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Abstract

This paper presents an adjoint method for the cal-
culation of remote sensitivities in supersonic flow.
The goal is to develop a set of discrete adjoint equa-
tions and their corresponding boundary conditions
in order to quantify the influence of geometry modi-
fications on the pressure distribution at an arbitrary
location within the domain of interest. First, this
paper presents the complete formulation and dis-
cretization of the discrete adjoint equations. The
special treatment of the adjoint boundary condition
to obtain remote sensitivities is also discussed. Sec-
ondly, we present results that demonstrate the appli-
cation of the theory to a three-dimensional remote
inverse design problem using a low sweep biconvex
wing and a highly swept blunt leading edge wing.
Lastly, we present results that establish the added
benefit of using an objective function that contains
the sum of the remote inverse and drag minimization
cost functions.

Introduction

The objective of this work is to develop the neces-
sary methods and tools to facilitate the design of low
sonic boom aircraft that can fly supersonically over
land with negligible environmental impact. Tradi-
tional methods to reduce the sonic boom signature
were targeted towards reducing aircraft weight, in-
creasing lift-to-drag ratio, improving the specific fuel
consumption, etc. Seebass and Argrow! revisited
sonic boom minimization and provided a detailed
study of sonic boom theory and figure of merits for
the level of sonic booms.
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In this paper, the control theory approach is used
to develop an automatic aerodynamic optimization
method to reduce the sonic boom signature. The
mathematical theory for the control of systems gov-
erned by partial differential equations, as developed
by Lions et al.,® significantly lowers the computa-
tional cost and is clearly an improvement over clas-
sical finite-difference methods. Recently, with the
help of faster computing resources, automatic aero-
dynamic optimization has been revisited by Jameson
et al.” 1!

In the control theory approach the gradient is cal-
culated indirectly by solving an adjoint equation.
The total cost to obtain these gradients is indepen-
dent of the number of design variables. The ad-
ditional overhead of solving the adjoint equation is
negligible since the overall cost to obtain the gradi-
ents is low. If N design variables are desired, then
the finite difference method would require N flow
calculations to obtain the gradient. However, with
the adjoint method the cost of obtaining the gra-
dient amounts to one flow solution and one adjoint
solution. The adjoint problem is a linear PDE of
lower complexity than the flow solver. This method
was first applied to transonic flow by Jameson.” In
the last six years the method has been successfully
used to optimize complex three dimensional config-
urations including wing-fuselage combinations and
complete aircraft by Jameson et al.,'?13 Vassberg
et al.,'* Reuther et al.,'> 16 and Burgreen et al.'”

The adjoint equation can be derived using either
a continuous or discrete approach. The discrete ad-
joint approach applies control theory directly to the
discrete field equations. The discrete adjoint equa-
tion is then derived by collecting together all the
terms multiplied by the variation dw; ; of the dis-
crete flow variables. A detailed comparison of the
continuous and discrete adjoint approaches was con-
ducted by Nadarajah et al.'®'? Extensive work
on the discrete adjoint method has also been con-
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tributed by Shubin et al.?? ,Beux et al.?® |Elliot et
al.2*  Anderson et al.?® Iollo et al.2® and Ta’saan
et al.?”

Sonic Boom Minimization

Traditional adjoint implementations were aimed at
reducing a cost function computed from the pressure
distribution on the surface that is being modified. In
this case, however, we would like to obtain sensitiv-
ity derivatives of pressure distributions that are not
collocated at the points where the geometry is be-
ing modified. This type of sensitivity calculation has
not been attempted before and will be necessary for
the sonic boom minimization problem. In order to
include the tailoring of the ground pressure signa-
tures, it becomes necessary to compute sensitivity
derivatives of the sonic boom signature with respect
to a large number of design variables that affect the
shape of the airfoil or aircraft.

Ground Plane

<]

Figure 1: Schematic of Sonic Boom Minimization

For typical cruise altitudes required for aircraft
efficiency, the distance from the source of the acous-
tic disturbance to the ground is typically greater
than 50,000 ft. A reasonably accurate propagation
of the pressure signature can only be obtained with
small computational mesh spacings that would ren-
der the analysis of the problem intractable for even
the largest parallel computers. An approach that
has been used successfully in the past is the use of
near to far field extrapolation of pressure signatures
based on principles of geometrical acoustics and non-
linear wave propagation. These methods are based
on the solutions of simple ordinary differential equa-
tions for the propagation of the near field pressure
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signature to the ground.

Figure 1 is a schematic of the sonic boom min-
imization problem. ‘CFD Far Field’ indicates the
far field boundary of the mesh. At a pre-specified
distance below the aircraft and still within the CFD
mesh, the location of a near field plane can be seen.
This plane is the effective interface between the CFD
solution and the wave propagation program. At the
near field plane, the flow solution w, is represented
using a number of parameters, M, which can be
taken as the number of mesh points on which the
pressure waveform has a value different from the free
stream.

The lower portion of the domain between the CFD
near field and the ground plane is where the pres-
sure signature propagation method will be active.
Given the conditions, w,, the propagation altitude,
and the altitude dependent atmospheric properties
p(z),p(2),T(z), the propagation method produces a
flow solution at the ground plane we are interested
in, which can be used to determine any of a vari-
ety of measures of sonic boom impact such as over-
pressures, rise time, impulse, etc. This work focuses
on controlling the near field signature which will be
the input to the propagation program. The issue of
choosing a near field signature to produce a desired
ground signature is addressed in an accompanying
paper by Alonso et al.?%

Through the support of the DARPA QSP Pro-
gram (Grant No: MDA972-01-2-0003), advanced al-
gorithms for the design and optimization of quiet
supersonic platforms have been developed at Stan-
ford in the last one year. Our experience has indi-
cated that large reductions in the ground peak pres-
sure cannot be achieved with minor shape modifica-
tions of the baseline configuration. Alternative de-
sign methods such as genetic algorithms have been
used in a multi-level design environment to get in the
neighborhood of the optimum design before switch-
ing over to a gradient-based method to refine the de-
sign. Promising results have been achieved by using
genetic algorithms in a linear method environment.
Once the ground peak pressure is at a desired level,
then nonlinear methods using control theory were
developed in order to meet several goals: first, to
verify if not improve the results of the linear based
method; second, to improve the design by using the
remote inverse adjoint method; lastly, to allow the
introduction of more objective functions to improve
the final design.

The adjoint approach to aerodynamic shape op-
timization has been under development at Stanford
for the past several years through the generous sup-
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port of the AFOSR under grant number AF F49620-
98-1-022. In this paper, a proof of concept of the re-
mote inverse problem will be demonstrated in three
dimensional supersonic flow. The possibility that
the adjoint method could be adapted to solve the
remote inverse problem was first demonstrated by
Nadarajah et al.2! for a two dimensional internal
flow problem.

Biconvex Airfail
Initial Pressure

6 Chord Lengths

Near Field Plane

A%

Figure 2: Pressure Contour and Near Field Pressure
Distribution for Biconvex Airfoil at Mach 1.5

Figure 2 illustrates the pressure contour and near
field pressure distribution for a biconvex airfoil at
Mach 1.5. In this two dimensional example, the
near field is approximately 6 chord lengths from the
airfoil surface. The discrete adjoint boundary con-
dition developed to calculate remote sensitivities is
applied along this location. The following sections
will clearly demonstrate this method.

The Remote Inverse Design Problem
using Control Theory

The aerodynamic properties that define the cost
function are functions of the flow-field variables, w,
and the physical location of the boundary, which
may be represented by the function S.

Suppose that the performance is measured by a
cost function

I=w M (w, S) dBg + w2
Bw

N (w, S) dBe,

BNF

containing both wall boundary (Bw ) and near field
boundary (Byr) contributions, where dBB¢ includes
the surface and near field elements in the compu-
tational domain, while w; and w2 are the weight-
ing coeflicients. The coordinates &; that describe
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the fixed computational domain are chosen so that
each boundary conforms to a constant value of one
of these coordinates. In general, M and N will de-
pend on both the flow variables w and the metrics
S defining the computational space.

The design problem is now treated as a control
problem where the boundary shape represents the
control function, which is chosen to minimize I sub-
ject to the constraints defined by the flow equations.
A shape change produces a variation in the flow so-
lution dw and the metrics 4.5 which in turn produce
a variation in the cost function

0l = wy IM(w,S) ng~|—w2/ ON (w, S) dBe,
Bw By
(1)
with
IM (M) 6w + S M,
(5./\/ = [Nw][ ow + 5NII’ (2)

where we use the subscripts I and IT to distinguish
between the contributions associated with the vari-
ation of the flow solution dw and those associated
with the metric variations 05S. Thus [M,], and
[Nw]; represent % and % with the metrics fixed,
while éMp and 6N represent the contribution of
the metric variations 85 to 6 M and SN with the
flow solution fixed.

The weak form of the Euler equations for steady
flow is

oy’
p 0&

where the test vector v is an arbitrary differentiable
function and n; is the outward normal at the bound-
ary. If a differentiable solution w is obtained to this
equation, then it can be integrated by parts to give

SF,dD = / np T SFydB.
B

(4)

Since this is true for any 1, the differential form
can be recovered. Here 0 F; can be split into contri-
butions associated with Jw and 45 using a similar
notation

)
T ___§F;dD = 0.
/D¢ 0,

Of;

Y ow

The domain can then be split into two parts as
shown in Figure 3. First, the near field domain (D;)
whose boundaries are the wing surface and the near
field boundary plane. Second, the far field domain
(D2) which borders the near field domain along the

0F; = [Fi); 0w+ 0F;  where, [Fj,]; =
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Near Field

Far Field

Figure 3: Near Field and Far Field Domains

near field boundary plane and the far field bound-
ary.

B B
T~ §E;dD¢ + T
Dlw 0&; ¢ Dgw 0&;

This may be integrated by parts to give

T
= S§FdD: (5
. 06, e (5)

+/ ni (* — l[f)T dF;dBe
BnF

T
— %(SFidDg =0.
p, 9%
where T and ¢~ are the values of 1) above and
below the boundary. Since the left hand expression
equals zero, it may be subtracted from the variation
in the cost function (1) to give

§F;dDg = 0.

/ ni'(/JT(SFidBE -
Bw

51 = / [@10M — np" 6F;] dBe
Bw

+ / [wzw\/— n; (* — ¢_)T5Fi} dBe
BNF

oYT T
OF;dD¢ +
p, 9& * " Jp, 0

Now, since v is an arbitrary differentiable function,
it may be chosen in such a way that 61 no longer de-
pends explicitly on the variation of the state vector
dw. The gradient of the cost function can then be
evaluated directly from the metric variations with-
out having to re-compute the variation dw resulting
from the perturbation of each design variable.

Comparing equations (2) and (5), the variation
dw may be eliminated from (6) by equating all field
terms with subscript “I” to produce a differential
adjoint system governing v

T
e

+

§F,dDe.  (6)

[Fiw =0 inD. (7)

]
D1+D2

The corresponding wall and near field adjoint
boundary conditions are produced by equating the
subscript “I” boundary terms in equation (6) to pro-
duce

nip” [Fiwl; = w1 My on By (8)

ni (F — ¢7)T [Fiw); = woNy on Byp.  (9)

The remaining terms from equation (6) then yield
a simplified expression for the variation of the cost
function which defines the gradient

51 = / {@wi6My —nip" [6F] ; } dBe
Bw

+ /B {wg&f\fﬂ —n; (+ — w_)T [0 F;] H} dBe

ot

The details of the formula for the gradient depend
on the way in which the boundary shape is parame-
terized as a function of the design variables and the
way in which the mesh is deformed as the boundary
is modified.

The boundary conditions satisfied by the flow
equations restrict the form of the left hand side of
the adjoint boundary conditions (8) and (9). Conse-
quently, the boundary contribution to the cost func-
tions M and N cannot be specified arbitrarily. In-
stead, it must be chosen from the class of functions
which allow cancellation of all terms containing dw
in the boundary integral of equation (6).

Design Using the Euler Equations

The adjoint formulation in the previous section was
derived using the continuous adjoint approach. In
this paper, the discrete adjoint approach was chosen.
The discrete adjoint equation is obtained by ap-
plying control theory directly to the set of discrete
field equations. The resulting equation depends on
the type of scheme used to discretize the flow equa-
tions. The work in this paper uses a cell centered
multigrid scheme with upwind-biased blended first-
and-third-order fluxes for artificial dissipation, local
time stepping, and implicit residual smoothing. A
full discretization of the equation would involve dis-
cretizing every term that is a function of the state
vector. The cost function [ is defined as such,

1
Izwch-l—wzi%;(p—pT)Q As, (11)
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where Cp is total wing drag coefficient, p is the cur-
rent near field pressure, pr is the target near field
pressure, and w; and wy are weighting coefficients.

The variation of the cost function, 67, can be aug-
mented by the discrete governing equations appro-
priately premultiplied by the adjoint variable 1" ik
01 = w10Cp + o Z (p — pr) 0pAs

NF
nr nYy nz

2.2 D v (R

i=2 j=2 k=2

w) + D (w)), ;- (12)

Here the first term represents the discrete drag min-
imization cost function, the second term represents
the discrete remote inverse design cost function eval-
uated at a near field location which is approximately
L chord length’s away from the wing, R(w) is the
field equation, and D(w) is the artificial dissipation
term.

In order to eliminate dw from Eq (12), terms mul-
tiplied by the variation dw; ;i of the discrete flow
variables are collected and equated to zero. The fol-
lowing is the resulting discrete adjoint equation in a
two dimensional domain,

i j
V2l =
ot
A of g A dg "\ Wity
Iy | w i iy | Bw i 2
( A [@] ) Yi1g
-5 | Ow |, . M-t | Qw 2
Ji,g ,]
rog1” [Of 1"\ Wiy
+ <A£C57 1 _%_ g - Ay&,;,ﬁ; % i 9
EAR (017 iy
<A£C57 -3 _%_ g — Ay&,; o1 % . 9
af1" (991" iy
(AynH—Q ¥ _%_ i B Axni‘*'% g _%_ i T
ar1" (097" vy
+ (Aym 39 0w, Axn'i*% iow], ;) 2
rag1” af1" \ viy
A 99| A ey d
< pLIRe _8w_i7j Yei 43 [810 i) 2
- 8g 4T 8f T wl )
Aze | |22 —a °r d
+4d;, 5dl**]+§dlj+1 _5di,j7%'
(13)

Here V is the cell area and
6di+%,] - ¢i,j) -

Vi) +

6;1+3 j¢i+27j
¢1 1,9
(14)

2
= €¢+%,j (wiJrl,j

4
+3€i+%7j (ig1,5 — €35

is the discrete adjoint artificial dissipation term
which corresponds to the discretization of the invis-
cid flow equations by the Jameson-Schmidt-Turkel
(JST) scheme. The dissipation coefficients € and
€* are functions of the flow variables, but, in order
to reduce complexity, they are treated as constants.
The effect of this partial discretization has been ex-

plored by Nadarajah et al.'®

Discrete Adjoint Boundary Condition

This section illustrates the development of the dis-
crete adjoint boundary condition for the calcula-
tion of remote sensitivities for supersonic flow. The
dw; vr term from the discrete cost function is added
to the corresponding term from Eq (13). The dis-
crete boundary condition appears as a source term
in the adjoint fluxes. For example, at cell (i, NF')
the adjoint equation can be discretized as follows,

0 NF 1
Vv ot = 514;1:_ NF (wi,NF

—Yi—1,nF) (15)

T
A1+ ,NF (¢i+1,NF -

Vi NF)

1
- EBZNF+% (YiNF+1 — YiNF)
1
2BlTNF—— (YiNF —YiNF—1) + PNF,

where V' is the cell area, ® 5 is the source term for
inverse design,

Onr = —wi(p — pr)AsidpiNF,

and

" ag1"
AT =A —_— —-A —
i+3,NF y”H—%,NF liaw:|i,NF x”i+%,NF dw i NE

The wall boundary condition appears as source
terms in the adjoint fluxes along the cells above the
wall. The derivation of this boundary condition was
explored by Nadarajah!'® et al. If a first order dis-
sipation scheme is used, then Eq (14) would reduce
to the term associated with €. In such a case, the
discrete adjoint equations are completely indepen-
dent of the costate variables in the cells below the
wall. However, if we use the blended first-and-third-
order scheme, these flow variable values are required.
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A simple zeroth-order extrapolation across the wall
has produced good results, as shown by Nadarajah

et al.’®

Optimization Procedure

In this paper, the inverse design boundary condi-
tion is applied to the near field, while sensitivity
derivatives or the gradient are calculated on the air-
foil surface. The gradient for the discrete adjoint
is obtained by perturbing each point on the lower
wall. Once the gradient G = g{) has been deter-
mined, it can be used to drive a variety of gradient-
based search procedures. The search procedure used
in this work is a descent method in which small steps
are taken in the negative gradient direction. Let F
represent the design variable, and G the gradient.
Then an improvement can be made with a shape
change

0F = —AG.

However, it is better to replace the gradient G by a
smoothed value G in the descent process. This acts
as a preconditioner which allows the use of much
larger steps and ensures that each new shape in the
optimization sequence remains smooth. To apply
smoothing in the &; direction, the smoothed gradient
G may be calculated from a discrete approximation
to

. 0 0G

G- 996, — G, G=0 at end points,

where € is the smoothing parameter. If the modifi-
cation is applied on the surface & = constant, then
the first order change in the cost function is

5T = — / / GoFde,
= [ (7 ga57) 9
: OA//<g2+6(§§)>d&

again guaranteeing an improvement unless G = G =
0 and assuring an improvement if A is sufficiently
small and positive.

In some problems it turns out that the Hessian
can be represented as a second order differential op-
erator, so that with a proper choice of the smooth-
ing parameter, the method becomes the Newton
method. Search methods were intensively evaluated

6

in a recent study by Jameson et al.,?® and it was ver-

ified that these sample problems (which may have a
high linear content) could be solved with a number
of search steps independent of the number of design
variables.

Implementation of Remote
Inverse Design

The design procedure is as follows. First, the flow
solver module is run until at least 5 orders of magni-
tude drop in the residual. Second, the cost function
is calculated and the location of the source terms
are determined. Third, the adjoint solver is run un-
til at least 4 orders of magnitude drop in the resid-
ual. Next, the gradient is calculated by perturbing
each point on the wing surface mesh. The resulting
gradient is then smoothed by an implicit smoothing
technique as described in the Optimization Proce-
dure section. Then the wing geometry is updated
and the grid is modified. The entire process is re-
peated until the conditions for optimality are satis-
fied. At each subsequent design iteration, 20 multi-
grid cycles for the flow and adjoint solver are used
before the gradient is calculated. Figure (4) illus-
trates the design procedure.

Flow Solution T
\/
Adjoint Solution
] Design Cycle
Repeated Until
Gradient Calculation Convergence

\i

Update Airfoil Geometry

i

Modify Grid

Figure 4: Design Procedure

Figure (5) shows the location of the near field pres-
sure (+) and the adjoint remote sensitivity source
terms (0). The variation of the cost function is first
calculated by taking the difference between the cur-
rent and target near field pressure at the (+)s for
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every z-plane. A search algorithm then seeks for
centers of cells that are within the cube defined by
the (+) points. The search algorithm is repeated at
every design cycle, since the possibility exists that
the mesh may have modified and thus requiring a
new location for the source term. The source terms

are then computed using a trilinear interpolation at
this location.

W
et

[T
i M
|
M 11

80 100

Figure 5: Location of Near Field Pressure and Ad-
joint Remote Sensitivity Source Terms

An alternative method for problems with more
than one objective function, is to develop separate
adjoint equations, one for each objective function.
Both gradients are then calculated separately, mul-
tiplied by weights, and summed. A direction of im-
provement is then achieved with the new gradient.
This method has the advantage that the user is bet-
ter equipped with knowledge regarding the differ-
ence in magnitude between the two gradients. Ap-
propriate weights can then be chosen to achieve the
desired compromise. A disadvantage is the need to
calculate a separate adjoint solution for each objec-
tive function.

In this work, we preferred to use a composite cost
function, since we had apriori knowledge regarding
the magnitude of the gradient contribution from the
remote inverse cost function and the drag minimiza-
tion cost function.

7

Results

This section presents the results of remote inverse
and coupled remote inverse and drag minimization
for three dimensional wings in supersonic flow. The
objective is to reduce the peak pressure at the near
field plane. Viscous effects are likely to be very small
in these examples, so it is sufficient to use the Eu-
ler equations. The calculations were performed with
a modified version of Jameson’s SYN88 software,
which augments the FLOS88 flow solver with an ad-
joint solver, and shape modification procedures.

Biconvex Wing: Verification Study

To validate the use of our new method for the calcu-
lation of flow sensitivities, we have constructed the
following test problem, based on a biconvex wing
with a 3% thickness ratio at the root and 1.5% at
the tip. The leading edge sweep of the wing is 7.125
degrees. The aspect ratio is 3.0 with a 0.218 taper
ratio. To begin the remote inverse design process,
the near field pressure distribution for a biconvex
wing with a 2% thickness ratio at the root and 1%
at the tip was first calculated in order to provide a
realizable target pressure. All other wing geometry
parameters were unchanged. The flow solution was
obtained at a Mach Number of 1.5, at an angle of
attack of 0 degrees, and the near field target pres-
sure was computed at a distance of one chord length
below the surface of the wing. Then we performed
an inverse calculation with this target, starting from
the 3% biconvex wing. Clearly, the solution of this
problem is the reproduction of the 2% biconvex wing
that initially produced the target pressure distribu-
tion.

Figures 6(a-b) illustrate the target (4), initial (OJ)
, and final (*) near field pressure distribution at the
root and mid-span sections of the wing after 50 de-
sign cycles. An almost perfect point-to-point match
is achieved. The objective function is the integral of
the square of the difference between the current and
target near field pressure. No lift or thickness con-
straints were enforced. These results clearly validate
the remote adjoint method.

Biconvex Wing: Sonic Boom Reduction,
Without Constraints

In order to illustrate the possibility of sonic boom re-
duction, a target pressure distribution was obtained
by re-scaling the initial near field pressure distribu-
tion. Ultimately, this step will be replaced by a
method that produces a target near field pressure
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based upon the desired ground pressure signature.
Here, in order to show a proof of concept of the
remote inverse design method, re-scaled target pres-
sures were chosen to produce a reduction in the near
field peak pressure.

The target pressure was obtained using the FLO88
flow solver on a biconvex wing with a 5% thickness
ratio at the root and 3.25% at the tip at a flight con-
dition of M = 1.5 and a lift coefficient of C;, = 0.1
on a 192x32x32 C-grid. All other wing geometry pa-
rameters are the same as the previous section. The
target pressure is then reduced by 40% of its original
value.

Figures 7(a-b) illustrate the target (4), initial (O),
and final (x) near field pressure distribution. After
50 design cycles, the final near field pressure almost
matches the target near field pressure. Neither the
lift nor the thickness ratio at each span station were
constrained.

Biconvex Wing:
With Constraints

Sonic Boom Reduction,

We now repeat the same design case but with the
lift and thickness constrained. The value of the lift
coeflicient is maintained by adjusting the angle of
attack to attain the desired lift coefficient. Thickness
ratio at each span station is forced to remain the
same.

The resulting solution is very different from the
previous case. Figures 8(a-b) illustrates the baseline
and optimized airfoil sections at span stations z =
0.0957 and z = 0.571.

Figures 9(a-b) show the target, initial, and final
near field pressure distributions. The desired target
pressure distribution is not achieved in contrast to
the unconstrained case illustrated in Figure 7. In
this case, there is a struggle between the near field
peak pressure reduction versus maintenance of con-
stant lift. Each design cycle, produces a shape mod-
ification that shifts the near field pressure distribu-
tion towards the target pressure. Unfortunately, this
also causes a reduction in the lift coefficient. This
must be compensated by an increase in the angle
of attack to maintain the total lift coefficient, which
in turn leads to an increase in the near field peak
pressure. After 50 design cycles, the solution con-
verges to the (— % —) line in Figure 9. The final
peak pressure has been reduced to almost 23% its
original value at the root section and 18% at the
mid-span section.

[ Design Case | Cp | Co(%) |
Baseline 0.00382
Remote Inverse 0.00395 | +3.4%
Drag Minimization 0.00320 | —16.2%
Remote Inverse and Drag Min. | 0.00360 | —5.8%

8

Table 1: Total Wing Drag Coefficient for Various
Design Cases

Highly Swept Blunt LE Wing: Sonic Boom
and Drag Reduction

The previous examples are wings with low sweep
back and sharp supersonic leading edges. Here we
examine a highly swept wing with a blunt subsonic
leading edge. Blunt leading edge symmetric airfoils
were created with a thickness ratio of 4% at each
span station. The wing has 60 degrees leading edge
sweep, and a 0.5624 taper ratio.

Figures 10(a-b) illustrate the airfoil sections at
span locations z = 0.0957 and z = 0.571. Each
figure contains three plots: Baseline Wing, Wing
Optimized with Remote Inverse Objective Function,
and Wing Optimized with Remote Inverse and Drag
Minimization Objective Functions. The airfoil sec-
tions are scaled to exaggerate the modifications. Fig-
ures 11(a-b) show the corresponding near field pres-
sure distribution at the same span locations. At the
root section, a 14.2% reduction in the peak pres-
sure was obtained with the remote inverse as the
objective function and a slightly smaller reduction of
13.0% was achieved with the weighted sum of the re-
mote inverse and drag minimization cost functions.
At the mid span location, a 10.4% reduction was
achieved with the former and 9.4% reduction with
the latter cost function. For the case of joint drag
minimization and remote inverse design, the weights
were wwp = 0.005 and wy = 1.0. The weighting coef-
ficient for the drag minimization cost function had
to be considerably smaller due to the larger mag-
nitude of its gradient contribution. Since the main
objective of the design is to reduce the near field
peak pressure, the weights were adjusted to achieve
the desired result. A comparison of the two final
designs achieved by the remote inverse and the joint
remote inverse and drag minimization cost functions
show that the two methods provide similar results,
with the remote inverse cost function providing a
very slightly greater reduction in the near field pres-
sure peak.

Table 1 lists the total wing drag coefficient for the
baseline wing and the optimized wings. If only the
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remote inverse cost function was used, then a 3.4%
increase in total drag is seen versus the 5.8% reduc-
tion in total drag with the dual objective function
case. The reason for the difference between the two
final designs can be seen clearly in Figures 12(a-d).
Figure 12(a) illustrates the pressure contour of the
upper surface of the wing. A strong shock is present
slightly aft of the mid chord location at the wing
tip. The shock strength weakens as it moves in-
board. Figure 12(b) shows the pressure contour of
the final design using only the remote inverse cost
function. Here we notice the presence of the shock
wave at the wing tip. In Figure 12(c) this shock
is eliminated in the design case using only the drag
minimization objective function. However, in Fig-
ure 12(d) it is clearly seen that the wing tip shock
strength is reduced, thus contributing to the reduc-
tion in the total drag coefficient.

Figures 13(a-c) illustrate the coefficient of pres-
sure plots for the baseline and the two redesigned
wings at three different span locations. At z = 0.85,
the plots clearly show the reduction in the strength
of the shock.

Conclusions

The results demonstrate the feasibility of remote in-
verse calculations using the adjoint method, which
would be impossible with other inverse methods such
as CDISC?? . An application to the sonic boom min-
imization resulted in an 18% reduction in the near
field peak pressure for the low swept biconvex wing
and 10% for the highly swept blunt leading edge
wing. It proved highly beneficial to use a composite
cost function consisting of the sum of the weighted
remote inverse and drag minimization cost functions,
resulting in final wing designs that produced both
lower near field peak pressures and lower total wing
drag coefficients.
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Figure 6: Verification Study: Target, Initial, and Final Near Field Pressure Distribution
Mach = 1.5, a = 0 deg.
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Figure 7: Sonic Boom Minimization: Target, Initial, and Final Near Field Pressure Distribution after 50
Design Cycles. Mach = 1.5, o = 1.75 deg., No Lift Coeflicient and Thickness Ratio Constraints
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Figure 9: Sonic Boom Minimization: Target, Initial, and Final Near Field Pressure Distribution after 50
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Figure 11: Sonic Boom and Drag Minimization: Target, Initial, and Final Near Field Pressure Distribution
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12a: Base Wing Design Objective Function
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Design and Drag Minimization Objective
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12c: Optimized with Drag Minimization
Objective Function

Figure 12: Sonic Boom and Drag Minimization: Pressure Contours of Final Design of the Upper Surface of
the Wing. Mach = 1.5, a = 0.829 deg, Fixed Lift Coeflicient = 0.05, Fixed Thickness Ratio
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Figure 13: Sonic Boom and Drag Minimization: Surface Pressure Coefficient. Mach = 1.5, a = 0.829 deg,
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