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Abstract

The focus of this research is on the control and suppression of vortex shedding of

flow past bluff bodies. The motivation of this research stems from the aerodynamic

problems encountered in the design and development of hard disk drives (HDD’s).

Two different computational fluid dynamic methods have been used in this research–

the Semi-Implicit Method for Pressure Linked Equation (SIMPLE), that is widely

employed in today’s commercial incompressible flow solvers, and the high-order spec-

tral difference (SD) method, recently developed for compressible flow solution. In

addition to numerical simulation and verification, complementary experimental mea-

surements have been performed to further validate the results. This research leads to

two very different suppression techniques: 1) a passive control using a thin splitter

plate positioned downstream of the bluff body; 2) an active control by way of counter

rotating a cylinder pair.

The passive suppression technique places a thin splitter plate downstream of the

bluff body in order to interfere with the vortex wakes and thereby suppress the vortex-

induced forces on the bluff body itself. The present investigation examines the sup-

pression of wake instabilities in the laminar shedding regime. Both bounded and

unbounded flow conditions are examined. It is found that in the bounded flow condi-

tion, the channel walls have an additional stabilizing effect on the shedding control.

With proper positioning of the splitter plate, vortex shedding is completely suppressed

in a bounded flow with moderate blockage factor. Wind tunnel empirical experiments

have also confirmed the effectiveness of a splitter plate in a bounded flow.

Active flow control by counter-rotating a pair of cylinders has been numerically

investigated. It has also been investigated experimentally in partnership with the Gas
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Dynamics Laboratory at Princeton University. It is demonstrated that it is possible to

suppress unsteady vortex shedding for gap sizes from one to five cylinder diameters,

at Reynolds numbers from 100 to 200. The degree of unsteady wake suppression

is proportional to the speed and the direction of rotation, and there is a critical

rotation rate where a complete suppression of flow unsteadiness can be achieved. In

the doublet-like configuration at higher rotational speeds, a virtual elliptic body that

resembles a potential doublet is formed, and the drag is reduced to zero. The shape

of the elliptic body primarily depends on the gap between the two cylinders and

the speed of rotation. Prior to the formation of the elliptic body, a second instability

region is observed, similar to that seen in studies of rotating single cylinders. It is also

shown that the unsteady wake suppression can be achieved by rotating each cylinder

in the opposite direction, that is, in a reverse doublet-like configuration. This tends

to minimize the wake interaction of the cylinder pair and the second instability did

not make an appearance over the range of speeds investigated here.
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Chapter 1

Introduction and motivation

1.1 Introduction

Vortex dominated flows have been a subject of great interest to scientists and en-

gineers studying fluid flow phenomena. These types of flows involve complex wakes

that can be two- or three-dimensional. Unstable vortex wakes are formed when there

is a flow of fluid past a structure that is non-streamlined or typically referred to as a

“bluff body”. These unsteady wakes leads to vortex induced vibration of structures

that can pose practical challenges across different engineering disciplines. Severe vor-

tex induced vibration can lead to catastrophic structural failures. Vortex induced

vibration problems are often encountered in the design of towers, buildings, oil rigs,

offshore structures, bridges, pipelines, heat exchangers, etc. Any non-streamlined

body is considered a bluff body when the pressure drag is dominant over viscous

drag. Representative examples include the circular cylinder, sphere, square and rect-

angle. A streamlined airfoil can also be considered a bluff body if it is set a large

angle of attack.

The majority of past research papers on bluff body flow have been devoted to the

flow past a two-dimensional circular cylinder [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15]. As noted by Roshko [11], the circular cylinder is, by far, the “quintessential”

bluff body. The popularity of the circular cylinder comes from its simplicity and

its practical importance in real engineering applications such as offshore pipelines,

1
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bridge towers, piers, etc. For experimental studies, it is convenient that circular-

shaped tubings and rods are readily available. Yet, the flow past the circular cylinder

can still be profoundly complex and provides a good general basis to understanding

the flow past a bluff body across the various conditions. The research history of

flow past a circular cylinder can be traced all the way back to d’Alembert with his

famous “paradox” where he was perplexed by the zero drag outcome in his potential

flow calculation, which contradicted the physical observation of a resisting force on

a moving bluff body through a fluid. It was the absence of viscosity in d’Alembert’s

calculation that led his theory to this physical paradox. Through mostly empirical

methods, much progress was made in the understanding of the role of viscosity in the

production of drag in the flow past a bluff body. Real fluid is viscous and therefore

will produce a resistance to shear stress when a body is moving relative to it.

The behavior of the vortex wakes depends on the balance of the inertial force and

the viscous force and therefore is characterized into different regimes by a dimension-

less Reynolds number,

Re =
ρUx

µ
, (1.1)

where ρ is the gas density, U is the freestream velocity, x is the characteristic length, µ

is the dynamic viscosity. At the limit of Re = 0, the flow can be considered somewhat

artificial since it produces a flow pattern that is ideally symmetric about the bluff

body centerline where the streamlines upstream look identical to those downstream.

In reality, any flow of a very viscous fluid or of a small object such that Re << 1

produces a symmetric pattern. This is called “creeping” or “Stokes” flow where the

inertial force is neglected. A smooth laminar flow is a result when the viscous force

is dominant at a very low Reynolds number. The stagnation pressure that develops

at the leading edge of the body is sufficient to drive the flow around the body. As

the Reynolds number increases, the boundary layer thickens and the inertial force

becomes more and more significant such that the leading edge stagnation pressure

can no longer drive the flow around the body to the trailing edge. Eventually the

fluid flow becomes detached from the body surface, resulting in flow separation. The

characteristics of flow instabilities varies across a large range of Reynolds number
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from a coherent, repeating series of swirling vortices, known as the von Kármán

vortex street, at the Reynolds number of less than a hundred to the regime of highly

chaotic and stochastic turbulent eddies at very high Reynolds numbers in the range

of several millions. For a circular cylinder, Roshko found that the formation of vortex

wakes displays a level of sensitivity to the base pressure coefficient (Cpb), measured at

180◦ from the leading edge stagnation point, which he used in classifying the following

vortex shedding regimes [11, 13].

a) Re < 49: Laminar steady regime

b) 49 6 Re < 180: Laminar vortex shedding regime

c) 180 < Re < 260: 3-D wake transition regime

d) 260 < Re < 103: Increasing disorder in the fine-scale three dimensionalities

e) 103 < Re < 105: Shear-layer transition regime

f) 105 < Re < 4× 105: Asymmetric reattachment regime (critical transition)

g) 4× 105 < Re < 8× 105: Symmetric reattachment regime (supercritical regime)

h) Re > 8× 105: Boundary-layer transition regime (post-critical regime)

In addition to the research on flow past a circular cylinder, there have been a

considerable number of numerical and experimental studies of the flow past rectan-

gular and square bluff bodies. Some notable investigations have been carried out by

Davis and Moore [16], Davis et al. [17], Okajima [18, 19], Okajima et al. [20], Kelkar

et al. [21], Norberg [22], Sohankar et al. [23, 24, 25] and Sen and Mittal [26]. The

interest in a rectangular shape stems largely from the design of buildings and road

vehicles. For example, many large buildings including skyscrapers are essentially built

with a square cross section. These buildings are subjected to wind-driven vibration,

resulted from the vortex shedding characteristics of their respective shapes. A large

road vehicle such as a moving truck can simplistically be viewed as a rectangular

body. Such study can be useful in help guide the vehicle design for reducing drag
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and ultimately increasing fuel efficiency. Another example of flow past a square or

rectangular cylinder is the read/write arm of a magnetic disk storage device, which

serves as the motivating basis for this thesis research as discussed in the next section.

1.2 Motivation – the aerodynamics of hard disk

drives

The motivation for this research stems from the author’s line of work in designing hard

disk drives (HDD’s). The HDD industry has shown, for more than half a decade, re-

markable advances in product development through technological innovations, astute

design and efficient manufacturing processes. Over the time, there has been indis-

putable evidence of fierce competition in the HDD industry, as seen in the erosion of

the price per gigabyte and the dwindling number of manufacturers. Yet, in order to

survive in such a competitive environment, HDD makers have been able to offer more

storage capacity year after year, even while sustaining chronically low profitability.

The HDD industry marked its beginning in September 1956 when IBM introduced

the first random-access storage unit of 5 million 7-bit characters (approximately 4.4

Megabytes) on 50 massive 24-inch aluminum disks in a system known as the RAMAC

(Random-Access Method of Accounting and Control). The introduction of RAMAC

put an end to the sequential storage on punched cards and magnetic tapes, although

the use of magnetic tapes has continued until recently in a backup role. With the

size bigger than a normal refrigerator and a ton of weight, the RAMAC was hardly

ready for an average consumer but nonetheless became the standard storage device

for business and scientific applications throughout large corporations and government

agencies.

From the time of the RAMAC, the level of technical advancements has been

astounding. The list below represents only some highlights of achievements that

resulted from a whole array of technological innovations in magnetic physics, servo

mechanics, electronics, software, and manufacturing processes combined from the

RAMAC time to the present day:
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a) Areal recording density has increased from 2,000 bits per square inch to nearly

1012 bits per square inch.

b) Track density has gone from 20 tracks per inch (TPI) to over 300,000 TPI.

c) Cost per Gigabyte has dropped from a staggering $640,000 per month lease (ex-

trapolated value based on $3,200 monthly charge of a RAMAC in 1957 [27], ex-

cluding inflation) to less than $0.10 for an outright ownership today.

In order to measure the success in technological innovations, areal recording den-

sity, which is a product of linear recording density and track density, is generally

used throughout the HDD industry. The trend more or less follows the Moore’s law

of semiconductor development. The main driving mechanism to achieve higher areal

density is in the magnetic recording technology of head and media. From the humble

beginning of coating RAMAC’s aluminum disk with a magnetic iron oxide, which

was derived from a paint primer used for the Golden Gate Bridge, to the current

usage of the state-of-the-art perpendicular magnetic recording heads and multi-layer

anti-ferromagnetic coupled disks, the advancement in magnetic head and media tech-

nologies has provided the boost needed to achieve the ever growing level of areal

density. In essence, these new technologies have produced a compound growth rate

in areal density to almost 500 million times that of the RAMAC discussed here.

There are many challenging problems from a fluid dynamic perspective in the

design and development of HDD’s. The transducers that read and write data from

and to the disk are carried by the ever-decreasing-sized slider that uses the pressure

generated by the compressible lubrication flow to “fly” over a disk. To keep pace

with areal density, one of the requirements is to reduce the flying height between the

recording head and disk and that dimension has steadily decreased from 20 microns

in the RAMAC days to currently less than the mean free path of air at 10 nanometers

or below. To appreciate this fact, a diameter of a human hair is about 30 microns,

larger than the flying height of the recording head used in the RAMAC. To cope with

such a challenge, HDD companies need to commit a fair amount of valuable research

and development spending on the mechanics of head disk interface, such as tribology,

wear, filtration, and chemical deposition, to ensure the quality and reliability of HDD
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products for a long MTBF (Mean Time Between Failures) of over 2 million hours

today.

Therefore, many new innovations are necessary to support the ever increasing areal

density. Most innovations are out of pure technical necessities but some are driven

by economics. For example, spindle motors needed to support high track density are

required to have low mechanical runout (in the range of less than 1 microinch) and

low acoustical noise while having a lasting reliability. Virtually every HDD in the

market today uses a “fluid dynamic” bearing spindle motor (ball bearings were the

norm only a few years ago) in order to achieve such a low runout and acoustic noise

[28]. Customers continue to demand faster average access time. That means spindle

motors have to spin at a faster rate, as high as 15,000 RPM (revolutions per minute)

today. Actuator that carries the read/write heads has to seek faster, thus requiring

the development of efficient mechanical design with the extreme geometrical precision.

High performance magnets, such as neodymium, have been developed as dictated by

the actuator and voice-coil motor design. Precise servo positioning algorithms and

electronics are required to keep the recording head and actuator assembly on track,

where the next track can be less than 10 microinches away. In addition, they must

be able to randomly seek to any other tracks for data. Signals have to be processed

in fast and efficient manners by the electronic board assembly, as this is where data

are transferred between computer and the recording disk.

Aside from the aerodynamics of recording heads, of equal importance, especially in

the high performance server drives, is the issue of internal HDD aerodynamics which

primarily is the real motivation for this research. The internal flow inside an HDD

is driven by aerodynamic friction of rotating disks. Accordingly the aerodynamic

excitation depends on the diameter and the rotational speed of the disks, as well

as the number of disks stacked in each HDD. Historically, disk diameters have been

decreasing due to form factor reduction in computer packaging. This works in favor

of lowering aerodynamic excitation. The rotational speed, on the other hand, has

been steadily increasing to meet the performance demand. Today the fastest HDD’s

operate at Reynolds numbers and areal densities such that aerodynamic buffeting

of the moving components including the arm, suspension, slider and disk, is once
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again an important issue. The flow inside the head disk assembly is complicated

by the presence of bluff, non-aerodynamic components; notably the arm, suspension

and slider. These are bodies which are highly susceptible to flow induced vibrations

(FIV) and high aerodynamic pressure drag. With track densities surpassing 300,000

TPI and rotational speeds of up to 15,000 RPM, FIV poses problems for the servo

control system to write and read data reliably within the track misregistration (TMR)

budget. When bluff bodies are placed between spinning disks or between a spinning

disk and the HDD enclosure, their blocking effect is stronger than the corresponding

situation without disks or stationary nearby walls. This blocking effect also results in

high aerodynamic power consumption, especially with the arm in the inner diameter

position. The problem of FIV and TMR control can be addressed by bypassing high

energy air ahead of the arm and suspension. This problem of combating aerodynamic

buffeting in HDD’s must always be seen in the context of minimizing FIV and running

torque. Otherwise, the aerodynamic buffeting problem could simply be solved by

replacing the air with a solid wherever possible. To a degree, inserting sector shaped

plates (sometimes called damper plates or “anti-disks”) between each pair of disks

falls in this category of FIV countermeasures. In most HDD’s the latter brute force

solution is not a viable option in order to limit the total power dissipation of the

HDD. Other issues driven by the overall behavior of HDD internal aerodynamics are

the filtration system, acoustic emission, and heat transfer management. These must

not be overlooked as they often determine the overall competitive performance of an

HDD design.

1.3 Research objective

While the subject of vortex induced vibration and flow control is extremely broad, this

research will focus primarily on laminar vortex shedding at a relatively low Reynolds

number where the wakes are predominantly two-dimensional. Computational fluid

dynamics (CFD) is used as the primary investigative tool in this research. Part of

the objective is to compare the numerical results obtained from two entirely differ-

ent codes: 1) a widely-used commercial incompressible code based on Semi-Implicit
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Method for Pressure-Linked Equations (SIMPLE) and 2) the compressible high-order

spectral difference code developed at Stanford’s Aerospace Computing Laboratory

(ACL). Both of these codes will be used to investigate the vortex shedding off bluff

bodies and the effect of flow control techniques.

As the title of this thesis suggests, the main objective of this research is to in-

vestigate and find ways of controlling and suppressing the unsteady wakes past bluff

bodies. The task is to apply both passive and active flow control techniques in order

to gain a better understanding of the flow physics. The passive flow control typically

refers to a technique that involves a geometrical modification that alters the vortex

shedding characteristics, thereby reducing or suppressing body force fluctuations. In

this particular research, this involves a placement of a detached thin splitter plate

downstream of a bluff body in both unbounded flows and bounded channel flows. The

active flow control, on the other hand, refers to a technique that involves a more dy-

namic alteration by means of adding or removing mass, momentum or energy to the

flow. As there are almost unlimited ways of active flow modification, the research fo-

cuses on the basic spinning technique of a single circular cylinder and a pair of counter

rotating cylinders, as inspired by Ludwig Prandtl’s experiment and hypothesis.

Some experimental results have been obtained and used to verify the computa-

tional results. The passive flow control experiment will be conducted using laser

Doppler vibrometer (LDV) in a very low speed wind tunnel used for HDD devel-

opment. The active flow control experiment will be collaboratively investigated by

a research team from the Gas Dynamics Lab at Princeton University using digital

particle image velocimetry (DPIV) technique. The detailed of these experimental

techniques are to be discussed in Appendix A.



Chapter 2

Overview of numerical methods

Computational fluid dynamics (CFD) has its root in the aerospace industry that

largely began in the mid 1960’s. Significant progress has been made in the following

decades in both numerical methods and computing hardware. Today CFD has now

become a well-established and valuable analysis tool suitable for industrial use in the

development of aerodynamic design with accuracy and acceptable cost. Continual

improvements in both numerical algorithms and hardware performance allow for the

emergence of more complex CFD models.

A commercial incompressible CFD code and the Aerospace Computing Laboratory

compressible code based on the high-order spectral difference (SD) method have both

been used as the investigative tools for this research. Each code has its advantages

and disadvantages. However, the primary reason for using both codes is so that

comparison, as a means of validation, can be made amongst the obtained results.

The commercial CFD code offers benefits in terms of ease of use in geometrical and

mesh modification and good post processing capability. The numerical algorithm used

in today’s many commercial incompressible CFD codes is based on the nearly-four-

decade-old Semi-Implicit Method for Pressure-Linked Equation (SIMPLE). Although

many improvements have been made to the original SIMPLE algorithm, the solution

accuracy is still at most second order and the efficiency often lacks that of the more

recent codes developed in universities and government research agencies. The high-

order SD scheme, on the other hand, has recently been developed and proven to be

9
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very robust and efficient in the simulation of a broad range of compressible flows,

including flows with shock wave at high Mach numbers. Its usefulness in the low

Mach region is verified in this research.

2.1 SIMPLE algorithm

Most commercial CFD codes solve the incompressible Navier-Stokes equations based

on the SIMPLE algorithm, first developed by Patankar and Spalding in 1972 [29]. A

few variants such as SIMPLE-Revised (SIMPLE-R), SIMPLE-Consistent (SIMPLE-

C) and Pressure Implicit with Splitting Operators (PISO) were subsequently devel-

oped. The usual practice is to solve the partial differential equations as an instance

of the generic conservation equation. The details of the SIMPLE algorithm is well

documented in the original paper by Patankar and Spalding [29] and subsequent pa-

pers by Patankar [30] and Van Doormal and Raithby [31] as well as many textbooks,

such as Patankar [32] and Ferziger and Perić [33].

In summary, the generalized transport equation can be expressed in the following

manner:
∂ρφ

∂t
+∇ ·

(
ρ
−→
V φ

)
= ∇ · (Γ∇φ) + Sφ (2.1)

The two terms on the left hand side of the above equation 2.1 are the transient term

and convection terms of any scalar quantity φ, respectively. These terms are balanced

by the diffusive transport term and any sources or sinks, Sφ, on the right hand side,

respectively. To solve the equation numerically, the generalized transport equation is

discretized by integration over a finite set of control volumes:

∫

V

∂ρφ

∂t
dV +

∫

V
∇ ·

(
ρ
−→
V φ

)
dV =

∫

V
∇ · (Γ∇φ) dV +

∫

V
SφdV (2.2)

By applying the divergence theorem to convection and diffusion terms, the transport

equation can be written as:

∫

V

∂ρφ

∂t
dV +

∮

S
ρφ
−→
V · −→n dS =

∮

S
Γ∇φ · −→n dS +

∫

V
SφdV (2.3)
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The transient term can be discretized simply by the first order explicit Euler

method. However, more commonly used in many commercial codes are the implicit

Euler and Crank-Nicolson methods.

The convective flux is discretized and evaluated using the midpoint rule and

various interpolation schemes such as first order upwinding and central differencing

schemes. ∮

S
ρφ
−→
V · −→n dS =

∑

f

(
ρ
−→
V · −→n S

)
f
φf =

∑

f

ṁfφf (2.4)

where ṁf is the mass flux through each face f of the control volume. Figure 2.1 shows

the notation of a typical control volume for a two-dimensional structured mesh. Here,

the fluxes are evaluated through the faces n, e, w and s with respect to the central

cell, P , and the adjacent cells N , E, W and S.

Figure 2.1: Control volume for a two-dimensional structured mesh.

The diffusive flux can also be discretized and evaluated using the midpoint rule

as follows: ∮

S
Γ∇φ · −→n dS =

∑

f

Γf

(
∂φ

∂n

)

f

Sf (2.5)

For closure, since the source term is a function of φ, it can be discretized by

∫

V
SφdV = (Sφ)P ∆V (2.6)

In two dimensions, for example, combining all the discretized spatial terms results
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in the following linear algebraic equation.

aP φP + aNφN + aEφE + aW φW + aSφS = bP (2.7)

In a more general form, this equation is often written in literature as

aP φP +
∑

nb

anbφnb = bP (2.8)

where nb represents the neighboring cells. The anb terms are called the link coefficients

and bP contains all the source terms [30, 32].

Now consider the following conservation equations for fluid flow.

Conservation of Mass:
∂ρ

∂t
+∇ ·

(
ρ
−→
V

)
= 0 (2.9)

Conservation of Momentum:

∂
(
ρ
−→
V

)

∂t
+∇ ·

(
ρ
−→
V
−→
V

)
= ∇ ·

(−→−→τ
)
−∇p (2.10)

where ρ is the density,
−→
V is the velocity vector, p is the pressure and

−→−→τ is the viscous

stress tensor.

As outlined by the method of solving the generalized transport equation, the flow

variables can be solved similarly by applying the integration and divergence theorem

to the flow equations.

d

dt

∫

V
ρdV +

∫

S
ρ

(−→
V · −→n S

)
dS = 0 (2.11)

d

dt

∫

V

(
ρ
−→
V

)
dV +

∮

S

(
ρ
−→
V

)(−→
V · −→n S

)
dS =

∮

S

(−→−→τ · −→n S
)

dS −
∮

S
(p−→n S) dS (2.12)

The calculation of pressure generally poses a problem in obtaining a solution to
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the Navier-Stokes equations at a constant density. This is due to the lack of an in-

dependent equation for pressure. The Navier-Stokes equations are non-linear with

unknown velocity components. Therefore, solving the flow field requires a known

pressure field. In compressible flow, both density and pressure are directly coupled

through the equation of state and are solved simultaneously through the continuity,

momentum and energy equations. It is obvious from the conservation equations that

there are five unknowns (ρ,
−→
V and p) in four equations (continuity and three mo-

mentum equations). In an incompressible flow or flow at a low Mach number when

the fluid density is treated as constant, there is no direct relationship that ties the

continuity equation with the pressure term, which only appears as a source term in

the momentum equations. Only the velocity components are coupled in the continu-

ity and momentum equations. Essentially, this means velocity components cannot be

solved until the pressure field is known, and vice versa. The idea behind the SIMPLE

algorithm is to establish a discrete equation for pressure and solve the discrete con-

tinuity equation in a segregated manner. It couples the pressure and velocity terms

after solving the discretized equations separately by an iterative approach. The orig-

inal SIMPLE algorithm follows the use of the finite volume approach on a staggered

mesh known as the marker and cell (MAC) scheme which was proposed by Harlow

and Welch [34]. The calculation of the pressure term is interpolated based on its value

at the cell centroids while the velocity terms are computed from the staggered control

volumes. The reason for using a “staggered grid” approach is to avoid what is known

as the checkerboard instability. When the values pressure and velocity are stored at

the same cell centered location (i.e. co-located), they are linked at alternate nodes

during the calculation of mass fluxes. This is also known as the odd-even decoupling

effect that often leads to indeterminate oscillation of the pressure field. Figure 2.2

illustrates an example of this staggered mesh approach of the SIMPLE scheme on a

two-dimensional Cartesian mesh.

For constant density, the momentum equation (2.10) can be written in semi-

discrete form:

ρ
∂ui

∂t
= −ρ

δ(uiuj)

δxj

− δp

δxi

+ µ
δ2ui

δx2
j

. (2.13)
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Figure 2.2: Staggered mesh pattern for SIMPLE family of algorithms.
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Let H denote the convective and viscous terms such that

ρ
∂ui

∂t
= Hi − δp

δxi

. (2.14)

The most common method for time integration in many commercial codes is the

implicit Euler method which leads to

ρ(un+1
i − un

i ) = ∆t

(
Hn+1

i − δp

δxi

n+1)
. (2.15)

The velocity field is divergence free at time n and is required from continuity relation

to be so at the new time step n + 1. This leads to solving what is known as the

Poisson equation for pressure, i.e.

δ

δxi

(
δp

δxi

n+1)
=

δ

δxi

Hn+1
i . (2.16)

However, the pressure and velocity field can only be determined if the Poisson equa-

tion is solved by some iterative procedure.

In two-dimensional form, the momentum equations at the new time step can be

discretized as

aP uP − aNun − aEue − aSus − aW uw = (pP − pW )∆y + bP (2.17)

aP vP − aNvn − aEve − aSvs − aW vw = (pP − pS)∆x + bP (2.18)

where the a coefficients contain mass fluxes, viscosity, and diffusion terms. The

coefficient b contains the source terms. Note that the pressure also appears only as

a source term on the right hand side of the equation. The subscripts and notation

correspond to those shown in figure 2.2.

These equations are often written in the following forms:

aP uP =
∑

nb

anbunb + (pP − pW )∆y + bP (2.19)
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aP vP =
∑

nb

anbvnb + (pP − pS)∆x + bP . (2.20)

The velocity components in these linear equations are therefore

uP =

∑
nb

anbunb + be

aP

+
1

aP

(pP − pW )∆y (2.21)

vP =

∑
nb

anbvnb + bn

aP

+
1

aP

(pP − pS)∆x. (2.22)

Since calculating the flow variables on staggered grid can be quite troublesome for

geometrically complex problems such as in non-Cartesian or curvilinear coordinates,

many commercial CFD codes use a popular procedure, proposed by Rhie and Chow

[35], that prevents the checkerboard instability and allows for the use of the co-located

cells. The Rhie-Chow approach calculates the mass fluxes by averaging the momen-

tum equation to the cell faces using weighting factors based on link coefficient aP from

equations 2.19 and 2.20 instead of averaging them linearly. The cell face velocity is

thus calculated from the local pressure gradient using this weighting procedure.

The core of the SIMPLE scheme is to establish the relationship between the ve-

locity terms with the pressure corrections in order to enforce the mass conservation

and solve for the pressure field. The pressure correction p′ is established during time

iteration steps by solving the discretized Poisson equation 2.16 for p′. In summary,

the procedure for two-dimensional implementation can be outlined as shown below.

1. Guess the values of pressure p∗ to start the iterative process.

2. Using the guessed value p∗, discretize and solve the momentum equations for

the velocities u∗ and v∗ such that

u∗P =

∑
nb

anbu
∗
nb + be

aP

+
1

aP

(p∗P − p∗W )∆y (2.23)

v∗P =

∑
nb

anbv
∗
nb + bn

aP

+
1

aP

(p∗P − p∗S)∆x. (2.24)

3. Calculate ρu∗ and ρv∗ for the internal grid points.
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4. Discretize and solve the Poisson equation for the pressure correction p′

5. Calculate the velocity corrections by approximating

u′P ≈
1

aP

(p′P − p′W )∆y (2.25)

v′P ≈
1

aP

(p′P − p′S)∆x (2.26)

The corrected pressure and velocities are then obtained by pm = p∗+p′, um = u∗+u′

and vm = v∗ + v′ to satisfy the continuity equation.

6. If the solution is converged, stop. Otherwise go to step 2.

2.1.1 SIMPLE-Revised

In 1980, Patankar proposed a new algorithm called SIMPLE-R which stands for

SIMPLE-Revised to address the problem of divergence as a result of the omission of

the velocity correction term ∑
nb

anbu
′
nb

aP

when calculating the velocity correction from the discretized momentum equations

[30]. The algorithm SIMPLE-R essentially requires an intermediate step of determin-

ing the pressure field from a Poisson equation based on pseudo-velocity components

obtained from the velocity correction equation of the SIMPLE algorithm. This in-

termediate pressure pm is used in the correction equations to again solve for velocity

components and pressure, before moving on to the next iteration until convergence

is achieved. In general, SIMPLE-R will result in fewer iteration steps but can be

computationally more expensive than SIMPLE, as it will require more calculations

in determining the intermediate pressure in each iteration.

2.1.2 SIMPLE-Consistent

Also commonly implemented in commercial solvers is SIMPLE-C, which stands for

SIMPLE-Consistent. This variant also solves the conservation equations by coupling
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the pressure and velocity terms similar to the original SIMPLE. However, as pointed

out by Patankar in the implementation of SIMPLE-R, the problem of ignoring the

velocity correction term can lead to inconsistency when solving for the pressure cor-

rection term. In 1984, Van Doormaal and Raithby proposed that since
∑
nb

anbu
′
nb is

of the same order as
∑
nb

anbu
′
P , it imposes a less severe constraint on the pressure cor-

rection equation if one replaces aP in SIMPLE with aP +
∑
nb

anb rather than ignoring
∑
nb

anbu
′
nb altogether [31]. This can be done with minimum change to the original

SIMPLE algorithm, but does have a significant and positive impact on convergence.

It can also be computationally less expensive than SIMPLE-R.

2.1.3 PISO

PISO, proposed by Issa in 1995, stands for Pressure-Implicit with Splitting of Op-

erators [36]. This is yet another class of pressure correction approach based on the

SIMPLE algorithm but requires slightly more computational effort. The algorithm

calls for the second corrector steps for velocity and pressure after SIMPLE iteration

is performed. The purpose of this additional step is to correct the momentum fluxes

in order to satisfy the continuity more closely. Therefore, this allows for a faster con-

vergence than the SIMPLE algorithm. PISO is proved to be useful in time dependent

flow and models with irregular cells.

2.1.4 Commercial CFD codes

Many of the commercial CFD codes, including CFX, Fluent, and Star-CD, imple-

ment SIMPLE and/or any one of its variants [37]. The code chosen for this work

is CFD-ACE+ by ESI Corporation. It uses the SIMPLE-C pressure-correction al-

gorithm along with various spatial discretization schemes. Several optional schemes

are available in CFD-ACE+ for spatial discretization of the convection term, namely

1st order upwind (1UDS), 2nd order upwind (2UDS) and central differencing (CDS).

Typically, the solution from a 1st order upwind scheme tends to be more diffusive.
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It is therefore avoided in this study as it can adversely affect the shedding charac-

teristics of the wake vortices. In the Reynolds number range of the current study, a

2nd order scheme should be sufficient in yielding a reasonably accurate result. For

time discretization, both the 1st order backward Euler and the 2nd order Crank-

Nicholson (CN) schemes are available. The discretization scheme of the diffusion and

source terms is fixed and no option can be set; however, it should produce 2nd order

accuracy.

2.2 High-order spectral difference method

While second order methods for computational simulations of fluid flow are by now

quite mature and reliable, they introduce levels of numerical diffusion that cause

rapid attenuation of vortices. Consequently accurate simulation of vortex dominated

flows can most readily be achieved by resorting to higher order methods. One of the

most promising approaches is the discontinuous Galerkin (DG) method, for which

the theoretical basis has been provided in a series of papers by Cockburn et al.

[38, 39, 40, 41]. The rapid growth of the computational complexity of DG methods

with increasing order has spurred the search for more efficient variants or alternatives.

One approach is the nodal DG scheme in which the solution is represented by Lagrange

interpolation at a set of collocation points in each element, and the quadratures

required by the DG method are pre-integrated to produce local mass and stiffness

matrices [42].

The spectral difference (SD) method has recently emerged as a promising alterna-

tive. The basic idea of the SD method was first put forward by Kopriva and Kolias

[43] under the name staggered grid Chebyshev multidomain method. In order to

discretize the conservation law

∂u

∂t
+

∂

∂x
f(u) = 0, (2.27)

they proposed to represent the solution by polynomials of degree N in each element

and the flux by polynomials of degree N + 1 with interlocking collocation points for
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the solution and the flux. The flux collocation points include the element boundaries,

where a single valued numerical flux is imposed which is common to each element

and its neighbors on the left or right. Then the value of ∂u/∂t at each solution point

is obtained directly as the derivative of the flux polynomial. Kopriva and Kolias used

Chebyshev and Chebyshev-Lobatto points as the solution and flux collocation points,

and it remains unclear whether the SD scheme is stable with this choice, although they

did prove the scheme to be conservative. Some years later Liu, Vinokur and Wang

presented a general formulation of SD methods on both quadrilateral and triangular

elements [44]. Wang, Liu, May and Jameson extended it to 2D Euler equations

on triangular grids [45]. Liang, Kannan and Wang improved the convergence of

the method using implicit LU-SGS and p-multigrid schemes [46]. Some additional

contributions are made by May and Jameson [47], Huang, Wang and Liu [48] and

Sun, Wang and Liu [49]. The SD method combines elements from finite-volume and

finite-difference techniques. Similar to the discontinuous Galerkin (DG) [50, 41] and

spectral volume (SV) methods [51, 52], the SD scheme achieves high-order accuracy

by locally approximating the solutions as a high degree polynomial inside each cell.

However, being based on the differential form of the equations, its formulation is

simpler than that of the DG and SV methods as no test function or surface integral

is involved. Conservation properties are still maintained by a judicious placement of

the nodes at quadrature points of the chosen simplex.

While the SD method has proved robust and productive in a variety of applications

[53, 54, 55, 56, 57, 58], doubts have been raised about its stability. It has been shown

by Huynh [59] that it can be weakly unstable in one dimension depending on the

choice of flux collocation points, including the choice made by Kopriva and Kolias.

It was recently proved by Jameson [60] that it is stable in an energy norm for all

orders of accuracy if the interior flux collocation points are chosen as the zeros of the

corresponding Legendre polynomials.

The implementation of the SD method on quadrilateral or hexahedral elements

is simple as it allows one to use polynomial interpolation based on tensor product

forms rather than the multivariate interpolation used with triangular or tetrahedral
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elements. In two dimensions, it involves only one-dimensional polynomials to con-

struct flux values from solution points and to calculate derivatives on solution points

from fluxes, etc. The formulation is summarized in the next section.

2.2.1 Spatial discretization

Consider the unsteady compressible two-dimensional Navier-Stokes equations in con-

servative form
∂Q

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (2.28)

where Q is the vector of conserved variables, and f and g are the total fluxes including

both inviscid and viscous flux vectors. The inviscid and viscous fluxes of the Navier-

Stokes equations can be written separately in the following form

∂Q

∂t
+∇F e(Q) +∇F v(Q ,∇Q) = 0, (2.29)

where the conservative variables Q and Cartesian components f e(Q) and g e(Q) of

the inviscid flux vector F e(Q) are given by

Q =




ρ

ρu

ρv

E




, f e(Q) =




ρu

ρu2

ρuv

u(E + p)




, and g e(Q) =




ρv

ρuv

ρv2 + p

v(E + p)




. (2.30)

Here ρ is the density, u and v are the velocity components in the x- and y-directions,

p is the pressure and E is the total energy. The pressure is related to the total energy

by

E =
p

γ − 1
+ 1

2
ρ(u2 + v2), (2.31)

where γ is a constant ratio of specific heat. For all numerical test cases in the present

study, γ = 1.4 for air.

The Cartesian components f v(Q ,∇Q) and g v(Q ,∇Q) of the viscous flux vector
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F v(Q ,∇Q) are given by

f v(Q ,∇Q) = µ




0

2ux + λ(ux + vy)

vx + uy

u [2ux + λ(ux + vy)] + v(vx + uy) + Cp

Pr
Tx




, (2.32)

g v(Q ,∇Q) = µ




0

vx + uy

2vy + λ(ux + vy)

v [2vy + λ(ux + vy)] + u(vx + uy) + Cp

Pr
Ty




, (2.33)

where µ is the dynamic viscosity, Cp is the specific heat at constant pressure, Pr is

the Prandtl number, and T is the temperature (λ is set to −2/3 according to the

Stokes hypothesis).

To achieve an efficient implementation, all quadrilateral elements in the physical

domain (x, y) determined by the one-level h-refinement are transformed into a stan-

dard square element (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1). The transformation can be written

as (
x

y

)
=

K∑
i=1

Mi(ξ, η)

(
xi

yi

)
, (2.34)

where K is the number of points used to define the physical element, (xi, yi) are

the Cartesian coordinates of those points, and Mi(ξ, η) are the shape functions. For

elements with straight edges, K is equal to 4. For elements lying on curved boundaries,

8 points (four mid-edge and four corner points) can define a quadratic representation

and 12 points can define a third-order cubic representation. The metrics and the

Jacobian of the transformation can be computed for each element. The governing

equations in the physical domain are then transferred into the computational domain,

and the transformed equations take the following form

∂Q̃

∂t
+

∂f̃

∂ξ
+

∂g̃

∂η
= 0, (2.35)
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where

Q̃ = |J | ·Q , J =

(
xξ xη

yξ yη

)
and

(
f̃

g̃

)
= |J | J−1

(
f

g

)
. (2.36)

In the standard element, two sets of points are defined, namely the solution points

and the flux points. A fourth-order representation is illustrated as an example in

figure 2.3.

Figure 2.3: Distribution of flux and solution points for the 4th order SD scheme.

In order to construct a degree (N − 1) polynomial in each coordinate direction,

solution values are required at N collocation points. The solution points in one

dimension are chosen to be the Gauss quadrature points defined by:

Xs =
1

2

[
1− cos

(
2s− 1

2N
π

)]
, s = 1, 2, . . . , N. (2.37)

The flux points are chosen to be the Gauss-Lobatto points [49, 61] given by:

Xs+ 1
2

=
1

2

[
1− cos

( s

N
π
)]

, s = 0, 1, . . . , N. (2.38)
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Following the analysis of Huynh [59] and Jameson [60], the flux points are selected

as the Legendre-Gauss quadrature points plus the two end points, 0 and 1. By setting

P−1(ξ) = 0 and P0(ξ) = 1, the higher degree Legendre Polynomials can be calculated

as:

Pn(ξ) =
2n− 1

n
(2ξ − 1)Pn−1(ξ)− n− 1

n
Pn−2(ξ). (2.39)

The locations of the interior Legendre-Gauss quadrature points are the roots of the

equation Pn(ξ) = 0.

Using the solutions at N solution points, a degree (N−1) polynomial can be built

using the Lagrange basis defined as

hi(X) =
N∏

s=1
s6=i

(
X −Xs

Xi −Xs

)
. (2.40)

Similarly, using the fluxes at (N +1) flux points, a degree N polynomial can be built

for the flux using a similar Lagrange basis defined as

li+ 1
2
(X) =

N∏
s=0
s 6=i

(
X −Xs+ 1

2

Xi+ 1
2
−Xs+ 1

2

)
. (2.41)

The reconstructed solution for the conserved variables in the standard element is

simply the tensor products of the two one-dimensional polynomials

Q(ξ, η) =
N∑

j=1

N∑
i=1

Q̃ i,j

|Ji,j|hi(ξ) · hj(η). (2.42)

Similarly, the reconstructed flux polynomials take the following form:

f̃ (ξ, η) =
N∑

j=1

N∑
i=0

f̃ i+ 1
2
,jli+ 1

2
(ξ) · hj (η),

g̃ (ξ, η) =
N∑

j=0

N∑
i=1

g̃ i,j+ 1
2
hi (ξ) · lj+ 1

2
(η). (2.43)
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The reconstructed fluxes are only element-wise continuous, but discontinuous

across cell interfaces. Thus ∂f̃ /∂ξ and ∂g̃/∂η reduce to polynomials of degree N − 1

consistent with the solution.

For the inviscid flux, a Riemann solver using either Rusanov [62] or Roe [63]

schemes is employed to compute a common flux at interfaces to ensure conservation

and stability. In the present study, the flux vector at the element boundary interfaces

is computed using the Roe solver with the entropy fix as suggested by Harten and

Hyman[64].

The algorithm to compute the inviscid flux derivatives
(
∂f̃ e/∂ξ

)
i,j

and (∂g̃ e/∂η)i,j

can be summarized in the following steps.

a. Given the conservative variables, Q̃ i,j, at the solution points, the conservative

variables, Qf (i.e. Q i+ 1
2
,j,Q i,j+ 1

2
), at the flux points are evaluate using equation

2.42.

b. The inviscid fluxes at the interior flux points are computed using the solutions

computed from the previous step.

c. The inviscid fluxes at the element interfaces, f̂ e and ĝ e, are computed using the

Rusanov or Roe solver.

• The Rusanov scheme takes the following form

f̂ e =
1

2

[
(f̃ e,L + f̃ e,R) · ~n− λ(QR −QL)

]
, (2.44)

ĝ e =
1

2

[
(g̃ e,L + g̃ e,R) · ~n− λ(QR −QL)

]
, (2.45)

where ~n is the normal direction of the interface, λ = |Vn| + c is an upper

bound for the absolute values of the characteristic speeds and Vn is the fluid

velocity normal to edge interface and c is the sound speed. The subscripts

L and R denote the flux points left and right of the element interface.

• The Roe scheme takes the following form

f̂ e =
1

2

[
(f̃ e,L + f̃ e,R) · ~n− |Â|(QR −QL) · ~n

]
, (2.46)
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ĝ e =
1

2

[
(g̃ e,L + g̃ e,R) · ~n− |B̂|(QR −QL) · ~n

]
, (2.47)

where Â =

(
∂f̃ e

∂Q

)

f

and B̂ =

(
∂g̃ e

∂Q

)

f

are the Jacobians at the interface

f .

d. The derivatives of the fluxes are computed at the solution points using the deriva-

tives of the Lagrange operators l as follows:

(
∂f̃ e

∂ξ

)

i,j

=
N∑

k=0

f̃ k+ 1
2
,j · l

′
k+ 1

2
(ξi), (2.48)

(
∂g̃ e

∂η

)

i,j

=
N∑

k=0

g̃ i,k+ 1
2
· l′

k+ 1
2
(ηj), (2.49)

where

l′
k+ 1

2
(X) =

N∑
m=0
m6=k

1

Xk+ 1
2
−Xm+ 1

2

N∏
s=0
s6=k
s 6=m

(
X −Xs+ 1

2

Xk+ 1
2
−Xs+ 1

2

)
. (2.50)

The solution procedures to get viscous fluxes can be described in the following

steps.

a. Given the conservative variables, Q̃ i,j, at the solution points, the conservative

variables, Qf (i.e. Q i+ 1
2
,j,Q i,j+ 1

2
), are evaluated to the flux points.

b. Compute the average values at the element interface flux points, i.e. Qf =
1
2
[(Qf )L + (Qf )R]. Apply appropriate conditions for u, v and T at specific

boundary points.

c. Evaluate ∇Q from Qf using equations 2.48 and 2.49 where ∇Q =

{
Qx

Qy

}
and

Qx =
∂Q

∂ξ
ξx +

∂Q

∂η
ηx, etc.

d. Reconstruct the gradients, ∇Q , at the flux points from the solution points.
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e. Compute the average of the flux-point gradient on the element interfaces ∇Qf =
1
2
[((∇Q)f )L + ((∇Q)f )R].

f. Use Qf and ∇Qf to compute viscous flux vectors described in equation 2.33 at

the element interfaces.

g. Compute the viscous fluxes at the flux points and their derivatives at the solution

points.

2.2.2 Temporal discretization

For time integration, equation 2.35 can be re-written as:

∂Q̃

∂t
= R(Q̃), (2.51)

where R is the spatial residual operator. The solution can then be obtained by simply

using the forward Euler explicit scheme which can be written as:

Q̃
n+1

= Q̃
n

+ dt ·R(Q̃
n
). (2.52)

The solution can be advanced in time using a multi-stage Runge-Kutta scheme as

follows:

Q̃
(0)

= Q̃
n
;

Q̃
(i)

=
i−1∑

k=0

[
αi,kQ̃

k
+ ∆tβi,kR(Q̃

k
)
]
, i = 1, 2, ..., s; (2.53)

Q̃
n+1

= Q̃
s

where s is the number of stages and the coefficients αik and βik are chosen according

to the stability and accuracy criteria such as those used in the widely known Jameson-

Schmidt-Turkel (JST) scheme [65] and the strong-stability-preserving Runge-Kutta

(SSPRK) schemes [66, 67]. In this research, all of the solutions are advanced in time

using a fourth-order strong-stability-preserving five-stage Runge-Kutta scheme where
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s = 5. The coefficients αik and βik are taken from the table of SSPRK(5,4) in Spiteri

and Ruuth [68] and are listed in table 2.1.
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Chapter 3

Laminar vortex shedding off a bluff

body

Some portions of this chapter were previously published by Chan & Jameson [69] 1

and Chan et al. [70] 2.

3.1 Introduction

As a preliminary to the study of laminar vortex suppression, it is vital to establish

confidence in the results obtained from both commercial and SD codes by making com-

parisons with other known experimental and numerical results from past researchers.

This chapter deals with numerical simulation and verification of the flow in the regime

where the flow is predominantly laminar and two-dimensional. The condition covered

in the study includes both unbounded flow and bounded flow in a confined channel.

For an unbounded flow, the effects of the end conditions such as the inlet, outlet and

wall boundaries are considered negligible or have very little influence on the vortex

shedding characteristics. The nature of the bounded flow, on the other hand, depends

1Chan & Jameson, Int. J. Num. Meth. Fluids. Copyright 2010. Reproduced with permission
from John Wiley and Sons. License Number 2671570769997.

2Chan et al. , J. Fluid Mech. Copyright 2011. Reproduced with permission from Cambridge
University Press. License Number 2671560868712.
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largely on the blockage ratio, β, which is typically defined as

β =
d

H
, (3.1)

where d is the cylinder diameter or characteristic length and H is the height of the

channel measured between two walls parallel to the direction of flow freestream. The

geometrical definition of the computational domain used in this research is shown in

figure 3.1.

3.2 Unbounded flow

It is well known that when a bluff body, such as a circular or a square cylinder, is

placed in a uniform freestream an unsteady separation develops, leading to a von

Kármán vortex street. Unbounded flow past a bluff body can be found in many en-

gineering applications such as buildings, bridges, towers, wires and telescopes. The

structural vibration caused by wake instabilities, known as vortex induced vibration,

can have a catastrophic impact on the structure itself. One of the most notorious ex-

amples of vortex induced vibration is the Tacoma Narrows Bridge that was destroyed

in 1940. Even in the laminar shedding regime, there can be a tremendous periodic

loads on the structure when the vortex shedding is set in motion. The basic design

of these structures oftentimes takes on the form of either circular or square cylinders.

3.2.1 Single stationary circular cylinder

In the low Reynolds number range of 50 to 194, the vortex wakes past a circular cylin-

der, for example, are purely two dimensional [13]. At higher Reynolds numbers, the

wakes become increasingly complex and three dimensional. In this subsection, results

from two-dimensional numerical simulations using both of the numerical schemes de-

scribed in chapter 2 are presented and compared with some well known results. The

comparisons are restricted to the laminar vortex shedding regime.
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Figure 3.1: Geometrical definition of the computational domain.

ESI CFD-ACE+ results at Re = 150, β = 0.015

This simulation uses a 256 × 256 computational mesh with a uniform circumferential

spacing around the circular cylinder. The normal spacing is increased geometrically

with the grid layer next to cylinder surface being 0.0003·d. Figure 3.2 illustrates the

mesh near the cylinder surface on an x− y Cartesian coordinate system.

CFD-ACE+ offers options for time discretization by the first order Euler and the

second order Crank-Nicolson (CN) schemes. For spatial discretization, the first-order

backward Euler scheme, the second order central differencing scheme (CDS) and the

second-order upwind schemes (2UDS) are available. In order to obtain sufficient ac-

curacy, the first order schemes for both time and spatial discretization should be

avoided since it is well known that these schemes lead to highly dissipative results.

When using the CN scheme, it is found that spatial discretization with the 2nd order

upwind difference scheme (2UDS) and CDS produce very similar results. Qualita-

tively, the instantaneous plot of the z-component of vorticity, shown on figure 3.3,

reveals the typical von Kármán vortex street as one would expect from flow past a

circular cylinder at Re = 150. It shows the formation of two rows of alternating
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Figure 3.2: Mesh around the circular cylinder for simulation using ESI CFD-ACE+.

vortices in the wake of the cylinder. This asymmetrical flow pattern produces an os-

cillating pressure distribution (figure 3.4) on the cylinder, and leads to the fluctuation

of coefficients of lift, CL, and drag, CD. Note that CD oscillates twice as fast as CL.

The shedding pattern is regular but is subjected to viscous dissipation as each vortex

moves further downstream away from the obstructing body. The rate of decay may

be exaggerated in the simulations due to numerical dissipation. However, no spurious

reflection is observed downstream confirming the correct pressure setting at the far

right boundary.

When a first-order backward Euler scheme is used for time discretization, the

Strouhal number, St, as well as the amplitudes of the drag and lift coefficients (figure

3.5) are significantly lower than the expected values from past publications such as

those obtained by Belov et al. [71]. The shortcomings of the first-order time dis-

cretization become even more apparent in solutions on a coarser grid. A coarser grid

is investigated in the interest of saving computational time to enable the study of

numerous variations. Table 3.1 shows the comparison of the results for flow past a

single circular cylinder at Re = 150 using these different schemes. It is obvious that

the accuracy of St and Cpb suffers markedly when the backward Euler scheme is used.
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Figure 3.3: Instantaneous vorticity plot of flow past a circular cylinder, 2UDS, CN,
Re = 150.

Figure 3.4: Instantaneous Cp plot showing isobar of flow past a circular cylinder,
2UDS, CN, Re = 150.
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Figure 3.5: CL and CD of flow past a circular cylinder, unbounded, 2UDS, Euler,
Re = 150.

Note that one of the techniques used to accelerate the onset of shedding is to perturb

the initial condition by using very large time step, ∆t, (e.g. 0.1) in the first few steps.

Once the mean flow is established throughout the domain, ∆t is then throttled back

to the desired target (e.g. 0.0001 s). The plots shown in this section represent flow

solutions in which the steady asymmetric shedding characteristics have already been

established.

It is well known that the CN scheme can sometimes lead to non-physical, oscil-

latory solutions when ∆t is set too large. In the interest of saving computational

time, it is desirable to use the largest possible ∆t that will not produce oscillations.

CFD-ACE+ allows a biasing scheme where the two-level time discretization can be

modified so that the code will solve the solution with more or less implicit information.

For example, when the blending factor (also known as weighting or biasing factor)

is set to 0.5, it produces the traditional CN scheme where the variables at time step

n and n + 1 have equal weighting of first-order explicit and backward implicit Euler
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Re = 150
Source Cells St CL CD Cpb

CFD-ACE+ (2UDS, Euler) 65,536 0.174 ± 0.401 1.268 ± 0.017 −0.73
CFD-ACE+ (CDS, CN) 65,536 0.181 ± 0.531 1.330 ± 0.028 −0.80
CFD-ACE+ (2UDS, CN) 65,536 0.180 ± 0.492 1.319 ± 0.023 −0.79
CFD-ACE+ (2UDS, Euler) 27,200 0.154 ± 0.146 1.132 ± 0.002 −0.57
CFD-ACE+ (CDS, CN) 27,200 0.175 ± 0.439 1.281 ± 0.019 −0.76
CFD-ACE+ (2UDS, CN) 27,200 0.174 ± 0.411 1.278 ± 0.017 −0.75
Belov et al. [71] 65,536 0.182 ± 0.486 1.168 ± 0.025 −0.82
Williamson [8, 13] – 0.184 – – −0.85

Table 3.1: Flow past a circular cylinder at Re = 150: Comparison of St, CL, CD and
Cpb for various numerical schemes and two different mesh densities.

Figure 3.6: Numerical oscillation appears in flow solution using traditional Crank-
Nicolson scheme (B = 0.5).
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Figure 3.7: Flow solution using Crank-Nicolson scheme with B = 0.6.

schemes. When it is set to 1.0, it recovers the implicit Euler method. The blending

scheme employed in the code essentially follows the theta method used for solving

initial value problems of stiff systems of differential equations. When applied to the

CN method in one-dimension, for example, the scheme takes the following form

φn+1
i − φn

i

∆t
= k

(
B

φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
+ (1−B)

φn
i+1 − 2φn

i + φn
i−1

∆x2

)
, (3.2)

where B is the blending factor, k is the diffusion coefficient, φ is the solution variable,

n is the time step and i is the cell being computed.

It has been found by Prothero and Robinson [72] and Berzins and Furzeland [73]

that a factor of 0.55 produces accurate and stable results for large non-linear systems

of stiff equations. In the present work, it is found that a default setting of 0.6 is

sufficient to inhibit oscillation in the solutions. Figure 3.6 shows a diverged solution

when the pure CN scheme (B = 0.5) is used with ∆t = 0.0001, while figure 3.7 shows

a stable solution with no significant deviation in CD, CL, or St from the references
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when the blending factor is set at 0.6. It is noted that a coarse mesh can produce

reasonable results when the proper temporal and spatial differencing schemes are

used. Note that setting B to 1.0 produces the backward implicit Euler scheme.

SD results at Re = 100, 150 and 200, β = 0.015

The intent of this section is to compare the SD numerical results for the flow past

a single stationary circular cylinder at Re = 100, 150 and 200 with the results from

a number of previous studies. The total number of cells used in this validation case

is 6,384. The grid distribution is set in a similar and consistent manner that will be

used throughout the present research. Figure 3.8 shows the grid distribution near the

circular cylinder body surface.

Across the inlet, the Dirichlet boundary condition is specified with a uniform

velocity of 0.1 m/s. The position of the inlet plane is far enough upstream for the flow

to be considered unbounded and to have negligible influence on the vortex shedding

behavior of the cylinder. It has been previously verified by Liang et al. [53, 55] that

sufficient accuracy and efficient convergence can be achieved for calculations of flow

past a bluff body when Mach number is set between 0.1 and 0.2. If the Mach number is

set too low, such as Ma = 0.05, the computational efficiency can be severely affected.

In the present work, the Mach number is set to Ma = 0.1 giving an effectively

incompressible flow condition. This section provides additional verification of the SD

results.

The upper and lower boundary conditions are set to a symmetrical slip condition.

At the exit boundary, a fixed pressure equal to the free stream condition is specified

while other flow variables are extrapolated so that the flow remains uniform at the

inlet. An isothermal, no slip boundary condition is applied on the cylinder wall

surface.

The SD results, as shown in table 3.2, figures 3.9 and 3.10, are computed using

the 4th order SD scheme, with 102,144 degrees of freedom (DOF’s). The Strouhal

numbers at Re = 100 and 150 are identical to the experimental values reported by

Williamson [8]. The computed mean base pressure coefficients, Cpb, at these two

Reynolds numbers are -0.70 and -0.84, respectively, and they also are in excellent
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Figure 3.8: Grid distribution near the circular cylinder body surface.

agreement with the experimental values reported by Williamson and Roshko [10].

In addition, the computed lift and drag coefficients are well within the range of

values reported in previous work. However, there appear to be some discrepancies

at Re = 200, that may be due to the presence of flow three-dimensionality which

the two-dimensional code cannot resolve. Nonetheless, the Strouhal number agrees

well with the computational value by Henderson [74] and the upper transient value

from the hysteretic transition regime reported by Miller and Williamson [12, 13].

Figure 3.11 shows the excellent agreement between the present SD calculation and

the often-benchmarked Williamson’s experimental result [8] of Strouhal number over

the laminar shedding regime. Williamson’s data is based on the parallel mode of

vortex shedding which is believed to represent a truly two-dimensional shedding.

Critical Reynolds number

For an unbounded flow past a circular cylinder, Williamson [8, 13] found the onset of

the wake instability to be at about Re = 49. Below this critical number, there is a

steady region of closed recirculation where a separation bubble enclosing a symmet-

rical pair of vortices on each side of the wake. The length of this separation bubble

increases with Re due to lower viscous stresses. In the present study using the 2nd
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Re = 100
Source St CL CD Cpb

Present SD [70] 0.164 ± 0.325 1.338 ± 0.009 −0.70
Dewey & Smits (Exp.) [70] 0.163 – – –
Braza et al. [6] 0.160 ± 0.25 1.364 ± 0.015 –
Ding et al. [75] 0.166 ± 0.287 1.356 ± 0.010 –
Henderson [74] 0.165 – – −0.73
Kovásznay [2] 0.163 – – –
Liu et al. [76] 0.164 ± 0.339 1.350 ± 0.012 –
Park et al. [77] 0.165 ± 0.332 1.33 ± 0.009 −0.74
Sharman et al. [78] 0.164 ± 0.325 1.33 ± 0.009 −0.72
Williamson [8, 13] 0.164 – – −0.71

Re = 150
Source St CL CD Cpb

Present SD [70] 0.184 ± 0.518 1.326 ± 0.026 −0.84
Dewey & Smits (Exp.) [70] 0.184 – – –
Belov et al. [71] 0.182 ± 0.486 1.168 ± 0.025 −0.82
Chan & Jameson [69] 0.181 ± 0.531 1.331 ± 0.028 −0.80
Henderson [74, 79] 0.186 – – −0.87
Kovásznay [2] 0.180 – – –
Park et al. [77] 0.184 ± 0.516 1.32 ± 0.026 −0.85
Williamson [8, 13] 0.184 – – −0.85

Re = 200
Source St CL CD Cpb

Present SD [70] 0.196 ± 0.68 1.340 ± 0.045 −0.96
Dewey & Smits (Exp.) [70] 0.197 – – –
Belov et al. [71] 0.193 ± 0.64 1.19 ± 0.042 −0.94
Braza et al. [6] 0.200 ± 0.75 1.40 ± 0.05 –
Ding et al. [75] 0.196 ± 0.659 1.348 ± 0.050 –
Henderson [74] 0.197 – – −1.01
Kovásznay [2] 0.193 – – –
Lecointe & Piquet [5] 0.194 ± 0.5 1.58 ± 0.0035 –
Liu et al. [76] 0.192 ± 0.69 1.31 ± 0.049 –
Miller & Williamson [12, 13] 0.197 – – −0.86
Mittal & Kumar [80] 0.193 ± 0.66 1.316 ± 0.049 –

Table 3.2: Flow past a circular cylinder at Re = 100, 150 and 200: St, CL, CD and
Cpb
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(a) Re = 100

(b) Re = 150

(c) Re = 200

Figure 3.9: SD 4th order solution of unbounded flow past a single stationary circular
cylinder: Instantaneous vorticity.
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(a) Re = 100

(b) Re = 150

(c) Re = 200

Figure 3.10: SD 4th order solution of unbounded flow past a single stationary circular
cylinder: Streamlines.
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Figure 3.11: Strouhal number of unbounded flow past a circular cylinder. A compar-
ison between SD numerical solution and Williamson experimental results.

order SD simulation, the critical Re is calculated from the non-zero value of the root-

mean-square (RMS) of the lift component, σ(CL), and is found to be at about 46.8,

which is in agreement with Norberg’s finding[81]. It is, however, difficult to deter-

mine that the critical Re from figure 3.12 since the streamlines at Re = 46.8 look

very much symmetrical and almost identical to those at Re = 45.8. The calculated

value of σ(CL) for Re = 46.8 is very small at approximately 0.0001 but nonetheless is

neither zero nor decaying towards it. The corresponding critical Strouhal number is

calculated to be 0.1185, which is compared with prior studies as shown in table 3.3.

3.2.2 Single stationary square cylinder

Similar to the flow past a circular cylinder, the flow past a square cylinder at zero

incident angle can also shed a periodic Kármán vortex street. Nonetheless, the key

difference between the two cylinders is the location where the separation point occurs.

For a circular cylinder, the location of the separation point depends on the Reynolds
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(a) Re = 45.8

(b) Re = 46.8

(c) Re = 47.8

Figure 3.12: Streamlines of flow near the critical Reynolds number, β = 0.01.
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Source Recrit Stcrit

Present SD 46.8 0.1185
Sahin and Owens [82] 46.74 0.1167
Chen et al. [83] 47.9 0.138
Jackson [84] 46.184 0.13804
Ding and Kawahara [85] 46.389 0.126

Table 3.3: Unbounded flow past a circular cylinder: Comparison of critical Re and
St.

number of the flow. For the flow at the very low Re, the separation point moves

steeply from the rear stagnation or base point (i.e. θ = 180◦ from the front stagnation

point as shown in figure 3.13) at Re ≈ 1 towards the rear sharp corners of the square

cylinder (i.e. θ = 135◦) [26] near Re = 5. In the range of 5 < Re 6 40, the separation

point, shown by Sen et al. , is by and large at the rear sharp corners. A steady region

of closed recirculation, similar to that of a circular cylinder is formed. The length

of the recirculation bubble increases approximately linearly with Re. This is also

found to be the case from an SD calculation using the mesh shown in figure 3.13 and

boundary conditions similar to those imposed on the calculation of the unbounded

flow past a circular cylinder. The streamlines in figure 3.14 for Re = 39.8 clearly

shows the separation point to be at the rear sharp corners of the square cylinder.

Figure 3.13: Grid distribution near the square cylinder body surface.
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(a) Re = 39.8

(b) Re = 44.8

(c) Re = 45.8

Figure 3.14: Streamlines of flow near the critical Reynolds number, β = 0.01.



CHAPTER 3. LAMINAR VORTEX SHEDDING OFF A BLUFF BODY 47

Laminar vortex shedding

Various researchers in the past seemed to agree from their numerical studies that

the onset of vortex shedding of flow past a square cylinder occurs somewhere between

Re = 50 and 60 [21, 25]. The deviation of this critical Reynolds number seems to be a

result of the differences in numerical schemes, boundary conditions and blockages used

in those studies. However, according to Norberg’s earlier experimental investigation

which is later cited by Sohankar et al. [24], the onset of vortex shedding for a very

small blockage (β = 0.0025) occurs at Re = 47. From the present SD calculation

using β = 0.01, it was found that the onset of vortex shedding occurs at Re = 45.8

(figure 3.14) which agrees well with Norberg’s finding. Furthermore, it is shown in

figure 3.15 that the Strouhal numbers over the range of laminar vortex shedding

regime also agrees quite well with Norberg’s 1996 experimental study (C. Norberg,

personal communication, 2012).
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Figure 3.15: Strouhal number of unbounded flow past a square cylinder.

It was observed by Sohankar et al. [23, 24] that in the laminar vortex shedding

regime the separation point of flow past a square cylinder occurs at the rear corners
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for Re 6 100 (e.g. Re = 75 as shown in figure 3.16). The separation point occurs

predominantly at the rear corners with an occasional jump to the front at Re = 125

and predominantly at the front corners at Re = 150. The present SD calculation also

finds that at around Re = 150 the separation points occurs predominantly at the

front corners. The separation point at the rear corners occur alternatively between

the upper and lower corners. Figure 3.17 shows an instant when the flow separates

on the upper corner surface. Note that the separation points are calculated based

on the point in the flow field near to the square surface where the vorticity is zero.

At Re > 175, the separation point is reported to be at the front corners of the

square. Figure 3.18 obtained from the present SD calculation at Re = 200 shows the

separation points to be at the front corners, thus supporting Sohankar’s finding.

Figure 3.16: Streamlines at Re = 75, β = 0.01.
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Figure 3.17: Instantaneous streamlines at Re = 150, β = 0.01, showing the separation
points near the front corners as well as the rear top corner.

Figure 3.18: Instantaneous streamlines at Re = 200, β = 0.01, showing the separation
points at the front corners.
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3.3 Bounded flow: blockage effect

One of the objectives of the present study is to investigate the blockage effect on

flow past a bluff body. Numerous practical examples of bounded flow can be found

in many places such as a bridge pillar in a river, a moving truck in a tunnel and

an electronic component in an enclosure. In the current research, the bluff body is

assumed to be situated perfectly at the center. The upper and lower boundaries are

brought equally closer as the blockage ratio, β increases. That is, at the limit, when

β = 0, the flow is unbounded, and when β = 1, the flow is completely blocked.

The present study focuses on flow past a bluff body at β 6 0.5. It has been shown

by Chen et al. [83] and Sahin and Owens [82] that in this range of blockage, neutral

stability of a symmetric solution is produced until it is lost through Hopf bifurcation

at a given critical Reynolds number. At higher β, there are multiple solutions due

to both Hopf and pitchfork bifurcations that can lead to symmetric or asymmetric

solutions depending on the Reynolds number. The convergence of critical Reynolds

number can be sensitive to mesh density in the higher blockage range above 0.5. The

mesh densities used in Sahin and Owens ranges from 89,336 to 1,842,784 degrees of

freedom (DOF).

When dealing with bounded flow with significant blockage factor, it is very impor-

tant to make clear what kind of velocity profile is used in defining the flow parameters

such as the Reynolds number, the Strouhal numbers, etc. Also the location of the

bluff body in the flow field with respect to the inlet and outlet boundaries plays an

important role in the behavior of the vortex wakes. Discrepancies amongst past re-

searchers have often occurred as a result of not taking the definition of overall flow

conditions into account.

With blockage effects, it is a common practice to define the flow parameters based

on either the maximum and mean value of the developed velocity profile along the

cross section upstream of the bluff body. At the inlet boundary, the streamwise

flow velocity is set to be uniform. The flow is allowed to be fully developed over the

distance of 30 ·d upstream of the bluff body. Figure 3.19 illustrates the inlet condition

that are imposed throughout the current research.
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Figure 3.19: Inlet velocity profile.

The flow velocity is explicitly defined as follows

• U = Uniform inflow velocity,

• Ud = Maximum velocity of a fully developed inflow profile,

• U∗ = Mean velocity of a fully developed inflow profile =
∫ H/2

−H/2
(u/H)dy.

The subscript “d” denotes a flow parameter calculated from the maximum velocity

value upstream of the bluff body. The superscript “∗” denotes it based on the mean

velocity. For example, Red = Udν/d, Re∗ = U∗ν/d, Std = fd/Ud, St∗ = fd/U∗, etc.

3.3.1 Bounded flow past a bluff body, 0 < β 6 0.5

Critical Reynolds numbers of flow past a circular cylinder

In the range of 0 < β 6 0.5, it has been demonstrated by Chen et al. and Sahin

and Owen numerically that the blockage effect does not dramatically change the

flow structures of the vortex wakes and the bifurcation properties as compared to the

unbounded case. However, it was shown that the neutral stability curve of the critical

Reynolds number based on maximum velocity increases monotonically as a function

of β until it peaks at β = 0.5. The critical Reynolds number is determined at the

point when the RMS value of the lift coefficient becomes non-zero. The corresponding

critical Strouhal number also increases with the blockage ratio. Table 3.4 shows a

reasonably good agreement of the results obtained from the current SD simulation

with both Chen et al. and Sahin and Owen. Note that instead of using maximum
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streamwise velocity value, Chen et al. defined the Reynolds number based on an

integral of the cross sectional velocity upstream of the circular bluff body as follows

Um =
1

d

∫ d/2

−d/2

u(y)dy.

Figure 3.20 illustrates the instantaneous streamlines at the critical Reynolds numbers

for the corresponding blockage ratios. The upper and lower boundaries have a stabi-

lizing effect on the flow perturbation as the shear layer from the boundaries puts a

constraint on the separating shear layer from the cylinder wake thus increasing the

Reynolds number at which the instability occurs. The size of the separation bubble

at the critical Reynolds number decreases as the blockage ratio increases, due to a

more increasing interaction of the shear layers between the confining walls and the

cylinder.

Present SD Sahin & Owens [82] Chen et al. [83]

β Re∗ St∗ Red Std Red Std Red Std

0.01 46.7 0.1187 46.8 0.1185 46.74 0.1167 47.9 0.138
0.05 43.5 0.1400 47.1 0.1295 – – – –
0.1 39.9 0.1687 48.9 0.1378 50.75 0.1211 51.6 0.122

0.1667 43.1 0.2109 59.1 0.1536 – – – –
0.2 48.2 0.2347 68.0 0.1661 69.34 0.1566 69.0 0.158
0.3 62.8 0.3134 92.5 0.2127 94.4 0.2093 92.0 0.215
0.4 76.1 0.4058 113.5 0.2719 – – 110.1 0.286
0.5 78.8 0.5055 118.1 0.3374 123.75 0.3399 114.2 0.369

Table 3.4: Bounded flow past a circular cylinder: “Critical” Reynolds number and
the corresponding Strouhal number, 0 < β 6 0.5. The superscript “∗” denotes
calculation based on mean velocity. The subscript “d” denotes calculation based on
maximum velocity. Critical Red and Std are given in comparison the values obtained
by Sahin & Owens and Chen et al. .

Critical Reynolds numbers of flow past a square cylinder

In the current study, the SD mesh from the previous study of confined flow past circu-

lar cylinder is modified to suit a square body of length 1 ·d. Aside from adjusting the
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(a) β = 0.1, (Red)crit = 48.9

(b) β = 0.2, (Red)crit = 68.0

(c) β = 0.3, (Red)crit = 92.5

(d) β = 0.4, (Red)crit = 113.5

(e) β = 0.5, (Red)crit = 118.1

Figure 3.20: SD solution of flow past a stationary circular cylinder at different block-
ages: instantaneous streamlines at the corresponding critical Reynolds number.
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mesh around the body, all the computational domains including boundary conditions

are kept substantially similar to those used for the circular cylinder. As discussed

in the previous section, the SD result for the unbounded flow past a square cylinder

compares quite well with known published data. Unlike the flow past a circular cylin-

der, there is very little published information on the critical Reynolds number of flow

past a square cylinder in a confined channel. As in the case of a circular cylinder,

the critical Reynolds numbers and the corresponding Strouhal number increases with

increasing blockage ratio. However, the peak of the neutral stability curve occurs at a

lower blockage ratio than that of the circular cylinder at somewhere between β = 0.4

to 0.5. Figure 3.21 shows the streamlines of flow past a square cylinder at various

blockage ratios. The separation bubble also decreases in size with increasing blockage

ratio. The separation point occurs at the rear corners for all blockage ratios in this

study.

Present SD

β Re∗ St∗ Red Std

0.01 45.7 0.1061 45.8 0.1058
0.05 42.5 0.1252 45.9 0.1159
0.1 40.9 0.1553 49.9 0.1273

0.1667 48.6 0.2012 65.8 0.1485
0.2 53.5 0.2265 74.8 0.1620
0.25 62.7 0.2701 90.2 0.1879
0.3 69.4 0.3169 101.7 0.2164
0.4 71.6 0.4181 107.0 0.2799
0.5 62.0 0.5229 93.0 0.3486

Table 3.5: Flow past a square cylinder in a confined channel: “Critical” Reynolds
number and the corresponding Strouhal number, 0 < β 6 0.5. The superscript “∗”
denotes calculation based on mean velocity. The subscript “d” denotes calculation
based on maximum velocity.

Unsteady laminar shedding regime

As in unbounded flow, increasing the Reynolds number beyond the critical value for

the flow past bluff body in a confined channel also leads to a symmetry breaking
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(a) β = 0.1, (Red)crit = 49.9

(b) β = 0.2, (Red)crit = 74.8

(c) β = 0.3, (Red)crit = 101.7

(d) β = 0.4, (Red)crit = 107.0

(e) β = 0.5, (Red)crit = 93.0

Figure 3.21: SD solution of flow past a stationary square cylinder at different block-
ages: instantaneous streamlines at the corresponding critical Reynolds number.
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Hopf bifurcation which causes the vortex wakes to detach from the cylinder body

leading to an unsteady pattern of alternating vortices, i.e. von Kármán vortex street.

Increasing flow confinement in the range of 0 < β ≤ 0.5 is found to have to an effect in

increasing the Strouhal number and the mean drag coefficient. It is generally accepted

from various publications that the unsteady vortex wakes for an unbounded flow past

a circular cylinder are predominantly two-dimensional at Re . 180. These vortex

wakes are periodic and sinusoidal in nature. The three dimensional wake transition

regime falls in the range of 180 ≤ Re ≤ 260 [14]. There has been no known study done

for the onset of three-dimensionality in flow past a bluff body with blockages. From

two-dimensional simulations, some indication of three-dimensionality can be detected

when the fluctuation of the lift coefficient would cease to follow a purely sinusoidal

pattern. However, it is not always a reliable measurement of three-dimensionality

since various factors can influence the wake patterns such as mesh density and time

step. In the end, it would be rather crude to rely on the two-dimensional results

to predict flow beyond the transitional range. Therefore, the limit of the current

investigation is set to Red < 300.

Since performing numerical flow simulation or empirical experiment requires a

finite domain, the role of upper and lower boundaries can be an important factor in

how the vortex wakes evolve no matter how small a blockage factor is. While it is

possible to treat these boundaries with a symmetrical or periodic condition which

essentially imposes a zero normal gradient, i.e. no flux through the boundaries,

oftentimes one of the common practices is to impose a no-slip wall condition on them.

In this study, both upper and lower boundaries are treated as non-slip walls. It is

universally accepted that when the blockage factor is very small, say β = 0.01, the

flow can safely be considered as unbounded. However, up to what value of β where

one can consider the flow to be unbounded is not so clear. Figures 3.22 and 3.23

clearly show the effect of the blockage factor on the Strouhal number, Std, the mean

drag coefficient, CDd
, and the RMS value of the lift coefficient, σ(CLd

), as function of

Reynolds number for the flow past circular and square cylinders. From these plots,

it can be concluded that increasing the blockage factor leads to an increase in Std

and CDd
over the laminar shedding range. As noted in the previous section, the
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confinement has a stabilizing effect in which the critical Reynolds number is delayed

to a higher value and the overall σ(CLd
) curve decreases with increasing β.

It is often times more convenient and useful in the study of blockages to calculate

the Strouhal number, lift and drag coefficients based on the mean velocity of incoming

flow. Figures 3.24 and 3.25 are essentially replots of figures 3.22 and 3.23 calculated

from the averaged velocity of the fully developed velocity profile upstream of the bluff

body, denoted by the superscript “*”. One particular reason for plotting this way

is to be able to equivalently compare the flow characteristics using different velocity

profiles.

It has been reported by Suzuki et al. [86] that there is a phenomenon called the

“crisscross” motion of vortices. This occurs when a sufficient blockage effect forces the

positive vortex that sheds off the upper portion of the bluff body to cross the negative

vortex from the lower portion and move towards the lower wall, and vice versa.

Suzuki et al. observed this pattern of motion from both numerical and experimental

investigation. They reported that the crisscross motion appears whenever the von

Kármán vortex street is formed at the blockage ratios of β > 0.1. At β > 0.1, the

crisscross motion also occurs in the unsteady Reynolds number range prior to the

formation of von Kármán vortex street. Figure 3.26 illustrates the crisscross motion

of vortices as obtained from SD simulation. Once the vortices cross one another, they

tend to dissipate and merge with the like-sign vortices coming off the respective walls.
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Figure 3.22: SD solutions of flow past a stationary circular cylinder at different block-
ages: Std, CDd

, σ(CLd
).
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Figure 3.23: SD solutions of flow past a stationary square cylinder at different block-
ages: Std, CDd

, σ(CLd
).
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Figure 3.24: SD solutions of flow past a stationary circular cylinder at different block-
ages: St∗, C∗

D, σ(C∗
L).
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Figure 3.25: SD solutions of flow past a stationary square cylinder at different block-
ages: St∗, C∗

D, σ(C∗
L).
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(a) β = 0.3, Red = 181, Circular cylinder

(b) β = 0.3, Red = 180, Square cylinder

Figure 3.26: “Crisscross” motion of vortices: instantaneous vorticity.



Chapter 4

Splitter plate interference

4.1 Introduction

The use of splitter plates to control vortex formation in cylinder wakes is not a new

concept. Roshko, in his 1954 NACA report [3], experimented with vortex suppression

by placing a thin splitter plate at various separation distances along the mean zero

streamline downstream of the circular cylinder base in order to interfere with its

natural shedding at Re = 14, 500. The wake interference caused the alteration of

the suction base pressure coefficient, Cpb, and the Strouhal number, St, depending

on the separation distance between the splitter plate and the circular body. Roshko

reported less variation of the pressure distribution over the cylinder circumference in

the presence of a splitter plate, which would mean attenuated flow induced vibrations

(FIV). Roshko also noted that the mean drag coefficient, CD was reduced from 1.15 to

0.72 in one of the splitter plate configurations. Thus, it can be further postulated from

this report that splitter plate deployment, in addition to inhibiting vortex shedding

instability, produces a streamlining effect on the flow past a bluff body.

Following the work of Roshko, Apelt et al. [87] investigated flows past circular

cylinders with splitter plates attached to a circular cylinder in the Re range of 104 to

5 × 104. They found that at any ratio of the splitter plate length, l, to the cylinder

diameter, d, or l/d, between 0 and 7, the flow characteristics past the cylinder can

be altered, as evident from the variation seen on the Strouhal numbers, CD and Cpb.

63
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They concluded that the effectiveness of a splitter plate depends significantly on the

length (l) of the plate. At l/d > 5, they observed that the drag component becomes

constant and the unsteady vortex shedding is eliminated from the cylinder body even

though they noted that the existence of a vortex street further downstream of the

splitter plate.

Unal and Rockwell [7] experimented with the insertion of a long and thick plate

with a sharp, wedge-like leading edge in the wake of a cylinder to control the develop-

ment of wake instabilities in the Reynolds number range of 140 < Re < 3, 600. The

plate is relatively thick (of the order of d) and its length is much greater than d, i.e.

l/d = 24. Note that Unal and Rockwell used circular cylinders of various diameters

to cover the range of Reynolds number in their study. Depending on the separation

distance from the cylinder, ls, a splitter plate can break the wake flow characteristics

into two basic regimes: 1) pre-vortex formation and 2) post-vortex formation. Unal

and Rockwell reported that at a relatively low Reynolds number, the unsteady von

Kármán vortex street can be eliminated with a thick splitter plate at a separation

distance of lsc = 2.8 · d for Re = 142. Note that lsc is the location of the splitter

plate from the center of the circular cylinder as defined by Unal & Rockwell. As such,

lsc = 2.8 · d, 3.2 · d, 5.2 · d and 6.5 · d would correspond to the current convention of

ls = 2.3 · d, 2.7 · d, 4.7 · d and 6.0 · d respectively.

As an exercise for verification, it is found that the current numerical results are in

good agreement with Unal and Rockwell’s experimental results. It is assumed that

the splitter plate thickness is 1 · d and the leading edge length is 2 · d for simulation

purpose. Also, the cylinder body and the splitter plate are placed far enough from the

top and bottom boundaries to be considered an unbounded flow condition. As shown

on figure 4.1, the vortex shedding from a circular cylinder with the splitter plate at

the separation distance of lsc = 2.8 · d is found to be steady and symmetric along the

mean center line and is thus classified as pre-vortex formation regime. At lsc > 3.2 ·d,

the vortex wakes become unsteady and the splitter plate is no longer effective in

controlling the oscillation. Quantitatively, the Strouhal numbers obtained from the

present numerical simulations (table 4.1) also compare well with the experimental

results published by Unal and Rockwell. Numerical results for flow past a cylinder
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lsc CL CD St Cpb

2.8 · d 0.000± 0.000 0.946± 0.000 – −0.31
3.2 · d 0.000± 0.605 1.164± 0.036 0.150 −0.59
5.2 · d 0.000± 0.436 1.200± 0.022 0.162 −0.62
6.5 · d 0.000± 0.461 1.223± 0.020 0.167 −0.64

No splitter plate 0.000± 0.468 1.326± 0.021 0.180 −0.79

Table 4.1: Numerical results for flow past a circular cylinder with thick splitter plate
used by Unal and Rockwell, Re = 142.

without a splitter plate are also provided for reference.

The simulations verify that if a thick and long splitter plate is properly placed, it

is possible to disrupt the vortex formation. The splitter plate interference can either

completely annihilate the instabilities of the vortex wakes (i.e. 2.8 ·d) or, on the other

hand, worsen the fluctuating lift and drag components (i.e. 3.2 · d), depending on the

separation distance to the circular cylinder body.

In 2003, Mittal [88] suggested the use of a long detached splitter plate for control

of vortex suppression. He found that in an unbounded flow at Re = 100, a splitter

plate which has the length of 2 · d or greater can completely suppress the fluctuating

lift and drag components when placed at a separation distance of lsc = 2.68 · d. Some

noticeable amount of fluctuating forces can also be achieved when the splitter plate

length, l, is shorter than 2 · d. It was also found that when a splitter plate is placed

at a separation distance of lsc > 2.68 ·d, fluctuating forces can be worse than the case

without splitter plate.

The question arises if it is possible to suppress the unsteadiness by a thin (i.e.

lt < 0.1·d) and short splitter plate (i.e. l 6 1·d). In some real engineering applications,

it can be impractical to have a controlling device such as a splitter plate several times

longer than the cylinder body itself. Furthermore, how effective would a splitter plate

be in a bounded flow? Several of the previous researches used a splitter plate that

is attached to the bluff body. In order to minimize FIV on the bluff body itself,

it is important that the splitter plate be physically separated from the bluff body.

Attaching the splitter plate would directly connect its aerodynamic forces to the bluff
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Figure 4.1: Numerical simulation of experimental results obtained by Unal and Rock-
well. Left: instantaneous streamlines. Right: instantaneous iso-vorticity contour.
First row, lsc = 2.8 · d; second row, lsc = 3.2 · d; third row, lsc = 5.2 · d; fourth row,
lsc = 6.5 · d.
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body. By detaching the splitter plate, any fluctuating forces acting on the splitter

plate will not be directly coupled into the bluff body. This would allow the maximum

attenuation of fluctuating forces on the bluff body. Hence, the present research work

is focused on configurations with a detached splitter plate.

In this research, the following parameters used for splitter plate positioning is

illustrated in figure 4.2, where

• l ≡ the splitter plate length

• lt ≡ the splitter plate thickness

• ls ≡ the separation distance between bluff body and splitter plate

Figure 4.2: Configuration of a splitter plate downstream of a bluff body.

For convenience, a superscript “∗” is used to indicate the normalized values of

these parameters with d:

• l∗ =
l

d

• l∗t =
lt
d

• l∗s =
ls
d
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4.2 Splitter plate effect in an unbounded flow

4.2.1 Comparison between circular and square cylinders

This section compares the effect of a thin splitter plate (l∗t = 0.125) downstream on

cylinders of circular and square shape in an unbounded flow at Re = 150. The length

of the splitter plate used in this comparison is 1 · d. From figure 4.3, it can be seen

that the thin splitter plate does not completely suppress vortex shedding. However, it

can be used to attenuate the force fluctuations on the bluff body by positioning it at a

proper distance downstream of the bluff body. For the circular cylinder, the effective

attenuation range is 0 < l∗s 6 2. Due to the nature of the difference in shedding

characteristics, the location where the first vortex lobe is formed in the wakes of the

square cylinder is further downstream as compared to that of the circular cylinder.

As a result, the attenuation range is extended to 0 < l∗s 6 2.5 for the square cylinder.

Figure 4.4 illustrates the flow patterns for circular and square cylinder for several

locations of the splitter plate.

It can also be seen that if the separation distance is greater than the attenuation

range, the splitter plate can amplify the force fluctuations beyond the value of the

case without any splitter plate downstream as shown in table 4.2. For example,

the standard deviation of lift for the flow past a circular cylinder without splitter

plate is 0.3602. If the splitter plate is placed slightly downstream past the effective

range, say at l∗s = 2.05, the standard deviation of lift is increased to 0.4222 thereby

defeating its purpose of force attenuation. The splitter plate would have to move

much further downstream (i.e. l∗s & 4) before the wake interference that amplifies the

force fluctuations would subside.

4.2.2 Effect of splitter plate length

This section examines the effect of varying the splitter plate length and the separation

distance from the circular cylinder body in an unbounded flow condition at Re =

125. In studying the separation distance, the computational grids are re-meshed and

adjusted so the physical representation is not lost. ESI CFD-ACE+ is used in this
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Figure 4.3: Unbounded flow past circular and square cylinders with splitter plate,
l∗ = 1, l∗t = 0.125, Re = 150: Strouhal number (top), mean drag coefficient (middle),
standard deviation of lift coefficient (bottom).
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l∗s = 2.0 l∗s = 2.5

l∗s = 2.05 l∗s = 2.55

Figure 4.4: Instantaneous iso-vorticity contour showing the effectiveness of splitter
plate (l∗ = 1, l∗t = 0.125) on flow past a circular cylinder (left column) and a square
cylinder (right column), unbounded, Re = 150: no splitter plate (top); effective
separation (middle); ineffective separation (bottom).
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Circular cylinder

l∗s St CD σ(CL)
No splitter plate 0.1816 1.3572 0.3602

2 0.1227 1.0975 0.0344
2.05 0.1583 1.2785 0.4222
5 0.1778 1.3145 0.3565

Square cylinder

l∗s St CD σ(CL)
No splitter plate 0.1526 1.4988 0.2963

2.5 0.1097 1.2747 0.0460
2.55 0.1302 1.4065 0.4009
5 0.1494 1.4361 0.2957

Table 4.2: Tabulated numerical results: unbounded flow past circular and square
cylinders with and without splitter plate (l∗t = 0.125, l∗ = 1.0) at Re = 150.

study because it offers the ease of adjusting the mesh to the separation distance.

It is clear from the Strouhal plot on figure 4.5 that a splitter plate that is placed

downstream of the cylinder body can interfere with the development of vortex wakes.

The degree of effectiveness in vortex and FIV suppression depends largely on the

splitter plate length and the separation distance. Sharp transition points at separation

distances between 1.65 to 1.85 can be seen for all plate lengths ranging from 0.25 to 1.

This also corresponds to the same point, where the sudden change in lift fluctuation

and mean drag are observed. From these figures, it can be determined what the

optimal separation distance is for a given splitter plate length. This is generally just

before the transition to strong fluctuations. For example, the optimal separation

distance for a splitter plate of length 1 is 1.8. The same effect on drag fluctuation

can also seen. In contrast to the study by Unal and Rockwell [7], this type of thin

splitter plate does not completely suppress the unsteadiness in the vortex wakes in

unbounded flows. However, some reduction in vortex induced force fluctuations can

still be realized when a splitter plate is placed at a proper distance downstream of
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the circular cylinder. In agreement with past researches, one of the most beneficial

qualities of splitter plate interference in an unbounded flow, however, is the fact that

there is a reduction in mean drag all across the various configurations. The benefit is

greatly enhanced, again by the proper placement of the splitter plate. A thin splitter

plate in an unbounded flow can therefore be a very effective streamlining device.

Thus, the relative placement between the circular cylinder body and the splitter

plate is extremely critical. In a real world application, for example, there would be

a drastic difference if the splitter plate were to be placed slightly behind the critical

distance due to positioning tolerance.

Figure 4.6 illustrates the flow for the optimal separation distance of 1.8, which

allows the l∗ = 1 long splitter plate to break down incoming vortices, while a very

similar vorticity contour is observed when the same splitter plate is moved slightly

closer to a separation distance of 1.5. This is seen as an effective mechanism of de-

coupling the induction of force oscillations to the main body. On the other hand, by

allowing a slight increase in separation distance, i.e. l∗s = 1.9, an independent vortex

lobe appears in the wakes. It is important to note also that when the splitter plate is

placed further downstream of the optimal distance, it increases the amplitude of lift

oscillation to a degree higher than the baseline without a splitter plate. The reason is

partially due the upstream wake effects of the splitter plate that adversely interferes

with the circular cylinder wakes. Such a placement of splitter plate allows the first

independent vortex lobe to develop and in the meantime impedes its natural down-

stream motion. As the splitter plate is moved further away, the separation distance

provides an area where vortex shedding can be locally intensified and the development

of the first independent vortex lobe can even be enhanced by merging with the front

vortex that rolls off from the leading edge of the splitter plate. As a result, it exac-

erbates the vortex-induced forces on the circular cylinder body. As the splitter plate

gets shorter, the mechanism of breaking down an independent vortex lobe becomes

less effective as the lobe itself is allowed to form by rolling around the splitter plate.

While figure 4.6 shows an effective lobe break down using l∗ = 1 long splitter plate at

l∗s = 1.8, figure 4.7 illustrates what happens to the vortex motion when the splitter

plate length is shortened. This example shows the vorticity contour of the flow past
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Figure 4.5: Flow past a circular cylinder with splitter plate, unbounded, Re = 125:
Strouhal number (top), mean drag coefficient (middle), standard deviation of lift
coefficient (bottom).
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Figure 4.6: Numerical simulation of flow past a circular with a downstream splitter
plate (l∗ = 1.0) in an unbounded flow, Re = 125. Left: instantaneous streamlines.
Right: instantaneous iso-vorticity contour. First row, no splitter plate; second row,
l∗s = 1.5; third row, l∗s = 1.8; fourth row, l∗s = 1.9; fifth row, l∗s = 2.5.
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Figure 4.7: Instantaneous iso-vorticity contour of flow past a circular with a short
(l∗ = 0.25) splitter plate placed at l∗s = 1.8 downstream in an unbounded flow,
Re = 125.

circular cylinder with l∗ = 0.25 long splitter plate, which is the shortest length used

in the current study. The rolling motion allows an alternating vortex lobe to spread

out in the cross plane direction, but each lobe has the chance of interacting with

its counter-rotating pair effectively in a wider area. The phenomenon thus seems to

further worsen the pressure instability surrounding the body and ultimately increase

the lift oscillation amplitude. With the exception of the oscillation components of lift

and drag, it can be seen that as the splitter plate length becomes very short, St and

CD also approach the value obtained from the baseline of flow without splitter plate.

The numerical experiments establish that the effectiveness in controlling force

fluctuations depends largely on the proper combination of splitter plate length and

separation distance. The optimal separation distance that was obtained is the dis-

tance which yields the lowest fluctuation amplitudes, e.g. l∗s = 1.8 for l∗ = 1 long

splitter plate. The current set of data suggests that if a thin and short splitter plate

is placed such that the separation distance is larger than 0 but less than the optimal

distance, some noticeable amount of suppression can still be realized. On the other

hand, having a splitter plate of an arbitrary length at a separation distance that is

more than the optimal can exacerbate both lift and drag oscillations.
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4.3 Splitter plate effect in a confined channel

4.3.1 Fully developed Poiseuille flow for 0 < β 6 0.5 at Re∗ =

150

In this section, the effects of a splitter plate on the flow past circular and square

cylinders in a confined channel are examined by SD simulation. Both upper and

lower boundaries are stationary and the flow is allowed to fully develop upstream of

the cylinder. It is shown that unsteady vortex shedding can be completely suppressed

with a properly positioned splitter plate. The computational domain is constructed

by modifying the mesh geometry used in the study of blockage effect in chapter 3. The

splitter plate used in this study has a length of l∗ = 1 and a thickness of l∗t = 0.125.

The simulation is performed at the same Reynolds number Re∗ = 150 for β = 0.01,

0.1, 0.3 and 0.5. Note that the data set for β = 0.01 is taken from Section 4.2.1 on

unbounded flow.

Figures 4.8 and 4.9 shows the effect of splitter plate in a flow with various blockages

for circular cylinder and square cylinder respectively. Consistent with the data shown

in chapter 3, increasing the blockage factor essentially produces higher values of St∗

and C∗
D. However, as the blockage factor increases, the standard deviation value

of C∗
L increases up to a certain point and then decreases. The decrease in σ(C∗

L)

indicates that the upper and lower boundaries help stabilizing the flow by reducing

wake instabilities.

It can be seen from figure 4.8 that for a thin splitter plate of length l∗ = 1, the

effective region of suppressing or attenuating vortex wakes off a circular cylinder is

in the range of 0 < l∗s 6 2. This fact is determined from the lower values of σ(C∗
L) as

compared to when the splitter plate is positioned outside of this zone. At a higher

blockage, the splitter plate can produce complete vortex wake suppression when it

is positioned at 1.3 6 l∗s 6 2 for β = 0.3 and 0 < l∗s 6 2 for β = 0.5. A slight

decrease in mean drag coefficient is also observed in the effective region. At l∗s > 2,

the splitter plate does not inhibit the vortex formation and thus loses its effectiveness.

For β = 0.3, figure 4.10 illustrates the 3 effective regions: 1) partial wake attenuation,
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2) complete vortex suppression and 3) ineffective region.

Similar characteristics are observed when this splitter plate is positioned down-

stream of a square cylinder as shown in figure 4.9. The effective region for a square

cylinder is in the range of 0 < l∗s 6 2.5. The complete suppression is observed at

1.25 6 l∗s 6 2.5 for β = 0.3 and 1 6 l∗s 6 2.5 for β = 0.5. At l∗s > 2.5, the splitter

plate becomes ineffective in attenuating unsteady wakes. Figure 4.11 illustrates the

3 effective regions for β = 0.3.

4.3.2 Plug flow versus Poiseuille flow

The present research work is particularly motivated by the need to find ways of

reducing FIV of the read-write arm of a hard disk drive, which lies between the upper

and lower surfaces of two disks in a multiple-platter configuration. Accordingly it

is important to address the issue of how effective a detached splitter plate can be

in suppressing unsteady vortex shedding behind a cylinder in a channel. One way

to represent that flow condition is to set the upper and lower boundaries in the

computational model to be moving at the same velocity as the inlet. These boundary

condition settings effectively force the flow to have a uniform velocity profile as shown

in figure 4.12. This is also known as a plug flow model which can simply be regarded

as an idealized disk drive flow. On the other hand, if the upper and lower boundaries

are set to be stationary and the bluff body is set far enough from the inlet, the flow

velocity will fully develop into a parabolic profile as shown in figure 4.13.

Plug flow

The presence of moving walls on the upper and lower bounds at U0 can have a

significant effect on the vortex wakes of the cylinder. In this section, the effects of

a splitter plate in both plug flow and Poiseuille flow at the same effective Reynolds

number is examined for comparison. The same splitter plate (l∗ = 1, l∗t = 0.1) is

positioned downstream of a circular cylinder at the same Re∗ = 125 with β = 0.5.

As shown in figure 4.14, the total vortex suppression region for Re∗ = 125 is in the

range of 1.125 6 l∗s 6 1.714. Figure 4.15 illustrates some examples of streamlines
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Figure 4.8: The effect of blockage on flow past a circular cylinder with splitter plate,
l∗ = 1, l∗t = 0.125, Re∗ = 150: St∗ (top), mean C∗

D (middle), standard deviation of
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L (bottom).
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Figure 4.9: The effect of blockage on flow past a square cylinder with splitter plate,
l∗ = 1, l∗t = 0.125, Re∗ = 150: Strouhal number (top), mean drag coefficient (middle),
standard deviation of lift coefficient (bottom).
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(a) Partial wake attenuation: l∗s = 1; σ(C∗
L) = 0.0597

(b) Complete vortex suppresion: l∗s = 1.5; σ(C∗
L) = 0

(c) Ineffective separation: l∗s = 2.5; σ(C∗
L) = 1.0534

Figure 4.10: Overlay of instantaneous vorticity and streamlines: flow past a circular
cylinder with splitter plate, l∗ = 1, l∗t = 0.125, β = 0.3, Re∗ = 150.
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(a) Partial wake attenuation: l∗s = 1; σ(C∗
L) = 0.0493

(b) Complete vortex suppresion: l∗s = 2; σ(C∗
L) = 0

(c) Ineffective separation: l∗s = 3; σ(C∗
L) = 0.5179

Figure 4.11: Overlay of instantaneous vorticity and streamlines: flow past a square
cylinder with splitter plate, l∗ = 1, l∗t = 0.125, β = 0.3, Re∗ = 150.
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Figure 4.12: Incoming velocity profile of plug flow.

Figure 4.13: Incoming velocity profile of Poiseuille flow.

and vorticity contour of the three regions of effectiveness: 1) semi-effective (b), 2)

effective (c & d) and 3) ineffective (e & f).

In the ineffective range of separation distance the vortex wakes can actually be

intensified and all the fluctuating forces are correspondingly exacerbated. For exam-

ple, in the effective region of the moving wall case, the peak-to-peak value of C∗
L of

circular cylinder without splitter plate presence at Re∗ = 125 is 0.74. If the splitter

plate is improperly placed at say, l∗s = 2, the peak-to-peak value of C∗
L increases to as

much as 0.87. Similar behavior is observed in the ineffective region of the stationary

wall case where a splitter plate is improperly placed at, l∗s = 2, the peak-to-peak value

of C∗
L is exacerbated to a value of 0.34 as compared to 0.21 when the splitter plate is

absent.

While the splitter plate can completely suppress drag and lift oscillations in a

bounded flow, the reduction of mean drag is less than that obtained in an unbounded

flow. In fact, in the ineffective range of separation distance, the mean drag actually

increases slightly. This can be attributed to the fact that the shear layers between the

circular cylinder and the walls do not vary much in all of the simulated configurations.
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Figure 4.14: Comparison between plug flow and Poiseuille flow (β = 0.5) past a
circular cylinder with splitter plate, l∗ = 1, l∗t = 0.1, Re∗ = 125: Strouhal number
(top), mean drag coefficient (middle), standard deviation of lift coefficient (bottom).
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This can easily be seen in and that in the immediate area adjacent to the cylinder

body for the most part, the vorticity contour reveals a remarkably similar profile in

all of the configurations including the baseline and those with splitter plate of any

length and separation.

Poiseuille flow

In the Poiseuille flow case (stationary upper and lower boundaries), the critical sep-

aration distance is approximately 1.845. In contrast to the plug flow condition, the

effective suppression distance of the splitter plate in extends all the way inwards to

the cylinder body. There appears to be only 2 categories of suppression (figure 4.14):

1. Effective: 0 < l∗s 6 1.845

2. Ineffective: l∗s > 1.845.

Figure 4.16 illustrates some examples of streamlines and vorticity contour of these

two regions of effectiveness: 1) effective (0 6 l∗s 6 1.84) and 2) ineffective (l∗s > 1.85).

Apart from the absence of a semi-effective range of separation distance, the stationary

wall case shows similarities in the behavior and effectiveness of splitter plate to the

flow and FIV, although the magnitudes of the both mean and fluctuating components

are quite different. In the effective range, both cases exhibit the ability of a splitter

plate to completely suppress the unsteadiness of the flow, while in the ineffective

range the unsteady forces can actually be exacerbated.

4.3.3 Effects of splitter plate length in a plug flow

Using β = 0.5 as a test case, the effects of a splitter plate length in plug flow at

Re∗ = 75 are examined. The calculated Strouhal number for a cylinder without a

splitter plate is approximately 0.421. As shown in figures 4.17 and 4.18, it appears

that in the bounded flow case, the primary factor that is responsible for suppressing

the force oscillations is the separation distance alone. The effect from the length

of a splitter plate appears to be minimal. Obviously, there appears to be a critical

separation distance of approximately 2.547 for all splitter plate lengths. Inside this
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Figure 4.15: Numerical simulation of flow past a circular with a downstream splitter
plate (l∗ = 1.0 · d) in a bounded (β = 0.5) plug flow (moving upper and lower
boundaries), Re∗ = 125. Left: instantaneous streamlines. Right: instantaneous iso-
vorticity contour. (a) no splitter plate; (b) l∗s = 0.5; (c) l∗s = 1.5; (d) l∗s = 1.7125; (e)
l∗s = 1.715; (f) l∗s = 2.5.
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Figure 4.16: Numerical simulation of flow past a circular with a downstream splitter
plate (l∗ = 1) in a bounded (β = 0.5) Poiseuille flow (stationary upper and lower
boundaries), Re∗ = 125. Left: instantaneous streamlines. Right: instantaneous iso-
vorticity contour. (a) no splitter plate; (b) l∗s = 0.5; (c) l∗s = 1.5; (d) l∗s = 1.84; (e)
l∗s = 1.85; (f) l∗s = 3.0.
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critical separation distance, the splitter plate in the presence of moving upper and

lower walls can either completely eliminate or partially reduce the unsteady vortex

wakes and, as a result, lift and drag oscillations. Numerical experiments have been

performed for plate lengths 0.25, 0.5, 0.75 and 1, at the separation distance between

0.25 and 5. The suppression of flow instability appears to be minimally dependent of

the splitter plate length. However, if the splitter plate is too short, 0.25 for example,

it is less effective and a complete suppression cannot be realized.

The primary factor is the separation distance. The suppression mechanism ap-

pears to depend on the full or partial physical presence of the splitter plate in the

region of the first independent vortex lobe. The estimate of a critical separation

distance of 2.547 is an approximate number based on the average distance between

the largest effective l∗s of 2.53125 and the smallest ineffective l∗s of 2.5625 used in the

simulation.

Complete suppression is no longer attained when the separation distance is too

small, less than a second critical distance around 0.875. Similarly, this is an approx-

imate number based on the average distance between the largest semi-effective l∗s of

0.75 and the smallest effective l∗s of 1.0 distance which decides whether there would

be an attenuation of force oscillation. The splitter plate length, on the other hand,

plays a role in the degree of effectiveness in attenuation, i.e. a complete or partial

suppression of force oscillation. In bounded flow, the moving upper and lower walls

also help stabilize the flow by damping out the vortex wakes. The critical separation

for maximizing the suppression of FIV oscillation can vary according to the Reynolds

number but can be found iteratively. In summary, the effectiveness of suppression

can be classified into 3 categories:

1. Semi-effective: 0 < l∗s < 0.875

2. Effective: 0.875 6 l∗s 6 2.547

3. Ineffective: ls∗ > 2.547.

In contrast to the unbounded flow, the position of the splitter plate of various

lengths in the flow at this Re∗ does not seem to alter the value of St∗ significantly as



CHAPTER 4. SPLITTER PLATE INTERFERENCE 88

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

l∗s

S
t∗

 

 

l∗ = 1
l∗ = 0.75
l∗ = 0.5
l∗ = 0.25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

l∗s

C
∗ D

 

 

l∗ = 1
l∗ = 0.75
l∗ = 0.5
l∗ = 0.25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

l∗s

σ
(C

∗ L
)

 

 

l∗ = 1
l∗ = 0.75
l∗ = 0.5
l∗ = 0.25

Figure 4.17: Circular cylinder with splitter plate in a plug flow, l∗ = 1, l∗t = 0.1,
β = 0.5, Re∗ = 75: St (top), mean CD (middle), standard deviation of CL (bottom).
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Figure 4.18: Numerical simulation of a circular cylinder with a downstream splitter
plate (l∗ = 1.0) in a plug flow, β = 0.5, Re∗ = 75. Left: instantaneous streamlines.
Right: instantaneous iso-vorticity contour. (a) no splitter plate; (b) l∗s = 0.5; (c)
l∗s = 2; (d) l∗s = 2.53125; (e) l∗s = 2.5625; (f) l∗s = 3.
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shown in figure 4.17. Using a splitter plate of length l∗ = 1, the splitter plate effect

in the bounded flow configuration yields essentially two modes of vortex wakes – one

that is steady and symmetrical at 2 6 l∗s 6 2.53125 and the other that is unsteady

and asymmetrical with a constant shedding frequency at 1 6 l∗s 6 2.5. Note that the

Strouhal number of the unsteady wake mode at this Reynolds number approximately

coincides with the baseline value of St∗ = 0.21 when splitter plate is absent.

4.4 Experimental verification

The experimental method used in this verification is described in section A.1 of ap-

pendix A. The whole test section of the wind tunnel is used for unbounded flow

experiment. Since the diameter of the test specimen is 1/16 inch in diameter and the

height of the test section is 1.5 inch, the approximate blockage factor is then 0.042

which is reasonably low enough to consider the flow in the test section unbounded. For

bounded flow in a confined channel, a secondary enclosure provides the desired block-

age factor for any given test specimen. With this technique, a comparison between

the earlier numerical prediction and experimental result of flow induced vibration as

measured by laser Doppler vibrometer (LDV) can be made for a circular cylinder in

both unbounded flow and bounded flow.

4.4.1 Comparison between numerical and experimental re-

sults of circular cylinder with and without splitter plate

High blockage factor: Re∗ = 125, β = 0.5

In this subsection, the flow at Re∗ = 125 and β = 0.5 is investigated and considered

as a model for Poiseuille flow. It is necessary to first establish a baseline where a

circular cylinder is tested without the presence of a splitter plate. Once the baseline

data is established, similar measurement can be made with the presence of a splitter

plate.

Plotted in Figure 4.19 is the power spectrum showing the flow-induced vibration
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Figure 4.19: Circular cylinder motion without and with splitter plate at l∗ = 1, l∗s = 1,
Re∗ = 125, β = 0.5.
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Figure 4.20: Circular cylinder motion without and with splitter plate at l∗ = 1, l∗s = 2,
Re∗ = 125, β = 0.5.



CHAPTER 4. SPLITTER PLATE INTERFERENCE 92

mode (blue line) of circular cylinder at 335 Hz due to vortex shedding and the com-

plete suppression (red line) when a splitter plate of length l∗ = 1 is placed downstream

of the circular cylinder at l∗s = 1 separation distance. This is in good agreement with

the numerical results presented in the earlier section. Note that the spikes between

200 to 250 Hz can be attributed to both mechanical and electrical noise in the exper-

imental system. It can also be shown that once the splitter plate is placed slightly

beyond the critical distance, the oscillating motion can get worse than the case where

the splitter plate is not present. Figure 4.20 illustrates a slight amplification of the

magnitude of the cylinder oscillating motion as a result of placing the splitter plate

at l∗s = 2, which is in good agreement with the earlier numerical result that predicts

the critical distance to be at 1.845.

By incrementally varying the position of a splitter plate downstream of the circular

cylinder, the Strouhal numbers can be obtained as a function of separation distance

similar to the numerical results shown earlier. Figure 4.21 shows a reasonably good

correlation between experimental result and numerical prediction of the flow induced

vibration on circular cylinder with the presence of a splitter plate. A slight dis-

crepancy can be attributed to the differences in constraining the circular cylinder in

the bounded flow between the numerical and experimental results. While the aero-

dynamic forces are obtained from the two-dimensional numerical analysis with the

cylinder being rigidly fixed in space, the experimental setup allows the cylinder to

move so that the LDV measurement can be made.

It is also possible to compare the forces on the circular cylinder as a function of

separation distance of cylinder. The sinusoidal acceleration of the cylinder can be

obtained directly by differentiating the velocity signal from LDV as follows

u = Ẋsin(ωt),

a = ωẊcos(ωt).

The normalized quantity of the coefficient of lift, |C∗
L|, is then directly propor-

tional to the normalized acceleration of the cylinder between the baseline and the

measurement with splitter plate, i.e.
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Figure 4.21: Numerical and experimental comparison of St∗ and |C∗
L| as a function

of splitter plate separation distance, Re∗ = 125, Poiseuille flow, β = 0.5.
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(ωẊ)splitter
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Figure 4.21 also shows a comparable trend of |C∗
L| between numerical and experi-

mental results. In the separation range of less than 1.845, the splitter plate completely

suppresses the vortex induced vibration mode at 335 Hz. On the other hand, a de-

creasing trend of amplification can be seen as the splitter plate is moved further away

from the critical distance. The discrepancy between numerical and experimental C∗
L

can again be attributed to the difference in the applied boundary conditions of the

cylinder. While the circular cylinder is rigidly fixed in space in the numerical study,

such is not the case in the current empirical experiment.

Low blockage factor: Re = 125, β = 0.042

In this subsection, the secondary enclosure is removed and the circular test specimen is

placed midway between the upper and lower boundaries, thus yielding a low blockage

factor for an unbounded flow consideration. The same measurement technique used in

the previous subsection is applied. As shown in figure 4.22, there is a reasonably good

agreement between the numerical and experimental results. However, near l∗s = 2, the

transition from the region where the splitter plate provides some attenuation to the

region where it exacerbates the vibration is not clearly defined in the experimental

data as compared to the numerical one. It can be postulated that the reason has

to do with some lower frequency buffeting of the specimen and the splitter plate in

this test condition. Note that the high blockage factor seems to have less buffeting

problem which suggests that the close proximity of the upper and lower boundaries

might have provided some additional stability to the test specimen.
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Figure 4.22: Numerical and experimental comparison of St and |CL| as a function of
splitter plate separation distance, Re = 125, unbounded flow.
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4.4.2 Splitter plate effect at 396 6 Re∗ 6 632, β = 0.4

Most of the presented results thus far involve relative low Reynolds number flows that

are predominantly two-dimensional. For the most part, the results obtained from

two-dimensional computation are well correlated with the experimental results. A

slightly higher Reynolds number range is hereby considered where the flow becomes

three-dimensional thus posing a certain amount of uncertainties and discrepancies

with the two-dimensional simulation. In this section, a long, thin splitter plate (l∗ =

3.5, l∗t = 0.1) is used to investigate the effectiveness of vortex suppression in the

Reynolds number range of 396 < Re∗ < 632. This range is chosen primarily within

the capability limits of the hardware described in appendix A.1.

Figure 4.23 plots the numerical and experimental comparison of Strouhal number

within this Reynolds number. The numerical data of St∗ is calculated from the

vortex shedding frequency obtained from two-dimensional CFD-ACE+ computation.

The experimental data set is determined from the peak frequency detected from the

circular cylinder motion using LDV measurement. It is clear from the figure that there

are some discrepancies in the St∗ value between numerical data and experimental

data. The primary reason has to do with the obvious fact that the two-dimensional

simulation cannot properly resolve flow three-dimensionalities. As suggested from

the curve, the higher the Reynolds number the further apart the two curves are.

Therefore, these margins of errors need to be taken into account.

From the numerical prediction shown in table 4.3, it was found that the rather long

splitter plate is very effective in suppressing vortex shedding of a confined bluff body

in this Reynolds number range. It completely eliminates the unsteadiness and also

acts as a streamlining device by lowering the mean drag. The plots of instantaneous

vorticity along with the frequency spectrum of the cylinder motion for some data

points are illustrated in figures 4.24 to 4.30.
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Figure 4.23: Numerical and experimental comparison of St∗, Poiseuille flow, β = 0.4.

No splitter plate l∗ = 3.5, l∗s = 1

Re∗ St∗ σ(C∗
L) C∗

D St∗ σ(C∗
L) C∗

D

396 0.3726 1.7016 3.0725 – 0.0000 2.6995
442 0.3719 1.7641 3.0709 – 0.0000 2.6470
480 0.3709 1.8089 3.0435 – 0.0000 2.6063
541 0.3692 1.8701 3.0197 – 0.0000 2.5540
572 0.3685 1.8999 3.0213 – 0.0000 2.5329
602 0.3676 1.9273 3.0167 – 0.0000 2.5126
632 0.3669 1.9531 3.0115 – 0.0000 2.7059

Table 4.3: Numerical results of St∗, σ(C∗
L) and C∗

D for flow past a circular cylinder
in Poiseuille flow, β = 0.4, at Re∗ = 396, 442, 480, 541, 572, 602 & 632.
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Figure 4.24: Suppression of vortex induced mode at 221 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 396, β = 0.4.
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Figure 4.25: Suppression of vortex induced mode at 264 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 442, β = 0.4.
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Figure 4.26: Suppression of vortex induced mode at 305 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 480, β = 0.4.
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Figure 4.27: Suppression of vortex induced mode at 344 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 541, β = 0.4.
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Figure 4.28: Suppression of vortex induced mode at 376 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 572, β = 0.4.
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Figure 4.29: Suppression of vortex induced mode at 407 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 602, β = 0.4.
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Figure 4.30: Suppression of vortex induced mode at 429 Hertz using a splitter plate,
Poiseuille flow, Re∗ = 632, β = 0.4.



Chapter 5

Active vortex suppression by

rotation

The contents of this chapter were previously published by Chan & Jameson [69] 1 and

Chan et al. [70] 2 and reproduced here with minor modifications. The experimental

portion of this chapter was carried out by Peter Dewey and Alexander Smits of the

Gas Dynamics Laboratory at Princeton University.

5.1 Introduction

In the case of a circular cylinder, rotation is an effective technique for controlling

unsteady vortex wakes. A nondimensional rotation speed relating the tangential ve-

locity of the rotating cylinder surface to the free stream velocity can be defined as

Ω = ωd/2U , where ω is the angular velocity of the cylinder. It has been studied by

various researchers over the past century. Prandtl first studied the effect of rotating

a cylinder situated in a uniform flow with the intent of demonstrating the lift gener-

ation by Magnus effect which serves as a basis for the “Flettner rotor” [89, 1]. The

photographs from Prandtl’s experiment clearly show that as Ω increases, the trailing

1Chan & Jameson, Int. J. Num. Meth. Fluids. Copyright 2010. Reproduced with permission
from John Wiley and Sons. License Number 2671570769997.

2Chan et al. , J. Fluid Mech. Copyright 2011. Reproduced with permission from Cambridge
University Press. License Number 2671560868712.
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vortices weaken and the overall flow becomes more stable. At Ω = 4, the flow clearly

sheds no unstable eddies as the two stagnation points (front and aft) joined up on the

high pressure bottom side. He also suggested that spinning a cylinder can be used

as a way of preventing the eddy formation. It can thus be postulated from his works

that spinning a cylinder changes the velocity gradient along the wall of the cylin-

der thereby modifying the boundary layer around the body as well as the shedding

characteristics.

A number of researchers have studied both experimentally and numerically the

effect of rotating a cylinder on vortex shedding. Some of the earlier works were

performed numerically by Badr and Dennis [90] and experimentally by Coutanceau

and Ménard [91]. Subsequently, a joint paper by these authors [92] were presented

for a rotating cylinder at 103 6 Re 6 104 for rotational speed of 0.5 6 Ω 6 3. They

found that the vortex shedding can be suppressed at Ω = 3 and the flow eventually

approaches steady state.

In the laminar shedding regime, Badr et al. [93] numerically investigated steady

and unsteady flow past a cylinder rotating at a relatively small rate (i.e. Ω 6 1) at

Re 6 200. They found from unsteady time-dependent results that if the cylinder is

impulsively started from rest at Re = 60, 100 and 200, the flow does not tend to be a

steady state as it still develops a periodic vortex shedding pattern. Tang and Ingham

[94] provided the lift and drag coefficients and steady flow pattern of a rotating circular

cylinder at Re = 60 and 100 for Ω 6 1 by solving the time independent Navier Stokes

equations. Kang et al. [95] extended the numerical investigation further by solving

the two-dimensional unsteady incompressible flow equations. They showed that a

complete vortex suppression can be achieved by rotating a circular cylinder at a rate

faster than the critical rotational speed. They found the critical speeds to be Ω = 1.4,

1.8 and 1.9 for Re = 60, 100 and 200, respectively. In recent years, more efforts have

been carried to extend the limit to a higher rotational rates to further understand

the physics of flow past rotating circular cylinder in the laminar regime by Stojković

et al. [96, 97] and Mittal & Kumar [80].
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5.2 Single rotating circular cylinder at Re = 100,

150 and 200

Using the mesh from the unbounded stationary case, a non-slip, isothermal, moving

boundary condition is applied at the circular cylinder wall such that it rotates at

a constant speed ω as shown in figure 5.1. One of the advantages of the current

numerical SD method is that a flow solution can be quickly obtained using the 2nd

order calculation. If desired, a more accurate solution can then be obtained by using

the 2nd order solution as an initial condition to start a higher order solution. Instead

of using a higher order and letting the solution develop from an impulsive start,

appreciable computation time can be saved with this restarting technique. Also, in

studying the effect at different rotational speeds, a solution from Ω = 2, say, can be

used to start Ω = 2.5 and thereby tremendously reducing the overall computational

time.

Figure 5.1: Configuration for unbounded flow past a rotating circular cylinder.

The mean and standard deviation values of lift and drag and the Strouhal number

for Re = 100, 150 and 200 are plotted in figure 5.2 as a function of rotational speeds

from the 4th order SD calculations. In general, there is very little difference in the

mean lift and drag coefficients in the investigated range of Reynolds numbers. Figure

5.3 shows the instantaneous vorticity and streamlines as a function of rotational

speeds. While there are substantial difference in the standard deviation values in

the first unsteady range (below Ω = 2), the speeds at which the complete vortex

suppression occur are Ω = 1.9, 2, and 1.95 for Re = 100, 150 and 200 respectively. In
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Figure 5.2: Unbounded flow past a rotating circular cylinder at Re = 100, 150, and
200: mean CL (top, left), standard deviation of CL (top, right), mean CD (middle,
left), standard deviation of CD (middle, right) and St (bottom).
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Ω = 3 Ω = 4
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Figure 5.3: Flow past a rotating circular cylinder in unbounded flow at Re = 150:
instantaneous streamlines and vorticity at various rotational speeds. Flow is unsteady
at Ω = 1, 5 and steady at Ω = 2, 3, 4, 6. Stagnation points are represented by “•”.
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the steady region of 2 6 Ω 6 12, Stojković et al. [96, 97] discovered an unexpected

behavior where the flow becomes unsteady in the narrow range of 4.8 6 Ω 6 5.15

for Re = 100. Mittal & Kumar [80] later reported a similar phenomenon which they

termed the “second instability” for Re = 200 in the range of 4.35 < Ω < 4.75. They

postulated that it occurs because the balance between the advection and diffusion

of vorticity is disturbed. They observed the build up of positive vorticity in the

slow moving flow near the stagnation point in the near wake that, once it gathered

enough strength, shed at a lower frequency than that seen in the regime of the first

instability. The present SD calculation confirms the existence of secondary instability

in the following range:

• Re = 100: 5.15 6 Ω 6 5.65

• Re = 150: 4.75 6 Ω 6 5.3

• Re = 200: 4.55 6 Ω 6 5.1

The second instability is illustrated in figure 5.3 for Ω = 5 at Re = 150. A recent

three-dimensional direct numerical simulation by El Akoury et al. concluded that

the effect of rotation actually attenuates the secondary instability and increases the

critical Reynolds number. For Ω = 0.5, they extrapolated the critical Reynolds

number to be 219.8, where the flow three-dimensionality starts to transition. This is

much higher than the universally accepted value of Re = 180 for flow past a stationary

circular cylinder (i.e. Ω = 0).

A direct comparison can be made, as shown in figure 5.4 for a rotating cylinder at

Re = 200 with the recent study performed by Mittal & Kumar [80] who calculated

numerical incompressible flow solutions based on a finite element formulation. In the

lower speed range, only slight variations in the flow solutions are seen amongst the

3rd and 4th order SD methods and Mittal & Kumar’s method. The 2nd order SD

method can effectively be used to provide a quick prediction of the stable range. Also

plotted is the time-averaged power coefficient which is defined by

CP = CD +
|CM |ωd

2U
, (5.1)
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where CM is the time-averaged moment coefficient calculated from the moment about

the cylinder center. The power required to spin the cylinder is approximately constant

in the first unsteady range and steadily increases with speed in the steady and second

instability regimes.

5.2.1 Compressibility effect consideration

As the rotational speed increases, it is apparent that a larger discrepancy occurs be-

tween the solutions from the compressible SD code and those using Mittal & Kumar’s

incompressible flow solver. The SD solutions shows the occurrence of the secondary

instability in the speed range of 4.5 < Ω < 5.15 as compared to Mittal & Kumar’s

solution of 4.4 < Ω < 4.8. One explanation for the difference is that the compressibil-

ity effect can no longer be neglected when the circular cylinder is rotated at a high

enough speed.

Mach Number CD CDp CDv CL CLp CLv

0.05 0.0581 −0.3481 0.4061 10.2450 9.8253 0.4193
0.1 0.0637 −0.3353 0.3990 9.9640 9.5472 0.4168
0.2 0.0901 −0.2747 0.3648 8.8534 8.4456 0.4078

Table 5.1: Flow past a single rotating circular cylinder: CL and CD variations as
a function of Mach number at Re = 200, ω = 3Ω (steady flow). Subscripts: p =
pressure and v = viscous.

Figure 5.5 and table 5.1 show the effect of compressibility on density and Mach

contours and on the force coefficients at Re = 200, ω = 3Ω, calculated at freestream

Mach numbers, Ma∞, of 0.05, 0.10 and 0.20. For Ma = 0.2, the local Mach number

around the cylinder spinning at a very high rotational speed, e.g. Ω = 5, can become

supersonic, thus yielding an entirely different flow problem. For very low Mach num-

bers, such as the case of Ma = 0.05, the current SD solver suffers the same inefficiency

as most other density based compressible flow solvers. In this research, Ma = 0.1 is

used since it is efficient, robust and yields results very close to those obtained using

incompressible flow solvers, as shown in this section for the single rotating cylinder

and in figure 5.24 for the counter-rotating cylinder pair.
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Figure 5.4: SD order comparison for flow past a rotating circular cylinder at Re = 200:
mean CL (top, left), standard deviation of CL (top, right), mean CD (middle, left),
standard deviation of CD (middle, right), St (bottom, left), mean CP (bottom, right).
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Figure 5.5: Flow past a single rotating circular cylinder, Re = 200, ω = 3Ω: normal-
ized density (left) and Mach (right) contours at Ma = 0.05 (top), 0.10 (middle) and
0.20 (bottom).
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5.3 Flow past a pair of identical, stationary circu-

lar cylinders

The flow past a pair of identical circular cylinders in a close proximity has been used

as a model by past researchers who were interested in the interaction of vortex wakes

of multiple bluff bodies in freestream. These past studies were mostly experimental.

Notable works were initially done by Bearman and Wadcock [98], Zdravkovich [99]

and Williamson [100]. The flow over a pair of non-rotating identical circular cylinders

placed normal to the free stream is characterized by the mutual interaction between

the cylinder wakes that lead to a number of particular flow states according to the

Reynolds number, Re = Ud/ν, and the gap spacing, g∗ = g/d. Here, U is the free

stream velocity, d is the cylinder diameter, ν is the kinematic viscosity and g is the

distance between the two cylinder surfaces. In the Reynolds number range of 100 to

200, an unsteady two-dimensional vortex wake has been examined experimentally by

Williamson [100], numerically by Kang [101] (see appendix B.1), and analytically by

Peschard and Le Gal [102]. These studies found that for g∗ < 1 vortices are shed

asynchronously from the cylinder pair, and Kang classified the vortex shedding mode

as being either flip-flopping (0.4 < g∗ < 1.5) or following a von Kármán vortex street

representative of a single bluff body (g∗ < 0.4). These findings are supported by

Kim [103] and Sumner et al. [104]. For g∗ ≥ 1, two synchronized vortex shedding

modes from the cylinder pair are observed, either in-phase or anti-phase (figure 5.6).

Williamson [100] noted that for 1 < g∗ < 5 the anti-phase mode is predominant

and stable since each vortex generally keeps its form while being gradually dissipated

further downstream of the bodies. Within this gap spacing regime, however, it was

possible for the wake to “flip” to in-phase shedding synchronization and vice versa,

particularly for smaller gaps such as g∗ = 1. The in-phase mode is unstable as the

opposite-signed vortices tend to coalesce into a larger vortex cell. This mode often

leads to non-sinusoidal lift and drag variations, and it breaks down into alternative

shedding modes when the gap is small. Numerically, the formation of the in-phase

shedding mode can be induced by disturbing the flow using either a tripping technique

at the beginning of a time marching routine, or by using an artificially large time step
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Figure 5.6: Idealized synchronized vortex shedding modes in the wake of a non-
rotating cylinder pair. Left: In-phase shedding. Right: Anti-phase shedding.

and/or introducing some non-streamwise flow component.

Figure 5.7 illustrates the numerical result for the anti-phase mode, at Re = 150

and g∗ = 1, which Williamson experimentally observed as being stable. Figure 5.8

illustrates the in-phase vortex shedding mode, also at Re = 150 and g∗ = 1, which

Williamson found to be unstable. Each “binary” pair of like-sign vortices tends to

coalesce into a larger single vortex cell before eventually being dissipated far down-

stream. To obtain a numerical result for the in-phase mode, one can use the technique

of perturbing the flow velocity by artificially injecting a non-streamwise component

into the computational domain for a few time steps. The purpose is to “trip” the

flow so that the non-streamwise component will encourage the flow to develop into an

in-phase pattern. Another method that proved successful is to artificially increase the

time step ∆t and/or limit the convergence criteria so that the residual error builds up

for a few time steps. When ∆t is throttled back down and a reasonable convergence

criterion is re-established (typically a reduction of the residual errors by four orders

of magnitude), the resulting initial disturbance tends to encourage the in-phase in-

stability to form. Moreover simulations at the Reynolds number of 200 with g∗ = 2.4,

as shown in figures 5.9 and 5.10, predict wake patterns, which closely resemble the

patterns observed by Williamson in his experiment, as can be seen in figures 6(a)

and (b) of his report [100]. For these simulations, the boundary conditions are set

up to replicate the channel width, length and blockage factor used in Williamson’s

experiment.

In order to gain a better understanding of the process of vortex shedding off a

cylinder pair, it is useful to draw the instantaneous streamline patterns based on
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Figure 5.7: Anti-phase vortex shedding mode in the wake of a non-rotating cylinder
pair: Instantaneous vorticity at Re = 150, g∗ = 1.

Figure 5.8: In-phase vortex shedding mode in the wake of a non-rotating cylinder
pair: Instantaneous vorticity at Re = 150, g∗ = 1.
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Figure 5.9: Anti-phase vortex shedding mode in the wake of a non-rotating cylinder
pair: Instantaneous vorticity at Re = 200, g∗ = 2.4.

Figure 5.10: In-phase vortex shedding mode in the wake of a non-rotating cylinder
pair: Instantaneous vorticity at Re = 200, g∗ = 2.4.
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the model that was proposed by Perry et al. [105]. Figure 5.11 illustrates the vor-

tex shedding process of the anti-phase mode. One complete cycle is approximately

represented from subfigures (a) to (h). The critical points are centers and saddles,

denoted by ‘C’ and ‘S’ respectively. Each separatrix – a streamline which leaves or

terminates at a saddle point – is represented by a darker line along with directional

arrows.

Since the anti-phase mode is stable, there is a perfect balance in the wakes such

that the vortex street of the upper cylinder is a mirror-image of the lower cylinder.

The streamline at the half way between two cylinders is steady, making it a symmetry

line throughout the whole shedding process. The formation of a synchronous pair of

inner vortex lobes can be seen from subfigures (a) to (e) and the formation of a

synchronous outer vortex pair from subfigures (e) to (h). As described in Perry’s

model for a single cylinder, a pair of instantaneous “alleyways”, which are shown in

figure 5.12 by the cross-hatched areas, are observed to open, widen and close during

the generating process of each vortex lobe. The in-phase shedding mode of a cylinder

pair, on the other hand, is observed to be asymmetrical and asynchronous as shown

in figure 5.13. This is also observably clear from the unsynchronized behavior of each

pair of instantaneous alleyways.

5.4 Counter-rotating circular cylinder pair

This study was inspired by the original work of Prandtl who hypothesized that steady,

symmetric streamlines can be generated by two touching cylinders rotating in the op-

posite direction [1, 89]. It has been found in several recent studies that the unsteady,

two-dimensional wake instabilities from a pair of circular cylinders separated by a

normalized gap spacing, g∗, can be attenuated and even entirely suppressed when

the cylinders are counter rotated [106, 69]. Counter rotation can be achieved in two

different rotational configurations; the doublet-like and reverse doublet-like configu-

ration as shown in figure 5.14. Yoon et al investigated the doublet-like configuration

for a number of normalized gap distances at Re = 100 and showed that there exists

a critical rotational speed, Ωcrit, that can completely suppress the unsteady vortex
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(a) τ = 0 (b) τ = 0.4766 (c) τ = 0.9532

(d) τ = 1.4297 (e) τ = 1.9063 (f) τ = 2.3829

(g) τ = 2.8595 (h) τ = 3.3361 (i) τ = 3.8126

Figure 5.11: Flow in the near wake of a pair of cylinder during an anti-phase vortex
shedding mode: instantaneous streamlines and vorticity contour. Slightly more than
one complete shedding cycle is shown. Non-dimensional time increment between each
frame: τ = (U∆t)/d. Separatrices are represented by darker lines with arrows. ‘S ’ is
a saddle point. ‘C ’ is a center point.
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Figure 5.12: Flow in the near wake of a pair of cylinder during an anti-phase vortex
shedding mode: instantaneous alleyways are shown by the cross-hatched areas.



CHAPTER 5. ACTIVE VORTEX SUPPRESSION BY ROTATION 121

(a) τ = 0 (b) τ = 0.7153 (c) τ = 1.4305

(d) τ = 2.1458 (e) τ = 2.8610 (f) τ = 3.5763

(g) τ = 4.2915 (h) τ = 5.0068 (i) τ = 5.7221

Figure 5.13: Flow in the near wake of a pair of cylinder during an in-phase vortex
shedding mode: instantaneous streamlines and vorticity contour. Approximately one
complete shedding cycle is shown. Non-dimensional time increment between each
frame: τ = (U∆t)/d. Separatrices are represented by darker lines with arrows. ‘S ’ is
a saddle point. ‘C ’ is a center point.
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Figure 5.14: Counter-rotating circular cylinder pair. Left: Doublet-like configuration.
Right: Reverse doublet-like configuration.

wakes [106]. It was also found that decreasing gap spacing correlates to a reduction in

critical vortex suppression speed. The vortical wake structure present when the cylin-

ders were rotated below the critical suppressing speed could be classified in a similar

manner to non-rotating cylinders and it depends on both g∗ and Ω. The unsteady

regime for g∗ = 0.7 leads to a single vortex street, while larger a gap spacing yields

either in-phase or anti-phase synchronous vortex shedding. Chan and Jameson [69]

extended this work by showing that the unsteady vortex wake could be suppressed

in the reverse doublet-like configuration as well. For Re = 150 and g∗ = 1, they

obtained Ωcrit = 1.5 for the doublet-like configuration and 3.5 for the reverse doublet-

like configuration. Additionally, they found that for the doublet-like configuration an

increase in rotational speed past the critical speed results in the creation of a sym-

metric flow pattern that resembles a doublet potential flow and is dubbed a “virtual

elliptic body”.

In this work, these results are confirmed using a higher order simulation method

as well as the results from the experiment [70]. Furthermore, the effect of gap spacing

(g∗ = 1, 3, and 5) and Reynolds number (Re = 100, 150, and 200) on the unsteady

suppression for both the doublet-like and reverse doublet-like configurations as well

as the formation of virtual elliptical bodies have been investigated. In the previous
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work of Chan and Jameson [69], the simulations were performed with the commercial

code CFD-ACE+ for incompressible flow simulations. In the current work the high-

order spectral difference (SD) method for compressible flow simulations described in

chapter 2 is used. The focus is on relatively low Reynolds numbers so that it can be

assumed that the flow past the counter-rotating circular cylinder is predominantly

two-dimensional. This allows a large matrix of simulations using the two-dimensional

SD code which is computationally much less expensive than the three-dimensional SD

code. This two-dimensional assumption will be validated with experimental results

in the later section.

The origin and size of the computational domain are shown in figure 5.15. The

x-axis is in the streamwise direction, and the y-axis is normal to both the streamwise

axis and the spanwise axis of the circular cylinder pair. Across the inlet, the Dirichlet

boundary condition is specified with a uniform velocity of 0.1 m/s. The Reynolds

numbers based on the cylinder diameter and upstream velocity are 100, 150 and

200. The size of the computational domain in the y-direction is 66.328d, matching

what is used in the experimental model. The dimension is far enough for the flow

to be considered unbounded and to have negligible influence on the vortex shedding

behavior of the cylinder pair. Both the upper and lower boundary conditions are set to

a symmetrical slip condition. At the exit boundary, a fixed pressure is specified while

other flow variables are extrapolated so that the flow remains uniform at the inlet.

An isothermal, no slip boundary condition is applied on the cylinder wall surfaces.

In order to construct the SD computational model, a computational domain can

be constructed using a commercial mesh generator. The domain for g∗ = 1 uses a

total of 7,000 cells (figure 5.16). A study of mesh density and SD order of accuracy

is presented in appendix B.2. The mesh is constructed to be finer near the cylinder

surface (figure 5.17), starting with the smallest radial spacing of 1.78% of diameter,

and gets progressively coarser radially outward. The circumferential resolution is

constant and there are 60 cells along the cylinder periphery. Figure 5.17 illustrates

the solution collocation points (16 per cell) by the 4th order SD around a cylinder

surface. The computational domains for other values of g∗ are constructed in a similar

manner. The study by Ou et al. [57] indicates that the 4th order SD approximation
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for a similar size model leads to a mesh-independent result with sufficient accuracy.

One of the main advantages of using the SD scheme is that the total computational

time can be reduced by first producing a less accurate result using a lower order

scheme (that is, 2nd order) to establish the general flow pattern and then switching

to higher order (that is, 4th order) after the error residual norm has converged to a

satisfactory level. In addition, any solution from a higher order scheme can be used

to restart another solution of a lower scheme. This proved to be particularly useful

when stepping through different rotational speeds.

Figure 5.15: The geometry of the computational domain.

Both steady and unsteady flow solutions are considered. The results shown in

the next section are determined when the computation reaches a statistically stable

solution and which the solution from the impulsive start is excluded. Since the focus

is primarily on the research of the suppression of the unsteady vortex shedding, it is
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Figure 5.16: Mesh of the entire flow field (g∗ = 1).

Figure 5.17: Left: Mesh around the cylinder pair surfaces (g∗ = 1). Right: 4th order
SD solution collocation points around the cylinder pair surfaces (g∗ = 1).
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of less interest as for how the final solution is established. Hence, in order to balance

the solution accuracy and the computational time, the 4th order SD method is only

implemented to obtain the final flow solution. This means, for g∗ = 1 as an example,

there are 112,000 degrees of freedom in the SD computational domain.

5.4.1 Doublet-like counter rotation

Here, the results for the doublet-like counter-rotating cylinder pair (see figure 5.14)

with g∗ = 1, 3 and 5, and Re = 100, 150 and 200 are presented. In this configuration,

the cylinders rotate in a manner that enhances the interaction of the vortex streets in

the wake of each individual cylinder, and there is a critical rotation rate at which the

wake instabilities are suppressed completely. Increasing the gap spacing corresponds

to attenuation in the interaction, corresponding to a higher critical rotational speed.

Nonetheless, relatively low rotational speeds (Ωcrit < 2) were required to suppress

wake instabilities for all cases.

For g∗ = 3 and 5, the stable anti-phase shedding mode was observed when the

cylinders were rotated below Ωcrit for all Reynolds numbers. The case for g∗ = 3

and Re = 200 is shown in figure 5.18. Note the excellent agreement between the

SD computation and the independent experiment performed by Dewey and Smits

at the Gas Dynamics Lab at Princeton University [70]. The experiments have been

performed in a water tunnel using digital particle image velocimetry to visualize the

flow. In this particular mode, the vortices shed by the cylinder pair remain stable

and coherent throughout the entire domain. As the rotational speed increases, the

vortex strength decreases until the unsteady vortex wake is entirely suppressed. At a

rotational rate at or slightly above Ωcrit, vorticity lobes extend downstream from the

surface of the cylinders, but with a further increase in rotational speed the vorticity

remains concentrated in the immediate area of the cylinders.

For the cases with g∗ = 1, the unstable in-phase vortex shedding mode was ob-

served at Re = 150 and 200 for all rotational speeds below the critical value. At the

lowest Reynolds number investigated, Re = 100, the vortices shed by the cylinder

pair coalesced to form a single von Kármán vortex street, shown in figure 5.19. This
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Figure 5.18: Doublet-like rotational configuration: streamlines and vorticity at vari-
ous rotational speeds for g∗ = 3, Re = 200. Left: computational results. Right: ex-
perimental results. First row, Ω = 1; second row, Ω = 1.5; third row, Ω = 1.85 (com-
putational) and 1.88 (experimental); fourth row, Ω = 3. For this case, Ωcrit = 1.85
(computational), and 1.88 (experimental). Vorticity contour levels for the computa-
tional and experimental results are the same.
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phenomenon was also observed at the same Reynolds number by [106] for g∗ = 0.7.

In the case of a non-rotating cylinder pair, the single vortex street shedding mode is

only observed at smaller gap spacings (g∗ = 0.4), as found by Kang et al. [101], so

that counter rotation of the cylinders decreases the gap spacing required to achieve

this particular mode. A more detailed discussion of vortex suppression speeds is taken

up in section 5.4.3.

Increasing the rotational speed above Ωcrit results in a closed vortex system taking

the form of a virtual elliptical body, similar in appearance to that of a doublet in

potential flow. The computational results clearly display the evolution of this flow

pattern at Re = 150, as seen in figures 5.20, 5.21 and 5.22 for g∗ = 1, 3 and 5

respectively. Note that prior to the formation of the virtual elliptical body, there

exists a region of second instability which will be discussed later in section 5.4.4.

The second instability is illustrated here for Ω = 3.25 in figure 5.21 and Ω = 3.75 in

figure 5.22. The experimental DPIV data did not have sufficient spatial resolution to

resolve the stagnation point created by the closed vortex system (P. Dewey and A.

Smits, personal communication, 2010). Instead, streaklines in the immediate wake

were visualized using 10 consecutive images obtained with a Sony HDR-SR10 HD

camcorder recording at 30 frames per second. These streaklines, shown in figure 5.23,

clearly illustrate the presence of the stagnation point in the wake of the cylinder pair,

indicating the presence of the virtual elliptical body above a certain rotational speed.

This also confirms the predictions of Chan and Jameson [69] using a lower-order

numerical simulation.

The forces exerted on each cylinder are numerically evaluated in terms of lift and

drag coefficients defined by:

CL =
2L

ρU2d
, and CD =

2D

ρU2d
, (5.2)

where L and D are the lift and drag force acting on the cylinder, computed by

summing the normal and tangential forces from the pressure and viscous stress terms.

By rotating a cylinder, positive or negative lift can be generated depending on

the direction of the spin. From potential flow theory, the lift force asymptotically
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Figure 5.19: Doublet-like rotational configuration: streamlines and vorticity at var-
ious rotational speeds for g∗ = 1, Re = 100. Left: computational results. Right:
experimental results. First row, Ω = 1.2; second row, Ω = 1.5; third row Ω = 3. For
this case, Ωcrit = 1.35 (computational), and 1.4 (experimental). Vorticity contour
levels for the computational and experimental results are the same.
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Ω = 0 Ω = 1 Ω = 2

Ω = 2.5 Ω = 2.6 Ω = 2.75

Ω = 3 Ω = 4 Ω = 5

Figure 5.20: Evolution of virtual elliptical body for the doublet-like configuration
(computational results): instantaneous streamlines and vorticity, Re = 150, g∗ = 1.
Stagnation points are represented by “•”.
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Ω = 0 Ω = 1 Ω = 1.8

Ω = 2.5 Ω = 3 Ω = 3.25

Ω = 3.5 Ω = 4 Ω = 5

Figure 5.21: Evolution of virtual elliptical body for the doublet-like configuration
(computational results): instantaneous streamlines and vorticity, Re = 150, g∗ = 3.
Stagnation points are represented by “•”.
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Ω = 0 Ω = 1 Ω = 1.85

Ω = 2.5 Ω = 3 Ω = 3.5

Ω = 3.75 Ω = 4 Ω = 5

Figure 5.22: Evolution of virtual elliptical body for the doublet-like configuration
(computational results): instantaneous streamlines and vorticity, Re = 150, g∗ = 5.
Stagnation points are represented by “•”.
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Figure 5.23: Experimental streaklines (left) and computational streamlines (right)
showing the existence of the stagnation point and virtual elliptical body for the
doublet-like rotational configuration: g∗ = 1, Re = 150, Ω = 3.1.
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increases with spin rate. In a viscous fluid, however, Mittal and Kumar [80] showed

that at Re = 200 potential flow theory over-predicts the lift curve of a single rotating

cylinder in the range of 0 6 Ω 6 5. As in their calculation, the main contribution to

the lift in the case of the rotating cylinder pair comes from the pressure term while

the viscous stress contribution is relatively small. Figure 5.24 shows that the time-

averaged values of the lift coefficient CL for each cylinder in the doublet-like rotation

have the same amplitude but opposite sign, thus yielding a net zero lift for the pair,

as expected. The results are virtually independent of Reynolds number, and in the

lower speed range (0 6 Ω 6 2.5) they are also independent of gap spacing and the

value of CL for each cylinder is close to the value obtained by Mittal and Kumar [80]

at Re = 200 for a single rotating cylinder. For most of the investigated values of

the Reynolds number and g∗, the lift forces cause a repelling force on each cylinder.

The only exception is for g∗ = 1 and Ω > 4 where the faster rotation produces an

attracting force. The interaction between the two cylinders prevents the exponential

increase of CL with rotation rate seen in the case of the single cylinder. The maximum

lift occurs at Ω ≈ 2.65 for g∗ = 1, Ω ≈ 4.5 for g∗ = 3, and Ω > 5 for g∗ = 5.

As to the behavior of the time-averaged drag coefficient, CD, figure 5.25 shows

that it generally decreases with increasing rotational rate. The results are only shown

for one cylinder because the problem is symmetrical in the mean. As found in the

case of the mean lift coefficient, the degree of wake interaction and its effect on the

mean drag coefficient depends primarily on g∗ and that the effect of Reynolds number

is small. For 0 < Ω < 2.5, most of the drag reduction comes from the pressure term.

For 2.5 6 Ω < 3, a small net thrust is observed in this “transitional” range. For

3 6 Ω 6 5, the pressure drag rises almost linearly with increasing speed while the

viscous drag drops linearly at about the same rate, so that the total mean drag is

approximately zero. It is in this speed range that the virtual elliptic body forms and

grows larger with respect to the increasing speed. Note that for g∗ = 1 and Ω ≈ 4,

CL is also zero thus yielding a neutrally stable and steady flow system.

Also plotted on figures 5.24 and 5.25 are the results obtained by Chan and Jameson

[69] for the lift and drag coefficients at Re = 150 and g∗ = 1 using a second order

accurate commercial incompressible flow code. The results are generally in good
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agreement with the current study, and both investigations show the same trends in

the lift and drag behavior. The current work finds the cross-over speed, where CL of

each cylinder is zero, at Ω ≈ 4.1, versus 4.3 from the previous study. This cross-over

speed is where the lift force on each cylinder transitions from repelling to attracting.

Both studies also find similar characteristics in the drag behavior in that there is a

slight positive net thrust prior to the formation of the closed vortex system, that is,

the virtual elliptic body. In the speed range where the elliptic body is formed, the

form drag balances out the viscous drag yielding approximately zero net drag and

the flow pattern resembles a potential doublet. Additionally, the unsteady vortex

suppression speed is Ω = 1.6 compared to the value of 1.5 found by Chan and Jameson

[69]. Nonetheless, small discrepancies are observed in the lift coefficient where the

virtual elliptic body is observed (Ω ≥ 3). Two primary contributing factors to the

differences are the order of accuracy of the method and the effect of compressibility.

The present results have been computed with the fourth order accurate version of

the SD scheme at Mach 0.1. Based on the results reported by Ou et al. [57], the

compressibility effect is believed to be very small, while fourth order accuracy is

sufficient to produce negligible numerical errors with the mesh that has been used

in this work. Accordingly, the current results are believed to be more reliable than

those presented by Chan and Jameson [69].

For the low speed range where the pressure term accounts for most of the drag

reduction, the mechanism for the mean drag reduction is similar for all gap spacings.

The transitional range where a small net thrust is observed occurs at a faster speed

with increasing gap size, that is, at Re = 150, 2.5 < Ω < 3.2 for g∗ = 3 and

2.5 < Ω < 3.6 for g∗ = 5. In general, the larger the gap size, the more the vortex

wakes become like those shed from a single spinning cylinder. As noted in section 5.2,

one very interesting result reported by Stojković et al. [96, 97] as well as Mittal and

Kumar [80] for a single spinning cylinder is the appearance of a second instability

in the form of a one-sided vortex shedding mode. In the present case of a pair of

counter-rotating cylinders in the doublet configuration, a similar second instability is

observed, due to the release of the one-sided vortex that is built up by slow moving

vorticity near the stagnation point for each cylinder. As a result, the key difference
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for the larger gap sizes compared to the case with g∗ = 1 is the existence of a second

instability prior to the formation of the virtual elliptic body. There is a slight jump

in the mean drag when the second instability occurs above Ω = 3 for g∗ = 3 and

above Ω = 3.5 for g∗ = 5. At higher rotation rates, the virtual elliptic body appears

and there is an exact balance between the pressure and viscous drags that produces

zero mean drag.

The drag forces were not obtained in the experiment, but the time-averaged veloc-

ity profiles give some insight into the overall momentum balance. To get a sense for

the momentum balance for the experimental and computational work, the streamwise

velocity contours and the corresponding velocity profiles are shown in figures 5.27 and

5.28 for the case of g∗ = 1 and Re = 100, where the single von Kármán vortex street

is present. The velocity profiles are taken at a distance of 10 diameters downstream of

the cylinder pair. At lower rotational speeds, a velocity deficit is observed to extend

far downstream of the cylinder pair. As the rotational speed increases, the velocity

deficit region moves closer to the cylinder pair, until at the highest rotational speeds

investigated the deficit region is almost entirely contained in the region where the

virtual elliptic body can be found. This results in a very small velocity deficit, indi-

cating that the drag due to momentum flux is negligible in this instance. As observed

from the experiments, the velocity deficit decreases to almost zero over the range of

Ω = 2 to 4, which is consistent with the computational findings.

The Strouhal numbers, St = fd/U , are shown in figure 5.26. Only cases resulting

in an anti-phase shedding are shown since this mode produces a distinctly dominant

shedding frequency f . There is excellent agreement between the results from the

SD computation and those from the experiment. The Reynolds number dependence

is most noticeable in going from Re = 100 to 150, but is relatively small in going

from 150 to 200. The effect of gap spacing is not significant, except in the region

of the second instability, that is for 3 < Ω < 4. For g∗ = 1, the shedding mode

is predominantly in-phase for 0 < Ω < 1 and therefore these data points were not

included.
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Figure 5.24: Flow past a doublet-like counter-rotating cylinder: numerically deter-
mined time-averaged values of the lift coefficient (upper cylinder).
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Figure 5.25: Flow past a doublet-like counter-rotating cylinder: numerically deter-
mined time-averaged values of the drag coefficient (upper cylinder).
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Figure 5.26: Flow past a doublet-like counter-rotating cylinder: numerically deter-
mined Strouhal number (anti-phase shedding only).
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Figure 5.27: Doublet-like rotational configuration: normalized streamwise velocity
contours at various rotational speeds for g∗ = 1, Re = 100. Left: computational
results. Right: experimental results. First row, Ω = 1.5; second row, Ω = 2; third
row, Ω = 4
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Figure 5.28: Velocity profiles at 10d downstream from cylinder center

Simple vortex shedding model of a doublet-like counter-rotating cylinder

pair

Figure 5.29 shows the instantaneous separatrices, saddle points (S) and centers (C)

as a function of various steady rotational rates following Perry’s model of vortex

shedding mechanism [105]. For a steady rotation, a circulating region is formed along

the cylinder surface by a one-directional separatrix whose center coincides with the

center of a cylinder. This circulation region enlarges as the rotational speed increases.

The associated saddle point is formed slightly upstream of the cylinder center but

moves further downstream with increasing rotational speeds.

In the immediate near-wake region of each cylinder, there is a saddle point and

center whose behaviors depend on the rotational speed of the cylinder. At Ω = 1, the

flow is unsteady and the alleyways (3 per each cylinder as shown in (a) of figure 5.29)

open, widen and close indicating a vortex shedding process. As the rotational speed

increases, the widths of these alleyways become narrower, and the overall flow becomes

more stable. When the flow is steady at Ω = 1.5, the flow is symmetric along the

centerline between the two cylinders. There is only one alleyway that exists for each

cylinder. As the rotational speed increases further, the width of each alleyway narrows
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and while the circulating region around each cylinder enlarges, the circulating region

in the near wake becomes smaller. The rear saddle point in the near wake appears

to move much more rapidly toward the front saddle point. At 2.43 < Ω < 2.44, there

appears to be a transition region where the upper and lower pair of separatrices merge

and the front saddle points vanish. In this transition, the two pairs of separatrices

merged causing the upper and lower alleyways to close. A new alleyway along the

centerline is then formed by the two newly merged separatrices as shown in (e), (f),

and (g). This alleyway continues to narrow as the rotational speed increases.

A second transition occurs at 2.56 < Ω < 2.565 where both saddle points asso-

ciated with each cylinder are forced toward one another at the symmetric centerline

as shown in (g). The alleyway is extremely narrow at this point. However, these two

saddle points cannot merge at the centerline as there would be 3 incoming and 3 out-

going paths and would thus violate the notion of 2 stable manifolds (incoming paths)

and 2 unstable manifolds (outgoing paths). Therefore, two new saddle points are

then formed along the centerline and the alleyway no longer exists. As the rotational

speed increases, the forward saddle point is pushed further upstream. At Ω = 2.755,

a symmetry line coincides the vertical line across the cylinders centers and the virtual

elliptic body is formed.

5.4.2 Reverse doublet-like counter rotation

When the cylinder pair is rotated in a reverse doublet configuration (see figure 5.14),

the interaction of the vortex wakes between the two rotating cylinders is substantially

reduced when the gap spacing is increased because the rotation serves to push the

wakes away from one another. Figure 5.30 compares the computational and exper-

imental vorticity contours and streamlines at various rotation rates for Re = 200

and g∗ = 3. It is apparent that the vortex shedding from one cylinder becomes in-

creasingly independent from that of the other cylinder as the rotation rate increases.

However, the effect of gap size on the wake interaction is important at the small-

est gap (g∗ = 1) where an in-phase shedding mode exists at all Reynolds numbers

for Ω < 1. As shown figure 5.31, the vortex shedding mode transitions to a stable,
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(a) Ω = 1 (b) Ω = 1.5 (c) Ω = 2.25

(d) Ω = 2.43 (e) Ω = 2.44 (f) Ω = 2.55

(g) Ω = 2.56 (h) Ω = 2.565 (i) Ω = 2.755

Figure 5.29: Evolution of virtual elliptical body for the doublet-like configuration
(computational results): instantaneous streamlines and vorticity, Re = 150, g∗ = 1.
Separatrices are represented by darker lines with arrows. ‘S ’ is a saddle point. ‘C ’ is
a center point.
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anti-phase pattern at Ω = 1. This synchronization helps stabilize the vortex street

pair and maintain its form further downstream. In this regime, a vortex shed from

the upper cylinder is counter-balanced by a vortex of opposite sign shed from the

lower cylinder. The upper vortex street perfectly mirrors the lower with the line of

symmetry being half way between the cylinders, and the strength of each vortex is

maintained for long distances downstream. As the gap increases, however, the wake

interaction drastically reduces (see figure 5.32 for g∗ = 3 and figure 5.33 for g∗ = 5),

thus effectively causing the vortex wakes from each cylinder to behave like that from

a single rotating cylinder.

The mean lift coefficients, shown in figure 5.34, are almost independent of gap

size and Reynolds number, but the effect of the gap is much more apparent in the

drag curves shown in figure 5.35. It should be noted that as the gap increases, the

value of CD approaches the value of a single rotating cylinder as given by Mittal and

Kumar [80]. This is also the case for CL. As observed by Chan and Jameson [69],

the reverse doublet-like rotation produces an attracting force with a magnitude that

increases with the rotation rate. The Strouhal numbers plotted in figure 5.36 show

little dependence on the gap spacing and rotation rate, although there is a distinct

Reynolds number dependence, especially at the lower rotation rates. Also, the results

obtained from the SD computation generally agree very well with the experimental

results.

5.4.3 Unsteady vortex suppression

The standard deviation of the lift and drag coefficients for the doublet-like rotation

are shown in figure 5.37; the corresponding values for the reverse doublet-like are

shown in figure 5.38. The standard deviation gives a reasonably good prediction of

the critical rotation speed, Ωcrit, where the unsteady wakes are suppressed, in that

steady flow is observed when the standard deviation value is zero.

The computationally determined values of Ωcrit are compared with the experi-

mental values in figure 5.39, and they are summarized in table 5.2. There is excellent
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Figure 5.30: Reverse doublet-like rotational configuration: streamlines and vorticity
at various rotational speeds for g∗ = 3, Re = 200. Left: computational results. Right:
experimental results. First row, Ω = 0; second row, Ω = 2; third row, Ω = 2.4; fourth
row, Ω = 5. Vorticity contour levels for both computational and experimental results
are the same.
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Ω = 0.5 Ω = 1 Ω = 2

Ω = 3 Ω = 3.5 Ω = 4.05

Ω = 4.1 Ω = 4.5 Ω = 5

Figure 5.31: Instantaneous streamlines and vorticity for reverse doublet-like counter
rotating cylinder (computational results): Re = 150, g∗ = 1.



CHAPTER 5. ACTIVE VORTEX SUPPRESSION BY ROTATION 147

Ω = 0.5 Ω = 1 Ω = 1.5

Ω = 2 Ω = 2.4 Ω = 2.45

Ω = 3 Ω = 4 Ω = 5

Figure 5.32: Instantaneous streamlines and vorticity for reverse doublet-like counter
rotating cylinder (computational results): Re = 150, g∗ = 3.
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Ω = 0.5 Ω = 1 Ω = 1.5

Ω = 2 Ω = 2.2 Ω = 2.25

Ω = 3 Ω = 4 Ω = 5

Figure 5.33: Instantaneous streamlines and vorticity for reverse doublet-like counter
rotating cylinder (computational results): Re = 150, g∗ = 5.
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Figure 5.34: Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined time-averaged values of lift coefficient (lower cylinder).
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Figure 5.35: Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined time-averaged values of drag coefficient (lower cylinder).
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Figure 5.36: Flow past a reverse doublet-like counter-rotating cylinder: numerically
determined Strouhal number (anti-phase shedding only).
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agreement for all cases that were investigated, except for the reverse doublet con-

figuration at g∗ = 1 where the computational results are approximately 10 to 20 %

larger than the experimental ones. Observations of the particle motion in the DPIV

experiments suggest that at higher rotational speeds the flow exhibits a noticeable

degree of three-dimensionality, particularly in the case of g∗ = 1. Thus, it is possible

that this discrepancy occurs because the computations used in this work were strictly

two-dimensional. Nevertheless, the critical rotational speed monotonically decreased

with increasing gap spacing, and the data suggest that Ωcrit depends more strongly

on gap spacing than it does on Reynolds number.

For the doublet-like cylinder rotation (figure 5.39), Ωcrit < 1.9 in all cases, and

its value monotonically increases with increasing gap spacing and Reynolds number.

The results presented by Yoon et al. [106] and the current investigation only have

one point of overlap (Re = 100, g∗ = 3), but in both studies the critical speed for

vortex suppression was found to be 1.7. However, as seen in the figure 5.37, there

is a small region of instability at speeds above Ωcrit for the larger gaps. This second

instability mode occurs in the doublet-like configuration at Ωcrit ≈ 3.25 for g∗ = 3 and

Ω ≈ 3.75 for g∗ = 5, but is suppressed for g∗ = 1. As indicated earlier, this instability

is related to the same phenomenon observed in the case of a single rotating cylinder,

as investigated by Stojković et al. and Mittal and Kumar.

Rotation of the cylinder pair in the reverse doublet-like configuration reduces the

interaction of the vortex streets resulting in higher critical rotation speeds (that is,

Ωcrit > 2). This is in contrast to the doublet-like configuration where increasing the

gap spacing reduces the vortex suppression speeds. For g∗ = 1, the critical speed is

as high as Ωcrit = 4.4, indicating that the proximity of a nearby cylinder promotes

the instability of the wake. At the largest spacing, g∗ = 5, Ωcrit collapses near 2.3 for

all Reynolds numbers. Also, an increase in the gap spacing results in a monotonic

decrease in the critical speed.

When the results for both rotational configurations are compared, it is observed

that they appear to converge to a single value with increasing gap size. As noted

earlier, this is not surprising, in that with increasing gap size the interaction between

the two cylinder wakes diminishes, and in the limit it is expected that the two wakes to
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Figure 5.37: Flow past a doublet-like counter-rotating configuration: standard devi-
ation of the coefficients of lift (left) and drag (right), obtained numerically.
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Figure 5.38: Flow past a reverse doublet-like counter-rotating configuration: the
standard deviation of coefficients of lift (left) and drag (right).



CHAPTER 5. ACTIVE VORTEX SUPPRESSION BY ROTATION 155

1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.5

2

2.5

3

3.5

4

4.5

g*

Ω
crit

 

 

Re = 100, Exp
Re = 150, Exp
Re = 200, Exp
Re = 100, Comp
Re = 150, Comp
Re = 200, Comp

Reverse doublet-like

rotation

Doublet-like

rotation

Figure 5.39: Critical rotation speed for vortex suppression.

become independent and to have Ωcrit approach the value to suppress vortex formation

in the wake of a single rotating cylinder. Kang [101] found that for a single rotating

cylinder at Re = 100, Ωcrit = 1.8, and at Re = 160 it was 1.9, and Mittal and Kumar

[80] reported the first critical suppression speed for a single cylinder to be 1.91 at

Re = 200. These values are very similar to the convergent value suggested here,

which gives Ωcrit ≈ 1.9 at Re = 100, and approximately 2 at Re = 150.

5.4.4 The second region of instability

In figure 5.37 there is an evidence for a small region of instability at speeds above

Ωcrit for the doublet-like configuration that depends on the gap spacing. This region is

essentially the secondary instability which also appears in the case of a single rotating

cylinder as previously discussed in Section 5.2. In the current work, the computations

and experiments indicate that when the gap is small (that is, g∗ = 1) the interaction

between the two vortex streets prevents the second instability from occurring. When
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Doublet-like configuration

Re g∗ = 1 g∗ = 3 g∗ = 5
100 1.35 (1.4) 1.7 (1.72) 1.8 (1.79)
150 1.6 (1.6) 1.85 (1.86) 1.9 (1.94)
200 1.65 (1.7) 1.85 (1.88) 1.9 (1.94)

Reverse doublet-like configuration

Re g∗ = 1 g∗ = 3 g∗ = 5
100 4.4 (3.84) 2.45 (2.52) 2.2 (2.24)
150 4.1 (3.71) 2.45 (2.53) 2.25 (2.28)
200 4.1 (3.53) 2.4 (2.46) 2.15 (2.27)

Table 5.2: Critical rotational rate to suppress vortex formation, experimental values
in parentheses.

the vortex shedding is suppressed at sufficiently high spin rate, there are two pairs

of stationary stagnation points associated with the positive (red) and negative (blue)

vortices from each cylinder, as shown on the left column of figures 5.20, 5.21 and

5.22. Each front stagnation point (that is, upstream of the cylinder centers) moves

outward radially with increasing spin rate (that is, with increasing circulation) and

its location follows the closed streamline around the cylinder body. In contrast, each

rear stagnation point (that is, downstream of the cylinder centers) moves inward

toward the front stagnation point as the spin rate increases. At some point, the two

closed vortex systems merge into one, and the two stagnation points combine into a

single point at a location near that of the rear stagnation point prior to merging. By

increasing the spin rate further, each closed vortex system is stretched to resemble a

tear drop shape, and the stagnation point progresses towards the horizontal center

line. From observation, it is at this point that the second instability occurs prior to

the appearance of the virtual elliptic body.

The relatively large gap sizes for which this instability occurs, that is g∗ = 3 and

5, effectively cause the vortex street from each cylinder to appear similar to that

produced by a single rotating cylinder. However, the interaction between the two
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vortex streets is apparently sufficient to lower the spin rate at which the instability

appears when compared to the case of a single rotating cylinder. For the doublet-like

rotation, it is observed that for Re = 200, g∗ = 5, the second instability occurs at

3.55 6 Ω 6 3.8 over a Strouhal number range from 0.0143 to 0.0321. For Re = 200,

g∗ = 3, it occurs at 3.65 6 Ω 6 3.85 with 0.0155 6 St 6 0.0298. As was shown in

figure 5.26, there are some slight differences in the values of St and Ω corresponding to

the second instability at different Reynolds numbers and gap spacings. For example,

consider the vorticity and streamlines of the second instability shedding mode for

g∗ = 3 and g∗ = 5 shown in figure 5.40. The red vortex was shed from the upper

cylinder while the blue one was shed from the lower cylinder. The decreasing distance

between successive vortex cores with increasing Strouhal number reflects the higher

shedding frequency. Also note the excellent agreement between the computation and

experiment shown in figure 5.41 for Re = 100, g∗ = 5, and Ω = 4.

In the reverse doublet-like case, the second instability does not occur in the speed

range of the investigation because in the first steady flow region the positive and

negative vortices in the vicinity of the cylinder bodies are less likely to affect one

another. The front and rear stagnation points are produced away from the center

line and in opposing pairs. Consequently it appears that this configuration helps

delay the merging of the front and rear stagnation points. Figure 5.42 illustrates the

progression from unsteady (left column) to steady flow (center and right columns) for

Re = 150 for different gap sizes. It can be seen that at Ω = 5 for g∗ = 3 and 5 only

a single stagnation point is formed for each cylinder.

5.4.5 Power consumption

The possible benefits of unsteady wake suppression bear a cost in terms of the power

consumption required to overcome the translational aerodynamic drag as well as to

maintain the rotational motion of the cylinder pair. This can be analyzed by calcu-

lating the time-averaged power coefficient using the equation 5.1. Figure 5.43 shows

CP (of the upper cylinder) plotted against rotational speed for both the doublet-like

and reverse doublet-like configurations in comparison to the single rotating cylinder
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Figure 5.40: Instantaneous streamlines and vorticity for the second instability of the
doublet-like counter-rotating configuration (computational results): a. Re = 200,
g∗ = 5, Ω = 3.75 (top); b. Re = 200, g∗ = 3, Ω = 3.25 (bottom). Vorticity contour
levels of the computational and experimental results are the same.
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Figure 5.41: Instantaneous streamlines and vorticity for the second instability of the
doublet-like counter-rotating configuration, Re = 100, g∗ = 5, Ω = 4: a. computa-
tional (top); b. experimental (bottom). Vorticity contour levels of the computational
and experimental results are the same.
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Ω = 4.05 Ω = 4.1 Ω = 5

Ω = 2.4 Ω = 2.45 Ω = 5

Ω = 2.2 Ω = 2.25 Ω = 5

Figure 5.42: Flow past a reverse doublet-like counter-rotating configuration: instanta-
neous streamlines and vorticity at various rotational speeds (computational results).
Stagnation points are represented by “•”. First row: Re = 150, g∗ = 1; second row:
Re = 150, g∗ = 3; third row: Re = 150, g∗ = 5.
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at Re = 200. The trends are similar for Re = 100 and 150. It is observed that in both

rotational configurations, as the gap size increases, and not surprisingly the curves

converge towards that of the single rotating cylinder. As the gap size decreases, it

is advantageous, or more efficient, to rotate the cylinder pair in the doublet-like con-

figuration due to a decrease in both the aerodynamic drag contribution, (CP )D, and

the required torque, (CP )M , as shown in figure 5.44. Note that the aerodynamic drag

contribution to CP , shown in figure 5.44 (left), is essentially a replot of CD for Re =

200 (figures 5.25 and 5.35).

An interesting phenomenon is observed in the doublet-like case where there ap-

pears to be a noticeable change in the slope of the power coefficient in the transitional

range prior to the formation of the elliptical body. This is particularly so for g∗ = 1,

where a clear discontinuity in the spinning torque curve is observed (see figure 5.44),

such that there is a sudden jump in (CP )M at Ω = 2.6. In this rotational regime,

the stagnation points transition from being vertically to horizontally aligned and the

flow between the cylinder pair reverses direction, opposing the oncoming free-stream

velocity. It may be that in this transitional regime, as the flow between the cylinder

pair becomes stagnant before reversal, there is a significant reduction in the torque

required to rotate the cylinders. Once the flow has reversed direction and the virtual

elliptic body has formed, the cylinders must continually accelerate the fluid particles

contained between the cylinder pair, thus returning the power coefficient to a mono-

tonically increasing trend. This behavior occurs over a very short interval in Ω, and

a further investigation of this flow mechanism is required to better understand the

nature of this regime. It may also be possible that three-dimensionality plays an ever

increasing role at lower gap spacings, potentially highlighted by the fact that such a

large discontinuity in power coefficients is only seen for g∗ = 1. For g∗ = 3 and 5,

the range of speeds where the slope changes also coincides with the occurrence of the

second instability.

In the reverse-doublet configuration, no change in the slope of (CP )M , figure

5.44, was observed at any gap spacing, since neither a closed body nor a secondary

instability were present for the range rotational speeds examined here. Deviations

in the slope of CP are the result of changes in the aerodynamic drag contribution,
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(CP )D, and a sharp transition occurs during the drag reduction phase just prior to

the total suppression of unsteady wakes at Ω = 4.1, 2.3 and 2.25 for g∗ = 1, 3 and 5,

respectively, see figures 5.43 and 5.44.
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Figure 5.43: Flow past a counter-rotating cylinder: numerically determined time-
averaged values of the power coefficient (upper cylinder, Re = 200).
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Figure 5.44: Flow past a counter-rotating cylinder: contributions of aerodynamic
drag (left) and spinning torque (right) to the mean power coefficient (upper cylinder,
Re = 200).



Chapter 6

Conclusions and future work

In the research described in this thesis, both passive and active vortex suppression

techniques of laminar flow past bluff bodies have been investigated, primarily by

way of numerical simulations. The passive technique involves the placement of a

thin splitter plate downstream of a bluff body while the active technique focuses

on counter-rotating a pair of cylinders. The numerical tools used for investigation

include the commercially available incompressible flow solver based on the Semi-

Implicit Method for Pressure-Linked Equation (SIMPLE) and the compressible solver

based on high-ordered spectral difference (SD) method that has been developed at the

Stanford Aerospace Computing Laboratory. Complimentary experiments have also

been performed to correlate and verify some of the numerical findings. The splitter

plate experiment was performed in a low speed wind tunnel using laser Doppler

vibrometer to detect the oscillation due to vortex shedding. The counter-rotating

cylinder experiment was performed in collaboration with Peter Dewey and Professor

Alexander Smits of the Gas Dynamics Lab at Princeton University.

6.1 Splitter plate summary

Both the numerical simulations and wind tunnel experiments confirm that a thin

splitter plate can be effectively used to control unsteady vortex shedding, vortex

164
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induced forces and thus vortex induced vibration when it is properly placed down-

stream of a bluff body. Focusing on flows at low Reynolds numbers, it is found that

the effectiveness is relatively insensitive to variations of the splitter plate length in

the range 0.25 · d to 1.0 · d. However, there is a critical separation distance where a

jump is observed in the fluctuating components of lift and drag. In an unbounded

flow, a short and thin splitter plate can alter the shedding characteristics but does

not completely eliminate the wake oscillation. However, the mean drag on the body

is generally reduced. In a bounded flow, a splitter plate placed at a proper sepa-

ration distance can completely eliminate the vortex instability and consequent force

oscillations on a two-dimensional circular cylinder.

6.2 Counter-rotating circular cylinder pair sum-

mary

Digital particle image velocimetry and a high-order spectral difference computational

method were employed to investigate the flow over a pair of counter-rotating cylinders.

The experimental and computational results were generally in excellent agreement

in resolving the wake structure and various stability regimes. For the doublet-like

configuration at a slow rotational rate (i.e. unsteady regime), a synchronized in-

phase vortex shedding mode that was unstable to small disturbances was present

at Re = 150 and 200 for g∗ = 1. Decreasing the Reynolds number to 100 for this

case resulted in a wake structure similar to that of flow past a single bluff body.

The existence of a virtual elliptic body, first predicted by Chan & Jameson (2010)

to appear when the rotational speed is sufficiently large, was validated by the high-

order SD computations, as well as by the experimental results. The size of the virtual

elliptic body increases with increasing rotational speed. The values of the critical

rotation rate Ωcrit, where the wake forms an elliptic body and the total drag reduces

to zero, were found more precisely than in this previous work, and over a wider

range of Reynolds number and gap sizes. In addition, for the first time, a secondary

instability was observed for g∗ = 3 and 5, at rotational speeds just prior to the
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formation of the virtual elliptic body.

For the reverse doublet-like rotational configuration, the in-phase shedding mode

was present for g∗ = 1 at all Reynolds numbers when Ω < 1, and the anti-phase

shedding mode was present when 1 < Ω < Ωcrit. This is similar to that seen for a

pair of non-rotating cylinders, but it was shown here for the first time that counter-

rotation of the cylinder pair would lead to wake stabilization by transition to an

anti-phase shedding mode for 1 < Ω < Ωcrit.

For both rotational configurations, a stable anti-phase wake structure was ob-

served for all Reynolds numbers at g∗ = 3 and 5. For the doublet-like configuration,

the value of Ωcrit monotonically increased with increasing gap spacing and Reynolds

number, while for the reverse doublet-like configuration, it monotonically decreased

with increasing gap spacing and Reynolds number. These opposing tendencies of the

two rotational configurations with increasing gap spacing cause Ωcrit to converge to-

wards the value needed to suppress vortex formation in the wake of a single rotating

cylinder.

6.3 Recommendation for future work

In future work it is recommended that both passive and active vortex suppression

techniques be investigated for flow past other bluff bodies other than the circular and

square cylinders. It is also important to recognize that in reality, the flow past bluff

bodies can be complex and three-dimensional at higher Reynolds numbers. Through-

out this research, a sizable matrix of two-dimensional computations was performed

in order to obtain the present results. It still would be a very expensive proposition

to compute this matrix in three dimensions with the available resources. However as

computer performance continues to improve and the computational cost continues its

descending path, a similar matrix of three-dimensional calculations can be performed

in the future.



Appendix A

Experimental methods

The contents of appendix A.2 were the work of Peter Dewey and Alexander Smits of

Gas Dynamics Laboratory at Princeton University and were previously published by

Chan et al. [70] 1.

A.1 Splitter plate experiment

An experiment to verify our numerical results of vortex induced vibration and its

suppression using thin splitter plate has been carried out in a very low speed wind

tunnel (figure A.1) with an achievable air speed range of 0.5 to 5.0 m/s. The wind

tunnel is made of entirely out of Plexiglass – a clear acrylic material – which allows for

the use of a laser Doppler vibrometer (LDV) to detect the test specimen motion. The

wind tunnel length is approximately 3.5 feet long and is set up to operate in a suction

mode where the driving fan is positioned at the diverging end of the tunnel as shown in

figure A.1. The air speed is calculated from the dynamic pressure measurement using

a simple total pressure tube made from bending the tip of a long hypodermic needle

to be in-line with the flow stream as shown in figure A.2. The dynamic pressure

is measured via Baratron capacitive micro-manometer made by MKS Technology.

The manometer has a sensitivity of approximately 1 Pascal. The air speed is also

1Chan et al. , J. Fluid Mech. Copyright 2011. Reproduced with permission from Cambridge
University Press. License Number 2671560868712.
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measured by a hot-wire velocity probe for verification. The corresponding Reynolds

number ranges from approximately 70 to 1,000 depending on the blockage factor and

the diameter of the test cylinder.

The test section has a cross sectional area of 4.5 inches by 1.5 inches. A circular

416 stainless steel rod with a diameter of 1/16 inch is used as a test specimen. The 416

stainless steel is chosen because it has the magnetic property such that the cylinder

can be levitated horizontally as shown in a couple of arrangements on figures A.3

and A.4. Note that the cylinder has pointed ends where one has a direct contact with

one of the magnets and the other is floated but held horizontally by the fringe field of

the other magnet. When the flow is introduced at the low Reynolds number range,

the vortex shedding from the test cylinder induces a forcing function which causes a

sinusoidal motion. The oscillatory motion is easily detectable near the floating end

by processing the signal of an LDV beam via a dynamic signal analyzer. The cylinder

does not move in a purely vertical motion. Rather it pivots around the pointed end

that is physically connected to one of the magnets.

The unbounded flow condition can be set up as shown on figure A.3. Even though

in theory the flow in a wind tunnel is bounded, the ratio of the test cylinder to the

test section height, i.e. blockage factor, in this particular setup is much less than 0.1

and therefore can be considered unbounded. When the test cylinder is placed in a

secondary enclosure, as shown on figure A.4, the setup is equivalent to the case of a

bounded flow with stationary walls. In both cases, the test cylinder is placed in the

developed flow region which is determined by theoretical calculation, and verified by

using a total pressure tube and a Baratron pressure sensor at a few locations along

the length of the test section. In order to determine the effectiveness of a splitter plate

at variable separation distances, it is mounted on a movable, low profile stand, which

can then be systematic placed directly downstream of the cylinder. It is important

to note that the splitter plate needs to be made out of a non-magnetic material. A

piece of plastic shim stock with a thickness of 0.15 mm is chosen for this experiment.

The reason for such a choice is to prevent any interaction due to magnetic coupling

force that can transmit back into the circular cylinder.

The frequency of the cylinder motion due to vortex shedding is identified by
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Figure A.1: Sketch of the low speed wind tunnel setup.
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Figure A.2: Total pressure tube in the test section.

Figure A.3: Sketch of the test section in an unbounded flow arrangement.

Figure A.4: Sketch of the test section in a bounded flow arrangement.
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Figure A.5: LDV measurement points for identifying vibration mode due to vortex
shedding.

processing the LDV signal via fast Fourier transform using a dynamic signal analyzer.

Because of the presence of noise in the experimental system, the identification of this

frequency requires careful examination of the data. In the two-dimensional shedding

regime, this frequency will be distinct but depend solely on changes in the air speed.

However, it is possible to falsely identify one of the harmonics of the fan modes, for

example, to be the shedding frequency. One of the keys in isolating the vibration

mode due to shedding is to normalize the signal measured at the outboard location

of the cylinder, as shown in figure A.5, to the signal measured at the root section

of the cylinder. Normalizing the two signals yields a distinctive mode of motion due

to vortex shedding alone as shown in figure A.6. The frequency obtained from this

vibration mode is used to calculate the Strouhal number. It will become clear later

when a splitter plate is placed at a proper position that the vibration mode can be

completely eliminated, which confirms the validity of this identification technique.

A.2 Counter-rotating circular cylinder pair exper-

iment

The experimental portion of the counter-rotating cylinder pair research was performed

in close collaboration with the Gas Dynamics Lab at Princeton University. The exper-

imental investigation was entirely conducted by Peter Dewey and Professor Alexander

Smits using digital particle image velocimetry (DPIV). The experimental method is

briefly described here. To achieve counter rotation of a cylinder pair, a Pittman
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Figure A.6: Normalized power spectrum of outboard to root motion.

9236S009-R1 servo-motor attached to a timing belt with a 6:1 gear reduction ratio

was used to rotate the cylinders. The rotation speed was determined by a data acqui-

sition system that sampled the rotation speed at a frequency of 500 Hz from a digital

optical encoder accompanying the motor. The apparatus was mounted in a closed

loop, free surface water channel with a test section that is 0.46 m wide, 0.3 m deep,

and 2.5 m long (see figure A.7). Surface waves were eliminated by mounting a clear

acrylic plate to be in contact with the free surface, with the cylinder pair mounted

vertically and protruding through a slot machined in the acrylic plate. The bottom

of the cylinders were held in place by low-friction bearings, housed in a streamlined

mounting block that extended 10 mm above the channel floor. The cylinders were

0.00635 m in diameter and 0.3 m long, producing an aspect-ratio of 47 to ensure

two-dimensional flow past the cylinder pair. DPIV was conducted at the mid-span of

the cylinder pair.

Neutrally buoyant silver-coated hollow ceramic spheres with a mean diameter of 93

µm were used as seeding particles (Potters Industries Inc. Conduct-O-Fil AGSL150
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Figure A.7: Sketch of water channel and experimental apparatus. (a) Top view; (b)
side view.
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TRD). A Spectra Physics 2020 Argon-Ion laser coupled to a fiber optic delivery system

and Powell lens (Oz Optics Ltd.) were used to produce a 1.5-mm-thick light sheet

for the experiments. A Redlake MotionXtra HG-LE CCD camera with 1, 128 × 752

pixel resolution was used to acquire the DPIV images. The camera frame rates ranged

between 50 and 100 Hz, producing 30 to 60 discrete time intervals between subsequent

vortices being shed, with a typical exposure time of 3 ms.

Two-dimensional discretely sampled velocity fields were computed by calculating

local spatial cross-correlations using software developed by Jimenéz [107]. Three

passes, with 64 × 64, 32 × 32, and subsequently 16 × 16 pixel windows with 50

% overlap were performed. To achieve sub-pixel accuracy, a 5 × 5 pixel Gaussian

interpolation was utilized. In a typical DPIV pair, vector outliers were primarily

constrained to the edges of the domain and regions of the domain with insufficient

lighting (for instance, in the shadows created by the cylinders). Fewer than 1 % of

vectors in the far-wake of the cylinders proved to be outliers, though resolving the

near-wake of the cylinders was more challenging due to lighting issues. The analysis

yielded, at most, 5 % error in velocity and 10 % error in vorticity. The vorticity was

calculated at each point by computing the circulation about a closed contour formed

by the eight neighboring points using a trapezoidal rule scheme [108]. There is an

estimated error of 9 % in the determination of the critical rotation speed to suppress

vortex formation, Ωcrit.

The DPIV system was validated by examining the flow past a stationary cylinder.

A fast Fourier transform (FFT) was taken of the time-resolved velocity field in the

cylinder wake to determine the vortex shedding frequency, and ultimately the Strouhal

number, St = fd/U . The Strouhal number was found to be 0.163, 0.184 and 0.197

for Reynolds numbers of 100, 150 and 200, respectively, deviating less than 0.05 %

from Williamson [8]. There is an estimated uncertainty of 5 % in the calculation

of the Strouhal number. Note that the shedding frequency was captured equally

well by taking the FFT of the vorticity field. The Strouhal number was found to

be invariant for three different DPIV spatial resolutions (2.5, 5 and 8.5 vectors per

cylinder diameter), and a spatial resolution of 5 vectors per cylinder diameter was

selected for all results presented here.



APPENDIX A. EXPERIMENTAL METHODS 175

A typical data set consisted of 1,200 image pairs that were phase averaged at the

vortex shedding frequency to minimize noise. The phase-averaging was a two-step

process: a first data set was used to find the shedding frequency from the cylinder

pair, and then a second data set was acquired with the camera timing synchronized

with the vortex shedding frequency. It should be noted that the time-resolved data

was always used to determine quantities such as Ωcrit and Strouhal number, and the

phase-averaged data was solely used for qualitative purposes in displaying vorticity

contour plots. In the case where counter-rotation of the cylinder pair suppressed

unsteadiness, all image pairs of the original data set were used in the averaging

process. Due to optical constraints, only the wake region of the cylinder pair was

investigated.



Appendix B

Additional numerical validation

The contents of this appendix were previously published by Chan et al. [70] 1.

B.1 Comparison of numerical results for flow past

a stationary pair of circular cylinders

Here, the force coefficients for a stationary circular cylinder pair obtained using the

fourth-order SD calculations are compared with the numerical results using the im-

mersed boundary method by Kang [101]. Table B.1 lists the values of mean CL and

CD as well as the standard deviation of CL for the flip-flop shedding mode at g∗ = 1,

Re = 100 and for the anti-phase mode at g∗ = 3, Re = 100. In general, the results

are in reasonable agreement, further establishing the confidence in the SD approach

used in this research.

1Chan et al. , J. Fluid Mech. Copyright 2011. Reproduced with permission from Cambridge
University Press. License Number 2671560868712.
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g∗ CD CL σ(CL) Source

1
1.427 0.259 0.147 Present (SD, Fourth order)
1.44 0.28 0.17 Kang [101]

3
1.444 0.074 0.281 Present (SD, Fourth order)
1.47 0.08 0.28 Kang [101]

Table B.1: Flow past a stationary circular cylinder pair at Re = 100: mean CD, mean
CL and standard deviation of CL.

B.2 Study of mesh density and SD order of accu-

racy

The numerical accuracy of different SD schemes has been documented by [57]. Here,

an additional numerical accuracy test based on the mesh density and the SD order

of accuracy is presented in table B.2 for the three gap sizes considered in this re-

search. Listed are the mean and standard deviation values of force coefficients and

the corresponding Strouhal numbers (for the anti-phase shedding pattern) of the top

circular cylinder of the counter-rotating cylinder pair, for the stationary case and for

the case with Ω = 3. In this test case, two different sets of meshes – coarse and fine –

were used. The fine mesh is essentially reconstructed from the coarse mesh by simply

quadrupling the number of cells. The differences between the results obtained from

the coarse mesh and those from the fine mesh are small when the fourth-order SD

is used. However, the computational cost increases proportional to the number of

degrees of freedom. Therefore, in order to perform a fairly large simulation matrix in

a reasonable amount of time, the coarse meshes in conjunction with the fourth-order

SD were used to obtain the final results presented in this research.
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