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1 Evaluation of polynomials

Let Pn(x) = a0x
n + a1x

n−1 . . .+ an. To calculate Pn(ξ) use nesting.

b0 = a0

b1 = b0ξ + a1 = a0ξ + a1

b2 = b1ξ + a2 = a0ξ
2 + a1ξ + a2

· · ·

bn = Pn(ξ)

If we set Pn(x) = (x − ξ)Qn−1(x) + R0 where R0 = Pn(ξ), then on multiplying out

and equating coefficients we find

Qn−1(x) = b0x
n−1 + b1x

n−2 . . .+ bn−1, P0 = bn

Repeating the division we have

Qn−1(x) = (x− ξ)Qn−2(x) +R1

where R1 = Qn−1(ξ), and thus

Pn(x) = (x− ξ)2Qn−2(x) + (x− ξ)R1 +R0.
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Differentiating with respect to x and setting x = ξ

P ′n(ξ) = R1.

The procedure can be continued to yield

Pn(x) = Rn(x− ξ)n . . .+R1(x− ξ) +R0

where

Rk =
1

k!

d

dxk
Pn(x)

∣∣∣∣
x=ξ

The evaluation of the coefficients is indicated by the array

a0 b0 c0 · · · Rn

a1 b1 c1 · · · Rn−1

...

an−2 bn−2 cn−2

an−1 bn−1 R1

an R0

where any entry outside the 1st row and column is found by multiplying the entry

above by ξ and adding the entry to the left

ck = ck−1ξ + βk

etc.
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Nested multiplication (Horner’s rule) for polynomial

Let

P3(z) = a0z
3 + a1z

2 + a2z + a3

= ((a0z + a1)z + a2) z + a3

To sum pn(z) let

b0 = a0

b1 = a1 + b0z

bi = ai + bi−1z

. . .

Then

pn(z) = bn

Also we have

Division theorem

p(x)− p(z)

x− z
=

n−1∑
i=0

bix
n−1−i
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Denote right side by qn−1(x)

(x− z)qn−1(x) =
n−1∑
i=0

bix
n−i −

n−1∑
i=0

bizx
n−i−1

=
n∑
i=1

(bi − bi−1z)xn−i + b0x
n − bn

=
n∑
i=1

aix
n−i + a0x

n − p(z)

= p(x)− p(z)

Note also that where the bi are evaluated for pn(z)

qn−1(z) = p′n(z)

since differentiating

(x− z)qn−1(x) = pn(x)− pn(z)

gives

qn−1(x) + (x− z)q′n−1(x) = p′n(x)

We can sum qn−1(z) by the same rule

c0 = b0

ci = bi + zci−1

· · ·

qn−1(z) = cn−1
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Newton’s method for several variables

To solve

fi(x) = 0

we have

fn+1
i = fni +

∑ ∂fi
∂xj

(
xn+1
j − xnj

)
+ higher order terms

Thus to make

fn+1
i = 0

let xn+1
j − xnj satisfy

fni +
∑ ∂fi

∂xj

(
xn+1
j − xnj

)
= 0

Horner’s rule and synthetic division

Consider

pn(x)

x− z
=
a0x

n + a1x
n−1 · · ·+ an

x− z

Then

pn(x)− (x− z)a0x
n−1 = (a1 + b0z)xn−1 + a2x

n−2 · · ·

= b1x
n−1 + a2x

n−2 · · ·

= pn−1(x) say
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Also

pn−1(x)− (x− z)b1x
n−2 = (a2 + b1z)xn−2 + a3x

n−3 · · ·

= b2x
n−2 + a3x

n−3 · · ·

= pn−2(x)

Finally

p1(x) = bn−1x+ an

p1(x)− (x− z)bn−1 = an + bn−1z = bn

so

pn(x)− (x− z)qn−1(x) = bn = pn(z)

where

qn−1(x) = b0x
n−1 + b1x

n−2 · · ·+ bn−1

Horner’s rule and derivatives

Since

pn(x) = pn(z) + (x− z)qn−1(x)

and repeating the same rule

qn−1(x) = qn−1(z) + (x− z)qn−2(x)

where

qn−2(x) =
n−2∑
i=0

cix
n−2−i
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we have

pn(x) = pn(z) + (x− z)qn−1(z) + (x− z)2qn−2(x)

= pn(z) + (x− z)qn−1(z) + (x− z)2qn−2(z) + q0

where

q0 = a0

Thus differentiating

d

dxk
pn(x)

∣∣∣∣
x=z

= k! qn−k(z)

Repeated application of Horner’s rule thus gives the derivatives.

2 Rules for locating roots

The roots of a high order polynomial must be found by iteration, since it was proved

by Galois that for polynomials of order > 4, there is no procedure for finding the roots

with a finite number of algebraic operations, such as multiplications root extractions

as in 2nd order case where the roots of x2 + 2ax+ b are −a±
√
a2 − b2. An iterative

method may need a starting guess so it is useful to locate a root approximately. For

locating real roots see Isaacson & Keller, p. 126.

A method of locating complex roots is to note that

w = Pn(z) = (z − z1)(z − z2) · · · (z − zn)
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Any w = arg(z − z1) + arg(z − z2) + . . . + arg(z − zn). Thus a loop in the z plane

enclosing n roots will cause argw to increase by 2nπ, i.e. w encircles origin n times.

Figure 1:

tan ∆θ = tan(θi − θi−1)

=
tan θi − tan θi−1

1 + tan θi tan θi−1

∆θ = arctan

yi

xi
− yi−1

xi−1

1 + yi

xi

yi−1

xi−1

= arctan
yixi−1 − yi−1xi
xixi−1 + yiyi−1

3 Bernoulli’s method

Given the polynomial

Pn(z) = a0z
n + a1z

n−1 . . .+ an

9



consider the difference equation

a0xk + a1xk−1 . . .+ anxk−n = 0

where xk is calculated from xk−1, . . . obtained at previous steps. Try the solution

xk = zk

Then this is a solution if

Pn(z) = 0.

The general solution is of the form

xk =
∑

ciz
k
i

where the zi are the roots and the ci depend on the initially given x0, x1, . . . xn−1.

Let the roots be ordered so that

|z1| > |z2| · · · > |zn|

Then

xk+1

xk
=

c1z
k+1
1 + c2z

k+1
2 + · · ·+ cnz

k+1
n

c1zk1 + c2zk2 + · · ·+ cnzkn

= z
1 + c2

c1

(
z2
z1

)k+1

+ · · · cn
c1

(
zn

z1

)k+1

1 + c2
c1

(
z2
z1

)k
+ · · · cn

c1

(
zn

z1

)k
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If

∣∣∣∣ ziz1

∣∣∣∣ < 1 for i > 1 then regardless of the initial values

lim
xk+1

xk
= z1

If the dominant roots are a complex conjugate pair

z1 = reiθ, z2 = re−iθ

where ∣∣∣zi
r

∣∣∣ < 1, i > 2

then with real initial values

c1 = ceiδ, c2 = ce−iδ

xk = 2crk cos(kθ + δ) + c3z
k
3 · · ·+ cnz

k
n

= 2crk (cos(kθ + δ) + pk)

where

lim
k→∞

pk = 0

Also 2crk cos(kθ + δ) satisfies the difference equation

xk + Axk−1 +Bxk−2 = 0
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where

A = −2r cos θ, B = r2

Then in the limit xk satisfies the same equation, and

xk + Axk−1 +Bxk−2 = 0

xk+1 + Axk +Bxk−1 = 0

can be solved for A,B. The determinant

∣∣∣∣∣∣∣
xk−1 xk−2

xk xk−1

∣∣∣∣∣∣∣ = 4c2r2k−2 sin2 θ 6= 0

since by assumption θ 6= 0.

4 Finding the roots of a polynomial by Newton’s

method

To find a root of Pn(x) by Newton’s method we set

xn+1 = xn −
Pn(xn)

P ′n(xn)

where to evaluate Pn(xn), P ′n(xn) we carry out the operations for the first 2 columns

of the array for nested multiplications.
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After finding a roots, we can use the same method to obtain divide out (x− s1),

Pn(x) = (x− s1)Qn−1(x)

where

Qn−1 = b0x
n−1 + b1x

n−2 · · ·+ bn−1

with the bk evaluated at ξ = s1.

Then we repeat the process to find another root. Note that if Pn(x) has real coeffi-

cients then Pn(x) and P ′n(x) are both real if x is real, so Newton’s method can only

find a complex root if the initial guess is complex.

5 Bairstow’s method

To avoid searching for complex roots we can search for quadratic factors. Bairstow’s

method applies Newton’s method for finding the factors. Let

Pn(x) = (x2 + sx+ t)Qn−2(x) + xR1(s, t) +R0(s, t).

Then for zero remainder we must have

R1(s, t) = 0

R0(s, t) = 0
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This is 2 nonlinear equations for 2 unknowns which may be solved by Newton’s

method. We need

J =

∂R1

∂s
∂R1

∂t

∂R0

∂s
∂R0

∂t


To get these indirectly let

Qn−2(x) = (x2 + sx+ t)Qn−4(x) + xR3(s, t) +R4(s, t)

so that

Pn(x) = (x2 + sx+ t)2Qn−4(x) + (x2 + sx+ t)(xR3 +R2) + xR1 +R0

Then differentiating with respect to s, t and setting x to a root zi of x2 + sx+ t

zi(ziR3 +R2) + zi
∂R1

∂s
+
∂R0

∂s
= 0

ziR3 +R2 + zi
∂R1

∂t
+
∂R0

∂t
= 0

Since z2 = −(sz + t) these can be written

zi

(
∂R1

∂s
+R2 − sR3

)
+

(
∂R0

∂s
+ tR3

)
= 0

zi

(
∂R1

∂t
+R3

)
+

(
∂R0

∂t
+R2

)
= 0
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Since this holds for two roots z1, z2 each bracketed coefficients must vanish, giving

∂R1

∂s
= sR3 −R2,

∂R0

∂s
= tR3

∂R1

∂t
= −R3,

∂R0

∂t
= −R2

The polynomials R0, R1, R2 and R3 are found by carrying out two synthetic divisions

by the quadratic factor x2 + sx + t. This is most easily accomplished by equating

coefficients to obtain a recursion rule.

We have

(a0x
n + a1x

n−1 · · ·+ an) = (x2 + sx+ t)(b0x
n+2 · · ·+ bn−2)

= b0x
n + b1x

n−1 + b2x
n−2 . . .+ bn−2x

2

+sb0x
n−1 + sb1x

n−2 . . .+ sbn−2x

+tb0x
n−2 . . .+ tbn

Thus

b0 = a0

b1 + sb0 = a1

b2 + sb1 + tb0 = a2

and

bn + sbn−1 + tbn−2 = an
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