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Aerodynamic shape optimization for unsteady
three-dimensional flows

SIVA K. NADARAJAH†{*, MATTHEW S. MCMULLEN‡§ and ANTONY JAMESON‡k

†CFD Lab, Department of Mechanical Engineering, McGill University, 688 Sherbrooke Street West, Room 711, Montreal, Que., Canada H3A 2S6
‡Department of Aeronautics and Astronautics, Stanford University, Durand Building, 496 Lomita Mall, Stanford, CA 94305, USA

(Received 29 April 2005; in final form 11 July 2006)

This paper presents an adjoint method for the optimum shape design of unsteady flows. The goal is to
develop a set of discrete unsteady adjoint equations and the corresponding boundary condition for the
non-linear frequency domain method. First, this paper presents the complete formulation of the time
dependent optimal design problem. Second, we present the non-linear frequency domain adjoint
equations for three-dimensional flows. Third, we present results that demonstrate the application of the
theory to a three-dimensional wing.

Keywords: Adjoint method; Optimization; Unsteady flow; Frequency domain; Computational fluid
dynamics

1. Introduction

There are numerous important engineering applications in

which the flow is inherently unsteady but periodic.

Helicopter rotors in forward flight, turbomachinery blades

and cooling fans operate in unsteady flow and are

constantly subjected to unsteady loads. Optimization

techniques for unsteady flows are clearly needed to

improve their performance and to alleviate the unsteady

effects that contribute to flutter, buffeting, poor gust and

acoustic response and dynamic stall. As yet there have

been few efforts in this direction.

One of the major reasons for this is the demanding

computational cost associated with the calculation of

unsteady flows. As part of the accelerated strategic

computing initiative (ASCI) project at Stanford, Davis

(2001) presented estimates for the computational cost of a

multistage compressor and turbine calculation based on

the parallel execution of 750 processors operating 8 h a

day. He concluded that it would require 1300 days to

compute the flow through a 23 blade row compressor.

The overwhelming majority of the computational time

is spent on time accurately resolving the decay of the

initial transients. Although this example is an extreme

case, it illustrates the prohibitive cost of many unsteady

calculations using time accurate solvers to find a periodic

steady state.

Nevertheless, the development of optimum shape

design for two-dimensional unsteady flows using the

time accurate adjoint based design approach has been

pursued by Nadarajah and Jameson (2002) and Nadarajah

(2003). Their work is largely based on algorithms

developed for aerodynamic shape optimization (ASO)

for a steady flow environment (Jameson 1989, 1995,

Reuther et al. 1996a,b, Nadarajah et al. 2002). Nadarajah

derived and applied the time accurate adjoint equations

(both the continuous and discrete) to the redesign of

an oscillating airfoil in an inviscid transonic flow. The

redesigned shape achieved a reduction in the time-

averaged drag while maintaining the time-averaged lift.

The approach utilized a dual time stepping (Jameson

1991) technique that implements a fully implicit second

order backward difference formula to discretize the time

derivative. Typical runs required 15 periods with 24

discrete time steps per period and 15 multigrid cycles at

each time step. Encouraging results were obtained at a

substantial computational expense.

The prohibitive cost of computing three-dimensional

unsteady flows using the time accurate approach has

motivated a new interest in using periodic methods.
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Linearized frequency domain and deterministic-stress

(Adamczyk 1984) methods are examples of periodic

methods. However, these methods generally do not account

for strong non-linearities in the system. Pseudo-spectral

approaches in space and time have been implemented for a

multitude of non-linear problems throughout the numerical

analysis literature. The harmonic balance technique

proposed by Hall (2000) and Hall et al. (2000) represents

the first pseudo-spectral method in time for the unsteady

Euler equations. The non-linear frequency domain method

(NLFD) proposed by McMullen et al. (2001, 2002) is a

similar approach that was later validated for the unsteady

Navier–Stokes equations. These approaches are spectral

techniques which converge at an exponential rate to the

exact solution, even in the presence of aliasing affects

(Snider 1972). This can be compared to more classical

finite difference schemes, which contain errors pro-

portional to some power of the grid spacing. An analysis

presented in McMullen’s (2003) thesis demonstrates the

comparative advantage of spectral techniques for real

world applications. Using an unsteady pitching airfoil in a

transonic flow, he calculated the error in the magnitude of

the fundamental harmonic for the coefficient of lift. The

data showed that an NLFD calculation employing one time

varying harmonic (which can be represented with three

discrete samples) produced an error level equivalent to that

of a time accurate calculation using 45 time steps per

period. For this case, the NLFD calculation was roughly an

order of magnitude more efficient than time accurate codes

operating at equivalent error levels.

Recently, there have been two investigations into the

modeling of unsteady aerodynamic design sensitivities.

Duta et al. (2002) have presented a harmonic adjoint

approach for unsteady turbomachinery design. The aim of

the work was to reduce blade vibrations due to flow

unsteadiness. The research produced adjoint methods that

were based on a linearized analysis of periodic unsteady

flows. Thomas et al. (2003) presented a viscous discrete

adjoint approach for computing unsteady aerodynamic

design sensitivities. The adjoint code was generated from

the harmonic balance flow solver with the use of an

automatic differentiation software compiler.

The motivation of the research in this paper has been

fueled both by the success of our current capability for

automatic shape optimization for unsteady flows and the

future potential of the NLFD method. The general goal of

this work is to extend the NLFD method for adjoint based

design approach from two-dimensional (Nadarajah et al.

2003) to three-dimensional flows. The result of this effort

is a NLFD adjoint design code that is fully non-linear and

the computational cost of the adjoint module is

proportional to the cost of the flow solver.

2. Governing equations

In order to allow for geometric shape changes, it is

convenient to use a body fitted coordinate system, so that

the computational domain is fixed. This requires the

formulation of the Euler equations in the transformed

coordinate system. Einstein notation simplifies the

presentation of the equations, where summation over

i ¼ 1–3 is implied by a repeated index i. Then the three-

dimensional compressible Euler equations for a rigidly

translating control volume may be written as

›w

›t
þ

›f i

›xi
¼ 0 in D;

where

w ¼

r

ru1

ru2

ru3

rE

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; f i ¼

r ðui 2 xtiÞ

ru1ðui 2 xtiÞ þ pdi1

ru2ðui 2 xtiÞ þ pdi2

ru3ðui 2 xtiÞ þ pdi3

rEðui 2 xti Þ þ pui

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

In these equations, r is the density, xi are the Cartesian

coordinates, ui; xti are the Cartesian velocity components

of the fluid and boundary, respectively, E is the total

energy and dij is the Kronecker delta function. The results

presented in this paper are based on transonic flow

calculations where the ideal gas equation is applicable.

Consequently, the pressure, p, can be expressed as

p ¼ ðg2 1Þr E2
1

2
u2
i

� �� �
;

and rH ¼ rE þ p, where g is the ratio of the specific

heats.

Consider a transformation to coordinates j1, j2, j3

where

Kij ¼
›xi

›j j

� �
; J ¼ detðKÞ; K21

ij ¼
›ji

›x j

� �
;

and S ¼ JK21. The elements of S are the coefficients of K

and in a finite volume discretization, they are just the face

areas of the computational cells projected in the x1, x2 and

x3 directions. Also introduce scaled contravariant velocity

components as

Ui ¼ Siju j; and Xti ¼ Sijxt j :

The Euler equations can now be written as

›ðJwÞ

›t
þ

›Fi

›ji
¼ 0 in D; ð1Þ

where

Fi ¼ Sij f j ¼

r Ui 2 Xti

� �
ru1 Ui 2 Xti

� �
þ S j1p

ru2 Ui 2 Xti

� �
þ S j2p

ru3 Ui 2 Xti

� �
þ S j3p

rE Ui 2 Xti

� �
þ pUi

2
666666664

3
777777775
:

Assume now that the new computational coordinate

system conforms to the wing in such a way that the wing

surface BW is represented by j2 ¼ 0. Then the flow is

determined as the steady state solution of equation (1)
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subject to the flow tangency condition

U2 ¼ 0 on BW:

At the far field boundary BFF, conditions are specified for

incoming waves, as in the two-dimensional case, while

outgoing waves are determined by the solution.

The simulations contained in this research are restricted

to rigid mesh translation. Consequently, the volumetric

integral can be approximated as the product of the cell

volume and the temporal derivative of the solution at the

cell center. In semi-discrete form, equation (1) can be

written as

V
›w

›t
þ RðwÞ ¼ 0: ð2Þ

To eliminate odd–even decoupling of the solution and

overshoots before and after shock waves, the convective

flux is added to a diffusion flux. The artificial dissipation

scheme used in this research is a blended first and third

order flux, first introduced by Jameson et al. (1981). The

artificial dissipation scheme is defined as,

d ¼ e ð2ÞDx3 l

p

›2p

›x2

����
���� ›w›x 2 e ð4ÞDx3l

›3w

›x3
: ð3Þ

The first term in equation (3) is a first order scalar

diffusion term, where the magnitude of the term is scaled

by the normalized second difference of the pressure and

serves to damp oscillations around shock waves. e ð4Þ is the

coefficient for the third derivative of the artificial

dissipation flux. The coefficient is scaled such that it is

zero at regions of large gradients, such as shock waves and

eliminates odd–even decoupling elsewhere.

2.1. Numerical discretization

A finite-volume methodology is used to discretize the

integral form of the conservation laws. When equation (1)

is formulated for each computational cell, a system of first

order ordinary differential equations is obtained. The

convective flux is represented in discrete form for each

computational cell using a central second-order discreti-

zation. Equation (1) can then be written for each

computational cell as

V
›wi; j; k

›t
þ RðwÞi; j; k ¼ 0: ð4Þ

The residual can then be represented as

RðwÞi; j; k ¼ hiþð1=2Þ; j; k 2 hi2ð1=2Þ; j; k þ hi; jþð1=2Þ; k

2 hi; j2ð1=2Þ; k þ hi; j; kþð1=2Þ 2 hi; j; k2ð1=2Þ; ð5Þ

where hiþð1=2Þ; j; k ¼ Fiþð1=2Þ; j; k 2 Diþð1=2Þ; j; k and D rep-

resents the artificial dissipation term. The ^ð1=2Þ notation

indicates that the quantity is calculated at the flux faces.

The values of the flow variables are stored at the cell

centers and can be regarded as cell averages. Accordingly,

the convective flux Fiþð1=2Þ; j;k at the cell face as shown in

figure 1, is computed by taking the average of the flux

contributions from each cell across the cell face as shown

in the following equation

Fiþð1=2Þ; j;k ¼
1

2
Fþ
iþ1; j;k þ F2

i; j;k

� 	
:

Next we define the flux velocities asab

q2 ¼
1

r
i; j; k

S11iþð1=2Þ; j; k
ðru1Þi; j; k þ S12iþð1=2Þ; j; k

ðru2Þi; j; k

�
þS13iþð1=2Þ; j; k

ðru3Þi; j;k

	
;

and

qþ ¼
1

r
i; j; k

S11iþð1=2Þ; j; k
ðru1Þiþ1; j; k

þ S12iþð1=2Þ; j; k
ðru2Þiþ1; j; k

�
þS13iþð1=2Þ; j;k

ðru3Þiþ1; j;k

	
:

The mesh flux velocity is computed as follows

qxt ¼ S11iþð1=2Þ; j;k
ðxt1 Þi; j;k þ S12iþð1=2Þ; j;k

ðxt2 Þi; j;k

þ S13iþð1=2Þ; j; k
ðxt3 Þi; j; k:

Then the flux vectors can be formulated as

Fþ
iþ1; j;k ¼

riþ1; j;k qþ 2 qxt
� �

ðru1Þiþ1; j;k qþ 2 qxt
� �

þ S11iþð1=2Þ; j;k
piþ1; j;k

ðru2Þiþ1; j;k qþ 2 qxt
� �

þ S12iþð1=2Þ; j;k
piþ1; j;k

ðru3Þiþ1; j;k qþ 2 qxt
� �

þ S13iþð1=2Þ; j;k
piþ1; j;k

ðrEÞiþ1; j;k qþ 2 qxt
� �

þ piþ1; j;kq
þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

;

and

F2
i; j;k ¼

ri; j;k q2 2 qxt
� �

ðru1Þi; j;k q2 2 qxt
� �

þ S11iþð1=2Þ; j;k
pi; j;k

ðru2Þi; j;k q2 2 qxt
� �

þ S12iþð1=2Þ; j;k
pi; j;k

ðru3Þi; j;k q2 2 qxt
� �

þ S13iþð1=2Þ; j;k
pi; j;k

ðrEÞi; j;k q2 2 qxt
� �

þ pi; j;kq
2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

Figure 1. Finite volume mesh for cell ði; j; kÞ.
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The blended first-and third-order artificial dissipation

term as defined in equation (3) is discretized as

Diþð1=2Þ; j;k ¼n
ð2Þ
iþð1=2Þ; j;kLiþð1=2Þ; j;kDiþð1=2Þ; j;k

2 n
ð4Þ
iþð1=2Þ; j;kLiþð1=2Þ; j;k Diþð3=2Þ; j;k



22Diþð1=2Þ; j;k þ Di2ð1=2Þ; j;k

�
:

where Diþð1=2Þ; j;k ¼ wiþ1; j;k 2 wi; j;k. The coefficients n (2)

and n ð4Þ are the products of the adjustable constants and

the normalized second difference of the pressure.

Liþð1=2Þ; j;k is the rescaled numerical spectral radius of

the flux Jacobian matrix and directionally scales the

dissipative terms.

The residual RðwÞi; j;k is then formed by adding

contributions from the convective and dissipative fluxes.

A modified five stage Runge-Kutta time integration

scheme is then introduced to march the solution to a steady

state solution. Local time stepping, residual averaging,

and multigrid are employed to accelerate the convergence.

3. Formulation of the time-dependent optimal design

problem

Optimal control of time dependent trajectories is generally

complicated by the need to solve the adjoint equation in

reverse time from a final boundary condition using data

from the trajectory solution, which in turn depends on the

control derived from the adjoint solution.

Introduce the cost function

I ¼

ðtf
0

Lðw; f Þ dt þMðwðtf ÞÞ;

where the function L depends on the flow solution w and

the shape function f and the function M depends on the

time dependent flow solution. Assume that the following

equation defines the time-dependent flow solution

V
›w

›t
þ Rðw; f Þ ¼ 0;

where V is the cell volume and R represents a residue

containing the convective and dissipative fluxes. A change

in f results in a change

dI ¼

ðtf
0

›LT

›w
dwþ

›LT

›f
df

� 
dt þ

›MT

›w
dwðtf Þ;

in the cost function. The variation in the flow solution is

V
›

›t
dwþ

›R

›w
dwþ

›R

›f
df ¼ 0:

Next, introduce a Lagrange multiplier c to the time-

dependent flow equation, integrate it over time and

subtract it from the variation of the cost function to arrive

at the following equation.

dI ¼

ðtf
0

›LT

›w
dwþ

›LT

›f
df

� 
dt þ

›MT

›w
dwðtf Þ

2

ðtf
0

cT V
›

›t
dwþ

›R

›w
dwþ

›R

›f
df

� 
dt:

By integrating the term
Ð tf

0
cTVð›=›tÞdw dt by parts, yields

dI ¼

ðtf
0

›LT

›w
þ V

›cT

›t
2 cT ›R

›w

� 
dw dt

þ
›MT

›w
2 cTðtf Þ

� 
dwðtf Þ

þ

ðtf
0

›LT

›f
2 cT ›R

›f

� 
df dt:

Choose c to satisfy the adjoint equation

V
›c

›t
¼

›R

›w

� T

c2
›L
›w

� 

with the terminal boundary condition

cðtf Þ ¼
›M
›w

:

Then

dI ¼ GTdf ;

where

GT ¼

ðtf
0

›LT

›f
2 cT ›R

›f

� 
dt:

The sensitivity derivatives are determined by the solution

of the adjoint equation in reverse time from the terminal

boundary condition and the time-dependent solution of the

flow equation. These sensitivity derivatives are then used

to get a direction of improvement and steps are taken until

convergence is achieved.

The computational costs of unsteady optimization

problems are directly proportional to the desired number

of time steps. The unsteady flow calculation can be

obtained either by the use of implicit time-stepping

schemes or a NLFD approach.

4. Description of the UFSYN88-MBC multiblock code

The development of a multiblock code for the design

method entails three separate parts: the solution of the flow

equations, the solution of the adjoint equations and the

calculation of the gradient integral formulas. Both the flow

and adjoint solutions are obtained using a finite volume

discretization of the governing equations with the flow and

adjoint variables stored at cell centers. Similarities

between the flow and adjoint equations allow them to be

solved using exactly the same efficient numerical scheme,

with the exception of the boundary conditions; where
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in the case of the adjoint equation, the boundary condition

appears as source terms and are added to the adjoint fluxes.

Therefore, the same domain decomposition is used for the

flow and adjoint solvers.

The three-dimensional C–H meshes for the wing were

generated using a conformal mapping transformation

method. Flows were computed on ni £ n j £ nk ¼ 193 £

33 £ 97 mesh. The domain was decomposed into sub-

domains containing ðni=Npi Þ £ ðn j=Npj
Þ £ ðnk=Npk Þ points,

where Npi , Npj
and Npk are the number of sub-domains in

the i, j and k coordinate directions. The number of sub-

domains in each coordinate direction is an input into the

program. It must also be mentioned that the number of

sub-domains in each coordinate direction limits the

number of maximum number of multigrid levels that can

be used. This limits the convergence rate of the multiblock

code. Domains were decomposed such that at least four

multigrid levels were possible in each sub-domain.

Communication between sub-domains is performed

through halo cells surrounding each sub-domain bound-

ary. Since both the convective and dissipative fluxes are

calculated at the cell faces, all six neighboring cells are

needed to compute the convective flux through the face

and twelve cells are needed for the dissipative flux which

uses blended first- and third-order differences.

5. Development of the non-linear frequency domain

adjoint equations

The derivation of the NLFD method starts with the semi-

discrete form of the governing equations, and assumes that

the solution w and spatial operator R can be represented by

separate Fourier series:

w ¼
XðN=2Þ21

k¼2ðN=2Þ

ŵk eikt; R ¼
XðN=2Þ21

k¼2ðN=2Þ

R̂k eikt ð6Þ

where,

i ¼
ffiffiffiffiffiffiffi
21

p
: ð7Þ

Here, however each coefficient R̂k of the transform of the

residual depends on all the coefficients ŵk, because

RðwðtÞÞ is a non-linear function of wðtÞ. Thus equation (8)

represents a non-linear set of equations which must be

iteratively solved. The solver attempts to find a solution,

w, that drives this system of equations to zero for all

wavenumbers, but at any iteration in the solution process

the unsteady residual, R*, will be finite:

R̂
*

k ¼ ikVŵk þ R̂k: ð8Þ

The nonlinearity of the unsteady residual stems from the

spatial operator. There are two approaches to calculating

the spatial operator expressed in the frequency domain.

The first uses a complex series of convolution sums to

calculate R̂k directly from ŵk. This approach is discarded

due to its massive complexity (considering artificial

dissipation schemes and turbulence modeling) and cost

that scales quadratically with the number of modes N.

Instead, we implement a pseudo-spectral approach in

time. This approach requires several transformations

between the physical and frequency domains which are

performed by a fast Fourier transform (FFT). The

computational cost of this transform scales like

N log ðNÞ, where N is a large number. A diagram detailing

the transformations used by the pseudo spectral approach

is provided in figure 2.

The pseudo-spectral approach begins by assuming that

ŵk is known for all wavenumbers. Using an inverse FFT,

ŵk can be transformed back to the physical space resulting

in a state vector wðtÞ sampled at evenly distributed

intervals over the time period. At each of these time

instances, the steady-state operator RðwðtÞÞ can be

computed. A FFT is then used to transform the spatial

operator to the frequency domain where R̂k is known for

all wavenumbers. The unsteady residual R̂
*

k can then be

calculated by adding R̂k to the spectral representation of

the temporal derivative ikVŵk.

Consistent with the time accurate approach, a pseudo-

time derivative can be added and a time-stepping scheme

can be employed to numerically integrate the resulting

equations.

V
›ŵk

›t
þ R̂

*

k ¼ 0: ð9Þ

In the NLFD case, an unsteady residual exists for each

wavenumber used in the solution and the pseudo-time

derivative acts as a gradient to drive the absolute value of

all of these components to zero simultaneously.

The NLFD discrete adjoint equation can be developed

using two separate approaches. In the first approach, we

first take a variation of the unsteady residual R̂
*

k

represented in equation (8) with respect to the state vector

ŵk and shape function f, to produce

dR̂
*

k ¼ ikVdŵk þ dR̂k:

The next step would be to expand dR̂k as a function of ŵk.

As mentioned earlier, this approach would require a series

of convolution sums to express dR̂k as a function of dŵk.

This method was not implemented due to its compu-

tational cost and added complexity. Instead, the adjoint

equations were solved using a pseudo-spectral approach

similar to the one applied to the flow equations.

In the latter approach, the NLFD adjoint equations are

developed from the semi-discrete from of the adjoint

Figure 2. Simplified dataflow diagram of the time advancement scheme
illustrating the pseudo-spectral approach used in calculating the non-
linear spatial operator R.
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equation, which can be as expressed as

V
›c

›t
þ RðcÞ ¼ 0;

where RðcÞ is the sum of all the spatial operators, both

convective and dissipative, used in the discretized adjoint

equations. Refer to Nadarajah (2003) for a detailed

derivation of these spatial operators and boundary

conditions. Next, we assume that the adjoint variable

and spatial operator can be expressed as a Fourier series:

c ¼
XðN=2Þ21

k¼2ðN=2Þ

ĉk eikt; RðcÞ ¼
XðN=2Þ21

k¼2ðN=2Þ

dRðcÞRðcÞk eikt: ð10Þ

The derivation of the NLFD adjoint then follows that of

the NLFD flow equations. The NLFD adjoint equations

are expressed as

V
›ĉk

›t
þ dRðcÞRðcÞ*k ¼ 0:

where dRðcÞ*kRðcÞ*k ¼ ikVĉk þ dRðcÞkRðcÞk. The pseudo-spectral

approach illustrated in figure 2 is employed in the

NLFD adjoint code to form the unsteady residual. This

term in conjunction with a pseudo time derivative provides

an iterative solution process consistent with that

documented for the flow equations.

5.1. Numerical discretization

The discrete adjoint equation is obtained by applying

control theory directly to the set of discrete field equations.

To formulate the discrete adjoint equation, we first define

the cost function I as such,

I ¼ CD;

where CD is total wing drag coefficient, p is the current

near field pressure and pT is the target near field pressure.

Next, we take a variation of the residual term, which can

be written as

dRðwÞi; j;k ¼ dhiþð1=2Þ; j;k 2 dhi2ð1=2Þ; j;k

þ dhi; jþð1=2Þ;k 2 dhi; j2ð1=2Þ;k

þ dhi; j;kþð1=2Þ 2 dhi; j;k2ð1=2Þ; ð11Þ

with dhiþð1=2Þ; j;k ¼ dFiþð1=2Þ; j;k 2 dDiþð1=2Þ; j;k. We then

pre-multiply the variation of the discrete residual by the

transpose of the Lagrange multiplier and sum the product

over the computational domain to produce the following

Ximax

i¼2

Xjmax

j¼2

Xkmax

k¼2

cT
i; j;kdRðwÞi; j;k:

The variation of the cost function, dI, can then be

augmented by the product of the variation of the discrete

governing equation and the Lagrange multiplier cT
i; j;k

dI ¼ dCD þ
Ximax

i¼2

Xjmax

j¼2

Xkmax

k¼2

cT
i; j;kdRðwÞi; j;k: ð12Þ

In order to eliminate dw from equation (12), terms

multiplied by the variation dwi; j;k of the discrete flow

variables are collected and equated to zero. The following

is the resulting discrete adjoint equation,

V
›ci;j

›t
¼

1

2
S11i2ð1=2Þ; j;k

AT
1i; j;k

þ S12i2ð1=2Þ; j;k
AT

2i; j;k

�h
þS13i2ð1=2Þ; j;k

AT
3i; j;k

	
ðci; j;k 2 ci21; j;kÞ

þ S11iþð1=2Þ; j;k
AT

1i; j;k
þ S12iþð1=2Þ; j;k

AT
2i; j;k

�
þS13iþð1=2Þ; j;k

AT
3i; j;k

	
ðciþ1; j;k 2 ci; j;kÞ

þ S21i; jþð1=2Þ;k
AT

1i; j;k
þ S22i; jþð1=2Þ;k

AT
2i; j;k

�
þS23i; jþð1=2Þ;k

AT
3i; j;k

	
ðci; jþ1;k 2 ci; j;kÞ

þ S21i; j2ð1=2Þ;k
AT

1i; j;k
þ S22i; j2ð1=2Þ;k

AT
2i; j;k

�
þS23i; j2ð1=2Þ;k

AT
3i; j;k

	
ðci; j;k 2 ci; j21;kÞ

þ S31i; j;kþð1=2Þ
AT

1i; j;k
þ S32i; j;kþð1=2Þ

AT
2i; j;k

�
þS33i; j;kþð1=2Þ

AT
3i; j;k

	
ðci; j;kþ1 2 ci; j;kÞ

þ S31i; j;k2ð1=2Þ
AT

1i; j;k
þ S32i; j;k2ð1=2Þ

AT
2i; j;k

�
þS33i; j;k2ð1=2Þ

AT
3i; j;k

	
ðci; j;k 2 ci; j;k21Þ

i
þDiþð1=2Þ; j;k 2Di2ð1=2Þ; j;k þDi; jþð1=2Þ;k

2Di; j2ð1=2Þ;k þDi; j;kþð1=2Þ 2Di; j;k2ð1=2Þ:

ð13Þ

where AT is the transpose of the convective flux Jacobian

›f=›w, V is the cell area and

Diþð1=2Þ; j;k ¼ n
ð2Þ
iþð1=2Þ; j;kLiþð1=2Þ; j;k cT

iþ1; j;k 2 cT
i; j;k

� 	
2 n

ð4Þ
iþð3=2Þ; j;kLiþð3=2Þ; j;k cT

iþ2; j;k 2 cT
iþ1; j;k

� 	
þ 2nð4Þ

iþð1=2Þ; j;kLiþð1=2Þ; j;k cT
iþ1; j;k 2 cT

i; j;k

� 	
2 n

ð4Þ
i2ð1=2Þ; j;kLi2ð1=2Þ; j;k cT

i; j;k 2 cT
i21; j;k

� 	
;

is the discrete adjoint artificial dissipation term which

corresponds to the discretization of the inviscid flow

equations by the Jameson–Schmidt–Turkel (1981) (JST)

scheme. The dissipation coefficients n ð2Þ and n ð4Þ are

functions of the flow variables, but, in order to reduce

complexity, they are treated as constants. The effect of this

partial discretization has been explored by Nadarajah and

Jameson (2000, 2001).
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6. Optimization procedure

In this paper, the inverse design boundary condition is

applied to the near field, while sensitivity derivatives or

the gradient are calculated on the airfoil surface. The

gradient for the discrete adjoint is obtained by

perturbing each point on the lower wall. Once the

gradient G has been determined, it can be used to drive a

variety of gradient-based search procedures. The search

procedure used in this work is a descent method in

which small steps are taken in the negative gradient

direction. Let F represent the design variable and G the

gradient. Then an improvement can be made with a

shape change

dF ¼ 2lG:

However, it is better to replace the gradient G by a

smoothed value �G in the descent process. This acts as a

preconditioner which allows the use of much larger steps

and ensures that each new shape in the optimization

sequence remains smooth. To apply smoothing in the j1

direction, the smoothed gradient �G may be calculated from

a discrete approximation to

�G2
›

›j1

u
› �G
›j1

¼ G; �G ¼ 0 at end points;

where u is the smoothing parameter. If the modification is

applied on the surface j2 ¼ constant, then the first order

change in the cost function is

dI ¼ 2

ð ð
GdF dj1 ¼ 2l

ð ð
�G2

›

›j1

u
›

›j1

�G
� 

�G dj1

¼ 2l

ð ð
�G2 þ u

› �G
›j1

� 2

dj1 , 0;

again guaranteeing an improvement unless �G ¼ G ¼ 0 and

assuring an improvement if l is sufficiently small and

positive.

In some problems, it turns out that the Hessian can be

represented as a second order differential operator, so

that with a proper choice of the smoothing parameter,

the method becomes the Newton method. Search

methods were intensively evaluated in a recent study

by Jameson et al. (Jameson and Vassberg 1999) and it

was verified that these sample problems (which may

have a high linear content) could be solved with a

number of search steps independent of the number of

design variables.

7. Design process

The design process used in this work will change the shape

of the wing in order to minimize its time-averaged

coefficient of drag. The shape of the wing is constrained

such that the maximum thickness to chord ratio remains

constant between the initial and final designs. In addition,

the mean angle of attack is allowed to vary to ensure the

time-averaged coefficient of lift remains constant between

designs.

The UFSYN88-MBC developed by Nadarajah and

Jameson (2002) and Nadarajah (2003), employs a non-

linear frequency domain method in the solution of the

unsteady Euler equations. The NLFD adjoint based design

procedure require the following steps:

1. Periodic flow calculation at constant time averaged

lift. A set of multigrid cycles is used to drive the

unsteady residual to a negligible value for all

the modes used in the representation of the solution.

In the case of a design process that constrains the

time averaged lift, the mean angle of attack is

perturbed every 10 multigrid cycles to maintain a

constant time averaged coefficient of lift. This

allows the unsteady residual to reduce by an order

to two in magnitude before the angle is modified

again.

2. Adjoint calculation. The adjoint equation is solved

by integrating in reverse time. With minor

modifications, the NLFD numerical scheme

employed to solve the flow equations is used to

solve the adjoint equations in reverse time.

3. Gradient evaluation. An integral over the last period

of the adjoint solution is used to form the gradient.

This gradient is then smoothed using an implicit

smoothing technique. This ensures that each new

shape in the optimization sequence remains smooth

and acts as a preconditioner which allows the use of

much larger steps. The smoothing leads to a large

reduction in the number of design iterations needed

for convergence. Refer to Nadarajah and Jameson

(2002) for a more comprehensive overview of the

gradient smoothing technique. An assessment of

alternative search methods for a model problem is

given by Jameson and Vassberg (1999).

4. Wing shape modification. The wing shape is then

modified in the direction of improvement using the

smoothed steepest descent method described in the

previous section.

5. Grid modification. The internal grid is modified

based on perturbations on the surface of the wing.

The method modifies, the grid points along each grid

index line projecting from the surface. The arc

length between the surface point and the far-field

point along the grid line is first computed, then the

grid point at each location along the grid line is

attenuated proportional to the ratio of its arc length

distance from the surface point and the total arc

length between the surface and the far-field.

6. Repeat the design process. The entire design process

is repeated until the objective function converges.

The problems in this work typically required

between 9 and 40 design cycles to reach the

optimum.

Aerodynamic shape optimization for unsteady flows 539



8. Results

The following subsections presents results from simu-

lations of a three-dimensional wing undergoing a change

in angle of attack as a function of time.

aðtÞ ¼ ao þ am sinðvtÞ:

For the cases presented in this section, the mean angle of

attack, ao is 0:598 for the validation case and 08 for the

design test cases. For both cases, the deflection angle, am is

set to ^0:258. The reduced frequency, vc=2V1, is set to

0.102, with a far-field Mach number,M1, of 0.82. The wing

is pitched about the 61.2% of the root chord. The flight

conditions are based on Run 73 of the central transonic test

case CT5 conducted by Zwaan (1985) at the NLR.

The first part of the results section contains a code

validation study. The NLFD flow and adjoint solver

convergence are presented. Surface pressure distributions

are compared to both experimental data and other

numerical simulations. The pressure distributions are

also compared between the time accurate and NLFD

methods. In the second section, a redesign of the LANN

wing is demonstrated. Lastly, a gradient comparison

between various number of temporal modes is presented.

Figure 3. LANN wing grid block structure; domain topology, Npi ¼ 4,
Npj ¼ 1, Npk ¼ 3; and grid size, nx £ nj £ nk ¼ 193 £ 33 £ 97.

Figure 4. LANN wing mesh; grid size nx £ nj £ nk ¼ 193 £ 33 £ 97.
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8.1 Validation

The computational grid employed for the validation study

is a block structured grid as illustrated in figure 3. The

block domain topology is based on a Npi ¼ 4, Npj
¼ 1,

Npk ¼ 3, where Np is the number of blocks in each

direction. In this work, four blocks are used in the i

direction, one in the j direction and three in the k direction

as illustrated in figure 3(a). Each block contains a grid of

size nx £ n j £ nk ¼ 49 £ 33 £ 33. The total grid is

193 £ 33 £ 97. A cross-sectional view of the grid is

shown in figure 4.

Figures 5 and 6 illustrate the convergence of the NLFD

flow and adjoint solvers. Here, as designated in the legend,

“NLFD-3 0-Mode” indicates the zeroth mode based on a

temporal discretization of three time steps per period. The

convergence was obtained for the LANN wing test case

for three, five, and seven time steps per period. The zeroth

mode for all cases converge at the same rate. The same is

true for the first, second, and third modes. The flow solver

attains machine zero accuracy within 500 multigrid

cycles. The rate of convergence is smaller for the adjoint

solver.

The lift hysteresis is demonstrated in figure 7 for

various number of modes. As the wing oscillates at a small

angle of attack, the shock wave moves back and forth

about a mean location and is closely sinusoidal and lags

the wing motion. This lag is evident in the lift hysteresis

loop where the maximum lift does not occur at the

maximum angle of attack. The non-linear behavior of

unsteady transonic flows is primarily due to the movement

of the shock and this is evident in figure 7. Figure 7

describes that one harmonic is sufficient to produce an

accurate lift hysteresis. However, figure 8 demonstrates

that at least two harmonics are needed to capture the

variation of the drag coefficient vs. angle of attack

accurately; nevertheless, the difference is very small.

Figure 9 demonstrates the variation of lift vs. drag

coefficient, further providing evidence that at least two

harmonics are required to accurately capture the flow field

Figure 5. NLFD flow solver convergence; M1 ¼ 0:82, vr ¼ 0:102.

Figure 6. NLFD adjoint solver convergence; M1 ¼ 0:82, vr ¼ 0:102.

Figure 7. Comparison of lift hysteresis for various modes; M1 ¼ 0:82,
vr ¼ 0:102.

Figure 8. Comparison of drag coefficient vs. angle of attack for various
modes; M1 ¼ 0:82, vr ¼ 0:102.
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for the LANN wing, Run 73. Since this discrepancy is

negligible, the three time step per period case is sufficient.

In figures 10 and 11, a validation of the surface pressure

coefficients are presented. Figure 10 illustrates the

pressure distribution for two different angles of attacks

at two separate span stations. In figure 10(a) results based

on the NLFD method are compared to experimental data

and viscous solutions obtained by Gopinath and Jameson

(2005) at the span location, h ¼ 20% and angle of attack,

a ¼ 0:598. Note that “NLFD 11” indicates the solution

was acquired with 11 time steps per period using the

NLFD method. The inviscid NLFD results compare

closely with Gopinath’s viscous solutions, however, the

location of the shock for the inviscid NLFD solution

differs by 5% of the chord. This is an expected result, since

the location of the shock is generally dependent on viscous

effects especially for unsteady flows. The work in this

paper focused on inviscid flows since the primary goal was

to develop and implement the three-dimensional NLFD

adjoint algorithms. Viscous terms are currently being

implemented. Nevertheless, both solutions differ from the

experimental work and further research is necessary to

investigate the discrepancy. One possible reason for the

difference could be due to the effect of the turbulence

model on the unsteady viscous flows. Figures 10(b)–(d)

illustrate the comparison at the maximum angle of attack

Figure 9. Comparison of lift vs. drag coefficient for various modes;
M1 ¼ 0:82, vr ¼ 0:102.

Figure 10. Comparison of pressure distribution with experimental data for the LANN wing, run 73, M1 ¼ 0:82, vr ¼ 0:102.
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and at a different span location. Similar trends are

observed for these conditions.

A comparison between the time accurate and NLFD

method is presented in figure 11. Here various time steps

for both the time accurate and NLFD methods are

illustrated. The figures show a nearly perfect match

between the two methods. The time accurate solutions

were obtained for temporal resolutions with 12, 24, 36,

and 72 time steps per period. The case with 24 time steps

per period are illustrated in figure 11. The solutions were

obtained with 20 multigrid cycles per time step and five

periods, which was necessary to ensure that the transient

solutions were sufficiently eliminated before a periodic

steady state solution was acquired. The NLFD solutions

were obtained with 100 multigrid cycles for each mode.

The figures illustrate that with three time steps per period,

the NLFD method is able to capture identical results.

Similar gains were observed by McMullen (2003) and

Gopinath (Gopinath and Jameson 2005). In figure 11(b)

and (d), a close-up view of the pressure distribution

across the shock is illustrated. The figure shows a slight

deviation of the NLFD case with three time steps per

period from the time accurate and NLFD solutions with

both five and seven time steps. This deviation is very

small, yet it is the source of the discrepancy seen in figure

8. To further validate the NLFD approach for

three-dimensional unsteady flows, figure 12 demonstrates

the pressure distribution for various NLFD and time

accurate solutions at span stations 3:1, 20, 45:3 and

95:3%. At each span station, the figure shows the

comparisons at the 0, 90 and 2708 phases. The figures

show that with just three time steps per period, the three-

dimensional unsteady flow over the entire wing is well

represented. The time accurate solution in the figure is

based on 24 time steps per period.

An investigation of the real and imaginary components

of the first mode of the pressure coefficient is explored in

figure 13. The cases with five and seven time steps provide

approximately identical solutions, but the real component

of the three time step case is vastly distinct. We believe

this difference is the source of the dissimilarity seen in the

pressure distribution at the shock as shown in figure 11(b)

and that of the variation of the drag coefficient illustrated

in figure 8. However, the small magnitude of the real

component of the first mode provides an insignificant

contribution to the total pressure distribution and the

differences in figures 8 and 11(b) are negligible and does

not warrant the need for a temporal resolution of five time

Figure 11. Comparison of pressure distribution for various time accurate and NLFD solutions at the 65% span station for the LANN wing, run 73;
M1 ¼ 0:82, vr ¼ 0:102.
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steps per period. Therefore, three time steps per period is

sufficient and will be employed in the redesign of the

LANN wing.

8.2. LANN wing: redesign

This section documents the results of the redesign of

the LANN wing to reduce the time-averaged drag

coefficient for a fixed time-averaged lift coefficient and

wing thickness ratio. The simulation was performed at

a Mach number, M1 ¼ 0:82, reduced frequency, vr ¼

0:102 and deflection of ^0:258 about the zero angle of

attack. During the initial stage to compute the flow

solution, the time-averaged lift and drag are computed

and used as the target lift and objective function.

During the subsequent design cycles, the mean angle of

attack is modified at each multigrid cycle to maintain

the time-averaged lift coefficient. About 10 multigrid

cycles are used for both the flow and adjoint solvers

per design cycle.

Figures 14–16 illustrate the wing surface pressure

contour and the initial and final pressure distributions at

three span locations for each time step after 38 design

cycles. The first time step corresponds to phase ¼ 08, the

second to phase ¼ 1208, and the third to phase ¼ 2408.

In figure 14, the pressure contour illustrates the absences

Figure 12. Comparison of pressure distribution for various time accurate and NLFD solutions for the LANN wing, run 73, M1 ¼ 0:82, vr ¼ 0:102.
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of a shock wave and this is further validated in the three

pressure coefficient plots at span stations 6:2, 49:2 and

92:3%. The initial pressure distribution is illustrated as a

dotted line, while the solid is at the final design. The plots

show an elimination of the shock wave at the mid-section

with a reduction of the sectional drag coefficient from

0.0037 to 0.0030. The mean angle of attack was perturbed

from the initial zero degrees to 20:1058 to maintain the

time-averaged lift coefficient at 0.3483. The time-

averaged drag coefficient reduced by 10.5% from

0.01168 to 0.01045 within 38 design cycles. The design

is halted once the change in the objective function or time-

averaged drag coefficient reaches a level of 1·E 2 8. The

figure also demonstrates the initial and final, illustrated by

a dotted and solid line, cross-sectional airfoil profiles. A

distinctive feature of the new airfoil is the reduction of the

upper surface curvature. The reduced curvature contrib-

utes to the elimination of the shock wave in the mid-

section region of the LANN wing. At the 120 and 2408

phases, as illustrated in figures 15 and 16, a severe

weakening of the shock wave in the mid and tip sections of

the LANN wing are observed. At the 1208 phase, the mid-

section sectional drag coefficient decreased from 0.0053

to 0.0043.

In figures 17 and 18, the initial and final surface

pressure distributions are shown at the 0 and 1208 phases.

The weakening of the l-shock system is demonstrated

Figure 13. Comparison of the real and imaginary components of the first harmonic pressure coefficient for various modes and span stations;
M1 ¼ 0:82, vr ¼ 0:102. (a) h ¼ 20%, realðcpÞ; (b) h ¼ 20%, imagðcpÞ; (c) h ¼ 65%, realðcpÞ; and (d) h ¼ 65%, imagðcpÞ.

Figure 14. Initial and final pressure distribution for various span
locations at phase ¼ 08.
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Figure 15. Initial and final pressure distribution for various span
locations at phase ¼ 1208.

Figure 16. Initial and final pressure distribution for various span
locations at phase ¼ 2408.

Figure 17. (a) Initial and (b) final surface pressure contours at 08 Phase
for the LANN wing, run 73, M1 ¼ 0:82, vr ¼ 0:102.

Figure 18. (a) Initial and (b) final surface pressure contours at 1208
Phase for the LANN wing, run 73, M1 ¼ 0:82, vr ¼ 0:102.
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in figure 18(b). A complete elimination of the shock is

observed at the 08 phase.

The Validation section illustrated the ability of the

NLFD method to accurately model the flow with only

three time steps per period. However, for the case of

optimum shape design, the accuracy of the gradient of

the objective function is of paramount importance.

Figures 19–21 illustrate the gradients of the objective

function at three different span locations for various

temporal modes. The gradients are plotted in a clock-

wise direction starting from the lower trailing edge to

the leading edge and ending at the upper trailing edge

point. The figures illustrate that with just three time

steps per period, the gradients can be accurately

captured. Lastly, figure 22 presents the convergence of

DI, where I is the objective function (time-averaged

drag coefficient). DI converges linearly as expected.

Linear convergence is characteristic of a steepest

descent type method. The code is automatically stopped

as soon as a change of 1·E 2 8 is detected. This level of

change corresponds to a change to the eighth decimal

place of the drag coefficient and this is sufficient for

engineering accuracy.

9. Conclusion

The NLFD method produce essentially identical results

with just three time steps per period when compared to the

time accurate method. A redesign of the LANN wing has

been demonstrated with a reduction of the time-averaged

drag coefficient by 10.5% while maintaining the time-

averaged lift coefficient. The NLFD method with just

three time steps per period also provides accurate

gradients. These results further demonstrate the potential

of the method to provide significant improvements to

more realistic problems such as helicopter rotors,

turbomachinery and other unsteady devices operating in

the transonic regime.

Figure 19. Comparison of gradient for various time steps per period at
h ¼ 5%.

Figure 20. Comparison of gradient for various time steps per period at
h ¼ 49%.

Figure 21. Comparison of gradient for various time steps per period at
h ¼ 92%.

Figure 22. Convergence of DI, where I is the time-averaged drag
coefficient.
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