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THEORY OF SHOCK CAPTURING
SCHEMES

[ TWO INGREDIENTS

0 SCALAR MAXIMUM PRINCIPLE
(LOCAL EXTREMUM DIMINISHING (LED )
SCHEMES)

[ FLUX FOR SYSTEMS
BASED ON DISCRETE SHOCK STRUCTURE
(ONE POINT STATIONARY SHOCK)
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[ ACCURACY AND STABILITY

[0 Tt has been known (since Godunov) that linear positive
schemes are first order accurate .

[1 This difficulty can be circumvented by introducing
nonlinear switches (Boris and Book, Harten)

[1 We only need positivity near extrema . Hence we can
switch to a higher order scheme away from extrema .

. Ov .
[1 Since the slope — changes sign at a extremum, the

ox

switch can be based on slope comparisons .
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[ NEED FOR OSCILLATION CONTROL

Consider a right running wave

ov ov
a + aa—x O, a >0
If g” is discretized by CENTRAL DIFFERENCES
x
Vi+1 — Vi1
D:L‘ — Jt J
v 2Ax
then an ODD-EVEN mode
vy = (=1)
gIves
D,v=20

The ODD-EVEN mode is a stationary solution.
ODD-EVEN DECOUPLING must be removed.

—> ARTIFICIAL DIFFUSION or UPWINDING
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[ PROPAGATION OF A STEP
DISCONTINUITY

N

j-1 j j+l

Consider propagation of a step as a right running wave,
for which

ov ov
E -+ aa—x = O, a > 0
The CENTRAL DIFFERENCE formula

Vixr1 — UV
_1)17 — J+ J
Y 2Ax
gIves
ov
D,v, <0, —2>0
Y ot
—> OVER SHOOT
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[J ISERLES’ BARRIER THEOREM

———> wave propagation

r points S points

| | | |
9 9 9 &) 9 9 9 9

Suppose that the transport equation
ov ov
—+a—=0, a>0
ot ox
is approximated by a semi-discrete scheme with r upwind
points and s downwind points .

Then the maximum order of accuracy of a stable scheme
1S
min(r + s, 2r, 2s + 2)

This is a generalization of an earlier result of Engquist
and Osher that the maximum order of accuracy of a
stable upwind semi-discrete scheme is two.

It may also be compared to Dahlquist’s result that
A-stable linear multistep schemes for ODEs are at most
second order accurate.
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[J STABILITY IN THE L, NORM

Consider the nonlinear conservation law for one
dependent variable with diffusion

o 0 0 9,
o o f) = 5 pv)5 (1)

In a true solution, maxima do not increase and minima
do not decrease. Hence L, stability is appropriate.

Consider the general discrete scheme

v = > QU (2)

For consistency with (1) (no source term)
Xy = 1 (3)

For L., stability

o < S laylle] < 5 la] (0"

or
lay| < 1 ()
(3) and (4) together can be satisfied only if

a,, >0  (positive coeflicients)
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[ LOCAL OSCILLATION

L stability still allows the possibility of local
oscillations appearing in the solution.
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[J LED and ELED SCHEMES

A semi-discrete scheme is LOCAL EXTREMUM
DIMINISHING (LED ) if local maxima cannot increase

and local minima cannot decrease.

A scheme in the form

dv,
T ;@%(% — 1)
is LED if

a,; > 0,a,, = 0 if ¢ and j are not neighbors.
(compact stencil )

Such schemes are first order accurate at extrema .

A scheme will be called ESSENTIALLY LOCAL
EXTREMUM DIMINISHING (ELED ) if in the limit as
the mesh width Az — 0

local maxima are non-increasing
local minima, are non-decreasing

Such a scheme can be second or higher order accurate at
smooth extrema .
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[0 EQUIVALENCE OF LOCAL EXTREMUM
DIMINISHING (LED) AND TVD SCHEMES
(ONE DIMENSIONAL CASE)

With fixed end values

dv

dx

~ 2 (X mazxima — Y minima)

e~ N

V() = [

— 00

dx

N

NONINCREASING LOCAL MAXIMA and
NONDECREASING LOCAL MAXIMA imply
NONINCREASING TOTAL VARIATION so LED
SCHEMES are TVD SCHEMES .
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[ DISTINCTION BETWEEN LED AND TVD
SCHEMES

Shift from black to red preserves total variation .

This would be inadmissible by an LED scheme.
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[ CLIPPING

AN

If an extremum 1is clipped during propagation, it can not
be recovered by an LED or TVD scheme.
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[ PROPAGATION OF A PULSE

ol

This is admitted by an LED scheme.
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[ ARTIFICIAL DIFFUSION AND LED
SCHEMES

N Njrae

—

-1 ] 1
Suppose that the scalar conservation law

ov 0
ot + 8xf(v) =0

is approximated by the semi-discrete scheme

dv,
AQ?% -+ hj-I—% — h

where the numerical flux is

=0

N[

]_

1
h3+% — 5 (fy—l—l + f]) — aﬁ-% (UJ+1 - UJ)

Define a numerical estimate of the wave speed a(v) = %
as .
ﬁ) vj—l—l 7£ ’U]
CLJ+% = o
\ %|UJ’ U1 = U
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[ ARTIFICIAL DIFFUSION AND LED
SCHEMES (continued)

then the numerical flux

1
h]+% = ft 5 (frr1 = ) — @yl (V341 — v))
1
= fy— (O{H; - 2%@) (V341 — vy)
and
1
h]—% — f] - 5 (f] - f]—l) — O‘]_% (U] 'Uj—l)
1
= f,— (a]_% + 2a]_%) (v, —v,—1)

dv 1
Ax dtj (ozﬁ% — 2a]+1)(v]+1 v,)
1
_(ozj_% - §aj_%)(vj V)_1)
Thisis LED if a1 > %|aj+%| V7.
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[0 ARTIFICIAL DIFFUSION AND UPWIND
BIASING

j+1/2

11

The least diffusive LED scheme is obtained by setting

1
Uty T é‘a’ﬁ%‘
to produce the diffusive flux
1
d]"‘% ‘ J+2‘ A’U

where
Av 11 = Vg1 — Uy

This is the upwind scheme since if a L > 0

dj+% = 1 Jrr1 = J; (Ug+1 — Uy) — ;(fyﬂ - f])

so that hﬁ% = f)
while if CL]JF% < 0, h]+% = f]+1-

Thus the upwind scheme is the least diffusive first order
accurate LED scheme.
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0 JAMESON-SCHMIDT-TURKEL (JST)
SCHEME

This scheme blends low and high order diffusion .

Suppose that the scalar conservation law

ov 0
=0
ot i &Cf(v)
is approximated by the semi-discrete scheme
dv,
Aa:% + hﬁ% — h]_% =0
h. h.

J-1/2 j+1/2

—

-1 j j+l

In the JST scheme, the numerical flux is
1

h_y-l—% — §(fj+1 + fy) - d]—{—%

where the diffusive flux has the form
9 4
d . 1=¢ )%Avj+% — W (Av 3 —2Av |

= A
s S 7+ A

]_

D[
D[

5

with
Afvﬁ% = U1 — U,
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[ DESIGN PRINCIPLES FOR THE JST
SCHEME

Conservation: integral form

—>finite volume scheme
Exact for uniform flow on a curvilinear grid

—>constrains discretization, form of diffusion
Steady state independent of At

Eliminates Lax-Wendroft, MacCormack schemes
Concurrent computation

Eliminates LU-SGS schemes = RK schemes
Non-oscillatory shock capturing

—>switched artificial diffusion: upwind biasing
At least second order accurate

—>first order diffusion coefficient ~ A, p
Constant total enthalpy in steady flow

Eliminates Steger-Warming and other splittings

0 0
—>diffusion for energy equation ~ —e—pH
oxr Ox

Simplicity
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[0 ORIGINAL JST SCHEME (1980)

Dornier code (Rizzi-Schmidt ) solved for wvol with
MacCormack scheme + added diffusion

Py+1 — 2p] + Py-1
Dy+1 + 2]7] + Py-1

~ 0z €0, wvol, €~

Does not preserve uniform flow on a curvilinear grid

— move vol outside 9,

At .
W't =" — ﬁ(Q — D), Q) = convectiveterms

Dimensional consistency = D ~ 55,;&—(2153;11)

where At* is nominal time step

. vol _ . &
Al - (Q+cS),+(Q+cS), @=q-5

Higher order background diffusion was needed for
convergence to a steady state.

This had to be switched off in the vicinity of a shock to
prevent oscillations.
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1 JST SCHEME

Let a 1 be an estimate of the wave speed %
. fj—l—l - f]
a,, 1=
U1 T Y
or

of

%LU:,U] if U1 — 7y

Theorem : The JST scheme is LED if whenever v, or
U,+1 1S an extremum

1
6(2)1 > —|a, l|, Egi)% =

7ty T2
Proof : At an extremum the scheme reduces to

1 1
A _d’l}] = (6(2) — = 1) Av 1 — (6(2)1 + —a _1) Av
Jt3 J 2

Tdt -\t 27k

where each term in parenthesis > 0.

© Antony Jameson 2000

Shock Capturing Algorithms
Stanford University 20 of 32 P &8



[ JST SCHEME AT A MAXIMUM

4 _ @ _
Ej_1/2 =0 €j+1/2 =0

|/

-2 -1 j j+l j+2
.- 4 . .
The condition that eg +)1 = 0 if v, or v,4; iIs an extremum
P
(4) (4)
— €1 =€ 1 =0.
s Iy

Hence the scheme reduces to a 3-point scheme and

dv, 0
dt —
if i |
2 2
> Clal, € > e

since then the coefficients multiplying (v,41 — v,) and
(v,—1 — v,) are both > 0.
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[0 SWITCH FOR JST SCHEME

Define ¢
U — v
R(u,v) = , g>1
u| + |v|
Set,
Q]Jr% = R(AUJ+%,AU]_%)

Then the scheme 1s LED if
1

04]_}_% Z §|a’j+%|'

If
1

Bj—i—% — §aj+%
the JST scheme reduces to the SLIP scheme.
(described in the following slides)
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0 JST SCHEME (ELED)

Define the switching function

q
u— v
R(u,v) =
(4, 0) max(|u| + |v|, eAzxT)
Set
Qg+% — R(Avj+%,AUJ_%)
(2) 1
€]+% Ol]_i_%Q]_i_%, 05]4_% > §|a]+%|
(9 _ 1
6.7'"% T 5 a’]—{—%|(]‘ o Q]-]-%)
3
> 9 = —
q -4, T 9
Theorem :

(1) The JST scheme is ELED ;
(2) It is second order accurate at smooth extrema .

Note :

Also with this switch , the JST scheme is a variation
of the SYMMETRIC LIMITED POSITIVE (SLIP )

scheme.
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0 SYMMETRIC LIMITED POSITIVE (SLIP)
SCHEME (Int. J. of CFD, 4,1995, 171-218)

Limited averages

Define L(u,v) with the following properties

Pl1: L(u,v) = L(v,u)

P2: L(au,av) = aL(u,v)

P3: L(u,u) = u

P4: L(u,v) = 0if u and v have opposite signs

Example

minmod (1, v) — ;(sign(u) + sign(v)) min(|ul, [v]

Limited flux

Now define the numerical flux
1
h]+% — §(f.7+1 + f]) R d]+%

where

rh = By — LA, 4, Ay 1))

/

anti—diffusion

Av L= Vg1 — Uy

This 1s LED if o,
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[ WELL KNOWN FLUX LIMITERS

Define
1

S(u,v) = §(sign(u) + sign(v))

so that

1 when v > 0 and v > 0
S(u,v) =4 0 when u and v have oppisite signs
—1 when u < 0and v <0

Well know limiters include
Minmod :
L(u,v) = S(u,v) min(|ul, [v])

van Leer :
2|ul |v|
|u| + |v|

L(u,v) = S(u,v)

Superbee :
L(u,v) = S(u,v) max{min(2|ul, [v]), min(|u|, 2|v]) }
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[ CHARACTERIZATION OF LIMITERS

Define
d(r) = L(1,r) = L(r, 1)

1
so that by P2 | setting a = —,
U

L(1, %) = L{u,v)

—) = —L(u,v

wou

Hence

and similarly

Also by P4
$(r) > 0 since ®(r) =0 when 7 < 0.
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[l PROOF THAT SLIP SCHEME IS LED
Define

. Av]+% — A’U]_%
Av]_%’ Avﬁ%
Then
L(Avj+%, Avj_%) = CI)(T+)AUJ_%
and

dv
Ax dt] = —% 1Av %aj_%Av] !
%(A’Uﬁ_% — O(r*)Av,_ %)
H(Av 1 — O(r7)Av 1)

+
- {04]+1 — %aﬁ% + a, 1@( )} j+%
_{a ! + 2a] 1+ Q. ( )}AU]_%

Since ®(r) > 0, the coeflicient of Av +] 18 non-negative

and the coefficient of Av 118 non—posﬂ;we if

> V.
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[J FLUX LIMITING VIA A SWITCH

Define the limited average as the arithmetic average
multiplied by a switch :

L(u,v) = ;D(u, v)(u ~+ v)

where 0 < D(u,v) <1 and D(u,v) = 0 if u and v have

opposite signs.

u—ov |2

This is realized by D(u,v) =1 — |———
Juf + [v]

q=1 gives Minmod
q=2 gives the van Leer limiter since

%(1_(10—1))2) (14 v) = 2uv

U+ v U+ v

As ¢ = 00, L(u,v) approaches a limit set by the
arithmetic mean if 4 and v have the same sign and zero
if they have opposite signs.

The corresponding switch ®(r) = L(1,r) is sketched
below.

\
E
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[ EQUIVALENCE OF JST AND SLIP
SCHEMES

With the limited average
1
L(u,v) = 5(1 — R(u,v))(u 4+ v)

set

Q]+2 R(Av,, 3 Av,_1)

Then the SLIP scheme can be written as

_1
2

1
d]—l—% = j—l—Q{AUJ—i—% — 5(1 — Q]+%)(Av]+% + A’Uj_%)}
= j—I—QQ]-l—%A’U
1
_§a]+2(1 — Q]+2)(A’Uj+:§ — QAU 4l AU]_%)

This is the Jameson-Schmidt-Turkel (JST ) scheme.

Thus the JST scheme with an appropriate switch is a
variation of a SLIP scheme and 1s ELED .
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[0 SOFT LIMITER

To prevent a reduction to first order accuracy at smooth
extrema , redefine L(u,v) with a threshold as

L(u,v) = ;(1 — R(u,v))(u + v)

U — v 9
max{ (|u| + |v]), eAx"}

Now in a smooth region Awv Av -

where R(u,v) =

5

Take r = 3. Then R(Av Av,

J+§’
dy1 = a,1(Av ——Avﬁ% 5 1)
_1
2

1R(Av, 3, Av,

]+2 ]+27

— (’)(Aa: ) + O(Aa;%“)

Also L(u,v) =0 if |u| + |v| > eAx" and have opposite
signs. It follows that if v, is @ maximum ,

Ax dv] < KAx" Wlthr—§ dv, <KA:1:2

27 dt
Similarly if v, is a minimum |, dt > — KAz
Theorem the SLIP scheme with the soft limiter and
q>2,r= 2 1S

(1) second order accurate at smooth extrema ;

(2) essentially local extremum diminishing (ELED ).
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[J SLIP SCHEME IN PRACTICE

(1) Odd-even oscillation

¢! O ©

Bj-172 A3 \O
O//////\\\&\Nj//Z;;é\\\Q\YY/////

-1 j j+1 j+2

A 3 and A 1 have the same sign, opposite to that of
Jt5 J—9 &

A1,
Jt35

like they would in simple diffusion with fourth differences

so they are not limited, and both reinforce A 1

(2) Shock wave

€, ©
Aj-112 A j+172

A j+3/2

O)
0]

-1 i j¥1 j+2
A 1 =0and L(A]Jr%, A]_%) = () so the scheme is

J—3
exactly like the first order upwind scheme .
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[ SLIP RECONSTRUCTION

Define a limited average L(u,v) satisfying

(1) L(u,v) = L(v,u)
2) L(au,av) = aL(u,v)
Eu,u) = u

U, V) = 0 if v and v have opposite signs

VR

g

AVH/Z/F\ O / \\4 AVj+3/2
A

j-1 j j+l j+2
Set
A’Uﬁ% = VUyy1 — U,
1L A A
v =V, T+ B ( Ustds Uj_%>
1L A A
o=ty B0, 580, )
so that
VR — V[ = Avﬁ% — L(Av]+%, Av]_%)
© Antony Jameson 2000 32 of 32 Shock Capturing Algorithms

Stanford University



