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ABSTRACT

This work describes the application of a control theory-based aero-
dynamic shape optimization method to the problem of supersonic
aircraft design. The design process is greatly accelerated through
the use of both control theory and a parallel computing. Control
theory is employed to derive the adjoint differential equations whose
solution allows for the evaluation of design gradient information ata
fraction of the computational cost required by previous design meth-
ods [13, 12, 43, 37]. The resulting problem is then implemented in a
parallel computing strategy using a domain decomposition approach,
an optimized communication schedule, and the MPI (Message Pass-
ing Interface) Standard for portability and efficiency. The final result
achieves very rapid aerodynamic design based on higher order com-
putational fluid dynamics methods (CFD).

In our earlier studies, the serial implementation of this design
method [19, 20, 21, 23, 38, 25, 39, 40, 41, 42, 9] was shown to be
effective for the optimization of airfoils, wings, wing-bodies, and
complex aircraft configurations using both the potential equation
and the Euler equations[38, 25]. In our most recent paper, the Euler
method was extended to treat complete aircraft configurations via a
new multiblock implementation. Furthermore, during the same con-
ference, we also presented preliminary results demonstrating that this
basic methodology could be ported to distributed memory parallel
computing architectures [24]. In this paper, our concern will be to

* Student Member AIAA

1 Student Member ATAA

*Student Member ATAA

5 James S. McDonnell Distinguished University Professor of Aerospace Engineering,
AIAA Fellow

—104—

demonstrate that the combined power of these new technologies can
be used routinely in an industrial design environment by applying it
to the case study of the design of typical supersonic transport con-
figurations. A particular difficulty of this test case is posed by the
propulsion/airframe integration.

INTRODUCTION

To realize the potential of CFD to produce superior designs, there
is a need not only for accurate aerodynamic prediction algorithms,
but also for design methods capable of creating new optimum con-
figurations. Yet, while flow analysis has matured to the extent that
Navier-Stokes calculations are routinely carried out over very com-
plex configurations, CFD-based design techniques are just beginning
to treat moderately complex three-dimensional configurations.
Existing CFD analysis methods have previously been used to treat
the design problem by coupling them with numerical optimization
methods [13, 12, 43, 37]. The essence of these methods, which
incur heavy computational expense, is very simple: a numerical
optimization procedure is used to extremize a chosen aerodynamic
figure of merit which is evaluated by the given CFD code. The con-
figuration is systematically modified through user specified design
variables. Most of these optimization procedures require the evalu-
ation of the gradient of the cost function with respect to the specified
design variables. The simplest of the methods to obtain these neces-
sary gradients is the finite difference method. In this technique, the
gradient components are obtained by independently perturbing each
design variable with a finite step, calculating the corresponding value
of the objective function using CFD analysis, and forming the ratio
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of the differences. The gradient is used by the numerical optimiza-
tion algorithm to calculate a search direction using steepest descent,
conjugate gradient, or quasi-Newton techniques. After finding the
minimum or maximum of the objective function along the search
direction, the entire process is repeated until the gradient approaches
zero and further improvement is not possible.

The finite difference-based optimization strategy is computation-
ally expensive because the flow must be repeatedly calculated for
perturbations in every design variable. Nevertheless, it is attractive
when compared with other traditional design strategies such as in-
verse methods, since it permits any choice of the aerodynamic figure
of merit. The use of numerical optimization for transonic aerody-
namic shape design was pioneered by Hicks, Murman and Vander-
plaats [13]. They applied the method to two-dimensional profile
design govemed by the potential flow equation. The method was
quickly extended to wing design by Hicks and Henne [12]. Later,
in the work of Reuther, Cliff, Hicks and Van Dam, this method was
successfully used for the design of supersonic wing-body transport
configurations [37]. Howeverall of these cases, which were confined
to finite difference gradients on serial computer architectures, were
limited in their geometric complexity simply due to computational
expense. For example, the designs presented in [37] were limited to
wing-body configurations. Yet it is well known that optimum perfor-
mance (especially for supersonic configurations) will require highly
tuned nacelle/airframe integrations. It was not possible to include
nacelle/airframe considerations into the design problem outlined in
[37] since the required number of mesh points, which more than
doubles with the inclusion of nacelles, could not be afforded.

In the last few years, alternative methods for obtaining design
sensitivities have been developed which greatly reduce the compu-
tational cost of optimization. References [1, 2, 3,5, 4, 7, 8, 6, 31,
28, 16, 34, 29, 27, 33, 46, 30, 35, 36, 48, 15, 32, 14] present a
partial list of recent works in this developing area of research. An
exhaustive report on the various approaches to the problem and their
advantages and disadvantages is given by the first author in [44].
The most promising of these approaches is the adjoint formulation
whereby the sensitivity of some objective function with respect to an
arbitrary number of design variables is obtained with the equivalent
of only one additional flow calculation. Here, the solution of the
adjoint system (using the same mature techniques as perfected for
the flow equations) enables each gradient element to be calculated
very cheaply, meaning the number of design variables is essentially
eliminated as a constraining factor. Moreover, the adjoint solu-
tion (and to a lesser extent the accompanying flow solution) need
not be highly converged to be useful, in significant contrast to the
highly-converged flow solutions which are crucial to accurate finite
difference gradients [44].

In spite of the large decrease in computational cost provided by
the adjoint formulation of the design problem, the aerodynamic op-
timization of a complete configuration still remains a formidable
computational task. The advent of reliable and efficient parallel
computers using distributed memory is a key enabling technology
to decrease the tumaround time of these design calculations to the
point where configurations can be optimized almost in real time.

The work presented in this paper combines these two ingredi-
ents (adjoint formulations and parallel implementations) to produce
a robust, accurate, and efficient method that can be used for the de-
sign of supersonic aircraft including the effects of airframe/nacelle
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integration.
FORMULATION OF THE ADJOINT EQUATIONS

The aerodynamic properties which define the cost function I are
functions of the flow field variables, w, and the physical location of
the boundary, which may be represented by the function 7. That is,

I=1(w7F)
and a change in F results in a change

ar” oI’

81 = %Ew + FET (1)
in the cost function. The goveming equation R and its first variation
express the interdependence of w and F within the flow field domain
D:

R, F)=D, SR= [aR]a +[ ]6}“ 0. @

Introducing a Lagrange multiplier 1, we have
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Choosing ? to satisfy the adjoint equation
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the first term is eliminated, and we find that the desired gradient
given by
T

G = oF 3F @
is only a function of . Since (4) is independent of 6w, the gradient
of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow field evaluations.
The main cost is in solving the adjoint equation (3). In general, the
adjoint problem is about as complex as a flow solution. Therefore,
when the number of design variables is larger than 2, it becomes com-
pelling to take advantage of the cost differential between one adjoint
solution and the large number of flow field evaluations required to
determine the gradient by finite differences. Once equation (4) is
obtained, G can be provided to a variety of numerical optimization
algorithms to obtain an improved design.

arr T 8R}

MULTIBLOCK FLOW SOLUTION

In order to extend the methods presented in our earlier three-
dimensional work to the treatment of complete aircraft configura-
tions, the single-block flow solver used in [21, 39, 41] must be
replaced. As with the single-block solver, the more general flow
solver must meet fundamental requirements of accuracy, efficiency,
and robust convergence to be employed in an automated design
environment, High accuracy is required since the predicted im-
provements in the design realized by the method can only be as good
as the accuracy of the flow analysis. Efficiency of the flow solver
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is also critical since the optimization of the design will generally
require the computation of many flow solutions or other solutions
of comparable complexity. Finally, robust convergence is also of
significant importance since the main benefit of aerodynamic opti-
mization is in obtaining the last few percentage points in improved
efficiency. The solutions must be converged well enough that the
noise in the figure of merit, say drag at a fixed lift, is well below
the level of realizable improvement. The desirable ability to com-
pare adjoint-based gradients with finite differencing as a check also
requires highly-converged flow solutions.

In our three-dimensional single-block applications, the FLO87
code written by the fourth author readily met all of the above crite-
ria. FLO87 achieves fast convergence with the aid of multigridding
and residual smoothing. It is normally easy to obtain solutions that
converge to machine accuracy. The challenge in the present work
was to meet these strict requirements within the framework of a
multiblock flow solver. The use of a multiblock approach is a first
step towards the treatment of more complex configurations. How-
ever, the multiblock strategy presented here is not the only viable
approach. Other alternatives such as unstructured mesh solvers are
also currently under investigation.

The general strategy in developing the multiblock flow solver is
to construct and update a halo of cells around each block such that
the flow solution inside each block is transparent to the block bound-
aries. This task requires establishing the size and location of halo
cells adjacent to block boundaries and loading the halo cell values
with appropriate flow field data at the appropriate times. To accom-
plish this task, a two-level halo is constructed around each block.
The requirement of this double halo results from the necessity of
preserving a complete stencil of calculated fluxes entering and leav-
ing each cell in the entire domain without regard to block boundaries.
This ensures that the conservative flow solution algorithm is fully
maintained. Since both the convective and the dissipative fluxes
are calculated at the cell faces (boundaries of the control volumes),
all six neighboring cells are necessary, thus requiring the existence
of a single level halo for each block in the multiblock calculation.
The dissipative fluxes are composed of a blend of first and third or-
der differences corresponding to terms that mimic second and fourth
derivatives of the flow quantities [26]. For the third order differences
at the boundary faces of each cell for all blocks, the presence of the
twelve neighboring cells (two adjacent to each face) is required. For
each cell within a block, Figure 1 shows the neighboring cells that are
required for the calculation of convective and dissipative fluxes. For
each block, some of these cells will lie directly next to an interblock
boundary, in which case, the values of the flow variables residing in
a different block will be necessary to calculate the convective and
dissipative fluxes. Halo cells on the external boundary of the entire
computational domain are constructed and updated by extrapolation
and reflection, depending on the kind of boundary condition ap-
plied. Once the halo configuration is set up for each block, standard
methods for spatial discretization and time integration (including ar-
tificial dissipation, implicit residual averaging, and multigridding)
are employed to compute the flow solution within each individual
block.

The strategy for a complete flow solution proceeds as follows:
First, the blocks that comprise the flow field mesh are read from an
external file. Then, the double halo configuration is established, for
each individual block, by inserting into halo cell locations values for
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Figure 1: Convective and Dissipative Discretization
Stencils.

grid metrics, etc., taken from the interior cells of adjacent blocks.
For the coarse grids required in the multigrid procedure, the process
is repeated with coarse grid halo cells defined by the internal cells
of adjacent coarse grid blocks. For block faces that lie on solid,
symmetry, or far field boundaries, standard single-block techniques
are used to define the halo cells. As an example, considerthe simple
4-block grid depicted in Figure 3. The halo cells for block I will be
obtained from the internal cells of blocks II, III, and IV, and from
solid or far field boundary techniques for the faces not adjacent to
other blocks. Coarse grids are computed in the usual fashion, by
aggregating groups of eight cells and then repeating the above halo
cell process. Once the halo configuration is complete for the fine and
all coarse grids, the flow solution commences.

The system of equations solved here as well as the solution strategy
follows that presented in many earlier works [26, 18, 17]. The three-
dimensional Euler equations may be written as

ow  af; 2

o N D,

5 + oz, 0 in (5)
where it is convenient to denote the Cartesian coordinates and ve-
locity components by =, 2, z3 and u,, u3, 3, and w and f; are
defined as

p pu;
puy puiny + pbi
w=< puy 3, fi=<( puiuz+pbiz (©
pu3 puitz + pia
pE pui H

where 6;; is the Kronecker delta. Also,
1
p=G-0p{E-3 ()}, %)

and
pH = pE +p, @)
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where v is the ratio of the specific heats. Consider a transformation
to coordinates &1, &2, £3 where

. =1 _ | %
Kij = [8&], J =det(K), K; _[331_].

Introduce scaled contravariant velocity components as

Ui =Qi;u;
where
Q=JK""\
The Euler equations can now be written as
% + 3—2 =0 inD, ®
with
(o ) ( pU; ]
puy pUiuy + Qirp
W=J4 puy ¢, Fi=Qi;fi=1q pliva+Qup [ -
pis pUiuz + Quizp
. PE ) \ pU:H J

(10)

For the multiblock case, the above notation applies to each block
in tum. The flow is thus determined as the steady-state solution to
equation (9) in all blocks subject to the flow tangency conditions on
all solid boundary faces of all blocks:

Uy =0 onall Bs (11)

where 7 is 1, 2, or 3 depending on the direction that is normal
to the face Bs where a solid surface is assumed to exist. At the
far field boundary faces, Br, freestream conditions are specified
for incoming waves, while outgoing waves are determined by the
solution.

The time integration scheme follows that used in the single-block
strategy [26]. The solution proceeds by performing the cell flux
balance, updating the flow variables, and smoothing the residuals, at
each stage of the time stepping scheme and each level of the multigrid
cycle. The main difference in the integration strategy is the need to
loop over all blocks during each stage of the integration process. The
use of the double-halo configuration permits standard single-block
subroutines to be used, without modification, for the computation of
the flow field within each individual block. This includes the single-
block subroutines for convective and dissipative flux discretization,
multistage time stepping, and multigrid convergence acceleration.

The only difference between the integration strategies is in the
implementation of the implicit residual averaging technique. In the
single-block solution strategy, a tridiagonal system of equations is
set up and solved using flow information from the entire grid. Thus,
each residual is replaced by an average of itself and the residuals of
the entire grid. In the multiblock strategy, the support for the implicit
residual smoothing is reduced to the extent of each block, in order
to eliminate the need to solve large tridiagonal systems spanning the
blocks, which would incur a penalty in communication costs and
may not even be defined. This change has no effect on the final
converged solution, and in the present application has not led to any
significant reduction in the rate of convergence.
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THE ADJOINT FORMULATION FOR THE EULER EQUA-
TIONS

The application of control theory to aerodynamic design problems
is illustrated by treating the case of three-dimensional design, using
the Euler equations discussed above as the mathematical model for
compressible flow. In our previous work, the illustrative problem
most often used specified the cost function as a measure of the differ-
ence between the current and some desired pressure distribution. In
the case of transonic flows over conventional commercial transport
wings this aerodynamic figure of merit proves to be very effective
since the tailoring of these pressure distributions to achieve close to
optimum performance is well understood by most aerodynamicists.
However, for the case of supersonic design of three-dimensional
configurations, the specification of pressure distributions that will
determine near optimum performance is a considerably more chal-
lenging problem. Thus the development here will focus on the more
salient problem for supersonic design: drag minimization at a fixed
lift.
I= Cp
= Cacosa+ Cy sina
1

= 3 f/ Cp (Sx cos o + Sy sina) dédgy,
ref Bs

where Sz and Sy define projected surface areas, S, o is the reference
area, and d¢, and d&; are the two coordinate indices that are in the
plane of the face in question. Note that the integral in the final
expression above is carried out over all solid boundary faces. The
design problem is now treated as a control problem where the control
function is the geometry shape, which is chosen to minimize I,
subject to the constraints defined by the flow equations (5-10). A
variation in the shape will cause a variation §p in the pressure and
consequently a variation in the cost function

51 =500+ 2244
da

where §C'p is the variation due to changes in the design parameters
with e fixed. To treat the interesting problem of practical design,
drag must be minimized at a fixed lift coefficient. Thus an additional
constraint is given by

6CL =0,

which gives
5G4 2 s 0
da

Combining these two expressions to eliminate do gives

_ 2cp)

§I =6Cp — (%{L) §CL. (12)

Since p depends on w through the equation of state (7—8), the varia-
tion 6p can be determined from the variation w. If a fixed computa-
tional domain is used, the variations in the shape result in variations
in the mapping derivatives. Define the Jacobian matrices

Aps2h

e Oi= Qi A;. (13)
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Then the equation for éw in the steady state becomes
a

% GF)=0, (14)

where in the domain
6F; =Cibw + 6 (Q,‘,‘) f,‘,

and on the solid surface,

¢ 0 3 ( 0 3
Qmép 6 (Qm)
0Fy = § Qmép p+p§ 6(Qm)  onany Bs.
Qnabp ) (Qns)
\ 0 s \ 0 s

(15)

Now, multiplying equation (14) by a vector co-state variable ¥,
assuming the result is differentiable, and integrating by parts over
the entire domain,

ay” T
a—asﬂ- dé;— | (R 6F:)dé; =0,  (16)
D » B

where 1i; are components of a unit vector normal to the boundary.
Equation (16) can now be subtracted from equation (12) without
changing the value of 6. Then ¥ may be chosen to cancel the
explicit terms in dw and ép. For this purpose 9 is set to the steady-
state solution of the adjoint equation

%._CT%

N JFTS =0 inD, 17)

with the surface boundary condition
(¥2Qm + ¥3Qn2 + $4Qn3) = Q onall Bs, (18)

where
1 :
= m {(S, cosa + S, sma)
+9 (S cosa — S sine) }
and
(1)
8="(z)"
Ba

At internal block boundaries, the face integrals cancel from the
adjacent blocks. At the far field the choice of the adjoint boundary
conditions depends on whether the flow is subsonic or supersonic.
For subsonic flow, so long as the outer domain is very far from the
configuration of interest, we may set

P1—s =0 onall Bp.

If, however, the flow is subsonic and the boundary is fairly close,
then far field faces may be set by ¥1—s = 0 for incoming waves,
while outgoing waves are determined by the solution. It is noted
that the waves in the adjoint problem propagate in the opposite
direction to those in the flow problem due to the transpose in equation
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(17). For supersonic flows, the choice of boundary conditions at the
outer domain can be developed from physical intuition as well as
mathematical analysis. For a given geometry, say a wing, a change
in the surface at any particular point, 7, will incur changes in the
fiow field and hence the performance in the region defined by the
Mach cone originating at P. Similarly, it is possible to determine
the region over which surface changes affect the flow condition ata
given point. This region would also form a cone that would point
exactly in the opposite direction of the Mach cone, depending on
local conditions. It is the solution of this reverse problem that the
adjoint represents. The contribution to, say, drag at a given point is
influenced by changes to the surface at all points within the reverse
cone. The correct supersonic far field boundary conditions for the
adjoint equation that are consistent with this reversed character are:

¥i—s = 0 atthe exit;
-5 extrapolated from the interior at the inflow boundary.

Then if the coordinate transformation is such that é (J K") is neg-
ligible in the far field, we obtain the expression

§I = 1 f/ C,,{(SS_—.-casor+:SSy sincr)
Bs

S1'ef'

+Q (68, cosa — 65, sina) } dédé,
¥ | L2 (601 dns (19)
D ae‘

Details of the approach as well as the development for other cost
functions have been presented in references [21, 23, 25, 39, 40, 42].

MULTIBLOCK MESH VARIATIONS AND DESIGN VARI-
ABLES

In order to construct 67 in equation (19), the variation in the metric
terms must be obtained in each block. One way to accomplish this is
to use finite differences to calculate the necessary information. This
approach avoids the use of multiple flow solutions to determine the
gradient, but it unfortunately still requires the mesh generator to be
used repeatedly. The number of mesh generations required is propor-
tional to the number of design variables. The inherent difficulty in
the approach is two-fold. First, for complicated three-dimensional
configurations, elliptic or hyperbolic partial differential equations
must often be solved iteratively in order to obtain acceptably smooth
meshes. These iterative mesh generation procedures are often com-
putationally expensive. In the worst case they approach the cost of
the flow solution process. Thus the use of finite difference meth-
ods for obtaining metric variations in combination with an iterative
mesh generator leads to computational costs which strongly hinge on
the number of design variables, despite the use of an adjoint solver
to eliminate the flow variable variations. Second, multiblock mesh
generation is by no means a trivial task. In fact no method currently
exists that allows this to be accomplished as a completely automatic
process for complex three-dimensional configurations.

In our earlier works [39, 38, 25, 19, 20, 21], two methods have
been explored which avoid these difficulties. In the first method,
a completely analytic mapping procedure was used for the mesh
generation. This technique is not only fully automatic and results in
smooth consistent meshes, but it also allows for complete elimination
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of finite difference information for the mesh metric terms. Since
the mapping function fully determines the entire mesh based on the
surface shape, this analytic relationship may be directly differentiated
in order to obtain the required information without considering a
finite step. An analytic mapping method requires the geometry
topology to be built directly into the formulation, and only works for
simple configurations. Nevertheless, within these limitations it has
proven to be highly effective [19, 20, 21].

The second method that we have explored is the use of an analytic
mesh perturbation technique. In this approach, a high quality mesh
appropriate for the flow solver is first generated by any available
procedure prior to the start of the design. In examples to be shown
later, these meshes were created using the Gridgen software devel-
oped by Pointwise Inc.[45]. This initial mesh becomes the basis for
all subsequent meshes which are developed by analytical perturba-
tions. In the method that was previously developed for wing-body
configurations it had been assumed that only one surface, say the
wing, was perturbed during a design case. This permitted the use of
a very simple algebraic mesh perturbation algorithm. New meshes
are created by moving all the mesh points on an index line projecting
from the surface by an amount which is attenuated as the arc length
from the surface increases. If the outer boundary of the grid domain
is held constant the modification to the grid has the form

new old old new old
;Y =z + 8 (n:_,‘. — T,

(20)
where ; represents the volume grid points, z ., represents the surface
grid points and S represents the arc length along the radial mesh line
measured from the outer domain, normalized so that S = 1 at the
inner surface. Unfortunately this simple logic breaks down in the
case where multiple faces sharing common edges are allowed to
move. Thus in order to use analytic mesh perturbations for the
treatment of the more general problem where multiple faces of a
given block may be simultaneously deformed, equation (20) had to
be modified in a way that resembles transfinite interpolation (TFT)
[47]. Unlike TFI, where there is no prior knowledge of the interior
mesh, the perturbation algorithm developed here (WARP3D) does
make use of the relative interior point distributions in the initial mesh.

The WARP3D algorithm has been modified from that presented
in reference [42] and is now a three stage procedure. The first
stage shifts the internal mesh points to produce an interim block that
is determined entirely by the new locations of the 8 comer points
defining the block. Corresponding to the motion of each comer point,
each interior point is shifted by a displacement proportional to one
minus the normalized distance along the index lines away from that
comer point. The second stage corrects the perturbations resulting
from the first stage by determining the distance each of the 12 edges
of the stage 1 block needs to be moved to attain the desired edge
locations. These perturbations are then also incorporated into the
volume mesh points through a weighting scheme that is proportional
to the relationship of an individual edge point motion and the volume
point in question. Finally with both comer and edge point motion
accounted for, the third stage checks the perturbation of each point

to the interior points through relative arc length-based perturbations
along projecting index lines. In general all 3 stages are required.
The idea of WARP3D is to use an initial mesh with good quality
attributes as a starting point, and then systematically perturb this
mesh in a manner such that the original grid quality is maintained,
without the need for expensive elliptic smoothing.

Since our current flow solverand design algorithm assume a point-
to-point match between blocks, each block may be independently
perturbed by WARP3D, provided that perturbed surfaces are treated
continuously across block boundaries. The entire method of creating
anew mesh is given by the following algorithm.

1. Allfaces thatare directly affected by the design variables (active
faces) are explicitly perturbed.

2. All edges that touch an active face, either in the same block or
in an adjacent block, are implicitly perturbed by (20).

3. All inactive faces that either include an implicitly perturbed
edge or abut to an active face are implicitly perturbed by a
quasi-3D form of WARP3D.

4. WARP3D is used on each block that has one or more explicitly
or implicitly perturbed faces to determine the adjusted interior
points.

Note that much of the mesh, especially away from the surfaces, will
not require mesh perturbations and thus may remain fixed through
the entire design process. Close to the surfaces, many blocks will
either contain an active face or touch a block which contains an
active face, either by an edge or by a comer. As the design variations
affect the active faces, the above scheme ensures that the entire mesh
will remain attached along block boundaries. Added complexity is
needed to accomplish step (2) since the connectivity of the various
edges and comers must be indicated somehow. Currently, pointers
to and from a set of master edges and master comers are determined
as a preprocessing step. During the design calculation, deflections
to any edges or comers are fed to these master edges and master
comers which in turn communicate these changes to all connected
edges and comers.

Since this mesh perturbation algorithm is analytic it is possible
to work out the analytical variations in the metric terms required
for equation (19). This approach was followed in reference [39].
However since the mesh perturbation algorithm that was used in
the current paper was significantly more complex, and it was dis-
covered that the computational cost of repeatedly using the block
perturbation algorithm was minimal, finite differences were used to
calculate 6Q;; instead of deriving the exact analytical relationships.
Even in cases with hundreds of design variables, the computational
cost of repeatedly re-evaluating 6Q;; for all necessary blocks is
still insignificant compared with the cost of a single flow solution,
The conclusion is that the analytical mesh perturbation algorithm,
WARP3D, unlike an elliptical mesh generation method, is efficient
to the extent that the cost of remeshing can be neglected.

in all six faces relative to the position of the corresponding point
in the stage 2 block. If the perturbation of the domain involves
a simple translation of all boundary points, the relative changes
from stages 2 and 3 will be zero and all the perturbation will be
accomplished by stage 1. If, however, face points are perturbed
relative to the reference block, then these changes are propagated

DESIGN VARIABLES AND CONSTRAINED OPTIMIZATION

It remains to choose design variables and impose constraints. In our
earlier work, where the analytic mesh mapping strategy was used,
each point of the surface mesh served as a design variable. This
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technique combined with smoothing and projecting into feasible
space of the resulting gradient has proven to be highly effective for
single-block design cases [19, 20, 21, 23, 25, 38, 39].

Alternatively, geometric design variables and constraints may be
provided for selection by the designer to allow greater control over
the design process. In this scenario, design variables, say b;, are
choosen which smoothly modify the original shape. The gradient
can then be defined with respect to these design variables as

28
ob;’

where 67 is calculated by (19) and each term b; is independently
perturbed by a finite step. Therefore, to construct G, a basis space of
independent perturbation functionsb;, t = 1,2,...,n (» = number
of design variables) must be chosen to allow for the needed freedom
of the design space. In this work, design variables were chosen as a
set of Hicks-Henne functions simply for their ease of implementation
and their proven reliability. The form of the Hicks-Henne functions
which were initially proposed in Reference [12] is given by:

£ L1
b(z)= [sin (x:ﬁ%‘%)] ;s <<l (22)

Here t) locates the maximum of the bump in the range 0 < z < 1
at = t,, since the maximum occurs when % = %, where o =
log %/ logt;, or alogt; = log%. The parameter ¢z controls the
width of the bump.

To develop this perturbation function design variable strategy fur-
ther, the multiblock approach has been coupled to the NPSOL al-
gorithm of Gill, Murray, Saunders, and Wright [10]. NPSOL is a
sequential quadratic programming (SQP) method in which the search
direction is calculated by solving the quadratic subproblem where
the Hessian is defined by a quasi-Newton approximation of an aug-
mented Lagrangian merit function. The Lagrange multipliers in this
merit function serve to scale the effect of any nonlinear constraints
that the design may contain. Linear constraints are treated by solv-
ing the quadratic subproblem such that the projected search direction
remains in feasible space. A complete treatment of the method and
other optimization strategies is given by Gill, Murray, and Wright
[11].

The primary control upon which the entire design process revolves
is the variation in the aerodynamic surfaces. This is readily apparent
from the development of the adjoint approach. Thus it is at the level
of surface variations that the coupling with NPSOL is accomplished.
Realizing that aircraft configurations are composed of separate en-
tities (wings, fuselages, nacelles, etc.) upon which constraints are
imposed, an underlying set of geometry entities acts as a starting in-
put for the design process. Next, the user-specified design variables
are allowed to act independently upon any of these geometry enti-
ties. Linear and nonlinear geometric constraints are also evaluated
on these primary geometry entities. At any particular point in the
design process, changes to the mesh surfaces are obtained by first
intersecting all of the geometry entities to construct a set of paramet-
ric surfaces representing the complete configuration. The location
of each surface mesh point on this parametric representation is de-
termined for the initial configuration in a preprocessing step. The
perturbed surface mesh point locations are determined by evaluating
the parametric geometry surfaces at these predetermined locations.
Once the surface mesh points have been updated, the volume mesh

G(b:) = 21)

—110—

may be perturbed and either the gradient or the solution calculated.
The important feature of this approach is that a set of simple geometry
entities lies at the core of the entire design process. This technique
retains the typical way in which aerodynamic vehicles are defined,
and provides strict control over how, say, wing/body intersections are
treated. Furthermore, since the chosen design variables act directly
upon the geometry entities, at the end of the design process these
entities may be output for future analysis.

In the current implementation, the input geometry entities are
restricted to those defined by sets of points. However, in the future,
CAD entities such as NURBS surfaces will also serve in this role,
thereby allowing both the input and the output from the aerodynamic
surface optimization to interface directly with a CAD database.

DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-
TATION

The main strategies that are used to accomplish the parallelization of
the design code are: a domain decomposition model,a SPMD (Single
Program Multiple Data) strategy, and the MPI (Message Passing
Interface) Library for message passing. The choice of message
passing library was determined by the requirement that the resulting
code be portable to different parallel computing platforms as well as
to homogeneous and heterogeneous networks of workstations.

As one can see from the previous sections, obtaining the desired
parallelization by domain decomposition entails the treatment of four
separate parts: the solution of the flow equations, the solution of the
adjoint equations, the calculation of the mesh perturbations, and the
calculation of the gradient integral formulas. No attempt is made to
parallelize the constrained SQP optimization algorithm or the calcu-
lation of the changes to the underlying geometry entities. It is thus
assumed in this construct that the determination of the step sizes and
search directions provided by the optimization algorithm is com-
putationally insignificant when compared with the other elements
necessary during the design.

Since the flow and adjoint equations are to be solved using ex-
actly the same efficient numerical techniques, the same paralleliza-
tion techniques used for the flow equations apply to the solution
of the adjoint equations. Therefore, all details of the parallel im-
plementation corresponding to these first two parts of the program
are identical. Furthermore, since the mesh perturbation algorithm
WARP3D also works on a block-by-block basis, the communication
necessary to maintain mesh consistency can also be addressed by the
same domain decomposition strategies that are used for thestate and
costate fields.

The subdomains of the flow solution resident on each processor are
divided along the block boundaries such that one or more complete
blocks are allocated to each processor. This has the natural conse-
quence that the communication between subdomains is performed
through the same halo cells that were described earlier for the multi-
block computations, only now, the interior cells corresponding to
given halo cells might reside in a different processor. An alternative
to this would be to partition the complete problem along the three
coordinate directions for each of the blocks in the mesh. Since the
sizes of the blocks can be quite small, this further partitioning would
severely limit the number of multigrid levels that could be used in
the flow and adjoint solutions. The underlying assumption is the fact
that there always will be more blocks in the mesh than processors
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available. If this is the case, every processorin the domain would be
responsible for the computations inside one or more blocks. In the
case in which there are more processors than blocks available, the
blocks can be adequately split during a pre-processing step in order
to have at least as many blocks as processors. This approach has
the advantage that the number of multigrid levels that can be used in
the parallel implementation of the code is always the same as in the
serial version, and is only limited by the size of the smallest block in
the mesh.

One advantage of the assignment of complete blocks to a given
processor is that the number of processors in the calculation can be
an arbitrary integer. The drawback of this approach is the loss of the
exact load balancing that can be achieved by coordinate direction
partitioning. All blocks in the calculation can have different sizes,
and consequently, it is very likely that different processors will be
assigned a different total number of cells in the calculation. This, in
tumn, will imply that some of the processors will be waiting until the
processor with the largest number of cells has completed its work
with the result being that the parallel performance will suffer. The
approach that we have followed to solve the load balancing problem
is to assign to each processor, in a pre-processing step, a certain
number of blocks such that the total number of cells in each processor
is as close as possible to the exact share for perfect load balancing.
In practice, this approach yields quite good load balancing [24]. One
must note that load balancing based on the total number of cells in
each processor is only an approximation to the optimal solution of
the problem. Other variables such as the number of blocks, the block
locations, the size of each block, and the size of the buffers to be
communicated play an important role in proper load balancing, and
are the subject of current study.

Now, within each processor, there will be several blocks that need
to communicate with their neighboring blocks. The data for these
neighboring blocks can reside in a different processor, and therefore,
communication is necessary. In order to minimize communication
cost, it was decided to pack all data that needed to be communicated
from one processor to another in one single message, regardless of
the number of blocks that resided in each of the processors, Within
each processor, the data for the flow variables, adjoint variables, and
grid locations are stored on a large one-dimensional array. In order
to accomplish this type of communication, during the pre-processing
step, each processor compiles a pointer list with all the entries in these
large arrays that need to be sent to all other processors. Similarly,
another pointer list for the locations of the data to be received is
also setup. At the time of communication exchanges each processor
communicates all the information for the blocks that it contains to
those processors that need to receive it. The communication is
implemented using asynchronous (non-blocking) send and receive
MPI constructs.

The final formulas for the gradient of the cost function include a
number of volume and surface integrals (see [22]) that can also be
calculated in parallel. The nature of the integrations is such that,
from a domain decomposition point of view, the problem is nearly
embarrassingly parallel, since the partial values of the integrals in
each domain can be calculated without the need for any communi-
cation at all. Once the individual processors have completed their
calculation, a single global MPI reduce operation can combine the
results into the total gradients, which can then be passed to the nu-
merical optimization algorithm to develop the shape change at each

1st SST-CFD Workshop

design iteration.

COMPLETE MULTIBLOCK DESIGN ALGORITHM (SYN87-
MB

With all the necessary components defined for the multiblock adjoint-
based design, it is now possible to outline the complete procedure:

1. Decompose the multiblock mesh into an appropriate number of
processors, and create lists of pointers for the communication
of the processorhalo cells.

2. Solve the flow field govemning equations (5-10) for each design
point.

3. Solve the adjoint equations (17) subject to the boundary condi-
tion (18) for each design point.

4. For each of the n design variables repeat the following:

e Perturb the design variable by a finite step to modify the
geometry entities,

o Reintersect the geometry entities to form parametric ge-
ometry surfaces.

» Explicitly perturb all face mesh points affected by the
geometry changes by evaluating their locations on the
parametric geometries.

o Implicitly perturb all faces that share an edge with an
explicitly perturbed face.

e Obtain the new intemal mesh point locations via
WARP3D for those blocks with perturbed faces.

¢ Calculate all the delta metric terms, 6€); ;, within those
blocks that were perturbed by finite differencing.

o Integrate equation (19) to obtain 67 for those blocks that
contain nonzero §Q); ;, and for each design point, to de-
termine the gradient component,

5. Calculate the search direction via NPSOL and perform a line
search.

6. Return to (2) if a minimum has not been reached.

The basic method here builds on that used in reference [39] with the
proper extensions to treat multiblock domains. In order to imple-
ment the method, equation (17) and boundary condition (18) must
be discretized on the multiblock domain. In the current implemen-
tation, a cell centered, central difference stencil that mimics the flux
balancing used for the flow solution is used. Since this choice of
discretization differs from the one obtained if the discrete flow equa-
tion Jacobian matrix were actually transposed to form the adjoint
system, the gradients obtained by the present method will not be
exactly equal to the gradients calculated by finite differencing the
discrete flow solutions. However, as the mesh is refined these differ-
ences should vanish. Continuing, the adjoint system so discretized
is solved on the multiblock domain in a fashion identical to that
used for the flow solution. Therefore, the adjoint solver, like the
flow solver, uses an explicit multistage Runge-Kutta-like algorithm
accelerated by residual smoothing and multigridding. Intra-block
communication is again handled through a double halo which allows
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for the full transfer of information across boundaries except for the
stencil of support for the implicit residual smoothing.

Step (4) in the above procedure is the portion of the method that is
still treated by finite differences. Fortunately, all of these steps incur
a small computational cost compared with a single flow analysis.
It is therefore possible, without significant penalty, to leave this in
finite difference form even for cases where many hundreds of design
variables are used.

PARALLEL EFFICIENCY

Forproblems with a low task granularity (ratio of the numberof bytes
received by a processor to the number of floating point operations
it performs), large parallel efficiencies can be obtained. Unfortu-
nately, convergence acceleration techniques developed in the 1980s
base their success on global communication in the computational
domain. Thus, current multigrid and implicit residual smoothing
techniques could possibly hinder parallel performance in traditional
mesh sizes. However, for larger meshes used in viscous flows and
complex geometries, the granularity becomes low enough, and the
parallel performance is quite high.

A careful implementation of the communication schedules can
yield a design method with excellent parallel performance. The par-
allel efficiency of the design method is presented in Figure 2 for the
case of the automated redesign of a typical business jet configura-
tion. In the modeling of the aircraft, a wing-body-nacelle topology
was used containing 240 blocks of varying sizes with a total of 4.1
million cells. It must be noted that the parallel speed-ups below
are computed using true execution wall-times. The execution time
of the one processor job is taken as that of the most efficient serial
implementation of the method. I/O time was also included in the
performance calculations. As one can see, for a problem of moder-
ate size such as this, excellent speed-ups are obtained using up to 16
processors. For 32 processors the achieved speedup is 27.7. It must
be mentioned that, for this particular mesh which contains blocks
of varying sizes, it was impossible to distribute the computational
load perfectly among 32 processors. The highest speedup that could
be hoped for was 29.5 in this case (if the communication time is
assumed to be non-existent).

NUMERICAL TESTS AND RESULTS

To demonstrate the utility of the design method, a supersonic trans-
port configuration will be used as a testbed for the optimization
algorithm. The baseline supersonic transport configuration depicted
in Figures 4—6 was sized to accommodate 300 passengers with a
gross take-off weight of 750,000 lbs. The supersonic cruise point
is Mach 2.2 with a C, of 0.105. As can be seen in Figure 6, the
planform has a break in the leading edge sweep. The inboard leading
edge sweep is 68.5 degrees while the outboard is 49.5 degrees. Since
the Mach angle at M = 2.2 is 63 degrees it is clear that some leading
edge bluniness may be used inboard without a significant wave drag
penalty. Airfoils which use blunt leading edges were created that
range from 4% thick at the root to 2.5% thick at the leading edge
break point. The symmetric initial airfoils were chosen with the pur-
pose of accommodating thick spars at roughly 30% and 80% chord
over the span up to the leading edge break. Outboard of the lead-
ing edge break where the wing sweep is ahead of the Mach cone, a
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Figure 2: Parallel Speed-ups for the Adjoint Design
Method

sharp leading edge was used to avoid undue wave drag. The airfoils
were chosen to be symmetric, biconvex shapes modified to have a
region of constant thickness over the mid-chord. Figure 5 shows that
the four-engine configuration features axisymmetric nacelles tucked
close to the wing lower surface. This layout favors reduced wave
drag by minimizing the exposed diverter area. However, it may be
problematic because of the channel flows occurring in the juncture
region of the diverter, wing, and nacelle at the wing trailing edge. The
leading edge heights of the diverters are determined by the boundary
layerlocal displacement thickness such that entrainment of boundary
layer flow into the engines is avoided. Since the distance from the
wing leading edge to the diverter leading edge is different for the
two nacelle, this causes a corresponding diverter height difference.

The computational mesh on which the design is run has 180blocks
and 1,500K mesh cells, while the underlying geometry entities define
the wing with 16 sectional cuts and the body with 200 sectional cuts.
Figure 6 shows the solution on the upper and lower surface for
the baseline configuration at the cruise point. The complex mesh
system in and around the nacelles shown in Figure 4 was perturbed
automatically as the design proceeded. While the point-to-point
topology forces a larger number of blocks to be used, this is actually
beneficial from the standpoint of parallel load balancing.

In this case, where we hope to optimize the shape of the wing, care
must be taken to ensure that the nacelles remain properly attached
with the diverter heights maintained. To accomplish this without
the inclusion of additional geometry entities, the portions of the
nacelles and diverters that are actually below the wing planform
outline take their associated surface mesh point motion from their
projected locations on the lower parametric wing surfaces.

The objective of the design is to reduce the drag at the single design
point (Mach = 2.2, C, = 0.105) by modifying the wing shape. Just
as in the transonic cases, 18 design variables of the Hicks-Henne
type are chosen for a given wing defining section. However, instead
of applying them to all 16 sections, they are applied to 8 of the
sections and then lofted linearly to the neighboring sections. Spar
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constraints are imposed for all wing defining sections at z/c = 0.05
and z/c = 0.8. An additional maximum thickness constraint is
specified along the span at z /¢ = 0.5. A final thickness constraint is
enforced at z /¢ = 0.95 to ensure a reasonable trailing edge included
angle. An iso-Cp representation of the initial and final designs is
depicted in Figure 6 for both the upper and lower surfaces.

It is noted that the strong oblique shock evident near the leading
edge of the upper surface on the initial configuration is largely elim-
inated in the final design after 5 NPSOL design iterations. It is also
seen that the upper surface pressure distribution in the vicinity of the
nacelles has formed an unexpected pattemn. However, it is recalled
that thickness constraints abound in this design, and these upper sur-
face pressure patterns are conjectured to be the result of sculpting
of the lower surface near the nacelles which affects the upper sur-
face shape through the thickness constraints. For the lower surface,
the leading edge has developed a suction region while the shocks
and expansions around the nacelles have been somewhat reduced.
Figure 7 shows the pressure coefficients and (scaled) airfoil sections
for four sectional cuts along the wing. These further demonstrate
the removal of the oblique shock on the upper surface, and the ad-
dition of a suction region on the leading edge of the lower surface.
The airfoil sections have been scaled by a factor of 2 so that shape
changesmay be seen more easily. Most notably, the section at 38.7%
span has had the lower surface drastically modified such that a large
region of the aft airfoil has a forward-facing portion near where the
pressure spike from the nacelle shock impinges on the surface. The
final overall pressure drag was reduced by 8%, from Cp = 0.0088
to Cp =0.0081.

CONCLUSIONS

In the period since this approach to optimal shape design was first
proposed by the fourth author [19], the method has been verified by
numerical implementation for both potential flow and flows modeled
by the Euler equations [20, 38, 25, 23]. It has been demonstrated
that it can be successfully used with a finite volume formulation
to perform calculations with arbitrary numerically generated grids
[38, 25]. Further, results have been presented for three-dimensional
calculations using both the analytic mapping and general finite vol-
ume implementations [39]. In the last year the technique has been
adopted by some industry participants to perform the aerodynamic
design of future configurations [9]. With the parallel implementa-
tion of the multiblock flow solver presented here, the technology has
advanced to the degree that aerodynamic shape design of complete
aircraft configurations with very rapid turnaround is possible.

In this paper we have shown how the complicated design of super-
sonic aircraft configurations including airframe/nacelle interaction
effects can be accomplished in a routine fashion with the inclusion
of constraints. For demonstration purposes a typical supersonic con-
figuration with closely coupled nacelles and diverters was used as
a test case. Nacelles of the axisymmetric type were employed and
situated such that they almost abutted the wing lower surface. The
diverters filling the space between the nacelles and the wing lower
surface were constructed to eliminate the possibility of boundary
layer entrainment into the nacelle inlets. These geometry entities
as well as the complete wing and body were fully modeled using
the new parellel multiblock analysis and design method. A con-
strained wing design case was carried out to optimize the cruise
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point performance for the complete aircraft configuration subject to
wing thickness constraints and fixed lift. All analysis and design
cases were performed on parallel architecture machines in less than
one day, demonstrating that complete configuration designs may be
achieved with rapid tum-around even with the most conservative
estimates of available computational resources. In future efforts, the
techniques will be extended to address both unstructured meshes and
flows govemned by the Navier-Stokes equations.
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Figure 3: 4 Block interface using a double halo of cells around each block.
Each block’s double halo of cells contains information from internal cells in
adjacent blocks.
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Generic Supersonic Transport Configuration
SYN87-MB Grid Structure: 180 Blocks

Generic Supersonic Transport Configuration
SYN87-MB Solution
Pressure Coefficient

Mach = 2.2 a = 3.15° C, = 0105

Cp
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6a: Upper Surface 6b: Lower Surface

Figure 6: Sup ic Transport Config
Iso-Cp Contours on Upper and Lower Surfaces.
Baseline and Optimized Designs.
M=22,C, =0105
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7d: span station z = 0.775

Figure 7: Supersonic Transport Configuration. Drag Minimization at Fixed Lift.

M = 2.20,C, = 0.105

144 Hicks-Henne variables. Spar Constraints Active.

- - -, Initial Pressures

—, Pressures After 5 Design Cycles.
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