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Introduction

This paper describes the implementaticn of optimization techniques based on control theory for airfoil design.
In our previous work in the area [6. 7, 19, 11] it was shown that control theory could be employed to devise
effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler
equations with either a conformal mapping or a general coordinate systein. We have also explored three-
dimensional extensions of these formulations recently {10, 9, 20]. The goal of our present work is to demonstrate
the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-
spline control points as design variables. The research aisc demonstrates that the parameterization of the
design space 1s an open question in aerodynamis design.

Formulation of the design
problem as a control problem

In this research control theory serves to provide computationally inexpensive gradient information to a standard
numerical optimization method. For flow about an airfoil or wing, the acrodynamic properties which define
the cost function are functions of the flow-field vaniables (w) and the physical location of the bourdary, which
may be represe..zed by the function F, say. Then

I =1{w F)
and a change in 7 results in a change
arr aIr
61 = —5;;-5117 + ?)’7:'5}_ (1)

in the cost function. Each term in (1), except for dw, can be easily obtained. Finite difference methods
evaluate the gradient by making a small change in each design variable separately, and then recalculate both
the grid and flow-field variables. This requires a number of additiona! flow caiculations equal te the number of
design vanables. Using control theory, the governing equations of the flowfield are introduced as a constraint
in such a way that the final evaluation of the gradient does not require multiple flow solutions. In order to
achieve this, 4w must be eliminated from (i;. The governing equation R and its first variation express the
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dependence of w and F within the flowfield domain I
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Next, intreducing a Lagrange maultiphier v we have
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the first termn is eliminated. and we find that the desired gradient is given by
r oI OR
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The advantage is that (4) is independent of duw. with the result that the gradient of I with respect to an
arbitrary number of design variables can be determined without the need for additional flow-field evaluations.
The main cost is in solving the adjoint equation (3). In general. the adjoint problem is about as complex as
a flow solution. If the number of design variables is large, the cost differential between one adjoint solution
and the large number of flowfield evaluations required to dete:mine the gradient by finite differencing becomes
compelling. Once equation (4) is obtained. G can be fed into any numerical optimization algorithm to cbtain
an improved design.

Issues of importance for design problems

The develop_nent of aerodynamic design proceedures that employ an adjoint equation formulation is currently
being investigated by many researchers. These methods promise to allow computational fiuid dynamics meth-
ods to become true aerodyvnamic design methods. References [1. 2. 12, 13, 16. 15. 14. 21. 17, 22] represent a
partial iist of recent works that reflect this developing field. However. as is the case in any new research field.
many questions remain. Probably the most salient issues of concern are the following:

. Discrete vs. continuous sensitivities
2. Choice of optimization procedures
3. Treatment of geometric and aerodynamic constraints

4. The level of coupling between design and analysis

3. The parameterization of the design space

These topics, which were outlined in a proposal to the U.S. Airforce in 1991 [8]. still require intensive inves-
tigation in the up coming years. With regards to the first item. it is historically interesting that Jameson in
17%8 [6] first developed the equations for a continuous approach to transonic airfoil and wing design. whereby
the steps represented by equations (1-4) were applied to the governing differential equations. The resul'ing
adjoint differential equations with the appropriate boundary conditions may then be discretized and solved
in a manner similar to thet used for the flow solver. One may alternatively derive a set of discrete adjoint
equations directly from th> discrete approximation to the flow equations by following the procedure outlined
in equations (1-4). The resulting discrete adjoint equations are one of the possible discretizations of the con-
tinuous adjoint equations. This alternative is mentioned in {7]. but was not adopted in that work because
of the complexity of the resulting discrete adjoint system. It has the advantage that the resulting discrete
gradients are the true gradients of the discrete model of the flow equations. and it has found favor in the work
of Taylor et al. [16. 13, 12] and others {I. 2]. It seems that both alternatives have some advantages. The
continuous approach gives the researcher some hope for an intuitive understanding of the adjoint system and




its related boundary conditious. It also permits an easy recycling of the solution methodology used for the
flow solver. The discrete approach. in theory, maintains perfect algebraic consistency at the discrete level. If
properly implemented it will give gradients which closely match those obtained through finite differences. The
continuous formujation produces slightly inaccurate gradients due to differences in the discretization. However,
these inaccuracies must vanish as the mesh width is reduced. A drawback of the discrete approach ts that
once the large matrix problem of equation (3) is defined it becomes more difficult to recycle the flow solution
algorithm on the resulting linear algebra problemi. It is subject. morecver. 1o the difficulty that the discrete
flow equations often contain nonlinear flux limiting functions which are not differentiable. it also liits the
flexibility to use adaptive discretization terhniques with order and mesh refinerment. such as the h-p method.
because the adjoint discretization is fixed by the flow discretiation

Design variables

It turns out that the determination of items (2-4) in the above list strongly hinge on the choice for (). in
Jameson’s first works in the area [6, 7. 10], every surface mesh point was used as a design variable. In three-
dimensional wing design cases this led to as many as 4224 design variables [10] The use of the adjoint method
eliminated the unacceptable costs that such a large number of design variables would incur for traditional
finite difference methods. If the approach were extended to treat complete aircraft configurations. at least tens
of thousands of design variables would be necessary. Such large numbers of design variables preclude the use
of descent algorithms such as Newton or quasi-Newton approaches simply because of the high cost of matrix
operations for such methods. The limitation of using a simple descent procedure such as steepest descent
has the consequence that significant errors can be tolerated initially in the gradient evaluatior. Therefore
such methods favor tighter coupling of the flow solver, the adjoint soiver. and the overall design probiem to
accelerate convergence. Ta'asan et al [21. 14] took advantage of this by formuiating thc  sign problem as a
one shot procedure whete all three systems are advanced simultaneously. Choosing such - iesign space suffers
frorn admitting poorly conditioned design problems. This is best exemplified by the case where only one point
on the surface of an airfoil is moved, resulting in a highly nonlinear design response. iIn hLis original work
Jameson [7, 9] treated this poor corditioning of the design problem by smoothing the control (surface shape)
and thus removing the problematic high frequency content from the advancing solution shape.

Further, arbitrarily freeing all surface points as part of the design makes it difficult to enforce geomet-
ric constraints, such as maintaining fuel volume, without resorting to constrained optimization algorithms.
Nevertheless, this choice for variables remains attractive since it admits the greatest possible design spz-ce.

Ray Hicks and others [5. 4, 18] bave in the past parameterized the design space using sets of smooth functions
that either generate or perturb the initial geometry. By using such a parameterization it is possible to work
witi considerably fewer design variables than the choice of every mesh point. Hicks initially adopted the
approach because his work in the past exclusively used finite difference based gradient design methods that
are inherently intolerant of more than a few dozen design variables for large problems. However. since these
early methods had to content themselves with at most 2 hundred design variables, great freedom in the choice
of the design algorithm was possible. One simple choice of design variables for airfoils suggested by Hicks and
Henne [4], have the following "sine bump” form:

b(z) = [sin (wr'!:t"f’)]‘ . <<l

Here ¢, locates the maximum of the bump in the range 0 < z < | at z = {;, since the maximum occurs when
z% = %, where a = log%/ logt,,or alogt; = log%. Parameter {5 controls the width of the bump.

When distributed over the entire chord on both upper and lower surfaces, these analytic perturbation
functions admit a large possible design space. They can be chosen such that symmetry, thickness. or volume
can be explicitly constrained, thus avoiding the use of expensive constrained optimization algorithms to address
geometric constraints. Further. particular choices of these variables will concentrate the design effort in regions
where refinement is needed, while leaving the rest of the airfoil section virtually undisturbed. The disadvantage
of these functions is that they are not orthogonal, and there is no simple way to form a basis from these functions
which is complete for the space of continuous functions which vanish at » = 0 and x = 1. Thus. they do not
guarantee that a solution, for example, of the inverse problem for a realizable target pressure distribution will
necessarily be attained. Nevertheless, they have proved to be quite effective in realizing design improvements
with a limited pumber of design variables. The design process that uses these basis spaces can pbe accelerated
toward convergence by either tighter coupling of the individual design elements, as was the case when using
the mesh points themselves, or through the use of higher order optimization algorithms. Finally they have




one last advantage over using the mesh points; there 15 no need to smootkh the resulting solutions as the design
proceeds when using Hicks-Henne functions, since by construction: higher frequecies are not admitted and thus
the design spaces are naturally well posed

Another set of design variables that has recently achieved favor i1s the use of B-spline control poants  In this
approach the geometry is defined by B-spline curves or surfaces while their control points become the design
variables. Like the Hicks-Henne functions. B-splines allow for a greatly reduced pumber of design varniables.
and thus permit the use of. say. a quasi-Newton design procedure. If the upper and lower surfaces of an airfoil
are separated, the method easily admits camber or thickness constraints explicitly within the design space
Further. local control is also possible by choosing only a limited number of control poinis as active design
variables. This method in practice seeti~ 1o have an advantage over the Hicks-Henne functions in thai a more
complete basis space of admitted airfoils 15 permitted with the sarne number of design variables Finally since
these curves and surfaces are the natural entities u~ in CAD enviroments. they provide a straightforward
way of integrating ('AD and aerodynamic design.

Numerical Experiments

In this short paper. a study of both Hicks-Henne and B-spline control points is explored to begin 1o address
the open issue presented in item (5) above. For the details of the development and implementation of the
full design procedure, the reader is referred to our previous works listed earlier. Here the two-dimensional
airfoil design problem is accomplished by combining an Euler flow solver, a corresponding adjoint solver, and
an unconstrained quasi-Newton optimization algorithm that uses BFGS updates [3. 11]. The method has
beeng demonstrated to be successful in the design of various airfoils at transonic conditions and with various
obje*tive functions.

Figure (1) shows a design case where 25 Hicks-Henne bumps are used as design variables for both the upper
and lower surfaces. The bumps are arranged with high clustering toward the leading and trailing edges to give
adequate design fidelity in these sensitive areas. Figure (1a) shows the initial conditions for an inverse design
problem where a target pressure distribution for an RAE 2822 airfoil at « = 1°. M = .75, and ('} = 6030 1s
specified and a NACA 0012 airfoil is prescribed as a starting airfoil. Both the target and the initial airfoil show
strong shocks in their respective solutions. After 5 design iterations significant prog; ess is seen in matching the
target pressures. Moreover, the cost function. which is measured as an integral of the square of the differences
between the two pressure distributions, has dropped from 68.556 to 4.247. The proper location for the shock
has already been achieved. By 10 iterations the cost function has been further reduced to 0.702. and after 30
iterations no differences are visible in the solution where the cost function is only .010.

Figure (2) shows the same design problem treated with two B-spline curves for the upper and lower surfaces.
Each curve was defined by 18 control points with a degree of 4 and was chosen to represent the airfoil shape
directiy. The y ordinate of each control point was used as a design variable. A close approximationto a NACA
0012 airfoil is again used as the initial point with the same target pressure distribution of an KAE 2822 airfoil
at « = 1°, M = .75, and (; = .6030 being speci® !. It is seen that the final cost function of .G05 1s lower than
that of the final solution for the Hicks-Henne tui.ctions. However, not only did this solution take 50 design
iterations as opposed to 30 for the first example, but the interim solutions displayed in Figures (2b and 2c)
show gross oscillations in the design. The conclusion that may be drawn from this is that the use of B-spline
control points localizes the design variables to a point that they act more like using the mesh points themselves
as design variables. Thus the high frequency information contained in the control can easily cause oscillations
in the design, with the result that there is a greater degree of nonlinearity and a poor~r conditioning of the
design space as compared to that for the Hicks-Henne functions. A prudent step would be te use a low pass
filter when using B-spline control points as design variables to smooth the control in 2 manner similar to that
employed by Jameson [6. 7. 10]. Attempts to increase or decrease the degree and the number of control points
for the B-spline curves did not prove to have favorable effects.
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