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Introduction

This paper describes the implementation of optimization techniques b_ed on control theory for airfoil design.
In our previous work in the area [6, 7, 19, 11] it was shown that control theory could be employed to devise
effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler
equations with either a corfformai mapping or a general coordinate system. We have also explored three-
dimensional extensions of these formulation._ recently [10, 9, 20]. The goal of our present work is to demonstrate
the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-
spline control points as design variables. The research also dentonstrates that the parameterizauon of the
design space ts an open question in aerodynamic design.

Formulation of the design

problem as a control problem

In this res,_arch control theory serves to provide computationa!ly inexpensive gradient information to a standard
numerical optimization method. For flow about an airfoil or wing, the aerodynamic properties which define
the cost function are functions of the flow-field variables (u,) and the physical location of the boundary, which
may be represe_:_ed by the function Y', say. Then

! = ltw, 5)

and a change in 7" results in a change

olr bw Olr
,5; = _u---7 + _-f _.r ! l )

in the c_st function. Each term in (1), except for 6w, can be easily obtained. Finite difference methods
evaluate the gradient by making a small change in each design variable separately, and then recalculate both
the grid and flow-field variables. This requires a number of additional flow caku!atmns equal te the number of
design variables. Using control theory, the governing equations of the flowfield are introduced as a constraint
in such a way that the final evaluation of the gradient does_,not require multiple flow solutions. In order to
achieve this, btt, must be eliminated from _/. The governing equation R and its first variation express the
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dependencP of u' +,ud 5 within the fl._,wfivld dmnain I):

= O. (2)

N_-xt. intr_,dticin_ a I, agran_e multiplier _+. w,, have

i:[_' ;,_;. + ,_u + -- h.Y
(_l _ #, _-,__r - _/_,:J lO./J

-- . ,i,,,--:--" E_J ""+ ,-T_-- [i-;7]j

('hoosiug t tosalisfy t}'_' adjoint equati,_r:

the first term is eliminated, and we lind that the desired gradient is given by

(?,)

off _;.:r [ it R ]
GT- #Y t_---iJ " (4)

The advantage is that (4) is independent of bu', with the result that the grad:,ent of 1 with respect to an

arbitrary number of design variables can be determined without the need for additional flow-field evaluations.

The main cost is in solving the adjoint equation (3). in general, the adjoint problem is about a,s complex as

a flow solution. If the number of design variables is large, the cost differ_'ntial between one adjoint solutiol:

and the large number of flowfield evaluations required to dete_ mine the gradient by finite differencing becomes

compelling. Once equation (4) is obtained, _7 can be fed into any numerical optimization algorithm to obtain

an improved design.

Issues of importance for design problems

The deveioF :wnt of aerodynamic design proceedures that employ an adjoint equation formulation is currently

being investigated by many researchers. These methods promise to allow computational fluid dynamics meth-

ods to becom_ true aerodynamic design methods. References [1.2. 12, 13, 16 15. 14, 21. 17, 22] represent a

partial list of recent works that reflect this developing field. However, as is the case in any new research field.

many questions remain. Probably the most salient issues of concern are the following:

1. Discrete vs. continuous seiisitivities

2. Choice of optimization procedures

3. Treatment of geometric and aerodynamic constraints

4. The level of coupling between design and analysis

5. The parameterizatmn of the design space

These topics, which were outlined in a proposal to the I'.S. Airforce in i991 [8], still require intens,,ve inves-

tigation in the up coming years. With regards to the first item, it is historically interesting that Jameson in

'. _8 [6] first developed the equations for a continuous approach to transonic airfoil and wing design, whereby

the steps represented by equations (1-4) were applied to the governing differential equations. The resul:ing

adjoint differential equation_, with the appropriate boundary conditions may then be disrretized and sol_ed

in a manner similar to th_.t used for the flow solver. One may alternatively derive a set of discret,- adjoint

equations directly from th,, discrete approximation to the flow equations by following the procedu-e outlined

in equations (1-4). The re:_ulting discrete adjoint equations are one of the possible discretizations of the con-

tinuous adjoint equations. "l'his alternative is mentioned in [7], but was not adopted in that work because

of the complexity of the resulting discrete adjoint system. It ha.s the advantage that the resulting discrete

gradients are the true gradients of the discrete model of the flow equations, and it has found favor in the work

of Taylor et ai. [16, 13, le] and others [1. 2]. It seems that both alternatives have some advantages. The

continuous approach gives the researcher some hope for an intuitive understanding of the adjoint system and



its related boundary conditioIls. It also pern_its an easy recycling of _he solution meth,_dology used fiJr th:'

flow solv,_r. The discrete approach, in theory, maintains perfect algebraic consistency at the discrete Iovel. If

properly implemented il will give gradients which closely match those obtained through finite differences. The

continuous formuiation produces slightly inaccurate gradients due to differences in lhe discr,.tization. |t-wover,
these i_r._accuracies must vanish a._ the mesh width is reduced. A drawback of the discrete approach is l|lat

once the large matrix problem of equation (.3) is defined it becomes more difficult to recycle the flow solution
algorithm on the resulting linear algebra problen_, it is subject, more(_ver. 1o the difficulty that the (tiscrot.,"

flow equations often contain nonlinear flux linfiting functiotls which are not differentiablo, i'_ ats,, limit: the'

flexibility to use adaptive discretization techniques s,:ith order and mesh refinern-nt, such a.,_ th+' h-p lneth_d.

because the adjoint discretlzation is fixed by the fiord" ,liscreti-atl:,n

Design variables

It turns out that the determination of items (2-4) in the above list strongly hinge on the chc,ice for (5). In

Jameson's first works in the area [6, 7. 10], every surface mesh point was used as a design variable, in three-

dimensional wing design cases this led to as many as 4224 design variables [10] The use of the adjoint method

elirmnated the unacceptable costs that such a large number of design variables would incur for traditional

finite difference methods. If the aFproach were extended to treat complete aircraft configurations, at least tens

of thousands of design variables would be necessary. Such large numbers of design variables preclude the use

of descent algorithms such as Newton or quasi-Newton approaches simply because of the high cost of matrix

operations for such methods. The limitation of using a simple descent procedure such as steepest descent

has the consequence that significant errors can be tolerated initially in the gradient evaluation. Therefore

such methods favor tighter coupling of the flow solver, the adjoint soiver, and the overall design problem to

accelerate convergence. Ta'asan et al [21, 14] took advantage of this by formulating th( sign problem as a
one shot procedure where all three systems are advanced simultaneously. Choosing such • ,esign space suffers

from admitting poorly conditioned design problems. This is best exemplified by the case where only one point

on the surface of an airfoil is moved, resulting in a highly nonlinear design response. In his original work

.lameson [7, 9] treated this poor conditioning of the design problem by smoothing the control (surface shape)

and thus removing the problematic high frequency content from the advancing solution shape.

Further, arbitrarily freeing all surface points as part of the design makes it difficult to enforce geomet-
ric constraints, such as maintaining fuel volume, without resorting to constrained optimization algorithms.

Nevertheless, this choice for variables remains attractive since it admits the greatest possible design sp-:e.

Ray Hicks and others [5, 4, 18] have "n the past parameterized the design space using sets of smooth functions
that either generate or perturb the initial geometry. By using such a parameterization it is possible to work

wit, considerably fewer design variables than the choice of every mesh point. Hicks initially adopted the

approach because his work in the past exclusively used finite difference based gradient design methods that

are inherently intolerant of more than a few dozen design variables for large problems. However, since these

early methods had to content themselves with at most e. hundred design variables, great freedom in the choice

of the design algorithm was possible. One simple choice of design variables for airfoils suggested by Hicks and

Henne [4]_ have the following "sine bump" form:

I _\I _bO:)= sin_,_rz'o,",')l , O_<z_<l

Here tl locates the maximum of the bump in the range 0 < z < 1 at z = tl. since the maximum occurs when

z" = ½, where a = log ½/Iogt_, or _ legit = log ½. Parameter t2 controls the width of the bump.
When distributed over the entire chord on both upper and lower surfaces, these analytic perturbation

functions admit a large possible design space. They can be chosen such that symmetry, thickne_, or volume

can be explicitly constrained, thus avoiding the use of expensive constrained optimization algorithlns to address

geometric constraints. Further. particular choices of these variables will concentrate the design effort in regions

where refinement is needed, while leaving the rest of the airfoil section virtually undisturbed. The disadvantage

of these functions is that they are not orthogonal, and there is no simple way to form a basis from these functions

which is complete for the space of continuous functions which vanish at x = 0 and a" = 1. Thus. they do not

guarantee that a solution, for example, of the inverse problem for a realizable target pressure distribution will
necessarily be attained. Nevertheless, they have proved to be quite effective in realizing design improvements

with a limited number of design variables. The design proces._ that uses these basis spaces can t)e accelerated

toward convergence by either tighter coupling of the individual design elements, a.s wa,s the ca.<e when using
the mesh points themselves, or through the use of higher order optimization algorithms. Finally they have
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onelastadvantageoverusingthemeshpoints;theretsno need to sm¢)otb the resulting solutions as the design

proceeds when using Hicks-Henne functions, smc,, i)y constructiol_ higher frequeci_s are not a(tmltted and thu,.

*.tie design spaces are naturally well posed

Another set of design variables that has recently achieved favor is tile us," of B-spline cent-el p,,ints In this

approach the geometry is defined by B-spline curves or surfaces while their control points become the design
variables. Like the Hicks-Henne functions. B-splines allow for a greatly reduced number of design variables.

and thus permit the use of. say. a quasi-Newton design procedure, if the upper and lower surface._ ()f an alrf(,ll

are separated, tiw method easily admits camber or thickness constraints explicitly within the d,'stgn spat,"
Further. I(_cal contr(,I is also possible by choosing only a limited number of control poin's _._ active (lesiKn

variables. This meth<_d in practice sevtl,- _,, have an advantage over the Hicks--Henna, functiot,s in tha; a nlor+.

:'omplete basis space of admitted airfoils is p(.rmitted with the same nunlber of design variabb's I"really since
these curves and surfaces are the natural entitie_- u.-d in ('AD enviromeuts, the_ provide a straightfc, rward

way of integrating ('AD an,,t aerodynamic design

Numerical Experiments

In this short paper, a study of both Hick_tlenne and B-spline control points is explored to begin to address
the open issue presented in item (5) above. For the details of the development and implementation of the

full design procedure, the reader ls referred to our previous works listed earlier. Here the two-din:ensional
airfoil design problem is accomplished by combining an Euler flow solver, a corresponding adjoint solver, and

an unconstrained quasi-Newton optimization algorithm that uses BFGS updates [3, I 1]. "lh:, method has

been_demonstrated to be successful in the design of various airfoils at transonic conditions and with various
objective functions.

Figure (1) shows a design case where 25 Hicks-Henne bumps are used as design variables for both the upper

and lower surfaces. The bumps are arranged with high clustering toward the leading and trailing edges to give

adequate design fidelity in these sensitive areas. Figure (la) shows the initial conditions for an inverse design

problem where a target pressure distribution for an RAE 2822 airfoil at a = 1°. M = .75, and (:_ = .6030 is

specified and a N ACA 0012 airfoil is prescribed as a starting airfoil. Both the target and the initial airfoil show

strong shocks in their respective solutions. After 5 design iterations significant prog;ess is seen in matching the

target pressures. Moreover, the cost function, which is measured as an integral of the square of the differences
between the two pressure distributiot, s, has dropped from 68.556 to 4.247. The proper location for the shock

has already been achieved. By 10 iterations the cost function has been further reduced to 0.702. and after 30

iterations no differences are visible in the solution where the cost function is only .0!0.

Figure (2) shows the same design problem treated with two B-spline curves for the upper and lower surfaces.
Each curve was defined by !8 control points with a degree of 4 and was chosen to represent the airfoil shap, _

directly. The y ordinate of each control point was used as a design variable. A cio_ approximation to a NA('A

0012 airfoil is again used as the initial point with the same target pressure distribution of an RAE 2822 airfoil

at a = ! °, M -- .75, and Cl = .6030 being speci, t t. It is seen that the final cost function of .005 is lower than

that of the final solution for the Hicks-Henne lu,ctions. However, not only did this solution take 50 design

iterations as opposed to 30 for the first example, but the interim solutions displayed in Figures (2b and 2c)

show gross oscillations in the design. The conclusion that may be drawn from this is that the use of B-spline

control points localizes the design variables to a point that they act more like using the mesh points themselves

as design variables. Thus the high frequency information contained in the control can easily cause oscillations

in the design, with the result that there is a greater degree of nonlinearity and a poorer conditioning of the

design space as compared to that for the Hicks-Henne functions. A prudent step would be to use a low pass

filter when using B-spline control points as design variables to smooth the control in a manner similar to that

employed by Jameson [6, 7. 10]. Attempts to increase or decrease the degree and the number of control points

for the B-spline curves did not prove to have favorable effects.
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