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Abstract

The focus of this research is on the control and suppression of vortex shedding of
flow past bluff bodies. The motivation of this research stems from the aerodynamic
problems encountered in the design and development of hard disk drives (HDD’s).
Two different computational fluid dynamic methods have been used in this research—
the Semi-Implicit Method for Pressure Linked Equation (SIMPLE), that is widely
employed in today’s commercial incompressible flow solvers, and the high-order spec-
tral difference (SD) method, recently developed for compressible flow solution. In
addition to numerical simulation and verification, complementary experimental mea-
surements have been performed to further validate the results. This research leads to
two very different suppression techniques: 1) a passive control using a thin splitter
plate positioned downstream of the bluff body; 2) an active control by way of counter
rotating a cylinder pair.

The passive suppression technique places a thin splitter plate downstream of the
bluff body in order to interfere with the vortex wakes and thereby suppress the vortex-
induced forces on the bluff body itself. The present investigation examines the sup-
pression of wake instabilities in the laminar shedding regime. Both bounded and
unbounded flow conditions are examined. It is found that in the bounded flow condi-
tion, the channel walls have an additional stabilizing effect on the shedding control.
With proper positioning of the splitter plate, vortex shedding is completely suppressed
in a bounded flow with moderate blockage factor. Wind tunnel empirical experiments
have also confirmed the effectiveness of a splitter plate in a bounded flow.

Active flow control by counter-rotating a pair of cylinders has been numerically

investigated. It has also been investigated experimentally in partnership with the Gas
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Dynamics Laboratory at Princeton University. It is demonstrated that it is possible to
suppress unsteady vortex shedding for gap sizes from one to five cylinder diameters,
at Reynolds numbers from 100 to 200. The degree of unsteady wake suppression
is proportional to the speed and the direction of rotation, and there is a critical
rotation rate where a complete suppression of flow unsteadiness can be achieved. In
the doublet-like configuration at higher rotational speeds, a virtual elliptic body that
resembles a potential doublet is formed, and the drag is reduced to zero. The shape
of the elliptic body primarily depends on the gap between the two cylinders and
the speed of rotation. Prior to the formation of the elliptic body, a second instability
region is observed, similar to that seen in studies of rotating single cylinders. It is also
shown that the unsteady wake suppression can be achieved by rotating each cylinder
in the opposite direction, that is, in a reverse doublet-like configuration. This tends
to minimize the wake interaction of the cylinder pair and the second instability did

not make an appearance over the range of speeds investigated here.
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Chapter 1

Introduction and motivation

1.1 Introduction

Vortex dominated flows have been a subject of great interest to scientists and en-
gineers studying fluid flow phenomena. These types of flows involve complex wakes
that can be two- or three-dimensional. Unstable vortex wakes are formed when there
is a flow of fluid past a structure that is non-streamlined or typically referred to as a
“bluff body”. These unsteady wakes leads to vortex induced vibration of structures
that can pose practical challenges across different engineering disciplines. Severe vor-
tex induced vibration can lead to catastrophic structural failures. Vortex induced
vibration problems are often encountered in the design of towers, buildings, oil rigs,
offshore structures, bridges, pipelines, heat exchangers, etc. Any non-streamlined
body is considered a bluff body when the pressure drag is dominant over viscous
drag. Representative examples include the circular cylinder, sphere, square and rect-
angle. A streamlined airfoil can also be considered a bluff body if it is set a large
angle of attack.

The majority of past research papers on bluff body flow have been devoted to the
flow past a two-dimensional circular cylinder [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]. As noted by Roshko [11], the circular cylinder is, by far, the “quintessential”
bluff body. The popularity of the circular cylinder comes from its simplicity and

its practical importance in real engineering applications such as offshore pipelines,
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bridge towers, piers, etc. For experimental studies, it is convenient that circular-
shaped tubings and rods are readily available. Yet, the flow past the circular cylinder
can still be profoundly complex and provides a good general basis to understanding
the flow past a bluff body across the various conditions. The research history of
flow past a circular cylinder can be traced all the way back to d’Alembert with his
famous “paradox” where he was perplexed by the zero drag outcome in his potential
flow calculation, which contradicted the physical observation of a resisting force on
a moving bluff body through a fluid. It was the absence of viscosity in d’Alembert’s
calculation that led his theory to this physical paradox. Through mostly empirical
methods, much progress was made in the understanding of the role of viscosity in the
production of drag in the flow past a bluff body. Real fluid is viscous and therefore
will produce a resistance to shear stress when a body is moving relative to it.

The behavior of the vortex wakes depends on the balance of the inertial force and
the viscous force and therefore is characterized into different regimes by a dimension-
less Reynolds number,

_ U

Re , 1.1
. (1.1)

where p is the gas density, U is the freestream velocity, = is the characteristic length,
is the dynamic viscosity. At the limit of Re = 0, the flow can be considered somewhat
artificial since it produces a flow pattern that is ideally symmetric about the bluff
body centerline where the streamlines upstream look identical to those downstream.
In reality, any flow of a very viscous fluid or of a small object such that Re << 1
produces a symmetric pattern. This is called “creeping” or “Stokes” flow where the
inertial force is neglected. A smooth laminar flow is a result when the viscous force
is dominant at a very low Reynolds number. The stagnation pressure that develops
at the leading edge of the body is sufficient to drive the flow around the body. As
the Reynolds number increases, the boundary layer thickens and the inertial force
becomes more and more significant such that the leading edge stagnation pressure
can no longer drive the flow around the body to the trailing edge. Eventually the
fluid flow becomes detached from the body surface, resulting in flow separation. The

characteristics of flow instabilities varies across a large range of Reynolds number
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from a coherent, repeating series of swirling vortices, known as the von Karman
vortex street, at the Reynolds number of less than a hundred to the regime of highly
chaotic and stochastic turbulent eddies at very high Reynolds numbers in the range
of several millions. For a circular cylinder, Roshko found that the formation of vortex
wakes displays a level of sensitivity to the base pressure coefficient (Cp;), measured at
180° from the leading edge stagnation point, which he used in classifying the following
vortex shedding regimes [11, 13].

a) Re < 49: Laminar steady regime

b) 49 < Re < 180: Laminar vortex shedding regime

c) 180 < Re < 260: 3-D wake transition regime

d) 260 < Re < 10%: Increasing disorder in the fine-scale three dimensionalities

e) 10° < Re < 10°: Shear-layer transition regime

f) 10° < Re < 4 x 10°: Asymmetric reattachment regime (critical transition)

g) 4 x 10° < Re < 8 x 10°: Symmetric reattachment regime (supercritical regime)

h) Re > 8 x 10°: Boundary-layer transition regime (post-critical regime)

In addition to the research on flow past a circular cylinder, there have been a
considerable number of numerical and experimental studies of the flow past rectan-
gular and square bluff bodies. Some notable investigations have been carried out by
Davis and Moore [16], Davis et al. [17], Okajima [18, 19], Okajima et al. [20], Kelkar
et al. [21], Norberg [22], Sohankar et al. [23, 24, 25] and Sen and Mittal [26]. The
interest in a rectangular shape stems largely from the design of buildings and road
vehicles. For example, many large buildings including skyscrapers are essentially built
with a square cross section. These buildings are subjected to wind-driven vibration,
resulted from the vortex shedding characteristics of their respective shapes. A large
road vehicle such as a moving truck can simplistically be viewed as a rectangular

body. Such study can be useful in help guide the vehicle design for reducing drag
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and ultimately increasing fuel efficiency. Another example of flow past a square or
rectangular cylinder is the read/write arm of a magnetic disk storage device, which

serves as the motivating basis for this thesis research as discussed in the next section.

1.2 Motivation — the aerodynamics of hard disk

drives

The motivation for this research stems from the author’s line of work in designing hard
disk drives (HDD’s). The HDD industry has shown, for more than half a decade, re-
markable advances in product development through technological innovations, astute
design and efficient manufacturing processes. Over the time, there has been indis-
putable evidence of fierce competition in the HDD industry, as seen in the erosion of
the price per gigabyte and the dwindling number of manufacturers. Yet, in order to
survive in such a competitive environment, HDD makers have been able to offer more
storage capacity year after year, even while sustaining chronically low profitability.
The HDD industry marked its beginning in September 1956 when IBM introduced
the first random-access storage unit of 5 million 7-bit characters (approximately 4.4
Megabytes) on 50 massive 24-inch aluminum disks in a system known as the RAMAC
(Random-Access Method of Accounting and Control). The introduction of RAMAC
put an end to the sequential storage on punched cards and magnetic tapes, although
the use of magnetic tapes has continued until recently in a backup role. With the
size bigger than a normal refrigerator and a ton of weight, the RAMAC was hardly
ready for an average consumer but nonetheless became the standard storage device
for business and scientific applications throughout large corporations and government
agencies.

From the time of the RAMAC, the level of technical advancements has been
astounding. The list below represents only some highlights of achievements that
resulted from a whole array of technological innovations in magnetic physics, servo
mechanics, electronics, software, and manufacturing processes combined from the

RAMAC time to the present day:
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a) Areal recording density has increased from 2,000 bits per square inch to nearly

10'2 bits per square inch.
b) Track density has gone from 20 tracks per inch (TPI) to over 300,000 TPI.

c¢) Cost per Gigabyte has dropped from a staggering $640,000 per month lease (ex-
trapolated value based on $3,200 monthly charge of a RAMAC in 1957 [27], ex-
cluding inflation) to less than $0.10 for an outright ownership today.

In order to measure the success in technological innovations, areal recording den-
sity, which is a product of linear recording density and track density, is generally
used throughout the HDD industry. The trend more or less follows the Moore’s law
of semiconductor development. The main driving mechanism to achieve higher areal
density is in the magnetic recording technology of head and media. From the humble
beginning of coating RAMAC’s aluminum disk with a magnetic iron oxide, which
was derived from a paint primer used for the Golden Gate Bridge, to the current
usage of the state-of-the-art perpendicular magnetic recording heads and multi-layer
anti-ferromagnetic coupled disks, the advancement in magnetic head and media tech-
nologies has provided the boost needed to achieve the ever growing level of areal
density. In essence, these new technologies have produced a compound growth rate
in areal density to almost 500 million times that of the RAMAC discussed here.

There are many challenging problems from a fluid dynamic perspective in the
design and development of HDD’s. The transducers that read and write data from
and to the disk are carried by the ever-decreasing-sized slider that uses the pressure
generated by the compressible lubrication flow to “fly” over a disk. To keep pace
with areal density, one of the requirements is to reduce the flying height between the
recording head and disk and that dimension has steadily decreased from 20 microns
in the RAMAC days to currently less than the mean free path of air at 10 nanometers
or below. To appreciate this fact, a diameter of a human hair is about 30 microns,
larger than the flying height of the recording head used in the RAMAC. To cope with
such a challenge, HDD companies need to commit a fair amount of valuable research
and development spending on the mechanics of head disk interface, such as tribology,

wear, filtration, and chemical deposition, to ensure the quality and reliability of HDD
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products for a long MTBF (Mean Time Between Failures) of over 2 million hours
today.

Therefore, many new innovations are necessary to support the ever increasing areal
density. Most innovations are out of pure technical necessities but some are driven
by economics. For example, spindle motors needed to support high track density are
required to have low mechanical runout (in the range of less than 1 microinch) and
low acoustical noise while having a lasting reliability. Virtually every HDD in the
market today uses a “fluid dynamic” bearing spindle motor (ball bearings were the
norm only a few years ago) in order to achieve such a low runout and acoustic noise
[28]. Customers continue to demand faster average access time. That means spindle
motors have to spin at a faster rate, as high as 15,000 RPM (revolutions per minute)
today. Actuator that carries the read/write heads has to seek faster, thus requiring
the development of efficient mechanical design with the extreme geometrical precision.
High performance magnets, such as neodymium, have been developed as dictated by
the actuator and voice-coil motor design. Precise servo positioning algorithms and
electronics are required to keep the recording head and actuator assembly on track,
where the next track can be less than 10 microinches away. In addition, they must
be able to randomly seek to any other tracks for data. Signals have to be processed
in fast and efficient manners by the electronic board assembly, as this is where data
are transferred between computer and the recording disk.

Aside from the aerodynamics of recording heads, of equal importance, especially in
the high performance server drives, is the issue of internal HDD aerodynamics which
primarily is the real motivation for this research. The internal flow inside an HDD
is driven by aerodynamic friction of rotating disks. Accordingly the aerodynamic
excitation depends on the diameter and the rotational speed of the disks, as well
as the number of disks stacked in each HDD. Historically, disk diameters have been
decreasing due to form factor reduction in computer packaging. This works in favor
of lowering aerodynamic excitation. The rotational speed, on the other hand, has
been steadily increasing to meet the performance demand. Today the fastest HDD’s
operate at Reynolds numbers and areal densities such that aerodynamic buffeting

of the moving components including the arm, suspension, slider and disk, is once
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again an important issue. The flow inside the head disk assembly is complicated
by the presence of bluff, non-aerodynamic components; notably the arm, suspension
and slider. These are bodies which are highly susceptible to flow induced vibrations
(FIV) and high aerodynamic pressure drag. With track densities surpassing 300,000
TPI and rotational speeds of up to 15,000 RPM, FIV poses problems for the servo
control system to write and read data reliably within the track misregistration (TMR)
budget. When bluff bodies are placed between spinning disks or between a spinning
disk and the HDD enclosure, their blocking effect is stronger than the corresponding
situation without disks or stationary nearby walls. This blocking effect also results in
high aerodynamic power consumption, especially with the arm in the inner diameter
position. The problem of FIV and TMR control can be addressed by bypassing high
energy air ahead of the arm and suspension. This problem of combating aerodynamic
buffeting in HDD’s must always be seen in the context of minimizing FIV and running
torque. Otherwise, the aerodynamic buffeting problem could simply be solved by
replacing the air with a solid wherever possible. To a degree, inserting sector shaped
plates (sometimes called damper plates or “anti-disks”) between each pair of disks
falls in this category of FIV countermeasures. In most HDD’s the latter brute force
solution is not a viable option in order to limit the total power dissipation of the
HDD. Other issues driven by the overall behavior of HDD internal aerodynamics are
the filtration system, acoustic emission, and heat transfer management. These must
not be overlooked as they often determine the overall competitive performance of an
HDD design.

1.3 Research objective

While the subject of vortex induced vibration and flow control is extremely broad, this
research will focus primarily on laminar vortex shedding at a relatively low Reynolds
number where the wakes are predominantly two-dimensional. Computational fluid
dynamics (CFD) is used as the primary investigative tool in this research. Part of
the objective is to compare the numerical results obtained from two entirely differ-

ent codes: 1) a widely-used commercial incompressible code based on Semi-Implicit



CHAPTER 1. INTRODUCTION AND MOTIVATION 8

Method for Pressure-Linked Equations (SIMPLE) and 2) the compressible high-order
spectral difference code developed at Stanford’s Aerospace Computing Laboratory
(ACL). Both of these codes will be used to investigate the vortex shedding off bluff
bodies and the effect of flow control techniques.

As the title of this thesis suggests, the main objective of this research is to in-
vestigate and find ways of controlling and suppressing the unsteady wakes past bluff
bodies. The task is to apply both passive and active flow control techniques in order
to gain a better understanding of the flow physics. The passive flow control typically
refers to a technique that involves a geometrical modification that alters the vortex
shedding characteristics, thereby reducing or suppressing body force fluctuations. In
this particular research, this involves a placement of a detached thin splitter plate
downstream of a bluff body in both unbounded flows and bounded channel flows. The
active flow control, on the other hand, refers to a technique that involves a more dy-
namic alteration by means of adding or removing mass, momentum or energy to the
flow. As there are almost unlimited ways of active flow modification, the research fo-
cuses on the basic spinning technique of a single circular cylinder and a pair of counter
rotating cylinders, as inspired by Ludwig Prandtl’s experiment and hypothesis.

Some experimental results have been obtained and used to verify the computa-
tional results. The passive flow control experiment will be conducted using laser
Doppler vibrometer (LDV) in a very low speed wind tunnel used for HDD devel-
opment. The active flow control experiment will be collaboratively investigated by
a research team from the Gas Dynamics Lab at Princeton University using digital
particle image velocimetry (DPIV) technique. The detailed of these experimental

techniques are to be discussed in Appendix A.



Chapter 2
Overview of numerical methods

Computational fluid dynamics (CFD) has its root in the aerospace industry that
largely began in the mid 1960’s. Significant progress has been made in the following
decades in both numerical methods and computing hardware. Today CFD has now
become a well-established and valuable analysis tool suitable for industrial use in the
development of aerodynamic design with accuracy and acceptable cost. Continual
improvements in both numerical algorithms and hardware performance allow for the
emergence of more complex CFD models.

A commercial incompressible CED code and the Aerospace Computing Laboratory
compressible code based on the high-order spectral difference (SD) method have both
been used as the investigative tools for this research. Each code has its advantages
and disadvantages. However, the primary reason for using both codes is so that
comparison, as a means of validation, can be made amongst the obtained results.
The commercial CFD code offers benefits in terms of ease of use in geometrical and
mesh modification and good post processing capability. The numerical algorithm used
in today’s many commercial incompressible CFD codes is based on the nearly-four-
decade-old Semi-Implicit Method for Pressure-Linked Equation (SIMPLE). Although
many improvements have been made to the original SIMPLE algorithm, the solution
accuracy is still at most second order and the efficiency often lacks that of the more
recent codes developed in universities and government research agencies. The high-

order SD scheme, on the other hand, has recently been developed and proven to be
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very robust and efficient in the simulation of a broad range of compressible flows,
including flows with shock wave at high Mach numbers. Its usefulness in the low

Mach region is verified in this research.

2.1 SIMPLE algorithm

Most commercial CFD codes solve the incompressible Navier-Stokes equations based
on the SIMPLE algorithm, first developed by Patankar and Spalding in 1972 [29]. A
few variants such as SIMPLE-Revised (SIMPLE-R), SIMPLE-Consistent (SIMPLE-
C) and Pressure Implicit with Splitting Operators (PISO) were subsequently devel-
oped. The usual practice is to solve the partial differential equations as an instance
of the generic conservation equation. The details of the SIMPLE algorithm is well
documented in the original paper by Patankar and Spalding [29] and subsequent pa-
pers by Patankar [30] and Van Doormal and Raithby [31] as well as many textbooks,
such as Patankar [32] and Ferziger and Peri¢ [33].

In summary, the generalized transport equation can be expressed in the following

manner:

aif +V- (ﬁqs) — V- (Vo) + S, (2.1)

The two terms on the left hand side of the above equation 2.1 are the transient term
and convection terms of any scalar quantity ¢, respectively. These terms are balanced
by the diffusive transport term and any sources or sinks, Sg, on the right hand side,
respectively. To solve the equation numerically, the generalized transport equation is

discretized by integration over a finite set of control volumes:

dpg
v Ot

By applying the divergence theorem to convection and diffusion terms, the transport

dv+/v pv¢) v = /‘)v-(rv¢)dv+/vs¢dv (2.2)

equation can be written as:

dpg

7 = —
ot dV—f—j{pgbv-ndS:f{Fng- nd8+/5¢dv (2.3)
S %
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The transient term can be discretized simply by the first order explicit FEuler
method. However, more commonly used in many commercial codes are the implicit
Euler and Crank-Nicolson methods.

The convective flux is discretized and evaluated using the midpoint rule and
various interpolation schemes such as first order upwinding and central differencing

schemes.

fpgm_/ WdS =Y (ﬁ : Ws) or = rhse; (2.4)
s 7 ! 7

where 7i¢ is the mass flux through each face f of the control volume. Figure 2.1 shows
the notation of a typical control volume for a two-dimensional structured mesh. Here,
the fluxes are evaluated through the faces n, e, w and s with respect to the central
cell, P, and the adjacent cells N, E, W and S.

Figure 2.1: Control volume for a two-dimensional structured mesh.

The diffusive flux can also be discretized and evaluated using the midpoint rule

e 0¢
ﬁrw. ndS = zfjrf (%)fsf (2.5)

For closure, since the source term is a function of ¢, it can be discretized by

as follows:

/ SedV = (Sy)pAV (2.6)

In two dimensions, for example, combining all the discretized spatial terms results
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in the following linear algebraic equation.

apdp + anodn + apdr + awdw + asps = bp (2.7)

In a more general form, this equation is often written in literature as
appp + Z AnpPnb = bp (2.8)
nb

where nb represents the neighboring cells. The a,; terms are called the link coefficients
and bp contains all the source terms [30, 32].
Now consider the following conservation equations for fluid flow.

Conservation of Mass:

% LV (pV) ~0 (2.9)
Conservation of Momentum:
o)
gt +V- (p77) —Vv. (?) —Vp (2.10)

where p is the density, V is the velocity vector, p is the pressure and ? is the viscous
stress tensor.

As outlined by the method of solving the generalized transport equation, the flow
variables can be solved similarly by applying the integration and divergence theorem

to the flow equations.

d - _,
o VpdV—i—/Sp(V-ng)dS—O (2.11)

% i <p7> dv+]€ <p7) (7 - WS) s = fi (? - m) dS—yi(pﬁS) S (2.12)

The calculation of pressure generally poses a problem in obtaining a solution to



CHAPTER 2. OVERVIEW OF NUMERICAL METHODS 13

the Navier-Stokes equations at a constant density. This is due to the lack of an in-
dependent equation for pressure. The Navier-Stokes equations are non-linear with
unknown velocity components. Therefore, solving the flow field requires a known
pressure field. In compressible flow, both density and pressure are directly coupled
through the equation of state and are solved simultaneously through the continuity,
momentum and energy equations. It is obvious from the conservation equations that
there are five unknowns (p, V and p) in four equations (continuity and three mo-
mentum equations). In an incompressible flow or flow at a low Mach number when
the fluid density is treated as constant, there is no direct relationship that ties the
continuity equation with the pressure term, which only appears as a source term in
the momentum equations. Only the velocity components are coupled in the continu-
ity and momentum equations. Essentially, this means velocity components cannot be
solved until the pressure field is known, and vice versa. The idea behind the SIMPLE
algorithm is to establish a discrete equation for pressure and solve the discrete con-
tinuity equation in a segregated manner. It couples the pressure and velocity terms
after solving the discretized equations separately by an iterative approach. The orig-
inal SIMPLE algorithm follows the use of the finite volume approach on a staggered
mesh known as the marker and cell (MAC) scheme which was proposed by Harlow
and Welch [34]. The calculation of the pressure term is interpolated based on its value
at the cell centroids while the velocity terms are computed from the staggered control
volumes. The reason for using a “staggered grid” approach is to avoid what is known
as the checkerboard instability. When the values pressure and velocity are stored at
the same cell centered location (i.e. co-located), they are linked at alternate nodes
during the calculation of mass fluxes. This is also known as the odd-even decoupling
effect that often leads to indeterminate oscillation of the pressure field. Figure 2.2
illustrates an example of this staggered mesh approach of the SIMPLE scheme on a
two-dimensional Cartesian mesh.

For constant density, the momentum equation (2.10) can be written in semi-
discrete form:

ot = P 6x, " ow  Mea?

J

(2.13)
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Figure 2.2: Staggered mesh pattern for SIMPLE family of algorithms.
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Let H denote the convective and viscous terms such that

ou; op
=H, — —. 2.14

The most common method for time integration in many commercial codes is the

implicit Euler method which leads to

5p n+1

puf™ —ul) = At (HZ-"Jrl - — ) . (2.15)
(Sl’z‘

The velocity field is divergence free at time n and is required from continuity relation

to be so at the new time step n + 1. This leads to solving what is known as the

Poisson equation for pressure, i.e.

n+1
0 (5p ) _ 0, (2.16)

However, the pressure and velocity field can only be determined if the Poisson equa-
tion is solved by some iterative procedure.
In two-dimensional form, the momentum equations at the new time step can be

discretized as
apup — AGNUp — AEUe — A5Us — AW Uy = (pP - pW)Ay +bp (2-17)

apUp — ANV, — RV — AgVs — AUy = (pp — ps)Ax + bp (2.18)

where the a coefficients contain mass fluxes, viscosity, and diffusion terms. The
coefficient b contains the source terms. Note that the pressure also appears only as
a source term on the right hand side of the equation. The subscripts and notation
correspond to those shown in figure 2.2.

These equations are often written in the following forms:

apup = Zanbunb—i— (pp —pw)Ay—i-bp (219)
nb
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apvp = Z bV + (Pp — ps) Az + bp. (2.20)
nb

The velocity components in these linear equations are therefore

Z AnpUnb + be
nb

1

up=--————+4+ —(pp —pw)Ay (2.21)
ap ap
Zanbvnb + bn 1

vp= 4 (pp—ps)Az. (2.22)
ap ap

Since calculating the flow variables on staggered grid can be quite troublesome for
geometrically complex problems such as in non-Cartesian or curvilinear coordinates,
many commercial CFD codes use a popular procedure, proposed by Rhie and Chow
[35], that prevents the checkerboard instability and allows for the use of the co-located
cells. The Rhie-Chow approach calculates the mass fluxes by averaging the momen-
tum equation to the cell faces using weighting factors based on link coefficient ap from
equations 2.19 and 2.20 instead of averaging them linearly. The cell face velocity is
thus calculated from the local pressure gradient using this weighting procedure.

The core of the SIMPLE scheme is to establish the relationship between the ve-
locity terms with the pressure corrections in order to enforce the mass conservation
and solve for the pressure field. The pressure correction p’ is established during time
iteration steps by solving the discretized Poisson equation 2.16 for p’. In summary,
the procedure for two-dimensional implementation can be outlined as shown below.

1. Guess the values of pressure p* to start the iterative process.

2. Using the guessed value p*, discretize and solve the momentum equations for

the velocities v* and v* such that

> iy, + be
nb

* 1 * *
up = + —(pp — Pw)Ay (2.23)
ap ap
Z a’nbv;’klb + bn 1
vp=——  —(pp—py)Ac. (2.24)
ap ap

3. Calculate pu* and pv* for the internal grid points.
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4. Discretize and solve the Poisson equation for the pressure correction p’

5. Calculate the velocity corrections by approximating

1
up ~ —(pp — Pw) Ay (2.25)
ap
1
vp & —(Pp — ps) Az (2.26)
ap

The corrected pressure and velocities are then obtained by p™ = p*+p/, ™ = u* +u/
and v™ = v* + v to satisfy the continuity equation.

6. If the solution is converged, stop. Otherwise go to step 2.

2.1.1 SIMPLE-Revised

In 1980, Patankar proposed a new algorithm called SIMPLE-R which stands for
SIMPLE-Revised to address the problem of divergence as a result of the omission of
the velocity correction term

> Qnply,

nb

ap

when calculating the velocity correction from the discretized momentum equations
[30]. The algorithm SIMPLE-R essentially requires an intermediate step of determin-
ing the pressure field from a Poisson equation based on pseudo-velocity components
obtained from the velocity correction equation of the SIMPLE algorithm. This in-
termediate pressure p™ is used in the correction equations to again solve for velocity
components and pressure, before moving on to the next iteration until convergence
is achieved. In general, SIMPLE-R will result in fewer iteration steps but can be
computationally more expensive than SIMPLE, as it will require more calculations

in determining the intermediate pressure in each iteration.

2.1.2 SIMPLE-Consistent

Also commonly implemented in commercial solvers is SIMPLE-C, which stands for

SIMPLE-Consistent. This variant also solves the conservation equations by coupling
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the pressure and velocity terms similar to the original SIMPLE. However, as pointed
out by Patankar in the implementation of SIMPLE-R, the problem of ignoring the
velocity correction term can lead to inconsistency when solving for the pressure cor-

rection term. In 1984, Van Doormaal and Raithby proposed that since ) anpul, is

of the same order as ) a,,u/p, it imposes a less severe constraint on the prnebssure cor-

rection equation if onzb replaces ap in SIMPLE with ap + > a,; rather than ignoring

> anpul, altogether [31]. This can be done with minimGI;n change to the original
b

n
SIMPLE algorithm, but does have a significant and positive impact on convergence.

It can also be computationally less expensive than SIMPLE-R.

2.1.3 PISO

PISO, proposed by Issa in 1995, stands for Pressure-Implicit with Splitting of Op-
erators [36]. This is yet another class of pressure correction approach based on the
SIMPLE algorithm but requires slightly more computational effort. The algorithm
calls for the second corrector steps for velocity and pressure after SIMPLE iteration
is performed. The purpose of this additional step is to correct the momentum fluxes
in order to satisfy the continuity more closely. Therefore, this allows for a faster con-
vergence than the SIMPLE algorithm. PISO is proved to be useful in time dependent

flow and models with irregular cells.

2.1.4 Commercial CFD codes

Many of the commercial CFD codes, including CFX, Fluent, and Star-CD, imple-
ment SIMPLE and/or any one of its variants [37]. 