Roots of Polynomials

Antony Jameson

Department of Aeronautics and Astronautics, Stanford University, Stanford,

California, 94305

Roots of Polynomials

- 1. Evaluation of polynomials and derivatives by nested multiplication
- 2. Approximate location of roots
- 3. Bernoulli's method
- 4. Newton's method
- 5. Bairstow's method

1 Evaluation of polynomials

Let $P_n(x) = a_0 x^n + a_1 x^{n-1} \dots + a_n$. To calculate $P_n(\xi)$ use nesting.

$$b_0 = a_0$$

$$b_1 = b_0 \xi + a_1 = a_0 \xi + a_1$$

$$b_2 = b_1 \xi + a_2 = a_0 \xi^2 + a_1 \xi + a_2$$

. . .

$$b_n = P_n(\xi)$$

If we set $P_n(x) = (x - \xi)Q_{n-1}(x) + R_0$ where $R_0 = P_n(\xi)$, then on multiplying out and equating coefficients we find

$$Q_{n-1}(x) = b_0 x^{n-1} + b_1 x^{n-2} \dots + b_{n-1}, \quad P_0 = b_n$$

Repeating the division we have

$$Q_{n-1}(x) = (x - \xi)Q_{n-2}(x) + R_1$$

where $R_1 = Q_{n-1}(\xi)$, and thus

$$P_n(x) = (x - \xi)^2 Q_{n-2}(x) + (x - \xi)R_1 + R_0.$$

Differentiating with respect to x and setting $x = \xi$

$$P_n'(\xi) = R_1.$$

The procedure can be continued to yield

$$P_n(x) = R_n(x - \xi)^n \dots + R_1(x - \xi) + R_0$$

where

$$R_k = \left. \frac{1}{k!} \frac{d}{dx^k} P_n(x) \right|_{x=\xi}$$

The evaluation of the coefficients is indicated by the array

$$a_0$$
 b_0 c_0 \cdots R_n
 a_1 b_1 c_1 \cdots R_{n-1}
 \vdots
 a_{n-2} b_{n-2} c_{n-2}
 a_{n-1} b_{n-1} R_1
 a_n R_0

where any entry outside the 1_{st} row and column is found by multiplying the entry above by ξ and adding the entry to the left

$$c_k = c_{k-1}\xi + \beta_k$$

etc.

Nested multiplication (Horner's rule) for polynomial

Let

$$P_3(z) = a_0 z^3 + a_1 z^2 + a_2 z + a_3$$

= $((a_0 z + a_1)z + a_2)z + a_3$

To sum $p_n(z)$ let

$$b_0 = a_0$$

$$b_1 = a_1 + b_0 z$$

$$b_i = a_i + b_{i-1}z$$

. . .

Then

$$p_n(z) = b_n$$

Also we have

Division theorem

$$\frac{p(x) - p(z)}{x - z} = \sum_{i=0}^{n-1} b_i x^{n-1-i}$$

Denote right side by $q_{n-1}(x)$

$$(x-z)q_{n-1}(x) = \sum_{i=0}^{n-1} b_i x^{n-i} - \sum_{i=0}^{n-1} b_i z x^{n-i-1}$$

$$= \sum_{i=1}^{n} (b_i - b_{i-1} z) x^{n-i} + b_0 x^n - b_n$$

$$= \sum_{i=1}^{n} a_i x^{n-i} + a_0 x^n - p(z)$$

$$= p(x) - p(z)$$

Note also that where the b_i are evaluated for $p_n(z)$

$$q_{n-1}(z) = p'_n(z)$$

since differentiating

$$(x-z)q_{n-1}(x) = p_n(x) - p_n(z)$$

gives

$$q_{n-1}(x) + (x-z)q'_{n-1}(x) = p'_n(x)$$

We can sum $q_{n-1}(z)$ by the same rule

$$c_0 = b_0$$

$$c_i = b_i + zc_{i-1}$$

. . .

$$q_{n-1}(z) = c_{n-1}$$

Newton's method for several variables

To solve

$$f_i(x) = 0$$

we have

$$f_i^{n+1} = f_i^n + \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} (x_j^{n+1} - x_j^n) + \text{higher order terms}$$

Thus to make

$$f_i^{n+1} = 0$$

let $x_j^{n+1} - x_j^n$ satisfy

$$f_i^n + \sum \frac{\partial f_i}{\partial x_i} \left(x_j^{n+1} - x_j^n \right) = 0$$

Horner's rule and synthetic division

Consider

$$\frac{p_n(x)}{x-z} = \frac{a_0 x^n + a_1 x^{n-1} \dots + a_n}{x-z}$$

Then

$$p_n(x) - (x - z)a_0x^{n-1} = (a_1 + b_0z)x^{n-1} + a_2x^{n-2} \cdots$$
$$= b_1x^{n-1} + a_2x^{n-2} \cdots$$
$$= p_{n-1}(x) \text{ say}$$

Also

$$p_{n-1}(x) - (x-z)b_1x^{n-2} = (a_2 + b_1z)x^{n-2} + a_3x^{n-3} \cdots$$
$$= b_2x^{n-2} + a_3x^{n-3} \cdots$$
$$= p_{n-2}(x)$$

Finally

$$p_1(x) = b_{n-1}x + a_n$$

$$p_1(x) - (x-z)b_{n-1} = a_n + b_{n-1}z = b_n$$

SO

$$p_n(x) - (x-z)q_{n-1}(x) = b_n = p_n(z)$$

where

$$q_{n-1}(x) = b_0 x^{n-1} + b_1 x^{n-2} \dots + b_{n-1}$$

Horner's rule and derivatives

Since

$$p_n(x) = p_n(z) + (x - z)q_{n-1}(x)$$

and repeating the same rule

$$q_{n-1}(x) = q_{n-1}(z) + (x-z)q_{n-2}(x)$$

where

$$q_{n-2}(x) = \sum_{i=0}^{n-2} c_i x^{n-2-i}$$

we have

$$p_n(x) = p_n(z) + (x - z)q_{n-1}(z) + (x - z)^2 q_{n-2}(x)$$
$$= p_n(z) + (x - z)q_{n-1}(z) + (x - z)^2 q_{n-2}(z) + q_0$$

where

$$q_0 = a_0$$

Thus differentiating

$$\left. \frac{d}{dx^k} p_n(x) \right|_{x=z} = k! \ q_{n-k}(z)$$

Repeated application of Horner's rule thus gives the derivatives.

2 Rules for locating roots

The roots of a high order polynomial must be found by iteration, since it was proved by Galois that for polynomials of order > 4, there is no procedure for finding the roots with a finite number of algebraic operations, such as multiplications root extractions as in 2^{nd} order case where the roots of $x^2 + 2ax + b$ are $-a \pm \sqrt{a^2 - b^2}$. An iterative method may need a starting guess so it is useful to locate a root approximately. For locating real roots see Isaacson & Keller, p. 126.

A method of locating complex roots is to note that

$$w = P_n(z) = (z - z_1)(z - z_2) \cdots (z - z_n)$$

Any $w = \arg(z - z_1) + \arg(z - z_2) + \ldots + \arg(z - z_n)$. Thus a loop in the z plane enclosing n roots will cause $\arg w$ to increase by $2n\pi$, i.e. w encircles origin n times.

Figure 1:

$$\tan \Delta \theta = \tan(\theta_i - \theta_{i-1})$$

$$= \frac{\tan \theta_i - \tan \theta_{i-1}}{1 + \tan \theta_i \tan \theta_{i-1}}$$

$$\Delta\theta = \arctan \frac{\frac{y_i}{x_i} - \frac{y_{i-1}}{x_{i-1}}}{1 + \frac{y_i}{x_i} \frac{y_{i-1}}{x_{i-1}}}$$

$$= \arctan \frac{y_i x_{i-1} - y_{i-1} x_i}{x_i x_{i-1} + y_i y_{i-1}}$$

3 Bernoulli's method

Given the polynomial

$$P_n(z) = a_0 z^n + a_1 z^{n-1} \dots + a_n$$

consider the difference equation

$$a_0 x_k + a_1 x_{k-1} \dots + a_n x_{k-n} = 0$$

where x_k is calculated from x_{k-1}, \ldots obtained at previous steps. Try the solution

$$x_k = z^k$$

Then this is a solution if

$$P_n(z) = 0.$$

The general solution is of the form

$$x_k = \sum c_i z_i^k$$

where the z_i are the roots and the c_i depend on the initially given $x_0, x_1, \ldots x_{n-1}$.

Let the roots be ordered so that

$$|z_1| > |z_2| \cdots > |z_n|$$

Then

$$\frac{x_{k+1}}{x_k} = \frac{c_1 z_1^{k+1} + c_2 z_2^{k+1} + \dots + c_n z_n^{k+1}}{c_1 z_1^k + c_2 z_2^k + \dots + c_n z_n^k}$$

$$= z \frac{1 + \frac{c_2}{c_1} \left(\frac{z_2}{z_1}\right)^{k+1} + \dots + \frac{c_n}{c_1} \left(\frac{z_n}{z_1}\right)^{k+1}}{1 + \frac{c_2}{c_1} \left(\frac{z_2}{z_1}\right)^k + \dots + \frac{c_n}{c_1} \left(\frac{z_n}{z_1}\right)^k}$$

If $\left|\frac{z_i}{z_1}\right| < 1$ for i > 1 then regardless of the initial values

$$\lim \frac{x_{k+1}}{x_k} = z_1$$

If the dominant roots are a complex conjugate pair

$$z_1 = re^{i\theta}, \quad z_2 = re^{-i\theta}$$

where

$$\left|\frac{z_i}{r}\right| < 1, \quad i > 2$$

then with real initial values

$$c_1 = ce^{i\delta}, \quad c_2 = ce^{-i\delta}$$

$$x_k = 2cr^k \cos(k\theta + \delta) + c_3 z_3^k \dots + c_n z_n^k$$
$$= 2cr^k (\cos(k\theta + \delta) + p_k)$$

where

$$\lim_{k \to \infty} p_k = 0$$

Also $2cr^k\cos(k\theta+\delta)$ satisfies the difference equation

$$x_k + Ax_{k-1} + Bx_{k-2} = 0$$

where

$$A = -2r\cos\theta, \quad B = r^2$$

Then in the limit x_k satisfies the same equation, and

$$x_k + Ax_{k-1} + Bx_{k-2} = 0$$

$$x_{k+1} + Ax_k + Bx_{k-1} = 0$$

can be solved for A, B. The determinant

$$\begin{vmatrix} x_{k-1} & x_{k-2} \\ x_k & x_{k-1} \end{vmatrix} = 4c^2r^{2k-2}\sin^2\theta \neq 0$$

since by assumption $\theta \neq 0$.

4 Finding the roots of a polynomial by Newton's method

To find a root of $P_n(x)$ by Newton's method we set

$$x_{n+1} = x_n - \frac{P_n(x_n)}{P'_n(x_n)}$$

where to evaluate $P_n(x_n)$, $P'_n(x_n)$ we carry out the operations for the first 2 columns of the array for nested multiplications.

After finding a roots, we can use the same method to obtain divide out $(x - s_1)$,

$$P_n(x) = (x - s_1)Q_{n-1}(x)$$

where

$$Q_{n-1} = b_0 x^{n-1} + b_1 x^{n-2} \dots + b_{n-1}$$

with the b_k evaluated at $\xi = s_1$.

Then we repeat the process to find another root. Note that if $P_n(x)$ has real coefficients then $P_n(x)$ and $P'_n(x)$ are both real if x is real, so Newton's method can only find a complex root if the initial guess is complex.

5 Bairstow's method

To avoid searching for complex roots we can search for quadratic factors. Bairstow's method applies Newton's method for finding the factors. Let

$$P_n(x) = (x^2 + sx + t)Q_{n-2}(x) + xR_1(s,t) + R_0(s,t).$$

Then for zero remainder we must have

$$R_1(s,t) = 0$$

$$R_0(s,t) = 0$$

This is 2 nonlinear equations for 2 unknowns which may be solved by Newton's method. We need

$$J = \begin{bmatrix} \frac{\partial R_1}{\partial s} & \frac{\partial R_1}{\partial t} \\ \frac{\partial R_0}{\partial s} & \frac{\partial R_0}{\partial t} \end{bmatrix}$$

To get these indirectly let

$$Q_{n-2}(x) = (x^2 + sx + t)Q_{n-4}(x) + xR_3(s,t) + R_4(s,t)$$

so that

$$P_n(x) = (x^2 + sx + t)^2 Q_{n-4}(x) + (x^2 + sx + t)(xR_3 + R_2) + xR_1 + R_0$$

Then differentiating with respect to s, t and setting x to a root z_i of $x^2 + sx + t$

$$z_i(z_iR_3 + R_2) + z_i\frac{\partial R_1}{\partial s} + \frac{\partial R_0}{\partial s} = 0$$

$$z_i R_3 + R_2 + z_i \frac{\partial R_1}{\partial t} + \frac{\partial R_0}{\partial t} = 0$$

Since $z^2 = -(sz + t)$ these can be written

$$z_i \left(\frac{\partial R_1}{\partial s} + R_2 - sR_3 \right) + \left(\frac{\partial R_0}{\partial s} + tR_3 \right) = 0$$

$$z_i \left(\frac{\partial R_1}{\partial t} + R_3 \right) + \left(\frac{\partial R_0}{\partial t} + R_2 \right) = 0$$

Since this holds for two roots z_1 , z_2 each bracketed coefficients must vanish, giving

$$\frac{\partial R_1}{\partial s} = sR_3 - R_2, \quad \frac{\partial R_0}{\partial s} = tR_3$$

$$\frac{\partial R_1}{\partial t} = -R_3, \quad \frac{\partial R_0}{\partial t} = -R_2$$

The polynomials R_0 , R_1 , R_2 and R_3 are found by carrying out two synthetic divisions by the quadratic factor $x^2 + sx + t$. This is most easily accomplished by equating coefficients to obtain a recursion rule.

We have

$$(a_0x^n + a_1x^{n-1} + a_n) = (x^2 + sx + t)(b_0x^{n+2} + b_{n-2})$$

$$= b_0x^n + b_1x^{n-1} + b_2x^{n-2} + b_{n-2}x^2$$

$$+ sb_0x^{n-1} + sb_1x^{n-2} + b_nx^{n-2} + b_nx^{n-2}$$

Thus

$$b_0 = a_0$$

$$b_1 + sb_0 = a_1$$

$$b_2 + sb_1 + tb_0 = a_2$$

and

$$b_n + sb_{n-1} + tb_{n-2} = a_n$$