is shown in

chapter 3 how the analytical solution of the BGK equation may be used to aid in the

construction of an approximation to a local time-dependent distribution function for the

Navier-Stokes equations.

Fluxes computed in this manner will be valid provided that the reconstructed distribu-

tion function is consistent with the exact distribution function at least to the Navier-Stokes

order of accuracy. The fundamental task of a gas-kinetic scheme is thus to construct such

a distribution function, which will be outlined in chapter 3. Numerical fluxes can then

be computed according to Eq. (2.60), and finally Eq. (2.58) may be integrated in time to

advance the numerical solution.
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Chapter 3

A New Kinetic Multigrid Method

for CFD

3.1 Introduction

There is a rich body of literature on kinetic schemes for conservation laws. A brief theoreti-

cal introduction can be found in [18]. The benefit of kinetic formulation and representation

of conservation laws is not limited to the construction of kinetic schemes, although this

is our primary interest here. The kinetic approach may also be used to simplify the the-

oretical analysis of conservation laws, which, in particular for scalar conservation laws,

has led to useful results [55]. An early example for a kinetic scheme for inviscid fluid

flow is the equilibrium flux method by Pullin [57] that made use of the concept of flux

splitting outlined in section 2.6. Deshpande proposed a similar scheme for the Euler equa-

tions, based on the collisionless Boltzmann equation [13], i.e. J = 0 in Eq. (2.3). This

scheme has been dubbed the kinetic flux-vector splitting (KFVS) scheme, a term which

has subsequently also been used by Chou and Baganoff [8] who proposed a KFVS scheme

for the Navier-Stokes equations. A scheme based on the BGK equation was proposed by

Prendergast and Xu [56], and was later analyzed and modified by Xu et al. [75, 73]. The

BGK equation contains a simple model of the molecular collision process, and possesses an

analytic solution, which can be directly used to guide the construction of numerical fluxes.

27
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Recently Ohwada has given an analysis of the scheme [52], which established and quanti-

fied its consistency and accuracy. We refer to this scheme simply as the BGK scheme. It

is the starting point for the modified scheme proposed in section 3.3.

Gas-kinetic schemes have considerable potential on general unstructured meshes, for

which one aims to employ discretization techniques which do not depend on the mesh

topology, i.e. are mesh transparent. For conventional schemes this is straight forward only

for the convective terms of the Navier-Stokes equations, while the viscous discretization

typically depends on the mesh topology and also the choice of control volume in a finite-

volume scheme (cell-centered vs. cell-vertex schemes). The BGK scheme allows a stable

viscous discretization on a universal next-neighbor stencil regardless of the mesh topology.

The overall formulation of the scheme presented in subsequent chapters is designed for

general meshes of any type, and results for different types of meshes in two and three

dimensions are shown.

The only obvious disadvantage of the original BGK scheme is the fact that it is com-

paratively expensive in terms of floating point operations per flux computation compared

to other finite-volume schemes, in particular in a multidimensional formulation [74]. The

alternative scheme proposed here is specifically designed to address this issue. The pro-

posed modifications of the scheme significantly reduce the computational cost, in par-

ticular for three-dimensional flow. Furthermore, the physical modeling is improved by

the new scheme. In the original BGK scheme the constraint in Eq. (2.21) for the first

non-equilibrium state f1 in the Chapman-Enskog expansion is not satisfied, while the new

scheme constructs all nonequilibrium states by explicitly enforcing this constraint.

The issue of convergence acceleration has not been given much attention in the context

of kinetic schemes, which have not been widely used for steady-state problems. A multigrid

formulation for the modified BGK scheme on general meshes is presented, which dramati-

cally accelerates convergence to a steady state. Together with the proposed modifications

this makes the BGK route viable for nontrivial three-dimensional computations.

This chapter is organized as follows. In section 3.2 we briefly recapitulate the derivation

of the original BGK scheme, before we present and motivate the new scheme in section 3.3.

Next, the multidimensional formulation for kinetic schemes is analyzed in section 3.4, in
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particular with regard to the viscous terms. After discussing algorithmic details, such as

the multigrid methodology, in section 3.5, we present a variety of numerical results for

both structured and unstructured meshes in section 3.6.

3.2 The BGK Finite Volume Method

As outlined in section 2.6, the main task of a kinetic finite volume scheme is to generate an

approximation to a gas distribution function at cell interfaces to evaluate the numerical

flux. The purpose of this section is to show how the BGK scheme constructs such a

distribution function using the analytical solution of the BGK equation.

We initially restrict the analysis to one dimension to demonstrate the essential steps.

Subsequently the multidimensional extension is considered.

In order to approximate the Euler or Navier-Stokes equations via a gas-kinetic for-

mulation, one effectively approximates a modified gas-kinetic equation along with initial

conditions, obtained by means of Chapman-Enskog expansion, based on the Boltzmann

or BGK equation, see section 2.1.2 and [51, 52]. If the starting point is the BGK equation,

the modified kinetic equation can be approximated by

∂tf + u∂xf = −f1/τ , (3.1)

with the initial condition given by the first order Chapman-Enskog distribution

f(x, u, 0) = f0(x, u, 0) + τf1(x, u, 0) . (3.2)

The state f0 is given by the Maxwellian distribution, see Eq. (2.5), while the first nonequi-

librium state is given in case of the BGK equation by Eq. (2.27) or Eq. (2.29). Expanding

the analytical solution of this equation for small ∆t, one can write to the order of τ∆t2

in truncation error:

f(x, u, t) = f0(x, u, 0)− ut∂xf0(x, u, 0) + τf1(x, u, 0)− tf1(x, u, 0) . (3.3)

The truncation error in this simplification is the same as the one incurred in the approx-

imated modified kinetic equation (3.1) with respect to the Chapman-Enskog expansion
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corresponding to the Navier-Stokes level. See [51, 52] for details. As shown in subsequent

sections, the BGK scheme approximates this distribution function at cell interfaces, given

the macroscopic variables to the left and right of the face. In the following we assume

without loss of generality that any such interface is located at x0 = 0. At the face, a

logical left cell is associated with x < 0 and a logical right cell with x > 0. We assume

that cell-averaged states Q1 and Q2 and piecewise constant gradients ∂l
x, ∂r

x are available

in both cells. One can then construct the left and right states Ql, Qr at the face as

Ql = Q1 + (x0 − x1)∂l
x q , Qr = Q2 + (x0 − x2)∂r

x q . (3.4)

In practice the deviations from the cell-averaged state will have to be limited by some

appropriate method in order to preserve monotonicity. In this work Venkatakrishnan’s

limiter [67] has been used for unstructured meshes.

The Xu-Prendergast BGK scheme can be obtained by first solving the BGK equa-

tion (2.6) analytically:

f(x, u, t) =
1
τ

∫ t

0
f0(x′, u, s)e−

−(t−s)
τ ds+ e−

t
τ f(x− ut, u, 0) , (3.5)

where x′ = x − u(t − s). Eq. (3.5) represents a nonlinear average between the initial

state f(x, u, 0) and an equilibrium state f0(x, u, t). The weight on the equilibrium state

increases with t, which reinforces the interpretation of the BGK equation as modeling the

relaxation to a local equilibrium state on a time scale τ . This analytical solution can be

used to construct a distribution function at a cell interface using the reconstructed left

and right states.

3.2.1 Approximation of the Initial State

The initial state, i.e. the second term in Eq. (3.5), must be approximated in a way

consistent with the Navier-Stokes equations, based on the theory of Chapman-Enskog

expansion. In the Xu-Prendergast BGK scheme the KFVS discretization is chosen, which

uses the information from either side of the face by introducing a kinetic splitting. As

t > 0, the characteristic line x0 − ut falls to the left of the interface for u > 0, and to its

right for u < 0. Recalling that x0 = 0, the distribution function can thus be approximated
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along the characteristic ut as

f(−ut, u, 0) =

 f l
0 − ut∂xf

l
0 + τf l

1 , u > 0

f r
0 − ut∂xf

r
0 + τf r

1 , u < 0 .
(3.6)

The splitting of the phase space is introduced so as to respect the gas-kinetic characteristic

lines during reconstruction. It can thus be viewed as gas-kinetic upwinding. The terms

f
l/r
1 are first order terms in the Chapman-Enskog expansion of the BGK equation, see

Eq. (2.27). The alternative notation, Eq. (2.29), can be used to efficiently compute f1

states. As noted in section 2.1.2, higher order terms fk, where k > 0, must vanish upon

integration over the velocity space against the collisional invariants. Hence, after direct

differentiation to compute the space derivative in Eq. (2.29), i.e. differentiating Eq. (2.5)

and using the chain rule, according to

∂xf0 = ∂qf0 ∂xq , (3.7)

one may enforce this constraint directly by computing∫
φ∂tf

l/r
0 dΞ = −

∫
φu∂xf

l/r
0 dΞ , (3.8)

and adding the spatial and temporal gradients to give the f1 state. A more detailed

description of the computation of the derivatives is given in Appendix B. This procedure

is equivalent to eliminating the time derivatives using the Euler equations. Note that for

the initial state, both the state and the derivatives are discontinuous.

We note here that in this implementation the spatial gradients are modified slightly to

effectively make the f1 state identical to the one corresponding to the Chapman-Enskog

expansion of the Boltzmann equation, and ensure that both the coefficient of viscosity and

the Prandtl number have the correct value 1. Explicit formulas for this procedure can be

found in Appendix B, see also the discussion in section 2.1.2, Appendix A and [62]. In

contrast to our approach, the original BGK scheme uses an “a posteriori” correction of

the Prandtl number [73], which shall not be detailed here. This minor point is the only

difference in our implementation of the original BGK scheme and the standard version

presented in [73].
1recall that the Chapman-Enskog expansion of the BGK equation fixes the Prandtl number at unity
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For convenience we introduce the notation

f̂0(u) = f l
0H(u) + f r

0 (1−H(u)) , (3.9)

∂̂xf0(u) = ∂xf
l
0H(u) + ∂xf

r
0 (1−H(u)) , (3.10)

f̂1(u) = f l
1H(u) + f r

1 (1−H(u)) . (3.11)

3.2.2 Approximation of the Equilibrium State

To approximate the equilibrium state under the integral sign in Eq. (3.5), a relaxation

state Q̄ is postulated with a corresponding distribution f̄0 at the face:

f̄0(−ut, u, t) = f̄0(0, u, 0)− ut∂l
xf̄0H(u)− ut∂r

xf̄0(1−H(u)) + t∂̃tf0 , (3.12)

where H(x) is the Heaviside function with H(x) = 1 for x ≥ 0 and H(x) = 0 otherwise.

The equilibrium distribution function at the face and t = 0 is obtained by imposing

the constraint ∫
φf̄0 dΞ =

∫
u>0

φf l
0 dΞ +

∫
u<0

φf r
0 dΞ , (3.13)

where f l
0 and f r

0 represent Maxwellians evaluated with the left and right states, Ql and

Qr. For the macroscopic state Q̄ corresponding to the relaxation function f̄0 no gradients

are available from the initial reconstruction. One may use the approximation

∂l
xq̄ = Q̄−Q1

||x0−x1||

∂r
xq̄ = Q2−Q̄

||x0−x2||

. (3.14)

Notice that the gradients have thus changed from the initial reconstruction, reflecting

the modeling of the collision process leading to the relaxation state Q̄. Note also that

while the new gradients are different in the two cells adjacent to the face, there is only

one relaxation state, and one corresponding distribution function f0, Eq. (3.12). On the

other hand, in the initial state, both the state variables (and corresponding distribution

functions) and the gradients are discontinuous. A schematic depiction of this situation

is shown in Fig. 3.1, which serves to illustrate the postulated relaxation process from a

discontinuous to a continuous state.

For notational convenience we denote the spatial gradients corresponding to the new

relaxation state by

∂xf0(u) = ∂l
xf̄0H(u) + ∂r

xf̄0(1−H(u)) . (3.15)
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Figure 3.1: Macroscopic variables and gradients based on the initial flow variables, and

the postulated relaxation state Q̄.

We discuss the time derivative of f̄0 appearing in Eq. (3.12) in section 3.2.3. Given

Eq. (3.12), the integral in Eq. (3.5) can be evaluated analytically.

3.2.3 The Time Derivative of the Relaxation State

The time derivative ∂̃tf0 in Eq. (3.12) is finally computed using the following constraint:∫ ∆t

0

∫
φ(f(0, u, t)− f̄0(0, u, t)) dΞ dt = 0 . (3.16)

This constraint seeks to mimic condition (2.21), i.e.
∫
φ fk dΞ = 0 for k > 0, in a time-

averaged fashion. Eq. (3.16) can be solved to produce∫
φ ∂̃tf0 dΞ =

∫
φ
(
α1u ∂̂xf0 + α2u ∂xf0 + α3∂̂tf1

)
dΞ , (3.17)

where
∫
φ
(
f̄0 − f̂0

)
dΞ = 0, by construction, see Eq. (3.13), has been used. The coeffi-

cients αi can be obtained by straight forward time integration, see [73].

Although the abbreviated nomenclature used here perhaps does not make it obvious,

the computation of this term is extremely expensive. In the original (one-dimensional)

BGK scheme it accounts for 40% of the moments that have to be computed. It is surmised

here that the term ∂̃tf0 has been formulated in this complicated manner in the original

BGK scheme for lack of a more obvious way of computing it. Furthermore, it must be
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understood that Eq. (3.16) is merely a rough approximation to the constraint (2.21).

This point is addressed in section 3.3, where it will become clear that the term can be

computed in a more straightforward way, which is not only much cheaper, but also uses

the constraint (2.21) directly.

3.2.4 The Distribution Function and Some Comments

Integrating the relaxation state in time, according to Eq. (3.5), we can finally write the

distribution function as

f(0, u, t) =
(
1− e−

t
τ

){
f̄0 − ut ∂xf0

}
+ e−

t
τ

{
f̂0 − ut ∂̂xf0

}
−

τ
(
1− e−

t
τ

){
∂̃tf0 + u ∂xf0

}
+ τe−

t
τ f̂1 +

t
{
∂̃tf0 + u∂xf0

}
. (3.18)

One can easily identify the corresponding terms in Eq. (3.3). The first two terms ap-

proximate the equilibrium distribution along the characteristic line ut using a nonlinear

average between the continuous and discontinuous reconstruction techniques. The second

and third term effectively model the nonequilibrium distribution f1, which gives rise to

the viscous fluxes, using a similar average. Finally the last term approximates the last

term in Eq. (3.3). Finally, the fluxes can be computed using the one-dimensional analog

of Eq. (2.60), i.e. F =
∫
uφf(0, u, t) dΞ.

Consider the third and fourth term in Eq. (3.18). These two terms form a consistent

approximation of the first nonequilibrium Chapman-Enskog state, based on the BGK

equation. We thus define the viscous fluxes of the BGK scheme as

FBGK,v =
∫
uφ
{
τ
(
1− e−

t
τ

)
fa
1 + τe−

t
τ f b

1

}
dΞ . (3.19)

where

fa
1 = −

{
∂̃tf0 + u ∂xf0

}
, (3.20)

f b
1 = f̂1 . (3.21)

For moderate Reynolds numbers, i.e. τ � ∆t, it is actually the term (3.20) which domi-

nates, while the term (3.21), which comes from the approximation of the initial f1 state,
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Eq. (3.6), is negligible. The dominating term (3.20), however, was actually not derived

to be an approximation to an f1 state. The terms appearing there come together from

different parts of the approximation to the solution of the BGK equation. It is believed

here that failure to realize that these terms effectively form the viscous fluxes is a de-

ficiency in the derivation of the original BGK scheme. It leads to the complicated way

of computing ∂̃tf0 in Eq. (3.17), because it was not realized that
∫
φfa

1 dΞ = 0 can and

should be used directly to compute ∂̃tf0, as has been done for the state f̂1, see Eq. (3.8).

As a consequence, this important constraint is not satisfied for the term fa
1 .

3.3 The new BGKgg Scheme

Two modifications to the classical BGK scheme are proposed here, which address the

construction of the nonequilibrium terms, Eqns. (3.20) and (3.21), and in particular the

computation of the time derivative of the relaxation state, i.e. the term ∂̃tf0 discussed in

section 3.2.3.

In the BGK scheme the discretization of the initial state in Eq. (3.5) is identical to

the splitting used in the viscous KFVS scheme proposed by Chou and Baganoff [8], which

is based on the collisionless Boltzmann equation ∂tf + u∂xf = 0. This discretization

contributes the term (3.21) to the viscous fluxes. It has often been found that the KFVS

scheme does not give very good results for viscous flow [73]. The BGK scheme’s superior

modeling of viscous flow ultimately comes from the right-hand side of the BGK equation,

leading to the relaxation state, which is contributes Eq. (3.20) to the viscous terms, which

is blended with the KFVS approximation in Eq. (3.19). In fact, the KFVS term is blended

out for most flow situations, as discussed in section 3.2.4.

Hence, one may ask if this term is needed. Apparently, the success of the BGK scheme

is due to the fact that its presence does not contribute significantly to the flux, and it has

often been found to be a poor choice in viscous discretization when appearing alone (see

Xu’s analysis [73] and Ohwada’s results in [52]). This, as well as cost considerations, which

will be addressed below, provide sufficient motivation to rethink the entire computation
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of the nonequilibrium terms. We start by writing instead of Eq. (3.21):

f b
1 = f1 = ∂tf0 + u ∂xf0 . (3.22)

The KFVS discretization is thus replaced with the averaging ∂xf0, and the state f1 is

obtained by enforcing
∫
φf1 dΞ = 0:∫

φ∂tf0 dΞ = −
∫
φu∂xf0 dΞ , (3.23)

where it is understood that the right-hand side has to be modified in the same way as

outlined in section 3.2.1 and Appendix B to correct values of the transport coefficients.

The viscous terms of the initial state are thus more akin to Eq. (3.20), which dominates

except when τ is of the order of t or larger. This is the case only for very low Reynolds

numbers or whenever τ is artificially increased for the purpose of adding dissipation, e.g.

for shock capturing as discussed in section 3.5.3 below. Validation of the new formulation

should reflect this by including low Reynolds number computations and test cases with

shocks.

In the modified formulation the nonequilibrium terms now cancel by construction when

computing ∂̃tf0 according to Eq. (3.16). One can write∫
φ ∂̃tf0 dΞ =

∫
φu
(
α1∂xf0 + α2∂̂xf0

)
dΞ . (3.24)

Furthermore, the first term on the right-hand side has already been computed for

Eq. (3.23), so that only the two moments resulting from the averaging ∂̂xf0 need to be

computed. At this point one can write the distribution function as

f(x, u, t) =
(
1− e−

t
τ

){
f̄0 − ut ∂xf0

}
+ e−

t
τ

{
f̂0 − ut ∂̂xf0

}
−

τ
(
1− e−

t
τ

){
∂̃tf0 + u ∂xf0

}
+ τe−

t
τ f1 +

t
{
∂̃tf0 + u∂xf0

}
. (3.25)

This is only an intermediate step, and Eq. (3.25) is not recommended for general use.

However, we include this function for validation purposes in order to isolate the effects

of the proposed modifications. We shall refer to the scheme based on this distribution

function as the BGKg scheme.
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Consider now Eq. (3.20). Any f1 state should satisfy Eq. (2.21), i.e.
∫
φf1 dΞ = 0.

It has been pointed out in section 3.2.4 that this is not the case for the viscous terms in

the original BGK scheme. Hence, it is not only computationally less expensive, but also

appears physically reasonable to replace ∂̃tf0 by ∂tf0, i.e. using Eq. (3.23). We can thus

further rewrite the distribution function as

f(x, u, t) =
(
1− e−

t
τ

){
f̄0 − ut ∂xf0

}
+ e−

t
τ

{
f̂0 − ut ∂̂xf0

}
+ τf1 − tf1 . (3.26)

The scheme based on this formulation will be denoted BGKgg, to reflect the fact that the

overbar averaging, Eq. (3.23), is now used for both viscous terms, which collapse into one.

The BGKgg scheme is the new method proposed in this thesis.

The constraint
∫
φf1 dΞ = 0 means that the current time-dependent equilibrium state

f0 is the only part which survives an integration against φ. In the new formulation, it has

been ensured that all approximated f1 states vanish individually at all times. The only

terms which survive integration against φ are the first two terms in Eq. (3.26), which are

indeed the complete approximation to the most current f0 state. In the original formu-

lation, only the relaxation state f̄0 has been considered the “current” f0 state (omitting

the equilibrium portion of the initial state), and has been used in Eq. (3.16) to mimic

Eq. (2.21).

In order to compute the macroscopic fluxes, moments of the distributions function,

i.e. integrals over the phase space, have to be computed, see Eq. (2.60). Section 3.5.1

below gives a more detailed overview of the practical implementation. To appreciate the

reduction in computational cost, consider Table 3.1. Most of the computational effort

lies in computing the moments of terms involving spatial or temporal expansions, see

Appendix B. We have included here the cost of a full three-dimensional reconstruction for

the original BGK scheme, according to [74]. We discuss the multidimensional extension

in section 3.4 below, and point out how the additional 3D overhead can be avoided. The

cost of the new BGKgg scheme thus remains the same as in Table 3.1. The simplified

formulation reduces the computational effort significantly, in particular in comparison with

the multidimensional version of the scheme.
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Moments for. . . BGK3D [74] BGK [73] BGKg BGKgg

Eq. (3.18) Eq. (3.25) Eq. (3.26)

∂̃tf0 12 6 2 -

Noneq. Terms (initial state) 6 2 2 2

Fluxes 13 7 6 5

Additional Terms for 3d 4 - - -

Total 35 15 10 7

Table 3.1: The number of moments coming from terms involving spatial and temporal

expansions, which have to be taken for one flux computation for the standard BGK scheme

and the two modified versions, BGKg and BGKgg.

3.4 Multidimensional Scheme and Viscous Terms

The schemes outlined above are applicable to higher dimensions, using Eq. (2.60) to com-

pute normal fluxes for a finite-volume scheme, provided that at each face the local co-

ordinate x is aligned with the face normal (which suggests the use of a locally rotated

coordinate system). However, a slight error in viscous terms is incurred. While the heat

flux vector can be accurately represented by normal gradients alone, for the viscous terms

in the momentum equation both normal and tangential derivatives are present even in

the normal component of the viscous flux. One might consider a more elaborate multidi-

mensional formulation, such as the one proposed recently by Xu et al. [74]. For simplicity

we consider only the two-dimensional case. The extension to three dimensions is straight

forward. In rotated coordinates with normal and tangential directions x and y, and cor-

responding macroscopic velocities U and V , the stress tensor is given by

σ =

 2µ∂xU + λ(∂xU + ∂yV ) µ(∂xV + ∂yU)

µ(∂xV + ∂yU) 2µ∂yV + λ(∂xU + ∂yV )

 . (3.27)
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In the rotated frame the face normal is simply n = (1, 0)T . The viscous fluxes thus depend

only on the components in the first column of the stress tensor:

Fvis,mom = σ · n =

 2µ∂xU + λ(∂xU + ∂yV )

µ(∂xV + ∂yU)

 . (3.28)

We point out here that the second coefficient of viscosity is fixed at λ = −2/5µ by the

Chapman-Enskog expansion of the BGK equation for diatomic molecules. This deviates

from the value λ = −2/3µ, which is usually used, but is itself only an approximation for

monoatomic gases. In practice this difference is of minor importance. The corresponding

first nonequilibrium term in the Chapman-Enskog expansion of the BGK equation is given

by

τf1 = −τ {∂tf0 + u∂xf0 + v∂yf0} . (3.29)

In the continuous limit, the gas-kinetic formulation is entirely equivalent to the macro-

scopic one, so that

τ

∫
u

 u

v

 f1 dΞ = −σ · n (3.30)

holds exactly. If the tangential derivative v∂yf0 is omitted we have

τ

∫
u

 u

v

 {∂tf0 + u∂xf0} dΞ =

 2µ∂xU + λ∂xU

µ∂xV

 . (3.31)

By comparing to Eq. (3.28), it is obvious that for the quasi-1D expansion even in the

continuous limit the full stress tensor is not recovered, and the viscous flux at a given

face depends on the local rotation. It is important to note that this holds for any type of

mesh. In [74] it was stressed that a multidimensional reconstruction has to be considered

for unstructured meshes. However, even for Cartesian meshes a quasi-1D reconstruction

does not produce the exact stress tensor in the continuous limit. It should be pointed

out, that unlike conventional schemes, where the difference between Eq. (3.31) and (3.28)

is computationally insignificant, the BGK model becomes almost prohibitively expensive,

certainly in the three-dimensional case, if the gas-kinetic reconstruction is carried out in

all dimensions, which leads to the number of moments shown in Tab. 3.1.
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For inviscid flow, a quasi-1D formulation should certainly suffice, since the difficulties

involve only the viscous terms. For viscous flow in higher dimensions the difference be-

tween the multidimensional reconstruction and the quasi-1D reconstruction is small for a

wide class of problems, even on highly stretched unstructured meshes. Accordingly the

use of a three-dimensional gas-kinetic reconstruction seems excessive. We propose in-

stead to augment the normal reconstruction by a simple central average of the tangential

components of the stress tensor, i.e.

Fmom = FBGK
mom +

 λ∂yV

µ∂yU

 . (3.32)

The necessary gradients are readily available from the reconstruction, and the stencil for

the viscous discretization remains unchanged.

A similar rationale has been used for conventional viscous discretization as well. It is

well known that a simple central averaging of the gradients for evaluation of the stress

tensor leads to odd-even decoupling, and possibly instability. For cell-vertex schemes a

discretization technique, which replaces the normal component of the central average with

a directional difference approximation, has been proposed and used successfully [29]. This

correction provides an effective re-coupling of the discretization stencil, which is given here

by the gas-kinetic normal expansion, while tangential components are simply averaged.

Very few additional floating point operations are needed to add those components.

The only remaining matter of concern for the multidimensional formulation is the fact

that Eq. (3.14) is no longer valid, as it assumes that the cell-centroid lies in a direction

normal to the face, which is not the case for general meshes. We use a correction involving

a simple projection, which has been proposed and validated in [62].

3.5 Algorithms

3.5.1 Practical Implementation

Using the method of lines to separate the spatial discretization from the time integration,

the generic finite-volume scheme of Eq. (2.58) may be considered as a starting point for
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the practical implementation of the finite-volume BGK scheme. Fig. 3.2 shows a flowchart

of the solution algorithm. Firstly, given the initial conditions or a previous iterate, the

Figure 3.2: Algorithmic Implementation of BGK-type schemes.

flow gradients are computed, as they are needed in the evaluation of the Chapman-Enskog

state, which depends on the gradients of the Maxwellian, which in turn depends on the

gradients of the flow solution (see also Appendix B).

The collision time τ appearing in the distribution function is a function of the viscosity,

according to Eq. (2.31). The viscosity itself can be set to a constant value, corresponding

to the fluid under consideration, or can be computed using the current solution and an

appropriate model, such as Sutherland’s law, Eq. (2.32), which makes the viscosity a

function of the temperature.

Compared to a conventional finite-volume scheme, the main difference lies in the flux

evaluation, which is given for kinetic schemes by Eq. (2.60) in generic terms as a moment

of the distribution function, i.e. an integration over phase space. In sections 3.2 and 3.3

it has been shown how to discretize the distribution function f as a function of only a

Maxwellian distribution and its derivatives, corresponding to the first order Chapman-

Enskog expansion. Either Eq. (3.18), which corresponds to the Xu-Prendergast BGK

scheme, Eq. (3.25), the BGKg scheme, or (3.26), the BGKgg scheme, may be used. Only

moments of the distribution function are needed, all of which can be expressed as
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∫
I
ulvmwnf0 dΞ (3.33)

for some nonnegative integer numbers l, m, n, and can thus be computed by exact inte-

gration. The integration is carried out over I = Ĩ × R× R. Depending on which integral

is computed, we have either Ĩ = R, Ĩ = R+, or Ĩ = R−, where limits corresponding to

the positive and negative real axis result from the kinetic upwinding on the normal phase-

space velocity outlined in section 3.2. The integrals can be computed using an efficient

recursion formula [73], and their contributions are simply added to evaluate Eq. (2.60).

3.5.2 Multigrid

For large-scale computations of steady flow multigrid techniques are almost indispensable.

Following Jameson [32], a nonlinear multigrid method for nonlinear equations can be

outlined as follows. Consider the general nonlinear homogeneous PDE

L(u) = 0 . (3.34)

A numerical estimate of the solution, vh say, will not satisfy this equation exactly. Assume

a correction δvh can be found such that

Lh(vh + δvh) = 0 , (3.35)

which, after linearization, leads to

Ahδvh +Rh = 0 , (3.36)

where Rh = Lh(vh) is the residual and Ah is the Jacobian of the nonlinear operator Lh.

On the coarse grid the above equation can be replaced by

A2hδv2h + Ih
2hRh = 0 , (3.37)

where Ih
2h represents the aggregation or restriction operator. To avoid using the Jacobian

explicitly add

L2h(v2h)−R2h = 0 (3.38)
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to Eq. (3.37) to get

L2h(v2h + δv2h) + Ih
2hRh −R2h = 0 . (3.39)

This is formally identical to the original equation, except for an additional source term

involving the residuals on the coarse and fine mesh. The solution can thus be advanced

on the coarse mesh using the same routines as on the fine mesh. Let v2h + δv2h = v+
2h.

After v+
2h has been computed on the coarse grid, the corrected solution on the fine grid

can be written

v+
h = vh + I2h

h (v+
2h − v2h) , (3.40)

where I2h
h is an interpolation operator. We combine this multigrid strategy with Runge-

Kutta time stepping, as proposed by Jameson [32]. For computations on structured meshes

we use the nonlinear symmetric Gauss-Seidel scheme with multigrid, as proposed by Jame-

son and Caughey [37]. Both approaches yield a very efficient computational framework.

In principle the same numerical methods that are used on the finest mesh in a multigrid

sequence can be used on coarser meshes as well. However, the numerical schemes used

on coarse meshes do not affect the converged solution, but only the rate of convergence.

It has been found, in particular for irregular unstructured meshes, that a more diffusive

flux computation on coarse meshes has advantages. In fact, it often pays to smooth the

residual correction in Eq. (3.40) before adding it to the next finer mesh. Keeping these

constraints in mind, it seems unreasonable to employ the full gas-kinetic formulation on

coarse meshes. Instead we have chosen a simple, more diffusive, conventional method for

the convective fluxes, using central averages with scalar diffusion according to

FRiemann =
1
2
(
FL + FR

)
− α

(
qR − qL

)
. (3.41)

Here FL and FR are the projected inviscid fluxes evaluated with cell-averaged values from

the left and right cells (no reconstruction is carried out for coarse meshes), and α is a

diffusion coefficient proportional to the spectral radius of the projected flux Jacobian.

The procedure described in [29], which was referred to in section 3.4, may be used for

viscous discretization. This method is only first order accurate for general meshes, which

is consistent with the overall first order approach used for coarse meshes, and does not

change the discretization stencil.
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3.5.3 Adaptive Diffusion

For viscous flow the collision time is proportional to the dynamical viscosity, according to

Eq. (2.31), i.e. τ = µ/p, as outlined in section 3.5.1. For inviscid flow one can set a lower

value corresponding to numerical diffusion, τ = β1∆t, where usually β1 � 1, to provide a

small amount of background diffusion [73].

For the BGK scheme it has been common practice, however, to augment the collision

time by a pressure dependent term, designed to make the physical viscosity proportional

to the mesh width, whenever shocks are present [73]:

τ = µ̃/p+ β2

∣∣∣∣pL − pR

pL + pR

∣∣∣∣∆t . (3.42)

Here µ̃ is given by Eq. (2.31) or by µ̃ = β1∆tp for viscous and inviscid flow, respectively.

The variables can be evaluated with the relaxation state at the face. The rationale behind

the additional term is that the numerical viscosity should scale as the characteristic mesh

length in under-resolved regions. Eq. (3.42) indeed makes the physical viscosity propor-

tional to this characteristic length, provided the time step scales linearly with it. This has

two main effects at shock locations: Firstly the physical viscous terms are proportional to

the increased coefficient of viscosity. Secondly, the discontinuous reconstruction is more

heavily weighted, providing additional dissipation.

It is not at all obvious whether the additional increase of the physical viscosity is

necessary or sufficient for adequate shock capturing. For some transonic flow cases, in

particular in three dimensions, it was not used in our implementations, while for most

two-dimensional computations we generally found beneficial. This simply suggests that

the best treatment of dissipation is still an open problem for this class of scheme.

3.6 Results

Extensive validation of the new BGKgg scheme, which is based on the distribution function

given in Eq. (3.26), is presented in this section. Furthermore, the new scheme is compared

to the original BGK scheme, Eq. (3.18), the intermediate BGKg scheme, Eq. (3.25), and

various conventional methods.
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3.6.1 Isentropic Nozzle Flow: A Convergence Study

The governing equations for isentropic, quasi one-dimensional nozzle flow can be written

∂tQ+ ∂xF + S = 0 , (3.43)

where

Q =


ρ

ρU

E

 , F =


ρU

ρU2 + p

U(E + p)

 , S =
1
A

dA

dx


ρU

ρU2

U(E + p)

 . (3.44)

The flow variables are defined as in section 2.6. For the purposes of this convergence study

we have defined a cross section of the nozzle on the interval [0, xout = 10] by

A(x) =

 din + ξ(x)2(3− 2ξ(x))(dt − din) , x < xt

dt + η(x)2(3− 2η(x)(dout − dt) , x ≥ xt

, (3.45)

where ξ(x) = x/xt, and η(x) = (x − xt)/(xout − xt). The coordinate xt = 3.75 is the

location of the nozzle throat, while the nozzle diameters at the inlet, outlet and throat are

given by din = 1, dout = 1.25, and dt = 0.875, respectively.

We choose a nozzle exit Mach number of M = 0.3, which leads to a maximum Mach

number in the nozzle throat of M ≈ 0.46 for the chosen nozzle geometry. At the inflow

we extrapolate the outgoing Riemann invariant and fix the total enthalpy and entropy

function s = ργ/p, while at the outflow the entropy and total enthalpy are extrapolated

and the pressure is fixed. The exact solution for the Mach number can be obtained from

the well known area-Mach number relation for isentropic nozzle flow, which can be found

in many standard text books, e.g. [1]. Table 3.2 displays the maximum error in the Mach

number for the BGKgg scheme in mesh refinement, where we have denoted the number of

mesh cells with N . The data is compared to a conventional finite volume scheme, which

uses the CUSP flux [36]. It can be seen that the BGKgg scheme reaches second order of

accuracy in the asymptotic region. A graphical comparison between the two schemes is

shown in Fig. 3.3, where the error is plotted on a logarithmic scale against the number

of cells. Here it is clearly visible that both schemes converge at approximately the same

rate.
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BGKgg CUSP

N L∞(Error) Order L∞(Error) Order

20 5.920739e-04 7.531804e-04

30 3.093076e-04 1.601359 4.037851e-04 1.537548

40 1.740776e-04 1.998161 2.375062e-04 1.844706

50 1.044453e-04 2.289281 1.513558e-04 2.019152

70 5.049497e-05 2.160028 8.068882e-05 1.869495

100 2.409334e-05 2.074545 3.744039e-05 2.152801

Table 3.2: Comparison of the maximum Error in the Mach number between the BGKgg

scheme and the CUSP scheme for isentropic nozzle flow.

Figure 3.3: Comparison of the maximum Error in the Mach number between the BGKgg

scheme and the CUSP scheme for isentropic nozzle flow.
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(a) Solution after 3 multigrid cy-

cles

(b) Solution after 10 multigrid

cycles

(c) Solution after 50 multigrid cy-

cles

Figure 3.4: The BGKgg scheme with the nonlinear SGS method.

3.6.2 2D Results

For a demonstration of the convergence properties of the BGKgg scheme with the non-

linear SGS method consider inviscid transonic flow. Fig. 3.4 shows the distribution of

the pressure coefficient for flow around the NACA0012 airfoil at M = 0.8 and α = 1.25o,

computed on a 320x64 structured mesh. The solution strategy uses a full-approximation

multigrid method, where the solution process is started on the coarsest mesh. The figure

shows the solution on the finest mesh, using seven levels of multigrid. It can be seen

that the solution is almost converged after three cycles. The multigrid overhead becomes

negligible after the first coarse mesh, since the number of cells decreases by a factor of 4

for each mesh level. The asymptotic overhead due to multigrid is approximately 33% for

computations on the coarse meshes plus the costs for the extra residual computation to

compute the forcing function for the coarser meshes in Eq. (3.39). The total cost for the

multigrid computations is thus higher by a factor of about 1.6, regardless of the number

of meshes used, compared to a single-grid calculation in two dimensions.

The remaining computations in this section use triangular meshes in cell-centered dis-

cretization, i.e. the primary mesh elements are used as control volumes. On numerous

occasions we compare the kinetic schemes to a conventional finite-volume method, for

which we have chosen the CUSP scheme [36] for convective terms, and a central dis-

cretization for the viscous terms along the lines proposed in [38]. Both the BGK scheme

and the CUSP scheme use the same reconstruction method, based on a least-squares es-
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timate of the gradient along with Venkatakrishnan’s limiter [67]. In fact, aside from the

flux computation, the numerical codes used for comparison are identical.

We first present two-dimensional results for inviscid transonic flow. Fig. 3.5 shows the

(a) Contour plot of the pressure

(CUSP scheme)

(b) Contour plot of the pressure

(BGKgg scheme)

(c) Mesh

Figure 3.5: Inviscid transonic flow around the NACA 0012 airfoil at M = 0.8, α = 1.25o.

Figure 3.6: Inviscid transonic flow around the NACA0012 airfoil at M = 0.8, α = 1.25o.

Comparison of the dimensionless pressure p/p∞ along the airfoil.

computed dimensionless pressure contours p/p∞, where p∞ is the free stream pressure, for

a NACA0012 profile in transonic flow at M = 0.8 and incidence α = 1.25o, computed with

the CUSP scheme and the BGKgg scheme. It is not necessary to include the intermediate

BGKg scheme here, which is identical to the original BGK scheme for inviscid flow (which
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(a) BGK (b) BGKgg with tangential gra-

dients

(c) BGKgg without tangential

gradients

Figure 3.7: BGKgg vs. BGK: Zero-pressure-gradient boundary layer on a stretched trian-

gular mesh.

does not require the initial nonequilibrium term in Eq. (3.6) to be included). Fig. 3.6

compares the pressure distributions along the airfoil for the same test case. It can be

seen that the shock capturing capabilities are virtually identical for all schemes. These

computations have been carried out on a mesh with 10, 240 triangles, shown in Fig. 3.5(c),

using β1 = 10−2 and β2 = 1 in Eq. (3.42).

For viscous validation consider a zero-pressure gradient boundary layer. Fig. 3.7 shows

the streamwise velocity at Re = 2000, M = 0.2 computed on a stretched triangular mesh

using the standard BGK and the new BGKgg scheme. The figures overplot the entire so-

lution along the plate (excluding the first 10% length) in similarity coordinates. The BGK

scheme is shown in Fig. 3.7(a). The original formulation from [73], based on Eq. (3.18)

has been used, which includes only the normal expansions outlined in section 3.2. The

BGKgg scheme is presented with tangential gradients added, see Eq. (3.32) in section 3.4,

and without them, in Figs. 3.7(b) and 3.7(c), respectively. It can be seen that the influ-

ence of the “2d” correction is small, and that the new scheme gives a very similar result

compared to the original BGK scheme (at much reduced cost).

We now focus on transonic low-Reynolds-number computations to both amplify the

contribution of the viscous terms, and lend some importance to the generation of artificial

dissipation as well. Some of the test cases we present have also been considered in [3],

and have been previously used as benchmarks for viscous flow [6]. Fig. 3.8 shows the

dimensionless pressure distribution p/p∞ for the NACA0012 profile at M = 0.8 and α =
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(a) Re = 73 (b) Re = 500

Figure 3.8: Viscous flow around the NACA0012 profile at, M = 0.8 and α = 10o. Com-

parison of different schemes.

10o for Reynolds numbers Re = 73 and Re = 500 and various schemes. It can be seen

that the kinetic schemes give very similar results compared to the very well validated

conventional method. Recall that, compared to the BGK scheme, the BGKg scheme

replaces the KFVS nonequilibrium state f̂1, Eq. (3.11), with Eq. (3.22). In addition

to this modification, the BGKgg scheme replaces the time derivative (3.17) with the one

based on the constraint (3.23). It may be seen that these modifications do not significantly

affect the results. However, as has been outlined in section 3.3, they are conceptually much

cleaner, and reduce the computational cost dramatically.

Fig. 3.9 demonstrates the influence of limiters on the solution for the Re = 500 test

case. A contour plot of the Mach number, computed with the BGKg scheme, is shown

in Fig. 3.9(a). Fig. 3.9(b) shows a comparison of the pressure distribution between the

conventional CUSP/central scheme, and the BGKg scheme with and without limiters. The

influence of data limiting on the BGK scheme has already been pointed out by Xu [73].

Although not shown, the same behavior is observed for the BGK and BGKgg schemes.

An advantage of the BGKgg scheme is that the option of not using data limiting for the

nonequilibrium terms can be easily included at only slightly increased computational cost:

The term ∂xf0 has to be computed twice, once with, and once without limiting. In the
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(a) Mach number contours computed with the BGKg

scheme without limiters

(b) Pressure distribution for the CUSP/central

scheme and the BGKg scheme with and without lim-

iter

Figure 3.9: NACA0012 profile at Re = 500, M = 0.8, and α = 10o. Influence of the

limiters.

original scheme, such a separation between the gradients for inviscid and viscous terms is

virtually impossible, because of the intricate nature of the formation of the nonequilibrium

terms.

Fig. 3.10 shows the solution for the NACA 0012 profile at M = 0.8, Re = 1500,

and incidence α = 1.250. To resolve the boundary layer, the mesh becomes increasingly

stretched. This testcase has been computed mainly with the aim to assess the differences

between the full 2d kinetic reconstruction along the lines of [74], the 2d correction of

Eq. (3.32), and the quasi-1d expansion without any correction of the viscous terms using

tangential derivatives. The difference between these techniques is remarkably small for

both the BGKg and the BGKgg scheme. These results are representative, and it seems

therefore unwarranted to prefer the extremely expensive multi-dimensional reconstruction

over the 2d correction of Eq. (3.32), which is computationally insignificant.

Laminar steady flow around a cylinder is investigated in Fig. 3.11 for low-Reynolds-

number flow up to Re = 50. For these Reynolds numbers a steady separation bubble is

obtained, the length of which has been measured and compared to an empirical correla-
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(a) Magnified view of the mesh

inside the boundary layer.

(b) Pressure distribution along

the profile.

(c) Magnified view of the pres-

sure distribution.

Figure 3.10: NACA0012 profile at Re = 1500, M = 0.8, and α = 1.25o.

(a) Stream lines for Reynolds Numbers Re = 40, 30

(top row) and Re = 20, 10 (bottom row)

(b) Nondimensional length of the separation bubble

Figure 3.11: Laminar Separation from a cylinder.
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tion [70] obtained by a fit through experimental data. The length s of the separation zone

has been nondimensionalized by the cylinder diameter d. Generally the deviation from

this correlation is below 4% for all Reynolds numbers considered. While the correlation

cannot be considered the exact solution (the experimental data from which it is obtained

shows some scatter), the higher deviations for higher Reynolds numbers are likely caused

by the fact that the mesh resolution deteriorates rapidly away from the cylinder, which

causes larger separation zones to be underresolved.

Fig. 3.12 shows a plot of the drag coefficient and the pressure coefficient at the rear

stagnation point (the “base pressure” coefficient). The data obtained with the BGKgg

(a) Drag Coefficient. (b) Base suction (−cpb).

Figure 3.12: Laminar steady flow around a cylinder. Drag coefficient and base suction vs.

Reynolds number.

scheme is compared to numerical computations by Henderson [30] and Fornberg [14], as

well as experimental results [64, 66]. It may be seen that the results for the drag co-

efficient agree very well with the computations by Henderson, and fit the experimental

data nicely. The base pressure is notoriously sensitive, and both experimental and com-

putational results show some scatter. Still, the results obtained with the BGKgg scheme

compare favorably with the experimental results and other computations. Deviations are

of the same magnitude as the observed scatter.
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3.6.3 3D Results

We focus mainly on the multigrid implementation on unstructured meshes in this sec-

tion. The BGK method has been embedded into the Flo3xx computational aerodynamics

architecture, documented in [49], which solves the the three-dimensional Euler and Navier-

Stokes equations on arbitrary meshes in finite-volume formulation.

The Onera M6 testcase at M = 0.84, α = 3.06o has been chosen to validate three-

dimensional inviscid transonic flow with multigrid. Fig. 3.13 shows the convergence history

of the lift and the density residual on a tetrahedral mesh with 94, 000 nodes. Also shown

is a comparison of the convergence history for the lift coefficient between the BGK scheme

and the CUSP scheme, which serves to show that the BGK scheme is certainly competitive

(a) Density Residual: BGK vs.

BGKgg

(b) Lift: BGK vs. BGKgg (c) Lift: BGK vs. CUSP

Figure 3.13: Comparison of convergence history for the BGK, BGKgg and CUSP schemes.

with conventional schemes in terms of convergence to a steady state. We have used

β1 = 10−2 and, in fact, β2 = 0 for these computations. This means that no artificial

dissipation is added, and we rely solely on the dissipation generated by the gas-kinetic

upwinding. The shock capturing behavior is excellent, as is shown in Fig. 3.14, where the

distribution of the pressure coefficient is shown for the wing section y/b = 0.2. Both the

CUSP method and the BGK schemes are shown.

Fig. 3.15 shows the convergence history of a single-grid and a three-level multigrid

solution for a computation of a Business Jet configuration in transonic inviscid flow, along

with contour plots of the density. The multigrid overhead of approximately 40% has been

taken into account in the work units used to compare the convergence. The speedup due
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(a) 94k Node Tetrahedral Mesh (b) 316k Node Tetrahedral Mesh (c) Mesh Refinement

Figure 3.14: Pressure Coefficient for the Onera M6 Wing at M = 0.84, α = 3.06 at wing

section y/b = 0.2.

(a) Convergence history of the

coefficient of lift

(b) Density Contours (c) Density Contours

Figure 3.15: Falcon Business Jet at M = 0.8 and α = 2o.
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(a) Density Contours (b) Mach Number Contours

Figure 3.16: SR71-based Configuration with M∞ = 3.2, α = 5o.

to multigrid is most dramatic in integrated quantities, such as the coefficient of lift, shown

in Fig. 3.15. We point out that solutions for the BGKg scheme and the BGKgg scheme

are virtually identical. All schemes are stable at CFL = 10 with an explicit 5 Stage

Runge-Kutta time stepping technique with residual averaging and local time stepping.

Fig. 3.16 demonstrates the shock capturing capabilities for high-Mach number flow about

complex configurations, where density and Mach number contours are shown for a test

case involving a configuration based on the SR71 Blackbird aircraft. The free stream Mach

number is given by M∞ = 3.2, and the angle of attack is α = 5o.

Basic viscous validation for a low Reynolds number is shown in Fig. 3.17, where the

solution for the Onera M6 Wing at M = 0.8, α = 3.060 and Re = 73 is shown. Note that

the convergence history has been plotted against work units, which introduces a factor of

about 1.4 in increase of cost compared to single grid solutions, made up in equal parts

by the computations on coarser meshes and the cost of performing one extra residual

evaluation on the fine mesh for the coarse mesh forcing function in Eq. (3.39). Note how

the coefficient of lift is essentially converged when the residual has been reduced by about

three orders of magnitude. The mechanism of convergence acceleration is an effective
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(a) Convergence history of density residual and co-

efficient of lift.

(b) Contours of pressure coefficient

Figure 3.17: Onera M6 Wing at Re = 73, M = 0.8, and α = 3.06o.

increase of the speed with which information is propagated in the flow field. Typically,

solutions in multigrid computations do not tend to creep, and the steady state is reached

at much higher levels of residuals compared to single grid computations.

Finally, consider the case of turbulent flow. Although it is not the scope of this work

to validate the methodology for such flows, we nevertheless wish to illustrate that the

kinetic route is viable for computation of turbulent flow using eddy viscosity via the

Boussinesq hypothesis to model turbulent momentum transfer. The eddy viscosity can be

determined using a standard turbulence model, and is subsequently added to the laminar

viscosity. This gives the effective viscosity, which is used in Eq. (2.31) to compute the

relaxation time τ . Figure 3.18 shows results for a turbulent boundary layer computed on a

hexahedral mesh with roughly 90, 000 nodes in terms of the velocity profile and the friction

coefficient. It can be seen that both the friction coefficient and the streamwise velocity

in the viscous sublayer and the log layer region match theoretical results rather well. For

the friction coefficient we have used the 1/5th power law, which is reasonably accurate for

this Reynolds number [70]. For the streamwise velocity we compare the solution to the

the sublayer solution y+ = u+ and Spalding’s correlation [70].
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(a) Velocity profile (b) Skin friction coefficient

Figure 3.18: Turbulent boundary Layer at Re = 6 · 106 , M = 0.2.



Chapter 4

Contributions to the Development

of the Spectral Difference Method

4.1 Introduction

Most industrial applications of computational physics have been dominated by low order

schemes. The simulation of compressible fluid flow for complex geometry is one notable

example. In many disciplines, however, extremely high accuracy is required, for example

in LES to avoid the masking of subgrid scale dissipation by numerical dissipation, and

in problems of aeroacoustics and electromagnetics, where one needs to track wave prop-

agation over long distances. The resulting mesh requirements for low-order methods are

often prohibitive, while high-order methods provide higher accuracy with fewer degrees

of freedom. Traditionally this has been achieved for modeling complex physics in rela-

tively simple domains. On the other hand, low order methods have become remarkably

widespread in the simulation of fluid flow in complex domains on unstructured meshes,

and are generally regarded as more efficient in this context. This stems in part from

the fact that in industrial applications the accuracy requirements are often not excessive

(“engineering accuracy”). Furthermore, low-order schemes are very robust, while pertain-

ing convergence acceleration techniques for steady-state problems are mature and well

understood.

59
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However, the promise of high-order methods to provide superior performance at lower

computational cost is compelling and motivates further research to extend the range of effi-

cient applicability to complex computational domains. In particular unstructured meshes,

which facilitate the meshing of complex domains enormously, are of special interest here.

The extension of such algorithms that have made low order schemes so efficient over the

past thirty years, such as multigrid, to high-order methods is crucial if their theoretical

potential is to be realized.

In this context, “high-order” refers mainly to the spatial accuracy, with the understand-

ing that for certain time-dependent problems time accuracy is also important. However,

time accuracy is not the main focus of research in this work, as it is more easily achieved,

and is not as heavily dependent on complexity of geometry and the mesh topology. For

steady-state problems, which shall receive considerable attention here, time accuracy dur-

ing the relaxation process is of no importance.

Recently the high order Spectral Difference (SD) method for unstructured meshes,

which has been proposed by Liu et al. [46], has been extended to the Euler equations by

Wang et al. [69] and May et al. [48]. May et al. have also presented a formulation for

advection-diffusion systems and the Navier-Stokes equations on unstructured meshes [50].

The scheme has been established as a viable alternative to such schemes as the Discon-

tinuous Galerkin Method [10, 9] or the Spectral Volume Method [76]. The SD Method

is particularly attractive because of its simple formulation, which is shared with finite-

difference techniques, while such properties as local conservation, arbitrary order of accu-

racy on unstructured mesh elements, are similar to Discontinuous Galerkin methods.

This chapter contains contributions made towards the development of the SD scheme,

some of which were reported in the above-mentioned references by the present author. The

topics presented here include stability analysis, data limiting methodology, and formula-

tion for viscous problems, such as advection-diffusion systems and the Navier-Stokes equa-

tions. Furthermore, convergence acceleration for steady-state problems via h/p-multigrid

is developed, which addresses one of the major shortcomings of the current state-of-the-

art. The present research thus not only contributes to the development of the SD scheme

in particular, but also to the advancement of high order schemes in general.
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4.2 The Spectral Difference Method

4.2.1 Basic Formulation

The present discussion focuses on the solution of hyperbolic conservation laws of the form

∂u

∂t
+∇ · F = 0 , (x, t) ∈ Ω× [0, T ] , (4.1)

where Ω ⊂ Rd, and u = (u1, . . . , up). We consider one and two dimensional problems (d =

1 and d = 2) subject to suitable initial and boundary conditions. Suppose a triangulation

of Rd is given, which is assumed, for the sake of simplicity, to consist of simplexes. The

Spectral Difference method uses a pseudo-spectral collocation-based reconstruction for

both the dependent variables u(x) and the flux function F (u) inside a mesh element, Ti,

say. The reconstruction for the dependent variables can be written

ûi(x) = Im
i (u)(x) =

N(m)∑
j=0

Lj(x)uij , x ∈ Ti , (4.2)

where uij = u(xij). Throughout this chapter a double subscript notation refers to a node

(second index) inside a cell (first index). Here xij is the jth solution collocation node

in the ith mesh element. Henceforth we shall frequently omit the cell index i, whenever

there is no risk of confusion. The interpolation operator Im
i denotes a local collocation in

cell i using multivariate polynomials of total degree m. The Lj(x) are the cardinal basis

functions for the chosen set of collocation nodes xj , where j = 0, . . . , N(m), and

N(m) + 1 =
Πd

j=1(m+ j)
d!

. (4.3)

This leads to an asymptotic order of accuracy of order n = m + 1 for smooth functions,

according to standard interpolation theory. We shall use the general notation “pm-SD

Scheme” to define a scheme of order m+ 1.

If the discrete solution uh is defined as the union of all the interpolated functions

on the mesh elements, uh = ûi(x) for x ∈ Ti, i = 1 . . . Ne, where Ne is the number of

elements, it will be discontinuous across the element boundaries. The treatment of the

element boundaries is one of the key ingredients of the spectral difference method and is
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(a) Flux computation for points on edges (b) Flux computation for points on corners

Figure 4.1: Illustration of flux computation for nodes on element boundaries.

discussed below. The reconstruction of the flux function in Ti reads

F̂i(u(x)) = Im+1
i (F (u))(x) =

N(m+1)∑
k=0

Mk(x)F (u(xk)) , x ∈ Ti , (4.4)

where the Mk are the cardinal basis functions corresponding to the collocation nodes

xk , k = 0, . . . , N(m+1). Again the interpolation will be discontinuous at element bound-

aries. The numerical flux function Fh on the triangle Ti and its boundary ∂Ti is defined

as

Fh =

 F̂i , x ∈ Ti

G(ûi(x), ue,j1 , . . . , ue,jk . . . ) , x ∈ ∂Ti

, (4.5)

where the ue,j1 , . . . , ue,jk . . . are “external” solutions on triangles Tjk
with jk 6= i such

that x is shared by Ti and Tjk
, and the value is given by ue,jk = limy→x ûjk

(y). For

nodes on edges of triangles there is only one such external solution ue. It is necessary

for discrete conservation that the normal flux component be continuous across the edge,

which suggests the use of numerical flux functions, as discussed in section 2.3, such that

the normal flux component Fn = F̂i · n, for the node xk, say, is replaced by the numerical

flux h(ûi(xk), ue, n), where n is the edge normal, and h is the numerical flux function

approximating Fn. A schematic illustration is shown in fig. 4.1(a). For flux nodes on

corners there is more than one external solution. One may compute the corner fluxes
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from normal fluxes on the two incident edges of a triangle by imposing

Fh · n1 = hn1

Fh · n2 = hn2 , (4.6)

where n1 and n2 are the normals on the incident edges, and hn1 , hn2 are the associated

numerical fluxes. This treatment was suggested by Wang et al. [69] and makes the flux

unique, while allowing for conservation. The linear system, Eq. (4.6), can be solved an-

alytically to give modified numerical fluxes on corners that can be split into two parts,

which are associated with the two incident edges. This is shown in Fig. 4.1(b). All nu-

merical fluxes may thus be restricted to three-point flux functions, i.e. fluxes of the form

H(ur, ul, n), defined by a logical left and right state and a normal n. The subsequent dis-

cussion will be restricted to such flux functions. Any of the fluxes discussed in sections 2.4

and 2.5 may be used. In particular, the Lax-Friedrich flux, Jameson’s CUSP flux [36],

and the Roe-flux [58] have been used in this work. Tangential flux components can either

be evaluated in each cell and left unchanged or averaged across cell interfaces using an

arithmetic average to produce a flux function Fh which is single-valued everywhere.

The baseline scheme is now readily defined in ODE form, with the degrees of freedom

given by the values of the solution at the collocation nodes, and the solution operator is

given by the exact differentiation of the reconstructed flux function:

duij

dt
+ (∇ · Fh) (xij) = 0 , (4.7)

where uij = uh(xij), and again xij is the jth solution collocation node in the ith mesh

element. The SD method is related to staggered grid multidomain spectral methods,

proposed by Kopriva [42] for semi-global approximations on quadrilateral domains.

The discussion in this introductory section has focused on the essential ingredients of

the method. A more detailed discussion of the implementation of the scheme, i.e. the

computation of the space discretization operator for general triangular meshes, is deferred

to Appendix C.2.
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(a) Linear (b) Quadratic (c) Cubic

Figure 4.2: Schematic depiction of collocation nodes for triangles.

4.2.2 Collocation Nodes

Any combination of collocation nodes may be used, provided that the following assumption

is satisfied

Assumption 4.2.1. The chosen set of collocation nodes

• supports a volume quadrature of the order of the interpolation n

• the restriction of the flux nodes to the boundaries supports a d − 1-dimensional

quadrature of order n+ 1

This ensures discrete conservation in the sense that

d

dt

∫
Ti

uh dx = −
∫

∂Ti

Fh · ndA , (4.8)

can be numerically satisfied exactly for the solution and reconstructed flux function, such

that the scheme for the averages is conservative, a point that will become clear in sec-

tion 4.4. Hesthaven proposed nodes based on the solution of an electrostatics problem

for simplexes [31], which support both a volume and a surface integration to the required

degree of accuracy, and have very good interpolation properties. These nodes can be used

for both flux and solution collocation. Fig. 4.2 shows examples of nodes for elements of

various orders. For lower and medium orders the asymptotic interpolation properties of

the nodal set are not extremely important, and one may simply choose Gauss quadrature

points for the solution nodes.
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(a) Linear (b) Quadratic (c) Cubic

Figure 4.3: Reconstruction in 1D: The squares depict flux nodes, the circles are solution

nodes.

In one dimension one may use Lobatto nodes for the flux collocation, and Gaussian

nodes for the solution, based on a suitable family of orthogonal polynomials, such as

Chebyshev or Legendre. An example based on Chebyshev polynomials is shown in Fig. 4.3.

4.3 Time Stepping and Relaxation

The Spectral Difference Scheme, when written in the form of Eq. (4.7), is amenable to a

variety of time stepping and relaxation techniques. It is shown in sections 4.4.3, and 4.4.4

that linear and nonlinear stability may be established under a mild cfl condition for ex-

plicit schemes, such as Runge-Kutta schemes. Several Runge-Kutta (RK) schemes are

considered in this work, all of which can be written as

u(0) = un

u(k) =
k−1∑
l=0

αklu
(l) + ∆tβklR

(l) , k = 1, . . . ,m (4.9)

un+1 = u(m) ,

where R = −∇·Fh is the residual, see Eq. (4.7). Among the schemes that have been used

in this work, two general classes of RK schemes may be identified: Firstly, the class of

high-order accurate TVD RK schemes proposed by Shu [60, 61], and secondly minimum

storage schemes, such as the ones proposed by Jameson [33, 32] and Shu [60]. Of the
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former class, the following two schemes have found use:

Shu− RK2 : α =

 1
1
2

1
2

 , β =

 1

0 1
2

 (4.10)

Shu− RK3 : α =


1
3
4

1
4

1
3 0 2

3

 , β =


1

0 1
4

0 0 2
3

 , (4.11)

where the coefficients have been summarized in convenient matrix notation, with the

columns corresponding to l and the rows corresponding to k in (4.9). The schemes be-

longing to the class of minimum-storage RK schemes are specifically designed for higher

stability regions, often sacrificing higher-order accuracy. They are thus most often used

for steady-state problems. Minimal storage means that αk0 = 1, αkl = 0 for l 6= 0, and

βkl = 0 for l 6= k − 1 in (4.9). The family of minimum-storage schemes proposed by Shu,

denoted Shu-RKs here, is designed to preserve the TVD property of the spatial operator

for large cfl numbers [60], and can be written

βk,k−1 =
k

m(m− k + 1)
, k = 1, . . . ,m . (4.12)

Jameson’s schemes, denoted Jameson-RKs [32, 33], have been designed to achieve large

cfl numbers for a linear model problem. They can be written:

βk,k−1 =
1

m− k + 1
, k = 1, . . . ,m . (4.13)

The Jameson-RK4s scheme is fourth order accurate in time for the linear problem [32].

Generally the time step restrictions for linear stability are more severe for higher-order

schemes, compared to first order accurate model problems, see section 4.4.3 and [2]. Often

only marginal linear stability can be established, in the sense that the amplification factor

can be bound only by 1 + O(cflp) for some p > 0. In practice this may not be of great

concern, as this poses severe restrictions mainly in the limit of mesh refinement, and the

nonlinear stability estimates are much more benign, see section 4.4.4. It is nevertheless

worthwhile to consider implicit formulations, which may have the potential to speed up

relaxation to steady-state solutions by allowing much higher cfl numbers. Furthermore, it
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is felt that the simple formulation of the SD scheme is a distinct advantage, which carries

over to the implicit version.

Consider the scheme in semi-discrete form (4.7). Using a standard first order lineariza-

tion a baseline implicit time discretization can be written as(
I + ∆t

∂R

∂u

∣∣∣∣
n

)
∆un = −∆tR(un) , (4.14)

where ∆un = un+1 − un. Several paths can be taken to solve Eq. (4.14). A good compro-

mise between computational efficiency and storage requirements is given by the general

class of symmetric Gauss-Seidel schemes. A special case is the LU-SGS scheme due to

Jameson and Yoon [34, 39]:

(D + L)∆u(1) = −R(un) , (4.15)

(D + U)∆un+1 = D∆u(1) . (4.16)

As an example consider the one-dimensional problem. The system Jacobian matrix will

be block tridiagonal, and may be written for the pm-SD Scheme for each cell as

Drs = I + λ
∑m+1

k=0 drkÃ(pk)
∂pk
∂us

= I + λ
∑m+1

k=0 drkÃklks , (4.17)

Lrs = λ dr0Ãm+1lm+1,s , (4.18)

Urs = λ dr,m+1Ã0l0s . (4.19)

where r, s = 0 . . . ,m and λ = ∆t/∆x. The matrices L and U operate on the solution in

cells i− 1 and i+ 1, respectively, and the reconstruction coefficients are defined by

pk =
m∑

j=0

lkjuij , lkj = Lj(xk) (4.20)

1
∆x

m+1∑
k=0

djkfk =
d

dx
Im+1(fh)(xj) . (4.21)

The local Jacobian Ã is simply the flux Jacobian evaluated at the flux collocation points for

interior nodes, and the differentiation of the numerical flux function h for nodes on element

boundaries. In practice some suitable approximation for the derivative to the numerical

flux function is used (e.g. the diffusion coefficients are treated as local constants, etc.). In
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essence the system Jacobian is thus a simple superposition of local flux Jacobians, which

can be assembled very efficiently in a loop over the local flux nodes using the known

universal reconstruction coefficients.

4.4 Properties of the One-Dimensional Scheme

Studying the one-dimensional scheme can give valuable insights into the nature and basic

properties of the proposed methodology. Results regarding linear and nonlinear stability

give important guidelines for the extension of the scheme to multidimensional systems,

such as the Euler and Navier-Stokes equations. Throughout this section, a subdivision of

the real line into equal intervals Ki = (xi− 1
2
, xi+ 1

2
), which serve as collocation cells, and

a sequence tn = n∆t, n = 0, . . . , NT is assumed 1. Furthermore, λ = ∆t/∆x, where

∆x = xi+ 1
2
−xi− 1

2
. Boundary conditions are not considered. Consider the one-dimensional

version of Eq. (4.1):
∂u

∂t
+
∂f

∂x
= 0 . (4.22)

Let the local solution nodes be defined by xj , j = 0, . . . ,m and the flux nodes by

xk , k = 0, . . .m + 1. Define the degrees of freedom as un
ij = uh(tn, xij). The pm-SD

Scheme with a forward-Euler time discretization reads:

un+1
ij = un

ij − λ

m+1∑
k=0

djkfik , (4.23)

where fik = fh(pk), and pk and djk are defined as in Eq. (4.20). Note that the reconstruc-

tion coefficients are universal, in the sense that they do not depend on the cell i. Hence

they need only be stored for a reference element. 2

4.4.1 The Scheme for the Means: Conservation Property

Conservation is ensured by construction, and verified numerically in the scheme for the

means, i.e. the scheme for the means can be written in the form of Eq. (2.48). This

property allows one to establish nonlinear stability and convergence as a consequence of

1Restriction to a uniform mesh is by no means necessary, and is done here only for notational convenience
2This is true in higher dimensions as well, as long as the element is straight-sided
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TVD stability theory in much the same way as has been done for many high-resolution

finite-difference and high-order methods, provided certain criteria in the numerical flux

computation are satisfied and appropriate data limiting procedures are used, which is

discussed in section 4.4.4.

The equation for the volume averages ūi can be written

m∑
j=0

wju
n+1
ij = ūn+1

i = ūn
i − λ

m∑
j=0

wj

m+1∑
k=0

djkfik =
m+1∑
k=0

w̃kfik , (4.24)

where the wj are quadrature weights corresponding to the chosen set of solution nodes,

which by assumption 4.2.1 support exact quadrature of polynomials at least up to degree

m. Also,

fk =


hi− 1

2
k = 0

hi+ 1
2

k = m+ 1

f(uh(xk)) otherwise

. (4.25)

The modified quadrature weights w̃k are given by

w̃k =
m∑

j=0

wjdjk . (4.26)

This, however, can be simplified by noting that djk = ∆xM ′
k(xj), where M(x) is the

cardinal basis function for the flux collocation, whose derivative is a polynomial of degree

m by construction, and is hence integrated exactly, which means that

m∑
j=0

wjdjk =
∫ x

i+1
2

x
i− 1

2

M ′
k(x) dx = Mk(xi+ 1

2
)−Mk(xi− 1

2
) =


−1 k = 0

1 k = m+ 1

0 otherwise

,

(4.27)

using the fact that Mk(x) is an interpolation polynomial for which Mk(xl) = δkl holds.

Note that the Interval endpoints must be flux collocation nodes for the scheme to be well

defined, since numerical flux functions must be used there to provide the inter-element

coupling. Upon substitution of this result into equation (4.24), the conservation form for

the volume averages, Eq. (2.48), is recovered. The same is true in higher dimensions,

although the algebra is a bit more tedious, see Appendix C.1.
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4.4.2 Basic Concepts of Data Limiting

Weak solutions to hyperbolic conservation laws may contain discontinuities, which poses

a challenge for the development of numerical schemes. According to a famous theorem

due to Godunov, linear-coefficient schemes of order greater than one will not be monotone

(and not TVD as discussed in section 2.4). This has led to the development of nonlinear

schemes, which introduce limiting functions that depend on the solution. The development

of such limiters is discussed in a more general context in section 4.5. However, in order to

establish the fundamental stability properties of the scheme, it is necessary to introduce a

baseline one-dimensional limiting methodology, which will subsequently be used to guide

the development of the more general multidimensional procedures.

Consider a three-point numerical flux hi+ 1
2

= h(u−i+1, u
+
i ), where the states u±i may be

evaluated using the collocation polynomial:

u+
i = pi,m+1 , u−i = pi0 . (4.28)

To ensure monotonicity, the reconstruction is modified as follows. First define the quan-

tities

δ̃+ui = m(δ+ui,∆+ūi,∆+ūi−1) , (4.29)

δ̃−ui = m(δ−ui,∆+ūi,∆+ūi−1) . (4.30)

where ∆+ is the usual difference operator ∆+ui = ui+1 − ui, and δ+ui = pi,m+1 − ūi,

δ−ui = ūi − pi0. The function m(a, b, c) is a minmod function, defined by

m(a, b, c) =

 sign(a) min(|a|, |b|, |c|) sign(a) = sign(b) = sign(c)

0 otherwise
. (4.31)

Eq. (4.28) is then replaced by

u±i =

 (4.28) , if δ̃+ui = δ+ui and δ̃−ui = δ−ui

ūi ± ũi , otherwise
(4.32)

where

ũi = min
(
δ̃+ui, δ̃−ui

)
. (4.33)
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This methodology ensures that the reconstruction at the cell interfaces remains bounded

by the volume averages in the cell i and the two neighboring cells. This may be used to

ensure monotonicity and establish the TVDM property (total-variation-diminishing in the

means), see section 4.4.4.

For the scheme to be well defined, one needs to extend the limiting procedure to all

degrees of freedom. Although this can be accomplished in several ways, for the purposes

in this section it is enough to extend the linear variation defined in Eq. (4.32) and (4.33)

to all nodes in a cell, in the case of active limiters.

4.4.3 Linear Stability

In this section we study the stability properties of the (linear) baseline scheme for linear

equations of the form
∂u

∂t
+
∂u

∂x
= 0 , (4.34)

with periodic boundary conditions. A straightforward computation reveals that the pm-

SD scheme with an upwind discretization of the interface fluxes, i.e. hi+ 1
2

= u+
i , with u+

i

as defined in Eq. (4.28), can be written in ODE form

dui

dt
+

1
∆x

(Aui +Bui−1) = 0 , i = 1, . . . , N , (4.35)

where ui = (ui,0 , . . . , ui,m) is the vector of degrees of freedom in cell i. The m×m matrices

A and B are given by

ars =
m+1∑
k=0

drklks , brs = dr0lm+1,s , r, s = 0, . . . ,m . (4.36)

The elements of the vector-valued solution may be subjected to a discrete Fourier trans-

formation. This leads to a the scheme for the (decoupled) Fourier modes, which can be

written generically:

∆t
dû
dt

= Zû , with Z = −λ(A− exp(
√
−1ξ)B) , (4.37)

where Z is the Fourier symbol of the space discretization, and λ = cfl, since the wave speed

is unity. Ultimately one aims to find an expression for û(tn+1) = G(λ, ξ)û(tn), the exact
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form of which depends on Z and the time discretization. It is necessary for L2-Stability

that the spectral radius ρ(G) be bound by unity for all ξ ∈ [0, 2π], or more precisely, that

ρ(G(λ, ξ)) ≤ 1 + C∆t , ∀ξ ∈ [0, 2π] , (4.38)

which is thus formulated as a condition on λ. Consider the general Runge-Kutta scheme,

Eq. (4.9) for Eq. (4.35). Going to frequency domain, one may define an intermediate

amplification factor û(k)
k = G

(k)
k û

(0)
k for each stage. The following recursion presents itself:

û(0) = ûn G(0) = I (4.39)

û(1) = (α10I + β10Z)u(0) G(1) = α10I + β10Z (4.40)

...
... (4.41)

û(k) =

(
k−1∑
l=0

αklI + βklZ

)
G(l)u(0) G(k) =

(
k−1∑
l=0

αklI + βklZ

)
G(l) . (4.42)

Setting k = m gives the amplification factor for the update from time level tn to tn+1.

The analytical evaluation of Eq. (4.38), which entails finding the Eigenvalues of the ampli-

fication matrix as a function of λ and ξ becomes extremely complicated for higher orders

of accuracy, but can be easily accomplished numerically. First, however, we note the

following proposition

Proposition 4.4.1. The Eigenvalues of the amplification matrix are independent of the

choice of (admissible) solution nodes.

Proof. Consider two sets of solution nodes, xj and x̃j , where j = 0, . . . , m. In both cases

the solution is given as interpolation polynomials of degree m. Hence, the local solution

vectors can be transformed as ũi = Mui, where M is an (m+ 1)× (m+ 1) matrix. When

the scheme is written as in Eq. (4.35) it is a matter of straight forward computation to

show that the iteration matrices corresponding x̃j and xj are related to each other by a

similarity transformation, e.g. Ã = M−1AM and B̃ = M−1BM . Hence the eigenvalues

are the same for both sets of matrices, and the eigenvalues of G remain unchanged as

well.

According to proposition 4.4.1 linear stability for the pm-SD Scheme depends only

on the choice of flux collocation nodes, not on the solution nodes. Here we analyze SD
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(a) SDl / JamesonRK4s

Order cfl cfl · DOF

2 0.696 1.392

3 0.363 1.089

4 0.226 0.904

5 0.156 0.780

6 0.115 0.690

7 0.089 0.623

(b) SDl / Shu-RK3

Order cfl cfl · DOF

2 0.595 1.190

3 0.322 0.966

4 0.201 0.804

5 0.139 0.695

6 0.103 0.618

7 0.0799 0.559

(c) DG / Shu-RK3

Order cfl cfl · DOF

2 0.409 0.818

3 0.209 0.627

4 0.130 0.520

5 0.089 0.445

6 0.066 0.396

7 0.051 0.357

Table 4.1: Linear Stability Limits for SDl and DG Schemes with Runge-Kutta Time

Stepping.

schemes with flux nodes based on Legendre-Lobatto nodes, and Chebyshev-Lobatto nodes,

denoted by pm-SDl and pm-SDc, respectively, with the Runge-Kutta schemes discussed in

section 4.3. Furthermore, The SD schemes have also been compared to 2nd and 3rd order

Discontinuous Galerkin (DG) schemes, based on Legendre polynomials. Table 4.1 shows

the numerically determined stability limits for SDl and DG schemes of up to order 7 with

the Shu-RK3 scheme and the Jameson-RK4s scheme. The DG results for order 4 through

7 have been taken from [2]. Following [2], one may argue that the low cfl values observed

in Tab. 4.1 are in part a consequence of the definition of the cfl number, which does

not account for the fact that an increasing number of degrees of freedom are present in

each cell, as the order of approximation is increased. If one insists on comparing the cfl

number to standard difference schemes with the same number of degrees of freedom, the

cfl number must be multiplied with the degrees of freedom, which gives an alternate and

perhaps better suited definition. This is also shown in Tab. 4.1.

A feature that appears in many combinations of the RK schemes tested with both the

DG and SD schemes is marginal stability, in the sense, that the amplification factor can

be bound not strictly by unity, but rather in the form

ρ(G) = 1 +O(cflµ) (4.43)

for some finite power µ. This, in conjunction with Eq. (4.38), means that asymptotically

linear stability can only be realized by reducing the cfl number as a power of the mesh

width. Fig. 4.4 shows an example of this behavior for the DG3 scheme and the p2-SD
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(a) DG3/ShuRK4s (b) DG3/ShuRK4s (Zoom) (c) SD3/ShuRK4s (Zoom)

Figure 4.4: Loci of the Eigenvalues for DG3 and SD3 with the Shu-RK4s for cfl =0.06.

Scheme with Shu-RK4s time stepping for cfl = 0.06. In 4.4(a) the loci of Eigenvalues

appear to be within the unit circle for this low cfl number. However, Figs. 4.4(b) and 4.4(c)

reveal that in fact a portion lies outside the unit circle by a small margin (note that the

scale in these figures has been distorted for better visibility). In fact, this behavior is

observed for all combinations of SD/DG schemes (of order greater than two) and RK

schemes tested here, except the ones shown in table 4.1.

We thus wish to note two points. Firstly, it seems that the SD scheme based on the

Legendre-Lobatto nodes shows better linear stability characteristics than the one based

on the Chebyshev Lobatto nodes, since it is linearly stable with the Shu-RK3 and the

Jameson-RK4s scheme at fixed cfl numbers (which are slightly higher than the ones that

have been determined for (Legendre) DG schemes). Secondly, the linear stability of DG

schemes has not been very often examined. In [2] a fixed linear stability limit is reported

for such schemes of order greater than two with the Shu-RK2 scheme as well as the Shu-

RK3 scheme. To the best of our knowledge this is incorrect in the case of the Shu-RK2

scheme at least for the third order scheme tested here. The amplification factor can only

be bound as in (4.43), although with a high power of µ ≈ 10. It is believed that this result

carries over to higher orders. On the other hand the stability limits for the DG3 scheme

reported in [2] can be confirmed, at least for the DG2 and DG3 schemes tested here.
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4.4.4 Nonlinear Stability

Consider the one-dimensional scheme for the means. The flux function is evaluated with

the reconstructed left and right states at the cell interfaces as described in section 4.4.2.

It was seen that the scheme for the means can be written as

un+1
i = un

i − λ
(
hi+ 1

2
− hi− 1

2

)
. (4.44)

We have the following proposition

Proposition 4.4.2. Assume the numerical flux is Lipschitz continuous, and monotone,

i.e. nonincreasing in its first argument and nondecreasing in its second. Furthermore,

assume that the limiting procedure outlined in section 4.4.2 is utilized. Then the scheme

for the means (4.44) is TVD under the condition cfl = λα ≤ 0.5, where α ∼ f ′ depends

on the numerical flux.

Proof. Since h is Lipschitz continuous, the scheme can be rewritten as in (2.50). A straight

forward computation reveals the coefficients C+
i+ 1

2

and C−
i− 1

2

with

C+
i+ 1

2

= −λα1

{
1−

ũ−i+1 − ũ−i
ūi+1 − ūi

}
, C−

i− 1
2

= λα2

{
1 +

ũ+
i − ũ+

i−1

ūi − ūi−1

}
, (4.45)

where

ũ+
i = u+

i − ūi , ũ−i = ūi − u−i (4.46)

with u±i defined as in Eq. (4.32). Furthermore,

α1 =
h(u−i+1, u

+
i )− h(u−i , u

+
i )

u−i+1 − u−i
, α2 =

h(u−i , u
+
i−1)− h(u−i , u

+
i )

u+
i−1 − u+

i

. (4.47)

The properties of the limiting procedure ensure that the expression in brackets in (4.45) is

nonnegative, while the monotonicity of the flux function ensures that α1 ≤ 0 and α2 ≥ 0,

which gives C+
i+ 1

2

≥ 0 and C−
i− 1

2

≥ 0. Furthermore we have

C+
i+ 1

2

+ C−
i+ 1

2

≤ λK (α2 − α1) , (4.48)

where

K = max

({
1−

ũ−i+1 − ũ−i
ūi+1 − ūi

}
,

{
1 +

ũ+
i+1 − ũ+

i

ūi+1 − ūi

})
, (4.49)
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and K ∈ [0, 2] by construction of the limiting procedure. Setting α = α2 − α1 the

proposition follows from Harten’s theorem (2.4.1).

Remark 4.4.1. Note that the proof is very similar to TVDM proofs given for the DG

method [7, 10], and TVD proofs other for high-resolution schemes [54]. The essential

steps depend only on the conservation form and the limiting methodology.

Fluxes that satisfy the assumptions of proposition 4.4.2 include the Godunov

flux (2.54), and the Lax-Friedrichs flux (2.55), among others.

Once the TVD property is established the stability region can be extended by using

Runge-Kutta schemes instead of the simple forward-Euler time discretization in Proposi-

tion 4.4.2. The m-stage Shu-RKs schemes in Eq. (4.12) are designed to preserve the TVD

property under the condition (C+
i+ 1

2

+C−
i+ 1

2

) ≤ m [60], i.e. λα ≤ m/2 in the nomenclature

of proposition 4.4.2.

The TVD property is restrictive in the sense that it will reduce the order of accuracy

not only at discontinuities, but also at smooth extrema. This can be avoided by utilizing

the concept of total-variation boundedness (TVB) [59], which potentially deactivates the

limiter at smooth extrema. The implementation merely requires a slight modification of

the minmod function defined in Eq. (4.31),

m̂(a, b, c) =

 a |a| < M(∆x)2

m(a, b, c) otherwise
. (4.50)

The constant M depends on the problem, but is usually unproblematic in adjustment.

Values between, say, M = 5 and M = 40 give good results with the solution not being

very heavily dependent on the exact value of the constant, see section 4.7. TVB proofs

are generally very similar to the ones for TVD, and basically state the allowed variation

of O(∆x)2, while otherwise enforcing TVD. the details are omitted here. Many similar

TVB-adjusted proofs have been published for high-resolution and high-order schemes,

e.g. [9].

To pass the TVD or TVB property from the means to the entire solution one merely

needs to note that in smooth monotone regions the variation |ûi(x)−ūi| is asymptotically of

O(h) for both methodologies. At smooth extrema and in nonsmooth regions the variation
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is bound by ∆ = C1 min(|∆+ūi|, |∆+ūi−1|) in the TVD case the, by ∆+C2h
2 in the TVB

case.

Remark 4.4.2. The condition C± ≥ 0 for all j is enough for the spatial operator to be a

TVD operator in the semi-discrete sense. This also implies the LED property.

4.5 Limiting Procedure in Higher Dimensions

Limiting of the high-order reconstruction is essential for shock capturing. For one-

dimensional schemes results regarding TVD stability can be obtained, as in section 4.4.4,

based on limiting procedures, such as the ones described in section 4.4.2. The challenge is

a successful translation to an implementation on unstructured meshes for higher dimen-

sional systems of equations, i.e. p, d > 1 in Eq. (4.1).

Consider first the scalar equation, i.e. p = 1. The basic steps of the limiting procedure,

to be carried out at each time instance in each cell of the triangulation, can be identified

in generic terms as

1. compute a number of local reference states

2. compare the current reconstruction to the local reference states

3. if necessary, modify the reconstruction to comply with a local maximum/minimum

principle established by a predefined criterion which limits the admissible range of

the reconstructed solution relative to the reference states

As an example consider the one-dimensional procedure outlined in section 4.4.2. Step one

is represented by computing the volume averages in adjacent cells. The minmod function

combines steps 2 and 3 by comparing the slopes of the reconstruction and reference states

and returning the original reconstruction in smooth monotone regions and zero otherwise.

The main task in devising the multidimensional limiting procedure is to select the right

method for each of these steps. For the local reference state the cell-averaged solutions in

a local neighborhood of a cell, Ti say, may be used. Consider the quantities

ui,max = max(ui,maxk∈Ni
(uk)) ,

ui,min = min(ui,mink∈Ni
(uk)) ,

(4.51)
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where Ni = {k : Tk ∩ Ti ∈ E}, and E is the set of edges of the triangulation. Alternatively

a nodal neighborhood can be defined, for a node xr, say: Nr = {k : xr is a node of Tk}.

In this case the reference state becomes

ur,max = maxk∈Nr(uk) ,

ur,min = mink∈Nr(uk) .
(4.52)

Fig. 4.5 shows a schematic depiction of the local neighborhoods defined in Eq. (4.52).

and (4.51). Step 1 is thus complete. Step 2 depends to some extend on how the reference

state has been chosen and the way in which the solution is compared to it. In [12], a

multidimensional limiting method for high-order schemes has been proposed. The au-

thors suggest to use the linear portion of the reconstruction for comparison, under the

assumption that limiting is only necessary if it is necessary for the linear restriction. In a

slightly more general fashion, one may define the quantity ∆u at new collocation nodes,

xr, r = 1, 2, 3, which we introduce in anticipation of a linear reconstruction for the case

that it should be necessary to limit the reconstruction:

∆u(xr) = (P(ui)(xr)− ui) , r = 1, 2, 3 . (4.53)

Here P may be the projection onto the space of linear function or the identity if the full

reconstruction is used in the comparison. If a cellwise neighborhood has been used in step

1 the nodes xr may be chosen at edge midpoints, whereas for the nodal neighborhood

the nodes of the triangle are used. This is also depicted in Fig. 4.5. If one insists that

the reconstructed solution must not exceed the bounds established by the maximum and

minimum volume averages of the chosen local neighborhood, the limiter will be activated

whenever the magnitude of ∆u exceeds the magnitude of the allowed variation at any of

the nodes xr. Note that in the case of Fig. 4.5(b), i.e. Eq. (4.52), the local reference state

is different for each node xr, while it is the same for all xr for Eq. (4.51).

The quantity φ(xr) may be defined as

φ(xr) =

 1 ∆u− ≤ ∆u(xr) ≤ ∆u+

∆uref

∆u(xr) otherwise
, (4.54)
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(a) Eq. (4.51) (b) Eq. (4.52)

Figure 4.5: Local neighborhoods for slope comparison and new collocation nodes for linear

reconstruction.

where

∆u+ = ui,max − ui , or ∆u+ = ur,max − ui , (4.55)

∆u− = ui,min − ui , or ∆u− = ur,min − ui , (4.56)

depending on whether Eq. (4.51) or (4.52) is used, and

∆uref =

 ∆u+ , ∆u(xr) > 0

∆u− , ∆u(xr) < 0
. (4.57)

Whenever φ < 1 the local reconstruction may be modified according to

ûi(x) = ui + I1(∆̃u)(x) , (4.58)

where I1 is the linear interpolation operator defined by the nodes xr, and

∆̃u(xr) = φ(xr) (P(ui)(xr)− ui) . (4.59)

The procedure is sufficient to ensure that the reconstruction stays within the prescribed

bounds, but it is not conservative in the sense that in general∫
Ti

ũi dx 6=
∫

Ti

ui dx . (4.60)
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A slight modification of the linear solution is proposed in [12], which ensures conservation

in a way that prevents an increase of the slope. We adopt this strategy for the present

work, omitting the technical details for the sake of brevity, and refer instead to [12].

Furthermore, a modification may be introduced by rejecting any limiting whenever

∆u < Mh2, where h is a characteristic local mesh length, for instance the distance ||xr−xc||,

where xc is the centroid of the cell. This will prevent limiting of the reconstruction near

smooth extrema and is related to the theory of total-variation boundedness (TVB) [10],

as outlined in section 4.4.4. In practice values between M = 5 and M = 40 usually give

good results.

The extension to systems is straight forward. In principle a characteristic decomposi-

tion could be carried out, and the limiting could be applied to the characteristic variables,

which has the advantage that the 1D stability results for the scalar equation carry over

to 1D systems. For higher dimensions, however, these results do not hold, and the ad-

ditional expense of a characteristic decomposition seems unwarranted. The procedure is

thus applied in a component-wise fashion.

4.6 h/p-Multigrid Formulation

An outline of a generic Multigrid procedure using a sequence of meshes has been given

in section 3.5.2 in the context of kinetic finite-volume schemes. The extension to higher

order spatial approximations can be cast into a similar framework.

Assume that a step with any of the relaxation techniques discussed in section 4.3 has

been carried out using the pm-SD scheme on a mesh of characteristic length h. Such

a mesh/accuracy combination is combined in a tuple (pm, h), which is simply called a

“level”. A strategy of transferring the solution to successively lower orders of accuracy

and/or successively coarser meshes needs to be defined, in order to compute corrections

for the solution, as outlined in section 3.5.2.

Define a discrete solution operator that on the highest level (pm, h) is simply given by

Lpm

h (upm

h ) = 0 . (4.61)

One has several orders of approximation pn, pm−1, pm−2, . . . , p0 to work with as well as
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the possibility of using coarser meshes h, 2h, 4h, . . . 3. One possibility is to transfer the

solution to successively lower orders of accuracy on the finest mesh, using a modified

relaxation step on the lower level, analogous to Eq. (3.39):

Lpm−1

h (upm−1

h + δu
pm−1

h ) + Ipm
pm−1

Rpm

h −R
pm−1

h = 0 . (4.62)

Once p0 has been reached, the solution is transferred to successively coarser meshes, where

the coarse mesh modified solution operator, Eq. (3.39), is used to advance the solution,

while the order of approximation is kept at p0. After the coarsest mesh has been reached,

the corrections are interpolated to successively finer meshes using Eq. (3.40). Similarly,

after the finest mesh has been reached one has for the corrections that are transferred to

higher orders of accuracy:

u+,pm

h = upm

h + Ipm−1
pm

(u+,pm−1

h − u
pm−1

h ) . (4.63)

One may depict this strategy in a V -shaped diagram, as shown in Fig. 4.6. The curved

Figure 4.6: h/p-Multigrid V-Cycle

arrows indicate corresponding mesh levels for which a correction is computed from the

lower levels on the way up to the highest level. Note that no relaxation step is carried

out on the way up. Alternatively, one may use a so-called W -cycle: A correction is only

interpolated to the next higher level if the current level has already been visited twice,
3The notation 2nh where n is an integer does not imply that the characteristic mesh length has to be

exactly doubled at each step. It is merely a convenient notation.
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otherwise it is advanced on the current level, and the solution is transferred to a lower

level again. For a three-level strategy this leads to a W -shaped cycling diagram, hence

the name.

The best cycling strategy is not obvious. For hyperbolic equations multigrid may be

viewed as an effective increase of the wave speed at which information is propagated on

the way to reaching a steady-state. A coarser mesh connects information from larger

portions of the computational domain, and furthermore, for the same cfl number, the

physical time step is larger on a coarser mesh. Against this background it is questionable

whether the best strategy is to go down the accuracy ladder step-by-step. It must be stated

quite clearly that any utilization of higher order reconstruction on levels below (pm, h) is

wasted in the sense that the steady-state solution is not affected by it. The only matter of

concern is convergence. Any cycling strategy, and any order of approximation used on a

lower level is acceptable if and only if it speeds up convergence. In light of these thoughts

it is anticipated here that a minimum level of polynomial accuracy pm with m > 1 exists,

for which a direct transfer to p0 is carried out. In section 4.7 validation is presented for

the p2-SD Scheme which omits the level p1 in the multigrid cycle.

4.7 Results for Hyperbolic Problems: Inviscid Fluid Flow

Consider first isentropic flow through a nozzle, governed by the quasi-1D Euler equations,

see section 3.6.1, Eqns. (3.43) and (3.44). The nozzle exit Mach number is set to Mout =

0.3, which leads to subsonic flow with a maximum Mach number ofM ≈ 0.46 in the throat.

The nozzle cross-section and the boundary conditions have been chosen as in section 3.6.1.

Table 4.2 shows the steady-state entropy production in mesh (h-) refinement for the pm-

SD Scheme and various m. Here and in the following the entropy production is defined

as deviation from the freestream entropy,

∆s = p/p∞(ρ∞/ρ)γ − 1 . (4.64)

For shock-free inviscid flow the solution should approach ∆s = 0. It can be seen that the

pm-SD Scheme converges at the nominal rate for all m in mesh refinement until machine
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zero is approached. Since the flow is smooth no limiters are necessary, although it has been

verified that their use does not compromise the accuracy if a TVB condition is imposed.

This is illustrated in Fig. 4.7, where the entropy production for the 3rd order scheme is

Figure 4.7: TVD vs. TVB limiter in the computation of smooth nozzle flow using the 3rd

order p2-SD scheme.

shown for the TVD limiter and the TVB modification (see sections 4.4.2 and 4.4.4). It

can be clearly seen that strictly enforcing the TVD property leads to a local reduction

of accuracy at the nozzle throat, and also contaminates the solution downstream of the

throat. On the other hand, the TVB limiter with M = 40 in Eq. (4.50) produces lower

entropy levels and avoids the spike at the nozzle throat, enabling convergence at the

nominal rate, shown in table 4.1(b). While both the CUSP and Roe flux have found use in

this study, the results do not depend on the choice of flux function. Fig. 4.8 demonstrates

the convergence characteristics of the scheme with explicit and implicit methods. The

LU-SGS scheme is a rather efficient smoother and shows good convergence characteristics.

The explicit Runge-Kutta time stepping is restricted by relatively low cfl numbers. It is

significantly cheaper per time step, although not quite enough to become more efficient

than the LU-SGS scheme (see Fig. 4.8(b), which plots the density residual against time).

The implicit scheme can be run at any cfl number, but for cfl numbers above approximately

cfl = 500, there is no significant speedup, and the scheme becomes essentially a Newton

iteration.
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(a) 2nd order scheme, p1-SD

Cells L∞(Error) Order L2(Error) Order

10 7.736700e-05 7.736700e-05

50 1.868200e-06 2.313593e+00 1.868200e-06 2.313593e+00

100 4.968100e-07 1.910883e+00 4.968100e-07 1.910883e+00

1000 5.233300e-09 1.977415e+00 5.233300e-09 1.977415e+00

10000 5.209600e-11 2.001971e+00 5.209600e-11 2.001971e+00

(b) 3rd order scheme, p2-SD

Cells L∞(Error) Order L2(Error) Order

10 1.328636e-05 6.918978e-06

20 1.693499e-06 2.971867e+00 8.735518e-07 2.985594e+00

50 1.027596e-07 3.058156e+00 5.234414e-08 3.071872e+00

100 1.238252e-08 3.052895e+00 6.261137e-09 3.063532e+00

500 9.544221e-11 3.023118e+00 4.805796e-11 3.025721e+00

1000 1.181044e-11 3.014565e+00 5.943157e-12 3.015474e+00

(c) 4th order scheme, p3-SD

Cells L∞(Error) Order L2(Error) Order

10 1.069145e-06 4.082450e-07

20 9.141652e-08 3.547858e+00 2.796467e-08 3.867758e+00

30 1.828542e-08 3.969077e+00 5.562735e-09 3.982715e+00

50 2.165135e-09 4.176809e+00 8.162414e-10 3.756928e+00

100 1.502647e-10 3.848879e+00 5.302680e-11 3.944202e+00

200 9.763967e-12 3.943895e+00 3.599578e-12 3.880822e+00

(d) 5th order scheme, p4-SD

Cells L∞(Error) Order L2(Error) Order

6 2.368234e-06 8.662295e-07

10 1.734733e-07 5.116963e+00 5.265576e-08 5.482055e+00

20 5.942866e-09 4.867411e+00 1.614429e-09 5.027496e+00

40 2.162333e-10 4.780499e+00 7.421668e-11 4.443136e+00

50 7.531975e-11 4.726174e+00 2.842774e-11 4.300476e+00

100 5.998313e-12 3.650400e+00 1.224929e-12 4.536530e+00

Table 4.2: SD Scheme: Convergence in mesh refinement for quasi-1D nozzle flow.
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(a) LU-SGS vs. Shu-RK3 (Residual vs. Iteration) (b) LU-SGS vs. Shu-RK3 (Residual vs. Time)

Figure 4.8: Convergence for smooth inviscid flow using the 5th order p4-SD scheme on a

mesh with 10 cells with implicit and explicit relaxation techniques. Density residuals.

Consider now the case of shocked nozzle flow. An exit Mach number of M = 0.6 has

been chosen, which leads to a shock in the diverging part of the nozzle. Fig. 4.9(a) shows

the solution in terms of the density volume averages for the 4th order scheme on a mesh

with 40 cells. Fig. 4.9(b) shows a plot of the pointwise entropy production, as defined in

Eq. (4.64), for schemes of various orders. Note that all degrees of freedom are shown in

this plot. Behind the shock there is a constant entropy production, fixed by the shock

jump conditions, while in front of the shock it decreases rapidly with the order of the

scheme. It can be seen that the jump is very cleanly captured, within one mesh cell for

all orders. The CUSP flux has been used for all these transonic computations, along with

a TVB limiter.

The natural limit of the SD scheme, when operating on only one cell, is a nodal spectral

method on a staggered grid. It can be demonstrated that spectral convergence can be

attained for a fixed mesh and increasing polynomial accuracy (p-refinement). Fig. 4.10

shows such a refinement study for a mesh with 16 cells and polynomial orders m =

2, . . . , 15. For this case a nozzle geometry on the interval [0, 1] has been defined, where on

[0, 1/2] the nozzle area is given by

A(x) =

 1 , x ≤ 0.375

1−
(
a1ξ

5 + a2ξ
6 + a7

3 + a4ξ
8 + a5ξ

9
)

, x > 0.375
. (4.65)
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(a) Density solution for 4th order scheme. (b) Entropy Production.

Figure 4.9: SD scheme: Shocked nozzle flow.

Figure 4.10: Maximum norm of the steady-state entropy production for isentropic nozzle

flow in p-Refinement.
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Here ξ = (x− 0.375)/0.125 and the area on the interval [1/2, 1] is obtained by symmetry.

Obviously the first four derivatives of the polynomial expression for the nozzle throat

vanish at the intersection with the constant part of the geometry definition. The remaining

coefficients are chosen such that the nozzle throat is given by dt = 0.85, and all derivatives

up to order four correspond to a circle with radius r = 1−dt at the throat. The reason for

this geometry definition is increased smoothness, compared to the definition in Eq. (3.45),

which is beneficial for the higher orders of approximation, encountered in this spectral

convergence study.

We now shift our attention to the 2D Euler equations. A first order finite-volume

scheme is the natural low-order limit of the SD scheme. However, when run in first or-

der (p0) mode, an additional piecewise linear reconstruction has been added in the 2D

implementation, which actually makes the method identical to the finite-volume method

described in section 3.6.2, where it has been compared to the BGK scheme (see also [38]).

In this way one can accommodate a standard finite-volume solver and the high-order SD

scheme in the same code without much computational complexity. This finite-volume

method has been used for comparison in this section. Normally, one would label such

a finite-volume method 2nd order accurate. However, to distinguish it from the 2nd or-

der accurate p1-SD Scheme, and keeping in mind that often times the accuracy of such

solvers is slightly below 2nd order, the finite-volume solver mode is labeled p0.7 here. This

terminology is also useful in identifying multigrid levels.

Consider inviscid subsonic flow around the NACA0012 airfoil. Fig. 4.11 shows results

for the 3rd order p2-SD Scheme at flow conditions M = 0.3 and zero angle of attack. In

Fig. 4.11(a) the solution is displayed in terms of Mach number contours, while Fig. 4.11(b)

compares the RMS value of entropy production on the airfoil surface between the SD

scheme and the finite-volume scheme described above. The data is plotted against total

degrees of freedom (DOF). For the third order scheme two meshes with 2, 560 and 10, 240

triangles have been used, which corresponds to 15, 360 and 61, 440 degrees of freedom. For

the finite volume scheme meshes with 10, 240 and 40, 961 triangles have been used, where

the number of triangles is equal to the degrees of freedom. Note that the entropy error

in Fig. 4.11(b) for the SD scheme with 15, 360 DOF is roughly equal to the entropy error
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(a) Mach number contours (b) RMS value of the entropy production on the

airfoil surface

Figure 4.11: Subsonic flow around the NACA0012 airfoil: 3rd order SD scheme vs. Finite

Volume for various mesh sizes and degrees of freedom (DOF).

of the finite-volume scheme with approximately 40, 000 DOF. The CUSP flux along with

Shu-RK3 time stepping has been used for this testcase.

We now turn to the h/p-multigrid method outlined in section 4.6. A validation for

SD schemes of order up to three is presented. The cycling strategy omits the p1 level, i.e.

the second order SD stage, as discussed in section 4.6. Instead, the solution is transferred

directly to the p0 level, and subsequently to coarser meshes. On the finest mesh, the

p0 level is augmented by a piecewise linear reconstruction, whereas on coarser meshes, a

first-order finite-volume methodology is employed. Three levels of h-multigrid have been

used. According to the nomenclature discussed in section 4.6, the cycling strategy is thus

(p2, h) → (p0.7, h) → (p0, 2h) → (p0, 4h) .

The transfer coefficients (see the nomenclature in section 4.6) between the first two levels

are given simply by the volume average for the restriction to the lower level, and by the

unity operator in the prolongation to the higher level. For the transfer between h-levels a

volume-weighted interpolation may be used, which can be precomputed and saved for all

mesh levels. The results shown here use the Jameson RK4s scheme. Fig. 4.12(b) shows

the convergence of the maximum density residuals for inviscid flow over a bump using
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(a) Density Contours (b) Max. Density Residuals

Figure 4.12: Inviscid subsonic flow over a bump: Density solution and convergence for

single grid and h/p-multigrid.

(a) Bump

Level DOF p Cells cfl

4 4872 2 812 1

3 812 0.7 812 6

2 210 0 210 6

1 42 0 42 6

(b) NACA0012

Level DOF p Cells cfl

4 74472 2 12412 1

3 12412 0.7 12412 6

2 2917 0 2917 6

1 661 0 661 6

Table 4.3: Meshes and Degrees of freedom (DOF) used with h/p-multigrid.

this h/p-multigrid strategy. The solution in terms of the density contours can be seen in

Fig. 4.12(a). The cycling strategy is summarized in Tab. 4.2(a), showing polynomial order,

and degrees of freedom for each level. The speedup due to the multigrid methodology is

clearly visible. While one may expect higher reduction rates of the residual from best-

practice finite-volume solvers, one has to keep in mind that the fine grid cfl number

is substantially lower for the high-order SD scheme, compared to standard finite volume

techniques. Here the cfl number on the finest grid is cfl = 1. As can be seen in table 4.2(a)

it is possible to use substantially higher cfl numbers (cfl = 6) on the levels below (p2, h), i.e.

the finite-volume levels. This is so, because, in addition to multigrid, residual smoothing

is used, allowing an increase of the cfl number. The increase in cfl number on lower levels
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(a) Cd vs. cycles (b) Close-up view

Figure 4.13: Convergence of the drag coefficient for inviscid flow around the NACA0012

airfoil using the 3rd order SD scheme.

contributes significantly to convergence acceleration.

The speedup provided by the multigrid methodology is best demonstrated in the con-

vergence of integrated quantities, such as drag coefficients (see also the discussion in

section 3.6.3). Fig. 4.13 demonstrates this quite clearly. Here the convergence of the drag

coefficient is shown for subsonic flow around the NACA0012 profile with the same flow

conditions as in Fig. 4.11. The convergence for this mesh with roughly 75, 000 degrees of

freedom is painfully slow for single-grid computations with explicit time stepping. For the

h/p-Multigrid method using the sequence of levels shown in Tab. 4.2(b), the convergence

of the drag coefficient can be accelerated by approximately two orders of magnitude. The

use of coarser meshes along with the increased cfl number on finite-volume levels, speeds

up the propagation of bulk information dramatically, so that the convergence of the ac-

tual flow solution progresses even faster than can be seen from the reduction rate of the

residuals.

Figure 4.14 compares the convergence of the drag coefficient with a finite-volume

method, which uses pure h-multigrid, obtained by simply omitting the highest level in

the h/p-multigrid strategy used with the SD method, see Tab. 4.2(b). The cfl number

for the finite-volume method has been set to cfl = 1 on the finest grid. This is certainly

well below the maximum possible cfl number, but allows better assessment of the effect
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of multigrid by using the same cfl number on the highest level for both solver modes. It

Figure 4.14: Convergence for steady inviscid flow around the NACA0012 airfoil. Compar-

ison between p3-SD h/p-Multigrid and finite-volume h-multigrid.

can be seen the convergence is very similar, despite the fact that the SD-h/p-multigrid

method adds the third order scheme on top of the 3-level mesh sequence used by the finite-

volume method. Also note that the value of the drag coefficient, which should be zero for

two-dimensional smooth inviscid flow, is significantly lower for the third-order method,

compared to the finite-volume scheme. We have cd = 0.00046 for the p2-SD Scheme and

cd = 0.0015 for the finite-volume scheme.

We now turn to 2D shocked flow, in order to demonstrate the viability of the limiting

procedure outlined in section 4.5. A well known testcase for unsteady gas dynamics with

shockwaves and contact discontinuities is the shock reflection case studied by Woodward

and Colella [71], and subsequently many other researchers. Figure 4.15 shows results for

the third-order SD scheme at time t = 0.2 in terms of density contours for two different

triangular meshes. It can bee seen that shocks are very well captured. For a better illus-

tration of the limiting procedure, consider Fig. 4.16, which corresponds to the numerical

solution in fig. 4.15(a). The plot shows contour lines of the values of the limiting variable

φ, defined in Eq. (4.54). The values are clipped above minl φl = 0.99 where the l stands for

the lth conserved variable. This effectively shows the regions of active limiters, which can

be seen to be largely confined to the vicinity of the shock and the contact discontinuity in
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(a) Contour lines of the density. Mesh: 133,480 Tri-

angles

(b) Contour lines of the density. Mesh: 533,920 Tri-

angles

Figure 4.15: The shock reflection testcase using the third order Spectral Difference scheme.

Figure 4.16: Shock reflection case: Cells with active limiters.

the solution.

4.7.1 Practical Details

The Spectral Difference Scheme has been at the center of a new high-order flow solver ar-

chitecture that was initiated as part of this research. Although it is the primary goal of this

thesis to analyze the scheme, as well as evaluate and validate fundamental contributions,

some practical aspects are worthy of consideration.

Parametric Surface Representation

Firstly consider the approximation of curved surfaces. A piecewise linear approximation

is standard in second order accurate numerical schemes, which is sufficient, because such a

scheme cannot tell the difference between the actual surface and a piecewise linear approx-

imation. For higher-order schemes, however, such a simplified surface representation can

have disastrous effects. This is demonstrated in Fig. 4.17, which analyzes spurious entropy

production for inviscid subsonic flow (M∞ = 0.3) around the NACA 0012 airfoil at zero
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(a) Piecewise linear (b) Parametric (cubic splines) (c) Entropy error along the airfoil

surface

Figure 4.17: Entropy production for the 3rd order SD Scheme and different Methods of

Surface Representation for smooth inviscid flow around the NACA0012 airfoil.

angle of attack. In 4.17(a) contour lines of the entropy error are shown for a piecewise

linear surface approximation computed with the 3rd order SD scheme, while in 4.17(b)

the same contour plot is shown for a parametric surface representation using cubic splines

and 80 knots (i.e. the original surface points given as input parameters). The spurious

entropy production for the piecewise linear approximation is clearly visible and is even

more obvious in Fig. 4.17(c), where the entropy error is plotted along the airfoil on a loga-

rithmic scale. For the parametric surface treatment there is significant entropy production

only at the leading edge stagnation point and at the sharp trailing edge. Otherwise the

entropy error is practically negligible. For the piecewise linear surface representation,

however there is significant entropy production along the entire airfoil. The reason for

this behavior is that if a piecewise linear airfoil is specified, a high order numerical scheme

will compute precisely that, a flow over a piecewise linear surface, because it is able to

discern the difference. This can dramatically deteriorate the quality of the solution.

We use a parametric surface representation for all curved surfaces. This means that

some cells will have curved boundaries, which has consequences for the storage requirement

of the scheme, as differentiation matrices and other data relevant to the solution algorithm

have to be stored for all elements individually. See appendix C.2 for details.
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Adaptive Meshing

To replace mesh resolution by increased order of approximation is the main rationale be-

hind using high-order numerical methods. However, for hyperbolic equations, one has to

admit discontinuous solutions, for example shocks in gas dynamics. A significant chal-

lenge is thus introduced: If a coarser mesh is used to reap the benefits of a high-order

numerical approximation, what is to become of the shock capturing capabilities? Putting

all questions of robustness and stability aside, it is evident that shock resolution must nec-

essarily deteriorate if the limiting procedures outlined in section 4.5 are used, as the shock

thickness will be determined by the local characteristic mesh length. Adaptive meshing is

a possible solution, and particularly attractive in conjunction with high-order approxima-

tions when shock waves have to be expected. One may use this technique to locally refine

the mesh near a discontinuity in order to improve shock capturing capabilities.

Furthermore, local limiting procedures are rather intrusive for high-order methods,

where a local high-order reconstruction is usually replaced by a carefully limited linear

one (see section 4.5). For large mesh elements this will be an extremely poor approximation

and at the same time a very massive change in the solution representation, likely to lead

to limit cycles and impede convergence. For smaller elements near a discontinuity, on the

other hand, the linear approximation will be more fitting.

The solution-adaptive mesh refinement used in the present work has been patterned

after the methodology documented by Kim et al. [40], and we refer the interested reader to

their paper instead of reproducing the technical details. The criterion for adaptation are

gradients in the solution. We have used both gradients in the pressure and the entropy.

As a test of the solution-adaptive procedure, consider transonic flow over a NACA

0012 airfoil. A rather popular testcase for inviscid aerodynamics is given by the flow

conditions M = 0.8 at an angle of attack α = 1.25o. Fig. 4.18 shows contour lines of the

Mach number for this test case for a finite-volume scheme and the p2-SD Scheme. Both

solutions have been computed on the same mesh, which can be seen in Fig. 4.18(c).

Although not used here, adaptive coarsening may also prove useful in conjunction with

a locally increased order of approximation in smooth regions to reduce the computational
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(a) Contour lines of the Mach

number for the third-order SD

scheme

(b) Contour lines of the Mach

number for the second order

Finite-Volume scheme

(c) Close-up view of refined area

on the suction side

Figure 4.18: The NACA 0012 airfoil in transonic flow. M = 0.8, α = 1.25.

cost.

4.8 Viscous Discretization

The Spectral Difference Method is designed specifically for hyperbolic conservation laws.

However, many physical phenomena, even if they are dominated by wave propagation,

have dissipative features as well. While those are small for many problems, and the

resulting equations are still nearly hyperbolic, viscous effects often cannot be neglected.

A suitable way of treating dissipative terms must be found, while we would like to keep

the treatment of the convective terms intact.

Consider first the one-dimensional linear advection-diffusion equation:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
. (4.66)

One way of solving Eq. (4.66) is to rewrite it as a system:

∂u

∂t
+ c

∂u

∂x
= ν

∂q

∂x
(4.67)

∂u

∂x
− q = 0 . (4.68)

This general approach has been taken by many researchers for viscous discretization in a

Discontinuous Galerkin context [3, 11, 47].
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If the discretization of the variable q is “local”, i.e. it depends only on the latest

solution of u, the system can be solved in a segregated manner. This means that the

approximation for the gradient q can be computed first, using the latest estimate of u,

and a suitable discretization of Eq. (4.68). Subsequently this approximation is used in

Eq. (4.67) to advance the solution u. Consider Eq. (4.67) of the new system in semi-ODE

form and pm-SD discretization, i.e. using polynomials of order m, on a uniform mesh, as

in section 4.4:

∆t
duij

dt
+ λ

m+1∑
k=0

djkfh,ik , (4.69)

where λ = ∆t/∆x, the djk are the differentiation coefficients defined in Eq. (4.21), and

fh = fh,c − fh,v. The flux functions fh,c and fh,v discretize the convective and dissipative

terms, fc = cu and fv = νq, respectively. For the convective part one may choose an

upwind discretization:

fh,c = c vik = c

 pik k 6= 0

pi−1,m+1 k = 0
, (4.70)

where pk is the reconstructed solution defined as in Eq. (4.20). The concepts of wave prop-

agation that guide the discretization of the convective terms do not apply to dissipation,

which is not associated with a preferred direction of propagation. In principle a central

discretization of dissipative terms is therefore appropriate, and has (in one form or an-

other) often been applied to both scalar equations and systems such as the Navier-Stokes

equations. However, stability concerns have to be addressed. We define a more general

weighted discretization of the form

fv,k =
ν

∆x
q̃k , (4.71)

where

q̃k = ∆x ·


1
2 (qi−1,m+1 + qi,0)− σ (qi−1,m+1 − qi,0) , k = 0

qik, k 6= 0,m+ 1
1
2 (qi,m+1 + qi+1,0)− σ (qi,m+1 − qi+1,0) , k = m+ 1

. (4.72)

Using cfl = λc, and introducing the cell Peclet number Pe = c∆x/ν, the scheme becomes

∆t
duij

dt
+ cfl

m∑
j=0

djk

(
vik −

q̃ik
Pe

)
. (4.73)
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(a) First order SD discretization (b) 2D discretization of the Navier-Stokes viscous

terms

Figure 4.19: Spectral Difference discretization stencils for viscous terms.

The remaining task of discretizing the second equation of the new system, Eq. (4.68), is

equivalent to precomputing an estimate of the gradient if the scheme is local. In the same

spirit as Eq. (4.71), a weighted discretization of the form

qk =
1

∆x

m+1∑
l=0

µklp̃l (4.74)

is introduced, where µkl are elements of a differentiation matrix, evaluating the derivative

of p̃ at the flux nodes xk, i.e. 1
∆x

∑m+1
l=0 µklp̃l = d

dx p̃(x)(xk) in each cell i, and p̃ is given

by

p̃il =


1
2 (pi−1,m+1 + pi,0) + σ (pi−1,m+1 − pi,0) l = 0

pil l 6= 0,m+ 1
1
2 (pi,m+1 + pi+1,0) + σ (pi,m+1 − pi+1,0) l = m+ 1

. (4.75)

Note the change of sign between Eq. (4.72) and Eq. (4.75) in the term augmenting the

central average. We may characterize this discretization as having a complementary up-

wind/downwind bias. It can be easily verified that in the case of a first order scheme, i.e.

m = 0, the above discretization collapses to the standard three-point stencil for the second

derivative if |σ| = 0.5. The central discretization is recovered for σ = 0, which leads to a

decoupled five-point stencil for the first order scheme (to avoid such a decoupled stencil is

the primary motivation behind introducing this weighted form of discretization). These

two limits are shown in Fig. 4.19(a). The method is related to the LDG method [11]

, which utilizes a very similar upwind/downwind splitting for the viscous terms in the
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context of a Galerkin formulation, and reduces to the same first order discretization, i.e.

a three-point stencil.

The asymptotic convergence in p refinement must be expected to be suboptimal in

general, in the sense that convergence no better than order n = m can be guaranteed if

polynomials of order m are used. This is due to the extra derivative for the dissipative

terms. This property is also shared by the LDG method. In practice, however, optimal

order of convergence is often achieved. In order to avoid confusion we continue to refer to

the “accuracy” of the scheme as n = m+1, keeping in mind that optimal convergence for

viscous problems may not always be achieved.

Consider the numerical solution of Eq. (4.66) using the scheme defined by (4.73)

and (4.74). Several tests for varying order of accuracy, cell Peclet number, and discretiza-

tion parameter σ have been carried out. We show a few illustrative examples (tables 4.4

through 4.7). The accuracy is maintained until machine zero is approached. The Jameson

# Elements L∞(Error) Order L2(Error) Order

10 6.547057e-02 3.888390e-02

20 1.749077e-02 1.904253 1.002766e-02 1.955188

30 7.804592e-03 1.990211 4.479220e-03 1.987590

40 4.398009e-03 1.993730 2.526923e-03 1.989858

50 2.828825e-03 1.977608 1.621178e-03 1.989075

75 1.266920e-03 1.981114 7.239641e-04 1.988251

100 7.168179e-04 1.979693 4.086552e-04 1.987854

Table 4.4: Second Order scheme, σ = −0.5, Pe = 0.01.

RK4s scheme has been used to advance the solution. However, time accuracy plays no role

in this test, since the time step has been chosen small so that the error is dominated by

the spatial discretization. The equation has been integrated to T = 1 for Pe = 0.01. For

Pe = 0.1 we have chosen T = 0.1 as the solution will decay much more quickly. Fig. 4.20

summarizes the convergence study for σ = −0.5 and Pe = 0.1. In Fig. 4.20(a) the error

is measured as the mesh is refined for the 2nd through 5th order scheme. Fig. 4.20(b)

demonstrates convergence in p-refinement as the order of accuracy is increased, while the

number of mesh elements is kept constant (40 in this case).
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# Elements L∞(Error) Order L2(Error) Order

10 2.111335e-03 1.188727e-03

20 2.386526e-04 3.145172 1.460845e-04 3.024542

30 7.050337e-05 3.007283 4.264994e-05 3.036413

40 2.974449e-05 2.999897 1.789916e-05 3.018165

50 1.515007e-05 3.023340 9.170556e-06 2.996976

75 4.611315e-06 2.933648 2.746238e-06 2.973785

100 1.985667e-06 2.928782 1.172301e-06 2.959043

Table 4.5: Third Order scheme, σ = 0, Pe = 0.01.

# Elements L∞(Error) Order L2(Error) Order

10 2.896343e-06 1.477824e-06

20 2.137082e-07 3.760518 1.036278e-07 3.833991

30 4.458241e-08 3.865369 2.124086e-08 3.908792

40 1.452898e-08 3.897337 6.844647e-09 3.936498

50 6.049254e-09 3.926667 2.833991e-09 3.951631

75 1.219807e-09 3.949149 5.680424e-10 3.963954

100 3.897074e-10 3.966364 1.808876e-10 3.977725

Table 4.6: Fourth Order scheme, σ = −0.5, Pe = 0.1.

# Elements L∞(Error) Order L2(Error) Order

10 6.517415e-08 3.716928e-08

20 2.042238e-09 4.996077 1.109798e-09 5.065742

30 2.675080e-10 5.013137 1.439591e-10 5.037188

40 6.346705e-11 5.000759 3.396990e-11 5.019619

50 2.088936e-11 4.980117 1.112197e-11 5.003740

75 2.818483e-12 4.940107 1.375349e-12 5.155104

100 1.060079e-12 3.399083 4.199459e-13 4.123778

Table 4.7: Fifth Order scheme, σ = −0.5, Pe = 0.1.
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(a) Accuracy in h refinement for the SD scheme, 2nd

through 5th order scheme.

(b) Accuracy in p refinement with σ = −0.5 and

Pe = 0.1 at N = 40

Figure 4.20: Convergence of the pm-SD scheme for the advection-diffusion equation.

For the extension to higher dimensions consider the Navier-Stokes equations. The

viscous fluxes can be written as

Fv = Fv(u, v, q1, q2, q3) (4.76)

q1 = ∇u (4.77)

q2 = ∇v (4.78)

q3 = ∇T , (4.79)

where the velocity components are denoted by u and v, and T is the temperature. We

can write Fv = (gv, hv), where

gv =


τ11

τ21

uτ11 + vτ12 − Ξ1

 hv =


τ12

τ22

uτ21 + vτ22 − Ξ2

 . (4.80)

Here τ(q1, q2) is the stress tensor, Eq. (2.30), and Ξ = −κq3 is the heat flux vector (κ is the

thermal conductivity). Both are linear functions of the new variables qi, and hence so is

the viscous flux. The ideas behind the discretization discussed above thus carry over to the

Navier-Stokes equations. We introduce the weighted discretization first in the computation

of the gradients qi in Eqns. (4.77) to (4.79) that form the stress tensor and the heat flux
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(a) Contour lines of the Mach number for the third

Order SD scheme

(b) Numerical grid with 960 triangles

Figure 4.21: 3rd order SD scheme: The NACA 0012 profile at M = 0.3, Re = 100, α = 0o.

vector, and subsequently a complementary discretization is used when discretizing the flux

in a manner analogous to Eq. (4.72) and Eq. (4.75). Several techniques can be conceived

to introduce the splitting, such as switching the sign of the coefficient σ based on the local

normal velocity across a face, i.e. qn = v · n, where v is the velocity vector and n is the

edge normal. This would in fact mimic the standard concept of upwinding. However, for

the discretization of the viscous fluxes this splitting is not necessarily more meaningful

than other techniques. The important property is the complementary character of the

upwind/downwind bias. In the present work the free stream direction is used to split the

discretization, as depicted in Fig. 4.19(b)

Consider subsonic viscous flow around the NACA 0012 profile at flow conditions M∞ =

0.3, Re = 100 and zero angle of attack. Fig. 4.21(a) shows a contour plot of the Mach

number distribution computed with the 3rd order SD scheme on a coarse triangular mesh

with 960 elements. For the 3rd order scheme this results in 5760 degrees of freedom (6 nodes

to each triangle). The weighting parameter σ = −0.5 has been used. The computational

mesh is shown in figure 4.21(b).

Discontinuous rendering of the solution for all high-order computations is used in

this section, such as the one shown in Fig. 4.21(a). This helps assess the resolution
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(a) Second Order SD scheme (b) Third Order SD scheme

Figure 4.22: The NACA 0012 profile at M = 0.3, Re = 100, α = 0o. Contour lines of the

Mach number. Close-up view of the solution near the leading edge.

of the scheme. Each triangle is rendered individually which makes the contour lines

discontinuous across elements, as is the solution. Fig. 4.22 illustrates this using a close-

up view of a region upstream of the leading edge for the 2nd and 3rd order SD scheme.

The highly curved streamlines can be seen to be discontinuous across the triangles for

the 2nd order scheme, but become almost continuous for 3rd order computations. which

suggests adequate resolution, even on this relatively coarse mesh (Fig. 4.21(b)). For a

standard finite-volume scheme this is not true, which is confirmed by Fig. 4.23, where

the same testcase is shown, computed on the same mesh (Fig. 4.21(b)) with a standard

cell-centered finite volume scheme using a linear reconstruction of the solution variables

(i.e. the SD solver in p0.7 mode), and a central discretization of the viscous terms, as in

section 3.6.2 and documented in [38]. It is clear that the mesh resolution is not adequate.

To compute a comparison for the 3rd order SD solution the finite-volume scheme requires

a finer mesh. A solution on a mesh with 10,240 triangles is shown in Fig. 4.24, where

a contour plot of the Mach number distribution is shown along with the computational

mesh. Note that the finite volume scheme uses roughly twice as many degrees of freedom,

compared to the 3rd order SD scheme.
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Figure 4.23: Finite Volume Scheme: The NACA 0012 profile at M = 0.3, Re = 100,

α = 0o. Coarse mesh (960 triangles).

(a) Numerical grid with 10240 triangles (b) Contour lines of the Mach number for the second

order finite-volume scheme

Figure 4.24: Finite Volume Scheme: The NACA 0012 profile at M = 0.3, Re = 100,

α = 0o. Fine mesh (10240 triangles).
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Chapter 5

Advanced Postprocessing:

Gibbs-Complementary

Reconstruction

5.1 Introduction

It is well-known that pointwise exponential convergence for spectral approximations can

only be obtained for infinitely differentiable functions [19]. This is true for both Galerkin

and interpolation-based approximations. Generally the rate of convergence depends on the

smoothness of the function. For functions that are only piecewise continuous convergence

in the maximum norm fails completely, and the approximated function exhibits non-

decaying oscillations around the discontinuities, which is known as the Gibbs phenomenon.

The history of the discovery and the subsequent scientific consideration of the Gibbs

phenomenon is an interesting one (a short account can be found in [24]). One question

that has been the subject of debate is whether the presence of oscillations actually means

that information about the approximated function is irretrievably lost, or if it is possible,

by means of a suitable filtering procedure or projection method, to extract pointwise

exponential convergence from the approximation.

In [24] an account of the effort of overcoming the Gibbs phenomenon is given. These

105
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efforts have led to a theory, developed by Gottlieb and coworkers in a series of pa-

pers [25, 20, 23, 21, 22], that has established that, in fact, one can recover pointwise

exponential convergence by a suitable re-projection of the reconstructed function, dubbed

Gibbs-complementary reconstruction. This is true for a wide variety of approximation

techniques.

In this section we are concerned with exploiting this theory in the context of numerical

schemes for hyperbolic conservation laws. The theory of Gibbs-comlementary reconstruc-

tion as summarized in [24] applies to a truncated, but otherwise exact series of spectral

coefficients. It is attempted to extend the method to a case where the spectral coeffi-

cients themselves are only approximations, in addition to being truncated, corresponding

to the numerically computed solution of the conservation law using a high-order accurate

numerical method 1.

It is known that high-order methods cannot capture discontinuities in a monotone

fashion unless nonlinear limiting functions are used, and invariably the order of accuracy

(at least locally) is compromised. Often the concept of limiting the solution is also an

integral part of nonlinear stability analysis for (fixed order) high-resolution schemes, for

example in TVD theory [26, 27] as outlined in section 2.4. In the realm of high-order

methods other methods of stabilizing the solution are known, for example spectrally van-

ishing viscosity [63] or high-order filters. It is well known that such methods can stabilize

high-order numerical schemes, although they do not render the solution monotone.

Based on these preliminary thoughts, the route taken here, can be summarized as the

following two-step procedure:

• Compute the solution to a nonlinear hyperbolic conservation law using a high-order

method without enforcing monotonicity (but possibly using high-order stabilization

techniques, such as filtering)

• Extract pointwise accuracy from the oscillatory solution by a suitable re-projection.

Convergence proofs have been established for some high-order stabilization methods,
1It is to be understood that spectral methods as well as fixed order methods of “high” order of accuracy

are called high-order methods here.
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and the aforementioned theory of Gibbs-Complementary reconstruction is also rigorous.

The connection, or rather concatenation of the two theories, however, remains some-

what informal. Nevertheless, interesting results are presented in the following that highly

suggest the viability of the concept. Some obstacles and areas of concern are also men-

tioned. The organization of this chapter is as follows. Firstly, the basic theory of Gibbs-

Complementary reconstruction is recapitulated in section 5.2. A reproduction of the

convergence proofs is omitted, and rather cited from the literature. Some practical con-

siderations are given as well. Subsequently, some known Gibbs-complementary families of

basis functions are discussed in sections 5.3 and 5.4. The problem of identifying disconti-

nuities is discussed in section 5.5, and finally numerical results are presented in section 5.6.

5.2 Basic Theory

In this section we summarize the concept of Gibbs-Complementary reconstruction rather

informally. Discussion of the rigorous approach is deferred to section 5.3, where the

Gegenbauer polynomials are introduced as a specific example, and some results from

the literature are recalled. The theory for the Gibbs-complementary reconstruction is

presented for one-dimensional functions. Tensor product forms of basis functions can be

used for the multidimensional extension. Assume that N + 1 spectral coefficients bk, for

k = 0, . . . , N of a piecewise-smooth function f(x), defined on an interval [a, b], are known,

such that they define the projection

PN (f) = fN (x) =
N∑

n=0

bkφk(x) . (5.1)

The function fN is thus an approximation to the original function f . The φk represent the

chosen basis, which spans a certain functional space, for instance the space of polynomials

of degree at most N . The coefficients bk can be obtained by Galerkin projection, i.e

bk ∼ (φk, f), with a suitable definition of a (weighted) scalar product, or collocation

for which bk ∼ f(xk), where the xk belong to a set of collocation nodes. It is known

that the approximation (5.1) converges exponentially in N for infinitely differentiable

functions. However, for piecewise continuous functions convergence in maximum norm
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fails completely.

In a series of papers Gottlieb and coworkers have established the possibility of re-

covering high-order accuracy in maximum norm for spectral approximations of piecewise

continuous functions, i.e. the removal of Gibbs’ phenomenon (see [22, 24] and references

therein). Results can be obtained for quite general approximations of the type (5.1), such

as Fourier or Chebyshev expansions. In fact, given the first N (exact) spectral coefficients

exponential convergence in maximum norm as N →∞ has been proved for any subdomain

[x1, x2] where the function is analytic, i.e.

max
x∈[x1,x2]

|f(x)− fN (x)| < e−αN , α > 0 , (5.2)

so that by juxtaposing the domains of analyticity exponential convergence can be re-

covered in the complete interval. Formally the method can be summarized as follows.

Suppose a projection PN (f) of the form of Eq. (5.1) is given. The approximation fN is

re-projected onto another space, spanned by basis functions which shall be denoted by Ψλ
m

(it is anticipated here that the new basis functions will be two-parameter families). We

seek conditions under which the new projection, denoted by GM leads to an exponentially

small error in maximum norm. Consider

||GMPNf − f ||∞ ≤ ||GMPNf −GMf ||∞ + ||GMf − f ||∞ . (5.3)

The second term on the right-hand side measures how well the new basis is suited to

approximate the original function f . This step could normally be handled by standard

approximation theory. However, for the known Gibbs complementary bases one actually

needs to show that this approximation converges while both parameters of Ψλ
m are increased

simultaneously. This is a result of proving that the first component of the error in Eq. (5.3)

vanishes exponentially fast. Write this term as

||GMPNf −GMf ||∞ = ||GM (PN − I)f ||∞ . (5.4)

In a sense we thus have a measure of the orthogonality of the new projection and the

part of the spectrum of the original projection which is not resolved. If these are nearly

orthogonal, or become orthogonal at an exponential rate as N is increased, the high modes
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have very little effect on the representation in the new projection. The error will decrease

exponentially as N →∞, assuming the second term in Eq. (5.3) converges exponentially

as well.

Consider now a solution of a hyperbolic conservation law, computed with a high-order

numerical method. Assume that high-order stabilizing diffusion or filtering has been added

to the spectral or pseudo-spectral method, so that instead of Eq. (5.4) one may formally

write

||GM P̃Nf −GMf ||∞ ≤ ||GM (P̃N − PN )f ||∞ + ||GM (PN − I)f ||∞ , (5.5)

Thus a third error term is introduced, which comes from the numerical scheme. Both

the projection PN and the numerical approximation thereto, P̃N , will be oscillatory. De-

spite the fact that we generally assume that the numerical approximation is convergent

in some sense, it will certainly not converge pointwise if discontinuities are present. The

Gibbs-Complementary reconstruction thus has to reduce this leftover exponentially fast as

well. In assuming that it does, it is implied that the numerical approximation is exponen-

tially accurate in the information that is contained in the solution, despite the presence

of oscillations. This assumption can be traced back to Lax, who argued this way [44],

based on some considerations inspired by information theory. Numerical evidence is pre-

sented below that it is indeed possible to recover pointwise accuracy from the numerical

approximation to the spectral coefficients of the unknown solution.

5.3 The Gegenbauer Polynomials

The first basis which has been identified as Gibbs complementary to, in fact, a whole host

of spectral approximations, are the Gegenbauer polynomials, Ψλ
m = Cλ

m. Here m is the

degree of the polynomial, and λ is a second parameter. The Gegenbauer polynomials can

be defined as the polynomials that are orthogonal on the interval [−1, 1] with the weight

function w(x) = (1− x2)λ− 1
2 , i.e.

∫ 1

−1
Cλ

n(x)Cλ
m(x)(1− x2)λ− 1

2 dx = δnmh
λ
n . (5.6)
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The Gegenbauer polynomials belong to the family of Jacobi polynomials, and they include

the Legendre and Chebyshev polynomials as special cases for fixed λ = 1/2 and λ = 0,

respectively. In the most common normalization [4], the constant hλ
n is given by

hλ
n = 21−2λπ

Γ(n+ 2λ)
(n+ λ)Γ2(λ)Γ(n+ 1)

, (5.7)

for λ > −1/2, where Γ(x) is the Gamma function.

The re-projection of a spectral representation using Gegenbauer polynomials will be

referred to as the Gegenbauer reconstruction procedure. The Gegenbauer reconstruction

operates on each subinterval on which the solution is smooth. Assume for the sake of

simplicity that [−1, 1] is such an interval (general intervals can be handled by appropriate

scaling). It can be shown that the projection GMPNf converges exponentially fast to f

in maximum norm, even at discontinuities. This can be condensed in a general theorem

that is cited here from [24] in a slightly weaker form to state the main point and avoid

technical details related to different kinds of spectral approximations.

Theorem 5.3.1. (Gottlieb et al.) Assume a function f is given, which is piecewise ana-

lytic on [a, b] ⊂ R, and in particular analytic on [−1, 1] ⊂ [a, b]. Furthermore assume that

f possesses an analytic extension into the complex plane such that the closest pole is at

least a distance ρ > 0 away from the interval [−1; 1]. Assume the first N + 1 coefficients

of an approximation fN of the form (5.1), coming from a Fourier or Chebyshev spectral

approximation, either Galerkin or collocation are know. For the pointwise error of the

Gegenbauer reconstruction

E = max
[−1:1]

∣∣∣∣∣f −
M∑

n=0

g̃λ
mC

λ
m(x)

∣∣∣∣∣ , (5.8)

where

g̃λ
m =

1
hλ

m

∫ 1

−1
(1− x2)λ− 1

2 fN (x)Cλ
n(x) dx , (5.9)

there exists β > 0 such that if

M = λ = βN , (5.10)

the error E converges exponentially fast, i.e. E < qN as N →∞ with q < 1.

Proof. see [24]
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Remark 5.3.1. Theorem 5.3.1 can be formulated more strongly. In particular sharp

estimates on the constants of proportionality in Eq. (5.10) can be obtained depending on

the type of spectral approximation used. Furthermore, the result can be obtained for more

general classes of approximation, not only Fourier or Chebyshev. Those two, however, are

of special interest here.

While the details of the proof depend on the spectral representation, one can roughly

argue that the necessity of varying the parameters as in Eq. (5.10) stems from the trade-off

between the obvious fact that the the order of the Gegenbauer polynomials M has to be

increased along with the order of the original projection to achieve spectral convergence,

and the need to maintain a reasonable degree of separation between the complement of the

original projection and the Gegenbauer space to keep the orthogonality error, Eq. (5.4),

small.

5.3.1 Remarks on the Gegenbauer Basis

Despite the fact that exponential convergence can be proved there are a few well-known

problems associated with the Gegenbauer basis, which can have a profound effect in nu-

merical implementations. We briefly summarize a few points.

• The success of the reconstruction depends on the smoothness of the unknown func-

tion. More precisely, the constants of proportionality in Eq. (5.10) depend on how

far the function can be extended onto the complex plane. In the absence of such

information these constants have to be estimated, and once fixed values are chosen,

the reconstruction might fail for certain functions.

• The Gegenbauer polynomials assume very large numerical values very quickly as the

parameters are increased. This potentially amplifies the effect of round-off errors.

The function to be approximated is usually of order unity, so that for large N some

coefficients in the truncated sum may need to be smaller than machine accuracy,

but at the same time highly accurate to represent the solution with small absolute

errors. This may lead to catastrophic failure.



112 CHAPTER 5. GIBBS-COMPLEMENTARY RECONSTRUCTION

• The nature of the Gegenbauer projection can lead to difficulties, since it becomes

more and more extrapolatory as λ is increased (the weight function approaches a

delta function). In the limit of λ → ∞ only the function value at the midpoint of

the domain contributes to the expansion.

5.4 An Alternative Basis: The Freud Polynomials

Partially in response to the numerical difficulties associated with Gegenbauer polynomials,

the concept of robust Gibbs complements has been proposed by Tanner and Gelb [65].

The additional requirement is that the associated weight of the new basis converge to a

limit which still has an associated set of polynomials that can serve as a basis for an expo-

nentially convergent projection (this is not the case for the Gegenbauer polynomials, since

the weight converges to a delta function). The Freud polynomials, which are orthonormal

on the real line with respect to the weight w(x) = exp(−cx2n), have been proposed as an

alternative to the Gegenbauer basis. Unfortunately very little is known about this family

of polynomials, in particular the three-term recurrence relation is not known analytically.

This has prevented a rigorous proof that the Freud polynomials can serve as an alternative

Gibbs complementary basis. Some elements and numerical evidence, however, have been

shown [65]. The Freud polynomials are used here as an alternative to the Gegenbauer

polynomials for certain test problems.

5.5 Edge Detection

A reliable method of identifying discontinuities is needed, because the Gibbs-

Complementary reconstruction operates on smooth subdomains. The edge detection pro-

cedure used in this work is based on the generalized Fourier conjugate sum

Sσ
N =

N∑
k=0

σ

(
k

N

)
(ak sin kx− bk cos kx) , (5.11)

as proposed in [15, 17], where σ = 1 corresponds to the classical conjugate sum. The

coefficients ak and bk are related to the complex Fourier coefficients fk via fk = ak + ibk.
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(a) Solution using 200 Spectral Elements (b) Error with and without postprocessing

Figure 5.1: Globally high-order accurate solutions for Burgers’ Equation using the SD

Method and the Gegenbauer Procedure.

It is known that the classical Fourier conjugate sum converges to

−π/ log(N)SN → [f(x)] , (5.12)

where [f(x)] = f(x+) − f(x−), and f(x±) are the limits as f approaches x from the

right and left, respectively. The factors σ(x) are introduced to accelerate the convergence,

see [15, 17] for details.

5.6 Numerical Results

As a convenient model equation consider Burgers’ equation with periodic boundary con-

ditions

∂u
∂t + 1

2
∂
∂xu

2 = 0 , (5.13)

u(x, 0) = 1 + 1
2 sin(πx) , −1 ≤ x ≤ 1 . (5.14)

Results for a fifth order accurate Spectral Difference method at t = 1, at which time a

discontinuity at x = 0 is present, are shown in Fig. 5.1. Fig. 5.1(a) shows the solution

using N = 200 cells after re-projection of the solution onto Gegenbauer polynomials. The

effectiveness of the procedure is demonstrated by Fig. 5.2, where a comparison between
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(a) Solution using 200 cells with and without post-

processing

(b) Close-up view of the solution near the disconti-

nuity with and without postprocessing

Figure 5.2: Solutions for Burgers’ Equation using the SD Method with and without the

Gegenbauer Procedure.

the original numerical solution and the expansion in Gegenbauer polynomials is shown.

A grid refinement study to verify the nominal order of accuracy as N is increased has

been carried out. This is shown in Fig. 5.1(b) together with a reference slope indicating

the required reduction rate of the error for nominal fifth order global accuracy. It can

be seen that while the original solution fails to converge in maximum norm, and the L2

norm of the Error barely reaches first order, the re-projected solution converges in both

L2 and maximum norm. It should be emphasized that error norms were computed using

all nodes in the mesh, so that all global error measures include the discontinuity (using

the left limit of the solution for x→ 0−, and the right limit for x→ 0+). The slope of the

errors, however, is not constant, which can be explained by the fact that the parameters of

the Gegenbauer polynomials, i.e. the order and second parameter λ, have to be adjusted

as the mesh is refined. In theory one ought to make the number of Gegenbauer modes

proportional to the number of original spectral modes. These, however, remain constant

here, because the order of approximation is fixed. It seems most fitting to make the

parameters proportional to the total number of collocation nodes. The dependence of the

parameters on the number of spectral volumes is depicted in Fig. 5.3(b). It should be

pointed out that the parameters are not optimized in any way, but merely represent “best
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(a) Pointwise Error for several numbers of Spectral

Volumes

(b) The Gegenbauer Order and second parameter λ

as the mesh is refined

Figure 5.3: Globally high-order accurate solutions for Burgers’ Equation using the SD

Method and the Gegenbauer Procedure.

practice” values. Some suggestions regarding their optimization have been made in the

literature [16].

Fig. 5.3(a) shows the pointwise errors for the smooth subdomain −1 ≤ x ≤ 0. It can

be seen that the error decreases up to the endpoints of the domain, the right endpoint

being the discontinuity at x = 0.

A reduction of the maximum error below roughly 1·10−8 could not be achieved, due to

the inherent numerical problems mentioned in section 5.3.1. In fact, if the mesh is further

refined the error increases and diverges in the limit N →∞ if the Gegenbauer parameters

are further increased (although this can be prevented by freezing them). For the extreme

case of 1000 cells the order of the polynomials is m = 25 and λ = 10. The value of the

corresponding Gegenbauer polynomial at x = 1 is C10
25 (1) = 1.4 · 10+12 . It becomes clear

how it is increasingly difficult to achieve an absolute precision of at least twenty orders of

magnitude below the computed values of the Gegenbauer polynomials.

No limiters, filters, or spectral viscosity have been used for these computations, which

means that we have relied solely on the dissipation from the fluxes at element boundaries

to stabilize the solution. It is shown below that for higher orders of approximation spectral

filtering can be used for stabilization purposes.
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(a) Maximum error in p-refinement for a Fourier

Spectral Method.

(b) Maximum error in h-refinement for 5th-order SD

Method.

Figure 5.4: The Freud reconstruction method for Burgers’ Equation.

As an alternative to Gegenbauer polynomials the Freud polynomials can be used to

perform Gibbs-complementary reconstruction. Two tests have been carried out for the

Burgers Equation. Firstly the equations are solved by a Fourier nodal spectral method

with an exponential filter to stabilize the solution. Secondly we use the 5th order Spec-

tral Difference method. These two approaches allow us to test the Freud reconstruction

procedure in p-refinement and h-refinement. The results of the refinement studies are

shown in Fig. 5.4. It can be seen that the Freud polynomials can be used to extract

pointwise high-order accuracy from both the collocation-based spectral and the SD fixed

order method.

As a preliminary testcase for the Euler equations the Sod shocktube problem has been

considered. Fig. 5.5 shows the solution obtained with a fourth-order SD Method with

scalar diffusion at element boundaries on a mesh with 800 cells. It can be seen that

after Gegenbauer reconstruction the shocks and the contact discontinuity are perfectly

captured. No limiter or spectral diffusion has been used, which means that the dissipation

from the element boundaries must suffice to stabilize the solution.

Fig. 5.6 shows an example of a typical distribution of the maximum order of the

polynomials and value of the parameter λ in each domain of analyticity. For better

reference, the Gegenbauer reconstruction of the density solution is shown in the plot as
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(a) Density (b) Velocity

Figure 5.5: Solution for the Sod shocktube case using the SD Scheme and Gegenbauer

reconstruction.

well. One can easily identify the domains of analyticity corresponding to the solution

of the Riemann problem. According to Fig. 5.6, the maximum order of the polynomial

Figure 5.6: Shocktube case: Gegenbauer parameter (M ,λ) for the domains of analyticity

for 300 cells.

in the leftmost and rightmost domains is M = 10. Nevertheless, the solution is very

nearly constant. Tab. 5.1 shows the values of the Gegenbauer coefficients gλ
l for these two

domains. All higher modes of the Gegenbauer polynomials differ only by round-off errors

from machine accuracy for double precision, while all the energy is in the zero-mode, which
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(a) Left-most domain (x < 0.352)

l exact computed

0 1.0 1.0000000000371769

1 0 -3.090226125E-11

2 0 1.2051589376E-11

3 0 -1.230245018E-11

4 0 -2.841753118E-10

5 0 -3.836424587E-12

6 0 -3.013196009E-10

7 0 -1.902606656E-12

8 0 -2.636347148E-10

9 0 -1.143471536E-12

10 0 -2.225742876E-10

(b) Right-most domain (x > 0.719)

l exact computed

0 0.125 0.12500000000112668

1 0 7.180037463E-12

2 0 -3.287720660E-12

3 0 5.607469282E-12

4 0 -9.349026141E-11

5 0 5.806738414E-12

6 0 -9.924890331E-11

7 0 6.572377112E-12

8 0 -8.845402656E-11

9 0 7.018368055E-12

10 0 -7.634299126E-11

Table 5.1: Representative example of Gegenbauer coefficients g̃λ
l for the Sod test case.

has the exact value up to machine accuracy. The fact that the maximum error in density

could not be reduced beyond approximately L∞(ρ − ρexact) ≈ 1 · 10−3 , illustrates once

again how numerically difficult the Gegenbauer basis is: The coefficients corresponding to

the higher modes would have to be reduced below machine accuracy to reduce the error

further. However, note that the level of error achieved represents the maximum error in

the whole domain, including the discontinuities.

To demonstrate the effect of the reconstruction we show the unprocessed solution along

with the reprojected one in Fig. 5.7. The unlimited original solution, computed with the

4th order spectral difference method, exhibits oscillations of the order of what one would

expect from Gibb’s phenomenon, if the analytical solution were to be expanded in smooth

basis functions.
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(a) Density (b) Velocity

Figure 5.7: Solution for the Sod shocktube case using the SD scheme with and without

Gegenbauer reconstruction.
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Chapter 6

Conclusions and Outlook

An new kinetic scheme for the Euler and Navier-Stokes equations has been developed,

based on the Xu-Prendergast BGK scheme. The new scheme is not only computationally

less expensive but also clarifies and improves the formulation with respect to the underlying

kinetic gas theory. Along with the proposed multigrid methodology, the new scheme is

capable of large-scale computations of practical engineering interest, while providing a

completely mesh-independent discretization of the Navier-Stokes equations.

Such a mesh-independent discretization is desirable for next-generation flow solvers

that are designed to operate on arbitrary polyhedral meshes. In particular the trivial

extension to turbulent flow discussed in section 3.6.3 offers tremendous potential for the

application of general-mesh solvers to high-Reynolds-number flow. Building on the initial

validation shown here, estimates of eddy viscosity can be used to include the effects of

turbulence in much the same way as in conventional finite volume schemes. Validation for

such flow regimes is the subject of further research.

The compact discretization stencil also makes the new kinetic scheme attractive for

high-order schemes, such as the Spectral Difference Method, and it may find use in this

context in future research.

Significant contributions to the development of the Spectral Difference Method have

been reported in this thesis, including stability analysis, limiting methodology, viscous

formulation, and convergence acceleration via h/p-Multigrid. A major push for a new
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high-order solver architecture has been initiated. The presented results, in particular as

regards robustness and convergence acceleration, show promise for achieving the ultimate

goal of being able to compute problems of practical engineering interest faster with high-

order methods compared to low order methods.

Future work on the Spectral Difference method is aimed at producing a hybrid for-

mulation for triangular/quadrilateral meshes. The low-order limit of the Scheme is a

first-order finite-volume scheme, while the high-order limit on quadrilateral meshes is a

nodal multi-domain spectral method, based on a tensor product polynomial basis, along

the lines discussed in [42]. With very little computational complexity a software package

can thus be created that covers the range from low-order finite volume to high-order spec-

tral. First steps toward this goal have been undertaken, and have produced some of the

results shown in this thesis.

Another important future project is the extension of the scheme to three dimensions,

which is not anticipated to produce new conceptual challenges, but requires extensive

technical programming.

The theory of Gibbs-complementary reconstruction has been demonstrated to be a vi-

able path to extending high-order methods to problems involving discontinuous solutions,

using the Gegenbauer or Freud polynomial basis. The extension to multiple dimensions is

the most obvious next step. Tensor product forms of basis functions, such as the Gegen-

bauer polynomials may be used with (multi-domain) spectral methods for this purpose.

Theoretical difficulties in connecting Gibbs-complementary reconstruction with con-

vergence of high-order stabilized numerical methods also remain and need to be addressed.

Furthermore, the Gegenbauer basis is numerically problematic, while very little is known

about the Freud polynomials. It would be highly desirable to find other, more benign,

basis functions that are suitable for Gibbs-complementary reconstruction with respect to

standard spectral expansions.



Appendix A

Chapman-Enskog Expansion of

the Boltzmann Equation

The Chapman-Enskog expansion, when applied to the Boltzmann equation, follows the

same general concept that was outlined in section 2.1.2 for the BGK equation. The analog

to Eq. (2.17) is given by

ε0 : J(f0, f0) = 0 , (A.1)

ε1 :
∂f0

∂q
Φ0 + ui

∂f0

∂xi
= 2J(f0, f1) , (A.2)

...

εk :
∑

l+m=k−1

(
∂fl

∂q
Φm +

∂fl

∂∇q
∇Φm + . . .

)
+ ui

∂fk−1

∂xi
=

∑
l+m=k

J(fl, fm) dΞ . (A.3)

The left-hand side for k ≥ 1 thus remains unchanged compared to Eq. (2.17). The term

corresponding to the zeroth order gives again the Maxwellian distribution, as was noted

in section 2.1.1. This means that all the constraints that were introduced in section 2.1.2

remain the same, i.e. Eqns. (2.20), (2.21), (2.22), and (2.22). The key difference compared

to the Chapman-Enskog expansion for the BGK equation is thus that each equation of the

form (A.3) is an inhomogeneous integral equation. It may be shown that the homogeneous

problem in Eq. (A.2), (A.3) admits only functions of the collisional invariants φ. According

to standard theory of integral equations this in turn means that the left-hand-sides must be
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orthogonal to φ, which is again the same result that has been obtained for the BGK-based

expansion. Thus, one arrives again at Eq. (2.24):

Φk = − ∂

∂xi

∫
φuifkdΞ . (A.4)

The equations for the computation of the macroscopic equations from the noneqilib-

rium distribution fucntions remains the same, and hence the only difference between the

Chapman-Enskog expansion of the BGK and the Boltzmann equation is that the compu-

tation of the fk makes it necessary to solve the integral equations in (A.3). The algebra is

extremely tedious, but at least for the f1 state, many standard textbooks devote a number

of pages to it, e.g. [41]. The general form of f1 is given by

f1 = −f0

{
η(y) cj

∂T

∂xj
+ ζ(y)

(
cicj −

1
3
c2δij

)
∂Ui

∂xj

}
, (A.5)

where ci = ui − Ui, and y = c2/2RT . The functions η(y) and ζ(y) are polynomial expan-

sions coming from the solution of the integral equations, which determine the transport

coefficients, since they multiply the velocity and temperature gradients, which integrate

to the stress tensor and heat flux. Thus each fk again contains an infinite number of

coefficients. In practice, of course, the polynomial series is truncated after very few terms,

leaving some freedom in the choice of transport coefficient, corresponding to different ki-

netic models. In fact, in this way it is possible to recover empirically determined transport

coefficients for many fluids over a wide range of operating conditions. On the other hand,

for the f1 state based on the BGK equation, the only free parameter is the expansion

parameter ε. This allows adjustment of the model to recover only one empirically deter-

mined transport coefficient, e.g. the coefficient of viscosity, while the second coefficient of

viscosity and the coefficient of heat conduction are fixed relative to that value.



Appendix B

Reconstruction for Kinetic

Schemes

In this section explicit formulas are given for the reconstruction procedures needed for

the spatial gradients and time derivatives of the distribution functions for the kinetic

schemes discussed in chapter 3. Very similar formulas have been given by Xu for the

two-dimensional case [73]. The three-dimensional formulas are given merely for conve-

nience. The spatial gradients of the Maxwellian distribution can be evaluated by direct

differentiation. Write the first order Taylor series expansion of the distribution function

about x = 0 as

f0 + x∂xf0 = f0 (1 + ax) , (B.1)

where

a =
1
f0

∂f0

∂x
=
∂(ln f0)
∂x

. (B.2)

We can then write

∂x(ln f0) = ∂x

{
ln ρ+

5
2

ln
(
λ

π

)
− λ (u−U) · (u−U)

}
=

1
ρ
∂xρ+

5
2λ
∂xλ− ∂xλ (u−U) · (u−U)− 2λ (u−U) · ∂xU , (B.3)

where the differentiation of the velocity vectors is to be taken componentwise.

Since in practical implementations only moments are needed it pays to group the
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expansion coefficients with the collisional invariants, i.e. the elements of φ:

a = a0 + a1u+ a2v + a3w +
a4

2
(u2 + v2 + w2) . (B.4)

Suppose the gradients of the conservative variables Q are known, where we assume that

the gradient of density, momentum components and energy are stored in this order in a

five-element vector. The following recursive action can be used to compute the expansion

coefficients from Eq. (B.3)

∂xUi =
1
ρ

(∂xQi+1 − Ui∂xQ1) i = 1, 2, 3 (B.5)

∂xp = (γ − 1)
{
∂xQ5 −

1
2
∂xQ1(U2 + V 2 +W 2)− 1

2
U · ∂xU

}
(B.6)

∂xλ = ∂x

(
ρ

2p

)
=
λ

ρ
∂xQ1 −

2λ2

ρ
∂xp (B.7)

a4 = −Cλ∂xλ (B.8)

a3 = 2λ∂xW − 2Wa4 (B.9)

a2 = 2λ∂xV − 2V a4 (B.10)

a1 = 2λ∂xU − 2Ua4 (B.11)

a0 = −2Ua1 − 2V a2 − 2Wa3 +
1
ρ
∂xQ1 −

5
2λ
a4 − (U ·U)a4 (B.12)

Note that in the equation for a4 we have by default Cλ = 1. However, if an f1 state is

computed using the method described below, the value is set to Cλ = 1/Pr. This ensures

that the heat conduction coefficient is set according to the specified Prandtl number Pr,

if the collision time τ is used to set the coefficient of viscosity [62].

This routine can be used to compute f1 states by enforcing
∫
φ(∂tf0 + u∂xfx) dΞ = 0,

where it is understood that the spatial expansion is re-scaled to set the correct Prandtl

number 1. It can be appreciated that the time derivative of the Maxwellian is given by

Eq. (B.3) with the space derivatives replaced by time derivatives. All time derivatives are

computed by the conservation constraint∫
φ∂tf0 dΞ =

∫
φu∂xf0 dΞ . (B.13)

1which means that it is strictly speaking not any longer the derivative of the maxwellian. However we

continue to use this nomenclature for convenience
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According to Eqns (2.26) and (A.4) the right-hand side is the term that gives the right-

hand side of ∂tq = Φ0 in the Chapman-Enskog expansion, which means that it must be

equal to the corresponding time derivatives of the macroscopic variables on the left-hand

side. It can thus be input to Eq. (B.5) through (B.12) to compute the time derivatives

of the Maxwellian. The constraint
∫
φf1 dΞ = 0 represented by Eq. (B.13) thus eforces

the Euler equations as the macroscopic equations corresponding to the Maxwellian dis-

tribution. Note that the scaling of the temperature gradients with the Prandtl number

effectively means, that the f1 state will correspond to the Chapman-Enskog expansion of

the Boltzmann Equation.
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Appendix C

Implementation of the SD Scheme

C.1 SD Scheme for the Means in Higher Dimensions

Suppose u can be represented by a d-dimensional polynomial of degree at most n, and F

is represented by a d-dimensional polynomial of degree at most n+ 1. The semi-discrete

analog for Eq. (4.24) can be written:

I =
d

dt

∫
Td

u dV = −
∫

Td

Nf∑
k=1

∇Mk ·Fh(xk) dV = −V
Nu∑
j=1

wj

Nf∑
k=1

∇Mk(xj) ·Fh(xk) . (C.1)

Note that all the equalities are exact by construction, provided the collocation points for

u support a quadrature with weights wj , which is exact for polynomials of degree n.

Denote the elements of the differentiation matrices ∇Mk(xj) = mkj , where each mkj

is a vector with d components. We have

I = −V
Nf∑
k=1

Nu∑
j=1

wjmkj · Fh(xk) = −
Nf∑
k=1

w̃k · Fh(xk) . (C.2)

We thus arrive at a modified quadrature using the flux points. The integral, however,

must not depend on interior flux points. Indeed, we can write using the definition of the

new weights w̃k:

w̃k = V

Nu∑
j=1

wjmkj =
∫

Td

∇Mk(x) dV =
∫

∂Td

Mkν dA , (C.3)
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where ν is the outward pointing face normal on ∂Td. The second equality is exact, because

∇M is a polynomial of degree n. Suppose the collocation points of F restricted to the

boundaries of the simplex support a d−1-dimensional quadrature of degree n+1 for each

boundary l = 1 . . . d, with weights wl
m, m = 1 . . . Ne, where Ne is the number of points on

the boundaries. We then have the following exact relationship:

w̃k =
∫

∂Td

Mkν dA =
d∑

l=1

Sl
Ne∑

m=1

wl
mMk(xm) , (C.4)

where Sl is the area of face l. But since Mk is an interpolation polynomial with the

property Mk(xm) = δkm, this will simply pick out the weight wl
m corresponding to the

flux node k. In particular it is clear that the weight w̃k for interior nodes vanish, since

k 6= m for all such nodes. We finally arrive at

I = −
Nf∑
k=1

w̃k · Fk = −
d∑

l=1

∑Ne

m=1
wl

mFh(xk(l,m)) · Sl = −
∫

∂Tn

Fh · dS , (C.5)

where it is understood that the mth node on the lth edge, has a corresponding index k(l,m)

in the flux collocation.

C.2 The SD Scheme on General Triangular Meshes

Consider the semidiscrete scheme, Eq. (4.7), which may be written as

duij

dt
+Rij = 0 , (C.6)

where the residual is given by the exact differentiation of the reconstructed flux function

Rij = (∇ · Fh) (xij). The differentiation is first computed for a fixed reference element.

The operation for general mesh elements is then obtained by using a transformation be-

tween the straight sided reference element and elements in the mesh. Such a transforma-

tion Φ is schematically depicted in Fig. C.1(a). The advantage of this approach is that the

differentiation operator is universal for all mesh elements with straight edges, up to simple

metric scaling terms, which will be outlined in the following. Consider a differentiation

matrix for an interpolated function on the reference element, i.e.
N(m)∑
k=0

Dξ
jkf(xk) =

∂

∂ξ
(Im f)(xj) . (C.7)
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(a) Transformation between the reference element

and a general mesh element.

(b) Definition of metric terms for straigh-sided mesh

element.

Figure C.1: Implementation of the SD scheme on triangular meshes: Definitions for general

mesh elements.

Suppose such differentiation matrices for ξ and η are known for interpolations of degree

m + 1. Then the divergence of the flux function Fh = (fh, gh)T may be written for a

general mesh by applying the chain rule:

(∇ · Fh)(xij) =
N(m+1)∑

k=0

Dξ
jk ∇ξ|xij

· Fh(xik) +Dη
jk ∇η|xij

· Fh(xik) , (C.8)

where the gradients ∇ξ and ∇η are the rows of the inverse Jacobian of the transforma-

tion Φ(ξ, η). Consider a straight-sided mesh element, for which the transformation may

be written

x = x1 + (x2 − x1)ξ + (x3 − x1)η (C.9)

y = y1 + (y2 − y1)ξ + (y3 − y1)η , (C.10)

where the (xj , yj) are the vertex coordinates of the triangle, ordered counter-clockwise.

In this case it is evident that the elements of inverse Jacobian are given by the inward

pointing directed face areas, depicted in Fig. C.1(b), divided by twice the volume (as

2V = (x2 − x1)× (x3 − x1)), and the residual may be written:

(∇ · Fh)(xij) =
1

2Vi

N(m+1)∑
k=0

Dξ
jkS2 · Fh(xik) +Dη

jkS1 · Fh(xik) . (C.11)
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Note that the Jacobian of Φ is thus constant in each element, which means that it does

not have to be stored for each node of the element. The differention operator depends

on the mesh element only through the volume and face areas. For elements with curved

edges, however, higher order terms in Eq. (C.9) appear, which means that the elements of

the Jacobian depend on (ξ, η) and need to be stored for all solution nodes, which increases

the storage requirement quadratically with the order of accuracy in two dimensions, and

cubically in three dimensions. Fortunately, elements with curved edges are normally only

needed at boundaries, where it is necessary to have an accurate representation of the geom-

etry, see section 4.7.1. Some authors suggest that it is viable to use straight sided elements

everywhere, and respect the geometry at the boundaries only through modified normals.

In this work isoparametric elements have been used, meaning that a transformation is

computed using polynomials of the same degree as those of the solution representation.

The local differentiation matrices Dξ and Dη may be computed using suitable basis

functions, such as the Dubiner basis for triangles, which uses local tensor coordinates,

given by the singular transformation

a =
2ξ

1− η
− 1 , b = 2η − 1 , (C.12)

to write the basis as a tensor product of Jacobi polynomials. Define

ψ̃a
n = P (0,0)

n (a) (C.13)

ψ̃b
nl =

(
1− b

2

)n

P
(2n+1,0)
l (b) , (C.14)

where P (α,β)
i are Jacobi polynomials of degree i, which are orthogonal with respect to the

weight w = (1− x)α(1 + x)β. The triangle basis may then be written

ψ(n,l) = ψ̃a
n(a)ψ̃b

nl(b) , (C.15)

where n + l ≤ m. Since the derivatives of the Jacobi Polynomials can be computed

analytically using recursion formulas [4], the differentiation matrices may be computed by

solving linear systems for the rows. For example, for the jth row of Dξ, corresponding to

the evaluation of the derivative at the jth solution node one can write

N(m+1)∑
k=0

Dξ
jkψ(n,l)(ak, bk) =

∂

∂ξ
ψ(n,l)(aj , bj) , n+ l ≤ m , j = 0, . . . , N(m) , (C.16)
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where the subscripts of the tensor coordinates correspond to the kth flux node, and the

jth solution node, which may be evaluated using the transformation (C.12), while the

derivative with respect to ξ follows by chain rule. A similar expression holds for Dη. The

advantage of using this basis, as opposed to a monomial basis, for example, is a much

more benign numerical conditioning of the linear systems that arise.

The procedures outlined in this section may be used to evaluate the residual at the

solution nodes using the collocation based on the flux nodes. The solution may then be

advanced using a time integration scheme. Subsequently, the solution at the next time

step is evaluated at the flux nodes to compute the next residual. The transfer matrix,

A = {akj}k=1,...,N(m+1),j=1,...,N(m), for the evaluation of the solution at the flux nodes is

again universal for straight sided elements. One may write

N(m)∑
j=0

Akjψ(n,l)(aj , bj) = ψ(n,l)(ak, bk)) , n+ l ≤ m+1 , k = 0, . . . , N(m+1) . (C.17)

For curved elements, the transfer matrices are computed using an explicit evaluation of

isoparametric mapping Φ instead of the triangle basis, which is by definition of the same

order as the polynomial basis. In this case the reconstruction is no longer universal, and

the transfer matrix has to be stored for all mesh elements with curved edges.
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