Roots of Polynomials

Antony Jameson
Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305

Roots of Polynomials

1. Evaluation of polynomials and derivatives by nested multiplication
2. Approximate location of roots
3. Bernoulli's method
4. Newton's method
5. Bairstow's method

1 Evaluation of polynomials

Let $P_{n}(x)=a_{0} x^{n}+a_{1} x^{n-1} \ldots+a_{n}$. To calculate $P_{n}(\xi)$ use nesting.

$$
\begin{gathered}
b_{0}=a_{0} \\
b_{1}=b_{0} \xi+a_{1}=a_{0} \xi+a_{1} \\
b_{2}=b_{1} \xi+a_{2}=a_{0} \xi^{2}+a_{1} \xi+a_{2} \\
\ldots \\
b_{n}=P_{n}(\xi)
\end{gathered}
$$

If we set $P_{n}(x)=(x-\xi) Q_{n-1}(x)+R_{0}$ where $R_{0}=P_{n}(\xi)$, then on multiplying out and equating coefficients we find

$$
Q_{n-1}(x)=b_{0} x^{n-1}+b_{1} x^{n-2} \ldots+b_{n-1}, \quad P_{0}=b_{n}
$$

Repeating the division we have

$$
Q_{n-1}(x)=(x-\xi) Q_{n-2}(x)+R_{1}
$$

where $R_{1}=Q_{n-1}(\xi)$, and thus

$$
P_{n}(x)=(x-\xi)^{2} Q_{n-2}(x)+(x-\xi) R_{1}+R_{0} .
$$

Differentiating with respect to x and setting $x=\xi$

$$
P_{n}^{\prime}(\xi)=R_{1} .
$$

The procedure can be continued to yield

$$
P_{n}(x)=R_{n}(x-\xi)^{n} \ldots+R_{1}(x-\xi)+R_{0}
$$

where

$$
R_{k}=\left.\frac{1}{k!} \frac{d}{d x^{k}} P_{n}(x)\right|_{x=\xi}
$$

The evaluation of the coefficients is indicated by the array

$$
\begin{array}{cccccc}
a_{0} & b_{0} & c_{0} & \cdots & & R_{n} \\
a_{1} & b_{1} & c_{1} & \cdots & R_{n-1} & \\
\vdots & & & & \\
a_{n-2} & b_{n-2} & c_{n-2} & & \\
a_{n-1} & b_{n-1} & R_{1} & & \\
a_{n} & R_{0} & & &
\end{array}
$$

where any entry outside the $1_{\text {st }}$ row and column is found by multiplying the entry above by ξ and adding the entry to the left

$$
c_{k}=c_{k-1} \xi+\beta_{k}
$$

etc.

Nested multiplication (Horner's rule) for polynomial
Let

$$
\begin{aligned}
P_{3}(z) & =a_{0} z^{3}+a_{1} z^{2}+a_{2} z+a_{3} \\
& =\left(\left(a_{0} z+a_{1}\right) z+a_{2}\right) z+a_{3}
\end{aligned}
$$

To sum $p_{n}(z)$ let

$$
\begin{gathered}
b_{0}=a_{0} \\
b_{1}=a_{1}+b_{0} z \\
b_{i}=a_{i}+b_{i-1} z
\end{gathered}
$$

Then

$$
p_{n}(z)=b_{n}
$$

Also we have
Division theorem

$$
\frac{p(x)-p(z)}{x-z}=\sum_{i=0}^{n-1} b_{i} x^{n-1-i}
$$

Denote right side by $q_{n-1}(x)$

$$
\begin{aligned}
(x-z) q_{n-1}(x) & =\sum_{i=0}^{n-1} b_{i} x^{n-i}-\sum_{i=0}^{n-1} b_{i} z x^{n-i-1} \\
& =\sum_{i=1}^{n}\left(b_{i}-b_{i-1} z\right) x^{n-i}+b_{0} x^{n}-b_{n} \\
& =\sum_{i=1}^{n} a_{i} x^{n-i}+a_{0} x^{n}-p(z) \\
& =p(x)-p(z)
\end{aligned}
$$

Note also that where the b_{i} are evaluated for $p_{n}(z)$

$$
q_{n-1}(z)=p_{n}^{\prime}(z)
$$

since differentiating

$$
(x-z) q_{n-1}(x)=p_{n}(x)-p_{n}(z)
$$

gives

$$
q_{n-1}(x)+(x-z) q_{n-1}^{\prime}(x)=p_{n}^{\prime}(x)
$$

We can sum $q_{n-1}(z)$ by the same rule

$$
\begin{gathered}
c_{0}=b_{0} \\
c_{i}=b_{i}+z c_{i-1} \\
\ldots \\
q_{n-1}(z)=c_{n-1}
\end{gathered}
$$

Newton's method for several variables
To solve

$$
f_{i}(x)=0
$$

we have

$$
f_{i}^{n+1}=f_{i}^{n}+\sum \frac{\partial f_{i}}{\partial x_{j}}\left(x_{j}^{n+1}-x_{j}^{n}\right)+\text { higher order terms }
$$

Thus to make

$$
f_{i}^{n+1}=0
$$

let $x_{j}^{n+1}-x_{j}^{n}$ satisfy

$$
f_{i}^{n}+\sum \frac{\partial f_{i}}{\partial x_{j}}\left(x_{j}^{n+1}-x_{j}^{n}\right)=0
$$

$\underline{\text { Horner's rule and synthetic division }}$
Consider

$$
\frac{p_{n}(x)}{x-z}=\frac{a_{0} x^{n}+a_{1} x^{n-1} \cdots+a_{n}}{x-z}
$$

Then

$$
\begin{aligned}
p_{n}(x)-(x-z) a_{0} x^{n-1} & =\left(a_{1}+b_{0} z\right) x^{n-1}+a_{2} x^{n-2} \cdots \\
& =b_{1} x^{n-1}+a_{2} x^{n-2} \cdots \\
& =p_{n-1}(x) \text { say }
\end{aligned}
$$

Also

$$
\begin{aligned}
p_{n-1}(x)-(x-z) b_{1} x^{n-2} & =\left(a_{2}+b_{1} z\right) x^{n-2}+a_{3} x^{n-3} \cdots \\
& =b_{2} x^{n-2}+a_{3} x^{n-3} \cdots \\
& =p_{n-2}(x)
\end{aligned}
$$

Finally

$$
\begin{gathered}
p_{1}(x)=b_{n-1} x+a_{n} \\
p_{1}(x)-(x-z) b_{n-1}=a_{n}+b_{n-1} z=b_{n}
\end{gathered}
$$

so

$$
p_{n}(x)-(x-z) q_{n-1}(x)=b_{n}=p_{n}(z)
$$

where

$$
q_{n-1}(x)=b_{0} x^{n-1}+b_{1} x^{n-2} \cdots+b_{n-1}
$$

Horner's rule and derivatives
Since

$$
p_{n}(x)=p_{n}(z)+(x-z) q_{n-1}(x)
$$

and repeating the same rule

$$
q_{n-1}(x)=q_{n-1}(z)+(x-z) q_{n-2}(x)
$$

where

$$
q_{n-2}(x)=\sum_{i=0}^{n-2} c_{i} x^{n-2-i}
$$

we have

$$
\begin{aligned}
p_{n}(x) & =p_{n}(z)+(x-z) q_{n-1}(z)+(x-z)^{2} q_{n-2}(x) \\
& =p_{n}(z)+(x-z) q_{n-1}(z)+(x-z)^{2} q_{n-2}(z)+q_{0}
\end{aligned}
$$

where

$$
q_{0}=a_{0}
$$

Thus differentiating

$$
\left.\frac{d}{d x^{k}} p_{n}(x)\right|_{x=z}=k!q_{n-k}(z)
$$

Repeated application of Horner's rule thus gives the derivatives.

2 Rules for locating roots

The roots of a high order polynomial must be found by iteration, since it was proved by Galois that for polynomials of order >4, there is no procedure for finding the roots with a finite number of algebraic operations, such as multiplications root extractions as in $2^{\text {nd }}$ order case where the roots of $x^{2}+2 a x+b$ are $-a \pm \sqrt{a^{2}-b^{2}}$. An iterative method may need a starting guess so it is useful to locate a root approximately. For locating real roots see Isaacson \& Keller, p. 126.

A method of locating complex roots is to note that

$$
w=P_{n}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

Any $w=\arg \left(z-z_{1}\right)+\arg \left(z-z_{2}\right)+\ldots+\arg \left(z-z_{n}\right)$. Thus a loop in the z plane enclosing n roots will cause $\arg w$ to increase by $2 n \pi$, i.e. w encircles origin n times.

Figure 1:

$$
\begin{aligned}
\tan \Delta \theta & =\tan \left(\theta_{i}-\theta_{i-1}\right) \\
& =\frac{\tan \theta_{i}-\tan \theta_{i-1}}{1+\tan \theta_{i} \tan \theta_{i-1}}
\end{aligned}
$$

$$
\Delta \theta=\arctan \frac{\frac{y_{i}}{x_{i}}-\frac{y_{i-1}}{x_{i-1}}}{1+\frac{y_{i}}{x_{i}} \frac{y_{i-1}}{x_{i-1}}}
$$

$$
=\arctan \frac{y_{i} x_{i-1}-y_{i-1} x_{i}}{x_{i} x_{i-1}+y_{i} y_{i-1}}
$$

3 Bernoulli's method

Given the polynomial

$$
P_{n}(z)=a_{0} z^{n}+a_{1} z^{n-1} \ldots+a_{n}
$$

consider the difference equation

$$
a_{0} x_{k}+a_{1} x_{k-1} \ldots+a_{n} x_{k-n}=0
$$

where x_{k} is calculated from x_{k-1}, \ldots obtained at previous steps. Try the solution

$$
x_{k}=z^{k}
$$

Then this is a solution if

$$
P_{n}(z)=0 .
$$

The general solution is of the form

$$
x_{k}=\sum c_{i} z_{i}^{k}
$$

where the z_{i} are the roots and the c_{i} depend on the initially given $x_{0}, x_{1}, \ldots x_{n-1}$.

Let the roots be ordered so that

$$
\left|z_{1}\right|>\left|z_{2}\right| \cdots>\left|z_{n}\right|
$$

Then

$$
\begin{aligned}
\frac{x_{k+1}}{x_{k}} & =\frac{c_{1} z_{1}^{k+1}+c_{2} z_{2}^{k+1}+\cdots+c_{n} z_{n}^{k+1}}{c_{1} z_{1}^{k}+c_{2} z_{2}^{k}+\cdots+c_{n} z_{n}^{k}} \\
& =z \frac{1+\frac{c_{2}}{c_{1}}\left(\frac{z_{2}}{z_{1}}\right)^{k+1}+\cdots \frac{c_{n}}{c_{1}}\left(\frac{z_{n}}{z_{1}}\right)^{k+1}}{1+\frac{c_{2}}{c_{1}}\left(\frac{z_{2}}{z_{1}}\right)^{k}+\cdots \frac{c_{n}}{c_{1}}\left(\frac{z_{n}}{z_{1}}\right)^{k}}
\end{aligned}
$$

If $\left|\frac{z_{i}}{z_{1}}\right|<1$ for $i>1$ then regardless of the initial values

$$
\lim \frac{x_{k+1}}{x_{k}}=z_{1}
$$

If the dominant roots are a complex conjugate pair

$$
z_{1}=r e^{i \theta}, \quad z_{2}=r e^{-i \theta}
$$

where

$$
\left|\frac{z_{i}}{r}\right|<1, \quad i>2
$$

then with real initial values

$$
\begin{gathered}
c_{1}=c e^{i \delta}, \quad c_{2}=c e^{-i \delta} \\
x_{k}=2 c r^{k} \cos (k \theta+\delta)+c_{3} z_{3}^{k} \cdots+c_{n} z_{n}^{k} \\
=2 c r^{k}\left(\cos (k \theta+\delta)+p_{k}\right)
\end{gathered}
$$

where

$$
\lim _{k \rightarrow \infty} p_{k}=0
$$

Also $2 c r^{k} \cos (k \theta+\delta)$ satisfies the difference equation

$$
x_{k}+A x_{k-1}+B x_{k-2}=0
$$

where

$$
A=-2 r \cos \theta, \quad B=r^{2}
$$

Then in the limit x_{k} satisfies the same equation, and

$$
\begin{aligned}
& x_{k}+A x_{k-1}+B x_{k-2}=0 \\
& x_{k+1}+A x_{k}+B x_{k-1}=0
\end{aligned}
$$

can be solved for A, B. The determinant

$$
\left|\begin{array}{cc}
x_{k-1} & x_{k-2} \\
x_{k} & x_{k-1}
\end{array}\right|=4 c^{2} r^{2 k-2} \sin ^{2} \theta \neq 0
$$

since by assumption $\theta \neq 0$.

4 Finding the roots of a polynomial by Newton's method

To find a root of $P_{n}(x)$ by Newton's method we set

$$
x_{n+1}=x_{n}-\frac{P_{n}\left(x_{n}\right)}{P_{n}^{\prime}\left(x_{n}\right)}
$$

where to evaluate $P_{n}\left(x_{n}\right), P_{n}^{\prime}\left(x_{n}\right)$ we carry out the operations for the first 2 columns of the array for nested multiplications.

After finding a roots, we can use the same method to obtain divide out $\left(x-s_{1}\right)$,

$$
P_{n}(x)=\left(x-s_{1}\right) Q_{n-1}(x)
$$

where

$$
Q_{n-1}=b_{0} x^{n-1}+b_{1} x^{n-2} \cdots+b_{n-1}
$$

with the b_{k} evaluated at $\xi=s_{1}$.

Then we repeat the process to find another root. Note that if $P_{n}(x)$ has real coefficients then $P_{n}(x)$ and $P_{n}^{\prime}(x)$ are both real if x is real, so Newton's method can only find a complex root if the initial guess is complex.

5 Bairstow's method

To avoid searching for complex roots we can search for quadratic factors. Bairstow's method applies Newton's method for finding the factors. Let

$$
P_{n}(x)=\left(x^{2}+s x+t\right) Q_{n-2}(x)+x R_{1}(s, t)+R_{0}(s, t) .
$$

Then for zero remainder we must have

$$
\begin{aligned}
& R_{1}(s, t)=0 \\
& R_{0}(s, t)=0
\end{aligned}
$$

This is 2 nonlinear equations for 2 unknowns which may be solved by Newton's method. We need

$$
J=\left[\begin{array}{ll}
\frac{\partial R_{1}}{\partial s} & \frac{\partial R_{1}}{\partial t} \\
\frac{\partial R_{0}}{\partial s} & \frac{\partial R_{0}}{\partial t}
\end{array}\right]
$$

To get these indirectly let

$$
Q_{n-2}(x)=\left(x^{2}+s x+t\right) Q_{n-4}(x)+x R_{3}(s, t)+R_{4}(s, t)
$$

so that

$$
P_{n}(x)=\left(x^{2}+s x+t\right)^{2} Q_{n-4}(x)+\left(x^{2}+s x+t\right)\left(x R_{3}+R_{2}\right)+x R_{1}+R_{0}
$$

Then differentiating with respect to s, t and setting x to a root z_{i} of $x^{2}+s x+t$

$$
\begin{gathered}
z_{i}\left(z_{i} R_{3}+R_{2}\right)+z_{i} \frac{\partial R_{1}}{\partial s}+\frac{\partial R_{0}}{\partial s}=0 \\
z_{i} R_{3}+R_{2}+z_{i} \frac{\partial R_{1}}{\partial t}+\frac{\partial R_{0}}{\partial t}=0
\end{gathered}
$$

Since $z^{2}=-(s z+t)$ these can be written

$$
\begin{gathered}
z_{i}\left(\frac{\partial R_{1}}{\partial s}+R_{2}-s R_{3}\right)+\left(\frac{\partial R_{0}}{\partial s}+t R_{3}\right)=0 \\
z_{i}\left(\frac{\partial R_{1}}{\partial t}+R_{3}\right)+\left(\frac{\partial R_{0}}{\partial t}+R_{2}\right)=0
\end{gathered}
$$

Since this holds for two roots z_{1}, z_{2} each bracketed coefficients must vanish, giving

$$
\begin{gathered}
\frac{\partial R_{1}}{\partial s}=s R_{3}-R_{2}, \quad \frac{\partial R_{0}}{\partial s}=t R_{3} \\
\frac{\partial R_{1}}{\partial t}=-R_{3}, \quad \frac{\partial R_{0}}{\partial t}=-R_{2}
\end{gathered}
$$

The polynomials R_{0}, R_{1}, R_{2} and R_{3} are found by carrying out two synthetic divisions by the quadratic factor $x^{2}+s x+t$. This is most easily accomplished by equating coefficients to obtain a recursion rule.

We have

$$
\begin{aligned}
&\left(a_{0} x^{n}+a_{1} x^{n-1} \cdots+a_{n}\right)=\left(x^{2}+s x+t\right)\left(b_{0} x^{n+2} \cdots+b_{n-2}\right) \\
&= b_{0} x^{n}+b_{1} x^{n-1} \\
&+b_{2} x^{n-2} \cdots+b_{n-2} x^{2} \\
&+s b_{0} x^{n-1}+s b_{1} x^{n-2} \ldots+s b_{n-2} x \\
&+t b_{0} x^{n-2} \ldots+t b_{n}
\end{aligned}
$$

Thus

$$
\begin{gathered}
b_{0}=a_{0} \\
b_{1}+s b_{0}=a_{1} \\
b_{2}+s b_{1}+t b_{0}=a_{2}
\end{gathered}
$$

and

$$
b_{n}+s b_{n-1}+t b_{n-2}=a_{n}
$$

