SHOCK CAPTURING ALGORITHMS

Antony Jameson

Department of Aeronautics and Astronautics Stanford University, Stanford, CA

Aug. 2000

THEORY OF SHOCK CAPTURING SCHEMES

TWO INGREDIENTS

- > SCALAR MAXIMUM PRINCIPLE
 (LOCAL EXTREMUM DIMINISHING (LED)
 SCHEMES)
- >> FLUX FOR SYSTEMS
 BASED ON DISCRETE SHOCK STRUCTURE
 (ONE POINT STATIONARY SHOCK)

ACCURACY AND STABILITY

- > It has been known (since Godunov) that linear positive schemes are first order accurate.
- This difficulty can be circumvented by introducing nonlinear switches (Boris and Book, Harten)
- > We only need positivity near extrema. Hence we can switch to a higher order scheme away from extrema.
- Since the slope $\frac{\partial v}{\partial x}$ changes sign at a extremum, the switch can be based on slope comparisons.

☞ NEED FOR OSCILLATION CONTROL

Consider a right running wave

$$\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial x} = 0, \quad a > 0$$

If $\frac{\partial v}{\partial x}$ is discretized by CENTRAL DIFFERENCES

$$D_x v = \frac{v_{j+1} - v_{j-1}}{2\Delta x}$$

then an ODD-EVEN mode

$$v_{j} = (-1)^{j}$$

gives

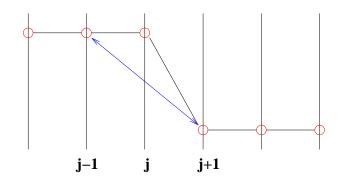
$$D_x v = 0$$

The ODD-EVEN mode is a stationary solution.

ODD-EVEN DECOUPLING must be removed.

⇒ ARTIFICIAL DIFFUSION or UPWINDING

☞ PROPAGATION OF A STEP DISCONTINUITY



Consider propagation of a step as a right running wave, for which

$$\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial x} = 0, \quad a > 0$$

The CENTRAL DIFFERENCE formula

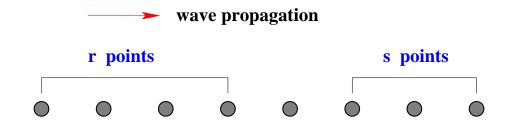
$$D_x v = \frac{v_{j+1} - v_{j-1}}{2\Delta x}$$

gives

$$D_x v_j < 0, \quad \frac{\partial v_j}{\partial t} > 0$$

 \Longrightarrow OVER SHOOT

☞ ISERLES' BARRIER THEOREM



Suppose that the transport equation

$$\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial x} = 0, \quad a > 0$$

is approximated by a semi-discrete scheme with r upwind points and s downwind points.

Then the maximum order of accuracy of a stable scheme is

$$\min(r+s, 2r, 2s+2)$$

This is a generalization of an earlier result of Engquist and Osher that the maximum order of accuracy of a stable upwind semi-discrete scheme is two.

It may also be compared to Dahlquist's result that A-stable linear multistep schemes for ODEs are at most second order accurate.

rightharpoonupSTABILITY IN THE L_{∞} NORM

Consider the nonlinear conservation law for one dependent variable with diffusion

$$\frac{\partial v}{\partial t} + \frac{\partial}{\partial x} f(v) = \frac{\partial}{\partial x} \mu(v) \frac{\partial v}{\partial x} \tag{1}$$

In a true solution, maxima do not increase and minima do not decrease. Hence L_{∞} stability is appropriate.

Consider the general discrete scheme

$$v_i^{n+1} = \sum_{j} a_{ij} v_j^n \tag{2}$$

For consistency with (1) (no source term)

$$\sum_{\mathcal{I}} a_{ij} = 1 \tag{3}$$

For L_{∞} stability

$$|v_i^{n+1}| \le \sum_{j} |a_{ij}| |v_j^n| \le \sum_{j} |a_{ij}| \|v^n\|_{\infty}$$

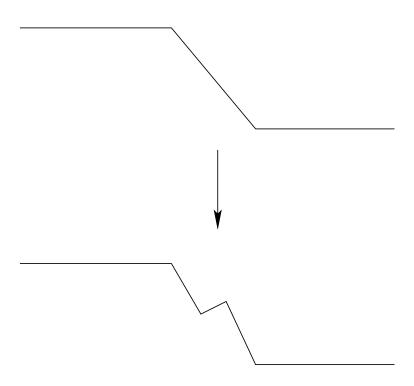
or

$$\sum_{j} |a_{ij}| \le 1 \tag{4}$$

(3) and (4) together can be satisfied only if

$$a_{ij} \ge 0$$
 (positive coefficients)

☞ LOCAL OSCILLATION



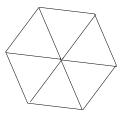
 L_{∞} stability still allows the possibility of local oscillations appearing in the solution.

EXECUTE ELED SCHEMES

A semi-discrete scheme is LOCAL EXTREMUM DIMINISHING (LED) if local maxima cannot increase and local minima cannot decrease.

A scheme in the form

$$\frac{dv_i}{dt} = \sum_{j \neq i} a_{ij} (v_j - v_i)$$



is LED if

$$a_{ij} \ge 0, a_{ij} = 0$$
 if i and j are not neighbors. (compact stencil)

Such schemes are first order accurate at extrema.

A scheme will be called ESSENTIALLY LOCAL EXTREMUM DIMINISHING (ELED) if in the limit as the mesh width $\Delta x \to 0$

local maxima are non-increasing

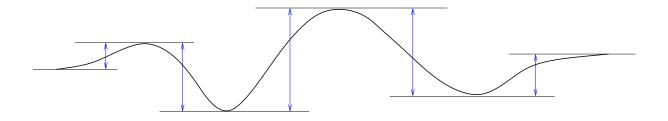
local minima are non-decreasing

Such a scheme can be second or higher order accurate at smooth extrema.

☞ EQUIVALENCE OF LOCAL EXTREMUMDIMINISHING (LED) AND TVD SCHEMES (ONE DIMENSIONAL CASE)

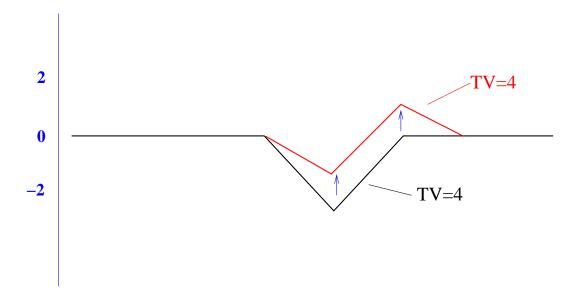
With fixed end values

$$TV(v) = \int_{-\infty}^{\infty} \left| \frac{dv}{dx} \right| dx$$
$$\sim 2 \left(\sum maxima - \sum minima \right)$$



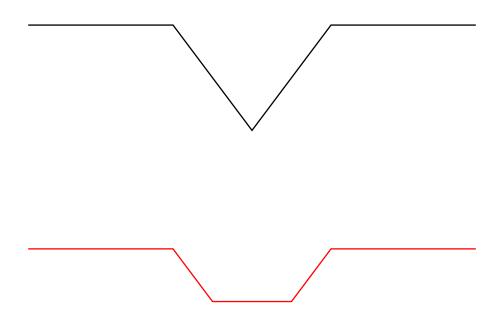
NONINCREASING LOCAL MAXIMA and NONDECREASING LOCAL MAXIMA imply NONINCREASING TOTAL VARIATION so LED SCHEMES are TVD SCHEMES.

☞ DISTINCTION BETWEEN LED AND TVD SCHEMES



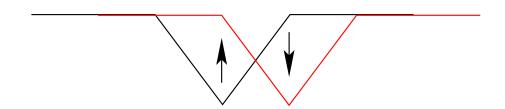
Shift from black to red preserves total variation. This would be inadmissible by an LED scheme.

CLIPPING



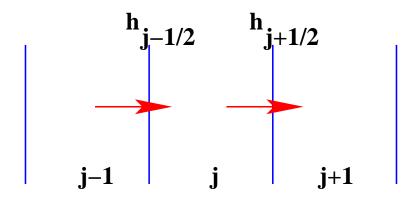
If an extremum is clipped during propagation, it can not be recovered by an LED or TVD scheme.

☞ PROPAGATION OF A PULSE



This is admitted by an LED scheme.

☞ ARTIFICIAL DIFFUSION AND LED SCHEMES



Suppose that the scalar conservation law

$$\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}f(v) = 0$$

is approximated by the semi-discrete scheme

$$\Delta x \frac{dv_{j}}{dt} + h_{j + \frac{1}{2}} - h_{j - \frac{1}{2}} = 0$$

where the numerical flux is

$$h_{j+\frac{1}{2}} = \frac{1}{2} (f_{j+1} + f_j) - \alpha_{j+\frac{1}{2}} (v_{j+1} - v_j)$$

Define a numerical estimate of the wave speed $a(v) = \frac{\partial f}{\partial v}$ as

$$a_{j+rac{1}{2}} = \left\{ egin{array}{l} rac{f_{j+1} - f_j}{v_{j+1} - v_j}, & v_{j+1}
eq v_j \ rac{\partial f}{\partial v}|_{v_j}, & v_{j+1} = v_j \end{array}
ight.$$

SCHEMES (continued)

then the numerical flux

$$h_{j+\frac{1}{2}} = f_{j} + \frac{1}{2} (f_{j+1} - f_{j}) - \alpha_{j+\frac{1}{2}} (v_{j+1} - v_{j})$$

$$= f_{j} - \left(\alpha_{j+\frac{1}{2}} - \frac{1}{2} a_{j+\frac{1}{2}}\right) (v_{j+1} - v_{j})$$

and

$$h_{j-\frac{1}{2}} = f_{j} - \frac{1}{2} (f_{j} - f_{j-1}) - \alpha_{j-\frac{1}{2}} (v_{j} - v_{j-1})$$

$$= f_{j} - \left(\alpha_{j-\frac{1}{2}} + \frac{1}{2} a_{j-\frac{1}{2}}\right) (v_{j} - v_{j-1})$$

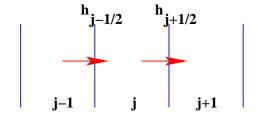
The semi-discrete scheme then reduces to

$$\begin{split} \Delta x \frac{dv_{\jmath}}{dt} &= (\alpha_{\jmath + \frac{1}{2}} - \frac{1}{2} a_{\jmath + \frac{1}{2}})(v_{\jmath + 1} - v_{\jmath}) \\ &- (\alpha_{\jmath - \frac{1}{2}} + \frac{1}{2} a_{\jmath - \frac{1}{2}})(v_{\jmath} - v_{\jmath - 1}) \end{split}$$

15 of 32

This is LED if $\alpha_{j+\frac{1}{2}} \ge \frac{1}{2} |a_{j+\frac{1}{2}}| \quad \forall j$.

☞ ARTIFICIAL DIFFUSION AND UPWIND BIASING



The least diffusive LED scheme is obtained by setting

$$\alpha_{\jmath+\frac{1}{2}} = \frac{1}{2} \left| a_{\jmath+\frac{1}{2}} \right|$$

to produce the diffusive flux

$$d_{\jmath+\frac{1}{2}} = \frac{1}{2} \left| a_{\jmath+\frac{1}{2}} \right| \Delta v_{\jmath+\frac{1}{2}},$$

where

$$\Delta v_{j+\frac{1}{2}} = v_{j+1} - v_j.$$

This is the upwind scheme since if $a_{j+\frac{1}{2}} > 0$

$$d_{j+\frac{1}{2}} = \frac{1}{2} \frac{f_{j+1} - f_j}{v_{j+1} - v_j} (v_{j+1} - v_j) = \frac{1}{2} (f_{j+1} - f_j)$$

so that $h_{j+\frac{1}{2}} = f_j$,

while if
$$a_{j+\frac{1}{2}} < 0$$
, $h_{j+\frac{1}{2}} = f_{j+1}$.

Thus the upwind scheme is the least diffusive first order accurate LED scheme.

JAMESON-SCHMIDT-TURKEL (JST) SCHEME

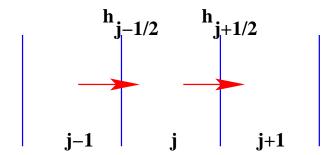
This scheme blends low and high order diffusion.

Suppose that the scalar conservation law

$$\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}f(v) = 0$$

is approximated by the semi-discrete scheme

$$\Delta x \frac{dv_{j}}{dt} + h_{j + \frac{1}{2}} - h_{j - \frac{1}{2}} = 0$$



In the JST scheme, the numerical flux is

$$h_{j+\frac{1}{2}} = \frac{1}{2}(f_{j+1} + f_j) - d_{j+\frac{1}{2}}$$

where the diffusive flux has the form

$$d_{j+\frac{1}{2}} = \epsilon_{j+\frac{1}{2}}^{(2)} \Delta v_{j+\frac{1}{2}} - \epsilon_{j+\frac{1}{2}}^{(4)} (\Delta v_{j+\frac{3}{2}} - 2\Delta v_{j+\frac{1}{2}} + \Delta v_{j-\frac{1}{2}})$$

with

$$\Delta v_{j+\frac{1}{2}} = v_{j+1} - v_j$$

☞ DESIGN PRINCIPLES FOR THE JST SCHEME

Conservation: integral form

⇒finite volume scheme

Exact for uniform flow on a curvilinear grid

⇒constrains discretization, form of diffusion

Steady state independent of Δt

Eliminates Lax-Wendroff, MacCormack schemes

Concurrent computation

Eliminates LU-SGS schemes \Longrightarrow RK schemes

Non-oscillatory shock capturing

⇒switched artificial diffusion: upwind biasing

At least second order accurate

 \Longrightarrow first order diffusion coefficient $\sim \Delta_x p$

Constant total enthalpy in steady flow

Eliminates Steger-Warming and other splittings

 \Longrightarrow diffusion for energy equation $\sim \frac{\partial}{\partial x} \epsilon \frac{\partial}{\partial x} \rho H$

Simplicity

☞ ORIGINAL JST SCHEME (1980)

Dornier code (Rizzi-Schmidt) solved for wvol with MacCormack scheme + added diffusion

$$\sim \delta_x \epsilon \delta_x w \text{vol}, \quad \epsilon \sim \left| \frac{p_{j+1} - 2p_j + p_{j-1}}{p_{j+1} + 2p_j + p_{j-1}} \right|$$

Does not preserve uniform flow on a curvilinear grid

 \implies move vol outside δ_x

$$w^{n+1} = w^n - \frac{\Delta t}{\text{vol}}(Q - D), Q = \text{convective terms}$$

Dimensional consistency $\Longrightarrow D \sim \delta_x \frac{\text{vol}}{\Delta t^*} \delta_x w$

where Δt^* is nominal time step

$$\Delta t^* = \frac{\text{vol}}{(Q + cS)_i + (Q + cS)_j}, \quad Q = \vec{q} \cdot \vec{S}$$

Higher order background diffusion was needed for convergence to a steady state.

This had to be switched off in the vicinity of a shock to prevent oscillations.

JST SCHEME

Let $a_{j+\frac{1}{2}}$ be an estimate of the wave speed $\frac{\partial f}{\partial v}$

$$a_{j+\frac{1}{2}} = \frac{f_{j+1} - f_j}{v_{j+1} - v_j}$$

or

$$\frac{\partial f}{\partial v}|_{v=v_j}$$
 if $v_{j+1}=v_j$

Theorem: The JST scheme is LED if whenever v_j or v_{j+1} is an extremum

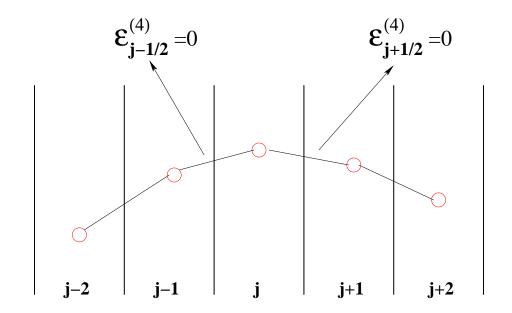
$$\epsilon_{j+\frac{1}{2}}^{(2)} \ge \frac{1}{2} |a_{j+\frac{1}{2}}|, \quad \epsilon_{j+\frac{1}{2}}^{(4)} = 0$$

Proof: At an extremum the scheme reduces to

$$\Delta_x \frac{dv_{\jmath}}{dt} = \left(\epsilon_{\jmath + \frac{1}{2}}^{(2)} - \frac{1}{2}a_{\jmath + \frac{1}{2}}\right)\Delta v_{\jmath + \frac{1}{2}} - \left(\epsilon_{\jmath - \frac{1}{2}}^{(2)} + \frac{1}{2}a_{\jmath - \frac{1}{2}}\right)\Delta v_{\jmath - \frac{1}{2}}$$

where each term in parenthesis ≥ 0 .

JST SCHEME AT A MAXIMUM



The condition that $\epsilon_{j+\frac{1}{2}}^{(4)} = 0$ if v_j or v_{j+1} is an extremum

$$\Longrightarrow \epsilon_{j+\frac{1}{2}}^{(4)} = \epsilon_{j-\frac{1}{2}}^{(4)} = 0.$$

Hence the scheme reduces to a 3-point scheme and

$$\frac{dv_{j}}{dt} \le 0$$

if

$$\epsilon_{\jmath+\frac{1}{2}}^{(2)} \geq \frac{1}{2} |a_{\jmath+\frac{1}{2}}|, \quad \epsilon_{\jmath-\frac{1}{2}}^{(2)} \geq \frac{1}{2} |a_{\jmath-\frac{1}{2}}|,$$

since then the coefficients multiplying $(v_{j+1} - v_j)$ and $(v_{j-1} - v_j)$ are both ≥ 0 .

SWITCH FOR JST SCHEME

Define

$$R(u,v) = \left| \frac{u-v}{|u|+|v|} \right|^q, \quad q \ge 1$$

Set

$$\begin{split} Q_{\jmath+\frac{1}{2}} &= R(\Delta v_{\jmath+\frac{3}{2}}, \Delta v_{\jmath-\frac{1}{2}}) \\ \epsilon_{\jmath+\frac{1}{2}}^{(2)} &= \alpha_{\jmath+\frac{1}{2}} Q_{\jmath+\frac{1}{2}} \\ \epsilon_{\jmath+\frac{1}{2}}^{(4)} &= \beta_{\jmath+\frac{1}{2}} (1 - Q_{\jmath+\frac{1}{2}}) \end{split}$$

Then the scheme is LED if

$$\alpha_{j+\frac{1}{2}} \ge \frac{1}{2} |a_{j+\frac{1}{2}}|.$$

If

$$\beta_{j+\frac{1}{2}} = \frac{1}{2}\alpha_{j+\frac{1}{2}}$$

the JST scheme reduces to the SLIP scheme.

(described in the following slides)

JST SCHEME (ELED)

Define the switching function

$$R(u, v) = \left| \frac{u - v}{\max(|u| + |v|, \epsilon \Delta x^r)} \right|^q$$

Set

$$\begin{split} Q_{\jmath+\frac{1}{2}} &= R(\Delta v_{\jmath+\frac{3}{2}}, \Delta v_{\jmath-\frac{1}{2}}) \\ \epsilon_{\jmath+\frac{1}{2}}^{(2)} &= \alpha_{\jmath+\frac{1}{2}} Q_{\jmath+\frac{1}{2}}, \quad \alpha_{\jmath+\frac{1}{2}} \geq \frac{1}{2} |a_{\jmath+\frac{1}{2}}| \\ \epsilon_{\jmath+\frac{1}{2}}^{(4)} &= \frac{1}{2} |a_{\jmath+\frac{1}{2}}| (1 - Q_{\jmath+\frac{1}{2}}) \\ q &\geq 2, \quad r = \frac{3}{2} \end{split}$$

Theorem:

- (1) The JST scheme is ELED;
- (2) It is second order accurate at smooth extrema.

Note:

Also with this switch, the JST scheme is a variation of the SYMMETRIC LIMITED POSITIVE (SLIP) scheme.

SYMMETRIC LIMITED POSITIVE (SLIP) SCHEME (Int. J. of CFD, 4,1995, 171-218)

Limited averages

Define L(u, v) with the following properties

P1: L(u,v) = L(v,u)

 $P2: L(\alpha u, \alpha v) = \alpha L(u, v)$

P3: L(u, u) = u P4: L(u, v) = 0 if u and v have opposite signs

Example

$$\operatorname{minmod}(u, v) = \frac{1}{2}(\operatorname{sign}(u) + \operatorname{sign}(v)) \min(|u|, |v|)$$

Limited flux

Now define the numerical flux

$$h_{j+\frac{1}{2}} = \frac{1}{2}(f_{j+1} + f_j) - d_{j+\frac{1}{2}}$$

where

$$\begin{split} d_{\jmath+\frac{1}{2}} &= \alpha_{\jmath+\frac{1}{2}} \{ \Delta v_{\jmath+\frac{1}{2}} - \underbrace{L(\Delta v_{\jmath+\frac{3}{2}}, \Delta v_{\jmath-\frac{1}{2}}) \}}_{\text{anti-diffusion}} \\ \Delta v_{\jmath+\frac{1}{2}} &= v_{\jmath+1} - v_{\jmath} \end{split}$$

This is LED if $\alpha_{j+\frac{1}{2}} \ge \frac{1}{2} |a_{j+\frac{1}{2}}|$.

☞ WELL KNOWN FLUX LIMITERS

Define

$$S(u, v) = \frac{1}{2}(\operatorname{sign}(u) + \operatorname{sign}(v))$$

so that

$$S(u, v) = \begin{cases} 1 & \text{when } u > 0 \text{ and } v > 0 \\ 0 & \text{when } u \text{ and } v \text{ have oppisite signs} \\ -1 & \text{when } u < 0 \text{ and } v < 0 \end{cases}$$

Well know limiters include

Minmod:

$$L(u, v) = S(u, v) \min(|u|, |v|)$$

van Leer:

$$L(u, v) = S(u, v) \frac{2|u| |v|}{|u| + |v|}$$

Superbee:

$$L(u, v) = S(u, v) \max\{\min(2|u|, |v|), \min(|u|, 2|v|)\}$$

CHARACTERIZATION OF LIMITERS

Define

$$\Phi(r) = L(1, r) = L(r, 1)$$

so that by P2, setting $\alpha = \frac{1}{u}$,

$$L(1, \frac{v}{u}) = \frac{1}{u}L(u, v)$$

Hence

$$L(u,v) = \Phi\left(\frac{v}{u}\right)u$$

and similarly

$$L(u,v) = \Phi\left(\frac{u}{v}\right)v$$

Also by P4

$$\Phi(r) \ge 0$$
 since $\Phi(r) = 0$ when $r < 0$.

PROOF THAT SLIP SCHEME IS LED

Define

$$r^{+} = \frac{\Delta v_{j+\frac{3}{2}}}{\Delta v_{j-\frac{1}{2}}}, \quad r^{-} = \frac{\Delta v_{j-\frac{3}{2}}}{\Delta v_{j+\frac{1}{2}}}$$

Then

$$L(\Delta v_{j+\frac{3}{2}}, \Delta v_{j-\frac{1}{2}}) = \Phi(r^+) \Delta v_{j-\frac{1}{2}}$$

and

$$L(\Delta v_{\jmath+\frac{1}{2}},\Delta v_{\jmath-\frac{3}{2}})=\Phi(r^-)\Delta v_{\jmath+\frac{1}{2}}.$$

The semi-discrete scheme now reduces to

$$\begin{array}{lll} \Delta x \frac{dv_{\jmath}}{dt} &=& -\frac{1}{2} a_{\jmath + \frac{1}{2}} \Delta v_{\jmath + \frac{1}{2}} - \frac{1}{2} a_{\jmath - \frac{1}{2}} \Delta v_{\jmath - \frac{1}{2}} \\ && + \alpha_{\jmath + \frac{1}{2}} (\Delta v_{\jmath + \frac{1}{2}} - \Phi(r^+) \Delta v_{\jmath - \frac{1}{2}}) \\ && - \alpha_{\jmath - \frac{1}{2}} (\Delta v_{\jmath - \frac{1}{2}} - \Phi(r^-) \Delta v_{\jmath + \frac{1}{2}}) \\ &=& \{\alpha_{\jmath + \frac{1}{2}} - \frac{1}{2} a_{\jmath + \frac{1}{2}} + \alpha_{\jmath - \frac{1}{2}} \Phi(r^-)\} \Delta v_{\jmath + \frac{1}{2}} \\ && - \{\alpha_{\jmath - \frac{1}{2}} + \frac{1}{2} a_{\jmath - \frac{1}{2}} + \alpha_{\jmath + \frac{1}{2}} \Phi(r^+)\} \Delta v_{\jmath - \frac{1}{2}} \end{array}$$

Since $\Phi(r) \geq 0$, the coefficient of $\Delta v_{j+\frac{1}{2}}$ is non-negative and the coefficient of $\Delta v_{j-\frac{1}{2}}$ is non-positive if

$$\alpha_{\jmath+\frac{1}{2}} \ge \frac{1}{2} |a_{\jmath+\frac{1}{2}}|, \quad \forall \jmath.$$

FLUX LIMITING VIA A SWITCH

Define the limited average as the arithmetic average multiplied by a switch :

$$L(u,v) = \frac{1}{2}D(u,v)(u+v)$$

where $0 \le D(u, v) \le 1$ and D(u, v) = 0 if u and v have opposite signs.

This is realized by
$$D(u, v) = 1 - \left| \frac{u - v}{|u| + |v|} \right|^q$$

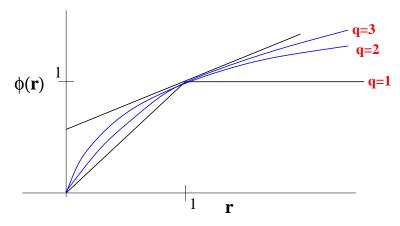
q=1 gives Minmod

q=2 gives the van Leer limiter since

$$\frac{1}{2}\left(1 - \left(\frac{u-v}{u+v}\right)^2\right)(u+v) = \frac{2uv}{u+v}$$

As $q \to \infty$, L(u, v) approaches a limit set by the arithmetic mean if u and v have the same sign and zero if they have opposite signs.

The corresponding switch $\Phi(r) = L(1, r)$ is sketched below.



© EQUIVALENCE OF JST AND SLIP SCHEMES

With the limited average

$$L(u,v) = \frac{1}{2}(1 - R(u,v))(u+v)$$

set

$$Q_{\jmath+\frac{1}{2}}=R(\Delta v_{\jmath+\frac{3}{2}},\Delta v_{\jmath-\frac{1}{2}})$$

Then the SLIP scheme can be written as

$$\begin{array}{ll} d_{\jmath+\frac{1}{2}} \; = \; \alpha_{\jmath+\frac{1}{2}} \{ \Delta v_{\jmath+\frac{1}{2}} - \frac{1}{2} (1 - Q_{\jmath+\frac{1}{2}}) (\Delta v_{\jmath+\frac{3}{2}} + \Delta v_{\jmath-\frac{1}{2}}) \} \\ \; = \; \alpha_{\jmath+\frac{1}{2}} Q_{\jmath+\frac{1}{2}} \Delta v_{\jmath+\frac{1}{2}} \\ \; - \frac{1}{2} \alpha_{\jmath+\frac{1}{2}} (1 - Q_{\jmath+\frac{1}{2}}) (\Delta v_{\jmath+\frac{3}{2}} - 2 \Delta v_{\jmath+\frac{1}{2}} + \Delta v_{\jmath-\frac{1}{2}}) \end{array}$$

This is the Jameson-Schmidt-Turkel (JST) scheme.

Thus the JST scheme with an appropriate switch is a variation of a SLIP scheme and is ELED.

SOFT LIMITER

To prevent a reduction to first order accuracy at smooth extrema, redefine L(u, v) with a threshold as

$$L(u, v) = \frac{1}{2}(1 - R(u, v))(u + v)$$

where
$$R(u, v) = \left| \frac{u - v}{\max\{(|u| + |v|), \epsilon \Delta x^r\}} \right|^q$$

Now in a smooth region $\Delta v_{j+\frac{3}{2}} - \Delta v_{j-\frac{1}{2}} = \mathcal{O}(\Delta x^2)$

Take $r=\frac{3}{2}$. Then $R(\Delta v_{j+\frac{3}{2}},\Delta v_{j-\frac{1}{2}})=\mathcal{O}(\Delta x^{\frac{q}{2}})$ and

$$\begin{array}{ll} d_{\jmath+\frac{1}{2}} \; = \; \alpha_{\jmath+\frac{1}{2}} (\Delta v_{\jmath+\frac{1}{2}} - \frac{1}{2} \Delta v_{\jmath+\frac{3}{2}} - \frac{1}{2} \Delta v_{\jmath-\frac{1}{2}}) \\ & \quad + \alpha_{\jmath+\frac{1}{2}} R(\Delta v_{\jmath+\frac{3}{2}}, \Delta v_{\jmath-\frac{1}{2}}) (\Delta v_{\jmath+\frac{3}{2}} + \Delta v_{\jmath-\frac{1}{2}}) \\ & = \; \mathcal{O}(\Delta x^3) + \mathcal{O}(\Delta x^{\frac{q}{2}+1}) \end{array}$$

Also L(u,v) = 0 if $|u| + |v| > \epsilon \Delta x^r$ and have opposite signs. It follows that if v_j is a maximum,

$$\Delta x \frac{dv_j}{dt} < K \Delta x^r$$
, with $r = \frac{3}{2}, \frac{dv_j}{dt} < K \Delta x^{\frac{1}{2}}$.

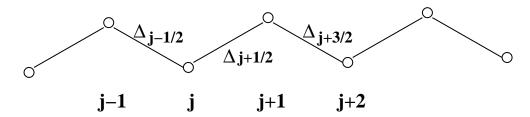
Similarly if v_j is a minimum, $\frac{dv_j}{dt} > -K\Delta x^{\frac{1}{2}}$.

Theorem: the SLIP scheme with the soft limiter and $q \ge 2, r = \frac{3}{2}$ is

- (1) second order accurate at smooth extrema;
- (2) essentially local extremum diminishing (ELED).

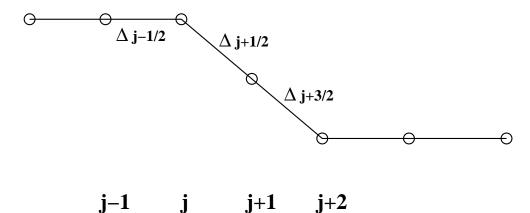
SLIP SCHEME IN PRACTICE

(1) Odd-even oscillation



 $\Delta_{j+\frac{3}{2}}$ and $\Delta_{j-\frac{1}{2}}$ have the same sign, opposite to that of $\Delta_{j+\frac{1}{2}}$, so they are not limited, and both reinforce $\Delta_{j+\frac{1}{2}}$ like they would in simple diffusion with fourth differences

(2) Shock wave



 $\Delta_{j-\frac{1}{2}}=0$ and $L(\Delta_{j+\frac{3}{2}},\Delta_{j-\frac{1}{2}})=0$ so the scheme is exactly like the first order upwind scheme .

SLIP RECONSTRUCTION

Define a limited average L(u, v) satisfying

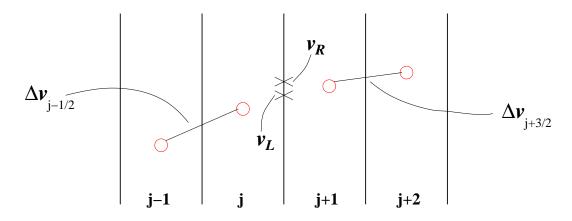
$$(1) L(u,v) = L(v,u)$$

$$(2) L(\alpha u, \alpha v) = \alpha L(u, v)$$

$$(3) L(u,u) = u$$

(3)
$$L(u, u) = u$$

(4) $L(u, v) = 0$ if u and v have opposite signs



Set

$$\Delta v_{j+\frac{1}{2}} = v_{j+1} - v_{j}$$

$$v_{L} = v_{j} + \frac{1}{2}L(\Delta v_{j+\frac{3}{2}}, \Delta v_{j-\frac{1}{2}})$$

$$v_{R} = v_{j+1} - \frac{1}{2}L(\Delta v_{j+\frac{3}{2}}, \Delta v_{j-\frac{1}{2}})$$

so that

$$v_R - v_L = \Delta v_{j+\frac{1}{2}} - L(\Delta v_{j+\frac{3}{2}}, \Delta v_{j-\frac{1}{2}})$$