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OVERVIEW

� Introduction

� Spectral Difference method

� Validation

� Vortex Shedding

� Subsonic Flow past a plunging 
airfoil
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Higher order Methods (DG,SV,SD)

� Low numerical dissipation

� Less numerical dispersion 

� Unstructured grids

� CPU efficient/easy to parallelize

� Not memory intensive

� Easy to program, universal construction by placing 
unknown points in a geometrical similar manner 

� SD attains a simpler form and higher efficiency than 
DG and SV.

� Flexible (grid-independence, hp adaptation, moving 
boundary, deformable grid) 
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History of Spectral Difference Method

� D. A. Kopriva and J. H. Kolias, A conservative staggered-grid chebyshev multidomain
method for compressible flows. J. Comput. Phys. 125 (1996), p. 244.   STRUCTURED 
STAGGERED GRID

� Yen Liu , Marcel Vinokur , Z. J. Wang, Spectral difference method for unstructured grids I: 
basic formulation, Journal of Computational Physics, v.216 p.780-801,2006. 
UNSTRUCTURED MULTIVARIATE FORMULATION

Two early papers  on the SD method

Our papers on the SD method

� Wang, Z.J., Liu, Y., May, G., Jameson, A.: "Spectral Difference Method for Unstructured 
Grids II: Extension to the Euler Equations" , J. Sci. Comput. 32 (1) pp. 54-71, July, 2007.
EXTENSITION TO EULER EQUATIONS

� C. Liang, S. Premasuthan, A. Jameson, "High-order accurate simulation of flow past two 
side-by-side cylinders with Spectral Difference method", 2009, vol 87, pp. 812-817, Journal 
of Computers and Structures. EXTENSITION TO 2D Viscous flow on quadrilateral elements

� C. Liang, A. Jameson and Z. J. Wang, "Spectral Difference method for two-dimensional 
compressible flow on unstructured grids with mixed elements", Journal of Computational 
Physics, vol 228, pp 2847-2858, 2009. EXTENSITION TO 2D Viscous flow on mixed 
elements
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Development of the spectral difference 
method in Stanford University

� 2D quadrilateral/triangular element
� 3D hexahedral elements
� 4th-order and higher on unstructured grids
� Implicit LU-SGS time stepping
� P-multigrid method
� Moving and deforming grids
� Artificial viscosity for shock capturing
� Parallelization (MeTis/MPI) of 3D code
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High-order spectral difference method

�Flux points store f(q)

�Solution points store q

�The figure shows one way 
to locally construct a third-
order spectral difference 
scheme for a grid cell.

�9 solution points are used.

�24 flux points are employed.

�The reconstructed field 
using polynomials is continuous 
within the cell but discontinuous 
across the cell boundaries

�dq/dt+df(q)/dx =0
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Choosing solution and flux points

� N solution points  (one can choose arbitrarily)

Gauss points

Chebyshev-Gauss-
Lobatto points

Roots of the equation:
Legendre-Gauss 
quadrature points and two 
end points of 0 and 1.

(b)

(c)

(a)

� N+1 flux points

Or
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Stability of the Spectral Difference method

� K Abeele, C Lacor and Z. J. Wang (2008), On 
the stability and accuracy of the spectral 
difference method, Journal of Scientific 
Computing, vol 37, pp. 162-188.

� Antony Jameson, (2009), A proof of the 
stability of the spectral difference method for 
all orders of accuracy, Aerospace Computing 
Lab report, ACL-2009-1, Stanford University, 
March 2009.

� Both confirm stability when the interior flux 
points are at the zeros of the Legendre 
polynomial
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Solution and Flux reconstruction

Degree N-1 polynomial through solution points using Lagrange basis polynomial

Degree N polynomial through flux points using Lagrange basis polynomial

Reconstructed solution as well as flux polynomials within an element are written 
as tensor products of three 1D polynomials
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Calculation of inviscid flux derivatives

� Given the conservative variables at the solution 

points, the conservative variables are 

extrapolated to the flux points

� The inviscid fluxes at the interior flux points are 

computed

� The inviscid fluxes at the element interfaces are 

computed using an approximate Reimann

solver 

� The derivative of the fluxes are computed at the 

solution points according to

F,G

Qf Qf Qf

(Qf)L (Qf)R

FL FR

element interface

F F F

Fξ Fξ

Qs QsQf QfQf
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Calculation of viscous flux derivatives (1)

�The viscous fluxes depend on both the solution 
and the solution gradient at the flux points

� Reconstruct conservative variables at flux points 
using values at solution points

� At flux points on element interfaces, compute the 
average of left and right solution values

� Calculate the gradient of Q at the solution points 
from Q at flux points

Qs QsQf QfQf

(Qf)L (Qf)R

Qav Qav

Qf QfQf( )sQ∇ ( )sQ∇

),( ffvv QQFF ∇=
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Calculation of viscous flux derivatives (2)

� Reconstruct          from solution points to flux 
points

� At flux points on element interfaces, compute the 
average of left and right          values

� Compute viscous fluxes at flux points

� Compute viscous flux derivatives at solution points

�We are ready to compute the NS equation, using a 

five-stage R-K scheme

( )sQ∇ ( )sQ∇( ) fQ∇ ( ) fQ∇ ( ) fQ∇

( )LQ∇ ( )RQ∇

( )avQ∇ ( )avQ∇

( ) fQ∇ ( ) fQ∇ ( ) fQ∇

Fv Fv

Fv

(Fv)ξ

Fv Fv

(Fv)ξ

Q∇

Q∇
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Hexahedral grid mapping

�Mapping from physical 
hexahedral grid elements 
to a standard 
computational element
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Splitting triangulated grids to quadrilateral grids in 2D and 3D

(a)  A triangle split into 
three quadrilaterals (b) A tetrahedron split into four 

hexahedra
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Curved wall representation

M is shape function; K =8, 20 for 3D linear, quadratic mapping

K=4,8 for 2D linear, quadratic mapping

linear quadratic
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Extension to Moving and Deformable 
Grids (I)

X

Y

NdA

Reference framework

Moving 
physical 
framework

nda

G,g,w

X

Y

X

y

x
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Extension to Moving and Deformable 
Grids (II)

Define a mapping velocity 
:
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VALIDATION
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Mach contour around a circle

4th-order SD method on a grid 
with 32x32 cells

� Free stream Mach = 0.2

� Inviscid Euler solver
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Effect of interface flux on Cd

�Inviscid flow past a circle
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Compressible Taylor-Couette Flow

(a) Grid (b) Mach contour

Mach =0.5, Re=10, isothermal for inner cylinder 
and adiabatic wall for outer cylinder
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Verification of order of accuracy

Exact solution for 
angular velocity
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Studies of Vortex Shedding

Past a Plunging Cylinder

�E. GUILMINEAU and P. QUEUTEY, 
A NUMERICAL SIMULATION OF VORTEX SHEDDING 
FROM AN OSCILLATING CIRCULAR CYLINDER
Journal of Fluids and Structures 
Vol 16, 2002, pp. 773-794
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Computational grid for oscillating cylinder

�Our simulation uses 
only 32x32 grid

�The third-order SD 
method

�Total degrees-of-
freedom = 96x96

�Quadratic curved wall 



25

vorticity shedding behind an oscillating cylinder

�Y(t)=Ae*cos(2*pi*fe*t) 
for cylinder transverse 
motion

�Ae = 0.2D

�fe = 1.1 fn

�-1<omega*d/U<1

� Re =185

�The cylinder motion is identical to the 
one reported in  E. GUILMINEAU and P. 
QUEUTEY, Journal of Fluids and Structures 
Vol 16, 2002, pp. 773-794

�We obtained nearly identical results 
using a grid with only 1024 cells compared 
to their 48,000 cells
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Fluid-exerted forces

200

(a) Third order spectral difference  

Total cell : 32x32

(b) E. GUILMINEAU and P. QUEUTEY
Journal of Fluids and Structures
Vol 16, 2002, pp. 773-794

Total cell : 240x200

The predicted force coefficients are in a good agreement with Guilmineau
and Queutey (2002) and much less computational cells are used.
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Studies of plunging airfoils

�K. D. Jones, C. M. Dohring and M. F. Platzer, 
Experimental and computational investigation of the 
Knoller-Betz effect,
AIAA Journal, Vol 36, pp. 780-783.
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NACA 0012 grid with mixed elements

(a) Initial hybrid mesh: ‘Mesh A’ (b) One-level h-refinement: `Mesh B’
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Viscous flow past a stationary airfoil

� Re = 1850
� Mach = 0.2

� Vortices: 

Steady flow solution 

is reached eventually
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Slow plunging airfoil case

�Y(t)=Ae*sin(omega*t)

�Omega = 1.15

�Ae = 0.08 c

�Chord c =1

�Mach = 0.2

�Uinf = 0.2

�Re=1850

�4th order spectral 
difference method 
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Force coefficients for the slowly 
plunging airfoil

-4.78<Cl<4.77

-0.181<Cd<0.1
Mean drag coef = -0.0436



32

Fast plunging case

�First stroke of the airfoil goes 
upwards

�Y(t)=Ae*sin(omega*t)

�Omega = 2.46

�Ae = 0.12 c

�Chord c =1

�Mach = 0.2

�Uinf = 0.2

�Re=1850

�3rd order spectral difference 
method 

Our simulations suggest that the asymmetrical flow pattern depends on the 
direction of the airfoil’s first stroke.
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Fast plunging, 3rd-order simulation

�First stroke of the airfoil 
goes downwards

�Y(t)=Ae*sin(omega*t)

�Omega = 2.46

�Ae = 0.12 c

�Chord c =1

�Mach = 0.2 

�U_inf =0.2

�Re=1850

�3rd –order spectral 
difference method
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Simulation versus Experiment

�First stroke of the airfoil 
goes downwards

�Y(t)=Ae*sin(omega*t)

�Omega = 2.46

�Ae = 0.12 c

�Mach = 0.2

�Uinf = 0.2

�Re=1850

�Chord c=1

(a) Experiment by Jones, Dohring, 
and Platzer; AIAA JOURNAL Vol. 36, 
No. 7, July 1998

(b) 4th order Spectral difference method

Our prediction agrees 
better with the 
experimental results 
than any other published 
results !
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4th-order SD prediction for plunging airfoil

�Vorticity: -6<Omega*c/U<6
�Y(t)=Ae*sin(omega*t)
�Omega = 2.46
�Ae = 0.12 c

�Normalized velocity magnitude:

0.5<|V|/U_inf<2
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Force coefficients for fast plunging case

(a) Mesh B

(b) the 4th order SD method;

Mean drag = -0.51

Mean lift = 2.57
-26<Cl<34

-1.51<Cd<0.37
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Vorticity shedding on the finest mesh

(a) Mesh C (b) Vorticity

Third-order SD method is used
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Conclusions

� The SD method is robust and able to 
model compressible viscous flow with 
moving boundaries with high accuracy.

� It enables accurate simulations of 
vortex dominated flows

� Potential applications include flapping 
wing flight and wind turbine 
aerodynamics


