
MONOTONICITY PRESERVING AND TOTAL VARIATIONDIMINISHING MULTIGRID TIME STEPPING METHODSANTONY JAMESON � AND JUSTIN WAN (APRIL, 2001) yAbstract. We propose a fast multiplicative and additive multigrid time stepping schemes forsolving linear and nonlinear wave equations in one dimension. The idea is based on an upwind biasedinterpolation and residual restriction operators, and a nonstandard coarse grid update formula forlinear equations. We prove that the two-level schemes preserve monotonicity and are total variationdiminishing, and the same results hold for the multilevel additive scheme. We generalize the ideato nonlinear equations by solving local Riemann problems. We demonstrate numerically that theseschemes are essentially nonoscillatory, and that the optimal speed of wave propagation of 2M � 1 isachieved, where M is the number of grids.Key words. monotonicity preserving, total variation diminishing, multigrid time steppingAMS subject classi�cations. 65M12, 65M25, 65M55, 65F101. Introduction. Multigrid has shown to be a powerful and one of the most ef-�cient numerical techniques for solving elliptic partial di�erential equations (PDEs)[4, 5, 14, 38]; its convergence rate is often independent of the mesh size. Well es-tablished convergence theory [2, 14, 40] and sophisticated smoothing [4, 35, 38, 39],coarsening [7, 8, 34, 36], and interpolation [1, 6, 31, 32, 37, 41] techniques have beendeveloped. However, the fundamental study of multigrid for hyperbolic equations is lesswell-developed. One major di�culty is that the discretization matrices of hyperbolicequations are in general nonsymmetric, and hence the smoothing property of relaxationmethods, and the minimization property of Galerkin coarse grid correction, both ofwhich are essentially due to symmetry and positive de�niteness, may not hold anymorefor hyperbolic equations. If the multigrid principle of reducing the high and low fre-quency errors reects the smoothing nature of elliptic operators, then the intrinsic wavepropagation nature of hyperbolic equations must also be reected in the hyperbolicmultigrid methods. The objective of this paper is to study and analyze the wave prop-agation property of specially designed monotonicity preserving multigrid time steppingmethods.Multigrid methods for hyperbolic equations, in particular, steady Euler equations,are �rst proposed by Ni [30] and Jameson [19]. In their approach, the key is to acceleratewave propagation on multiple grids since larger time steps can be taken on coarse gridswithout violating the CFL condition. Thus, low frequency disturbances are rapidlyexpelled through the outer boundary whereas high frequency errors are locally damped.Multigrid time stepping schemes exploiting this e�ect have also been proposed in [15,� Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035.Email: jameson@baboon.stanford.edu.y Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.Email: jwlwan@bryce1.uwaterloo.ca. This author has been partially supported by the NaturalSciences and Engineering Research Council of Canada, and the NSF under Contract ACR-0072112.1



16]. Other references using a similar approach can be found in the survey paper byHemker and Johnson [17].In the approach of Ni [30], Lax-Wendro� type time stepping as smoother is usedwhich is not dissipative. Thus, arti�cial viscosity is introduced to damp the high fre-quencies. Intergrid transfer operator is the standard linear interpolation. In the ap-proach of Jameson [19], multistage Runge Kutta type time stepping [20] is used in con-junction with volume-weighted restriction and linear interpolation. The Runge-Kuttacoe�cients are selected to optimize the local damping and hence arti�cial viscosity isnot necessary. For both approaches, it can be veri�ed numerically [22] and proved the-oretically [13, 27] that the multigrid time stepping scheme on M -grid is consistent and�rst order accurate, with e�ective time step�t = MXk �tk;where �tk is the time step taken on grid k.Further algorithmic improvements have been developed. In [23], an upwind pro-longation is used, and the restriction essentially is the adjoint of the prolongation. Asimilar prolongation and restriction technique based on characteristics is use in [24]for unstructured grid computations. Upwind prolongation based on MUSCL recon-struction is used in [12] for solving the Navier-Stokes equations. Residual dependentrestriction is used in [11]. Di�erent relaxation smoothings are compared in [29] to solvethe one-dimensional Burgers' equation. Multiple semi-coarsening is used in [28] to han-dle anisotropic PDE coe�cients arising from the alignment of ow with the grid. Higherorder transfer operators are considered in [9] to maintain stability of the coarse gridproblem.In this paper, the numerical analysis of two schemes proposed by Jameson is stud-ied and extended for the steady state solution of one-dimensional scalar linear andnonlinear wave equations. The primary focus is on the monotonicity preserving andtotal variation diminishing (TVD) properties which have not been studied in the con-text of multigrid. Although the main purpose is to rapidly expell the low frequencydisturbances out of the boundary, it turns out that numerical oscillations can delaythe propagation substantially. As an example, we apply the standard multigrid withJacobi smoothing, linear interpolation, and Galerkin coarse grid correction to solve theone-dimensional linear wave equation. The initial condition (disturbance) is a squarewave. The numerical solution at the subsequent multigrid cycles are shown in Figure 1.On a grid of 128 grid points, a single-grid method requires 128 time step to propagatethe square wave out of the boundary on the right. The 3-level multigrid method stillrequires more than 60 time steps (or iterations) to convergence due to the numericaloscillations generated at the tail of the square wave. Thus, it is imperative to designmultigrid algorithms which preserve monotonicity and are TVD.In Section 2, we describe an upwind biased residual restriction and interpolationoperators for solving the linear wave equation, and in Section 3, their generalizationto the nonlinear inviscid Burgers' equation. In Section 4, we present analysis on the2



monotonicity preserving and TVD properties of the proposed multigrid schemes in thecase of two-level as well as multilevel. Finally, numerical results are presented in Section5 to demonstrate their e�ectiveness of accelerating wave propagation on multiple grids.
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1.4Fig. 1. The numerical solution given by the standard multigrid at (a) time step = 0, (b) time step= 20, (c) time step = 40, (d) time step = 60.2. Linear wave equation. We consider the linear wave equation in one dimen-sion: ut + ux = 0 0 < x < 1;(1) u(0; t) = 0; u(x; 0) = u0(x):We are interested in the steady state solution which, in this case, is u � 0. We discretizethe equations by the standard �rst order upwind scheme:un+1j = unj � �(unj � unj�1);where � = �th=�xh is the CFL number. If a single grid with N grid points is used, itwill take 1�th = 1�Ntime steps to march to the steady state. The objective is to accelerate propagation onmultiple grids while preserving monotonicity and being TVD for � � 1.We �rst describe a standard two-level algorithm for solving hyperbolic equations.Here are some notations. Given a �ne grid fxhj g, j = 0; 1; 2; : : : ; N , the grid pointswith even indices are selected as coarse grid points fxHj g, j = 0; 2; 4; : : : ; N . Thesuperscripts h and H denote functions on the �ne and coarse grids, respectively, whereasthe subscript j denotes the corresponding jth grid point.In a standard two-level algorithm (FAS-cycle for nonlinear equations) [4, 17], westart with the current approximation un. The �ne grid evolution consists of one step ofupwinding: �uhj = unj � �(unj � unj�1):(2)In our approach, we focus on fast propagation to reach the steady state and hence itis not important whether the upwinding step will damp the high frequencies (indeed it3



does for 0 < � < 1). Let Ru and Rr be the restriction operators for the solution and theresidual, respectively. On the coarse grid, we compute the coarse grid approximationas follows:�ne grid residual: �rhj = (�uj � �uhj�1)=�xhrestriction of �uh: uH2j = Ru�uh2jcoarse grid RHS: fH2j = (uH2j � uH2j�2)=�xH �Rr�rh2jcoarse grid evolution: �uH2j = uH2j ��tH((uH2j � uH2j�2)=�xH � fH2j ).= uH2j � �(uH2j � uH2j�2) + �tHfH2j .Finally, we interpolate the coarse grid correction to the �ne grid and obtain the newiterate: un+1 = �uh + P(�uH �Ru�uh);(3)where P is an interpolation operator. Thus, the crucial choices of the restriction andinterpolation operators Ru,Rr, P will determine the e�ectiveness of the resulting multi-grid method. As we shall see in the next sections, standard restriction and interpolationmay lead to oscillations. We shall describe how we obtain monotonicity preserving andTVD multigrid by the use of upwind biased restriction and interpolation.It is interesting to note [26] that, as opposed to elliptic multigrid, the restrictionoperators Ru and Rr should not be identical. In fact, the use of identical operators canlead to instability unless � is small enough.Lemma 2.1. The coarse grid evolution will be unstable if Ru = Rr unless 0 � � �12 . Proof. Consider the coarse grid evolution:�uHj = uHj � �(uHj � uHj�2) + �tHfHj= uHj � �(uHj � uHj�2) + �(uHj � uHj�2)��tHRr�rhj= Ru�uhj ��tHRr( 1�xh (�uhj � �uhj�1))= Rr[�uhj � 2�(�uhj � �uhj�1)]:Thus, �uH is essentially the restriction of the evolution of �uh with CFL number 2� whichis stable if and only if 0 � � � 12 .Hence, to allow large time steps, we must choose Ru di�erent from Rr. For therestriction of solution, we use injection, i.e.(Ru�uh)2j = �uh2j:In the next section, we describe an appropriate residual restriction and interpolation.2.1. Upwind Restriction and Interpolation. To achieve fast wave propaga-tion without generating oscillations, Jameson proposed an upwind-biased residual re-striction and interpolation. To de�ne a conservative restriction operator, he used simpleaveraging restriction. There are two possible options:4



(i) Rr�rhj = 12(�rhj + �rhj�1), (ii) Rr�rhj = 12(�rhj + �rhj+1).Since the characteristics is from left to right, we select (i) as the residual restrictionwhich collects information from behind; see Figure 2(a). This idea is essentially thesame as the upwind schemes.Similarly, we also have two possibilities for interpolating a coarse grid function vH:(i) (PvH)2i = (PvH)2i+1 = vH2i . (ii) (PvH)2i = (PvH)2i�1 = vH2i .Again, based on the characteristics, we use the interpolation in (i) to predict informationto the right; see Figure 2(b).Interpolation based on characteristics have been used in [18, 24]. In [18], theirrestriction and interpolation are basically transpose of each other; ours are not. Inelliptic multigrid, it is typical that Rr = PT since the resulting multigrid methodwill be symmetric. However, since the discretization matrix of hyperbolic equationsis not symmetric in general, such constraint is unnecessary. In [24], their restrictionand interpolation are basically the same as ours for the linear wave equation. However,our generalization to nonlinear equations is very di�erent. Furthermore, we propose anew update formula for the coarse grid correction, which eliminates another source ofnumerical oscillations, as described in Section 2.3.
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2iFig. 2. (a) Upwind biased restriction (b) Upwind biased interpolation.2.2. Higher order interpolation. In elliptic multigrid, linear interpolation isoften used. It turns out that for the linear wave equation, the use of linear interpolationwill, in fact, lead to oscillations. In Figure 3, we show the discrete functions un, �uh, etc,as de�ned in Section 2. The current approximation un is de�ned as:unj = ( 1 j = 0; 1; 2:0 j = 3; 4; : : : ; 8:The functions �uh, uH, and �uH are computed based on the two-level algorithm with� = 1. In the �nal step, we see that overshoot occurs at un+13 : by (3),un+13 = �uh3 + Plinear(�uH � uH)3= �uh3 + �uH2 + �uH42 � uH2 + uH42 = 1 + 1� 12 = 32 :As for comparisons, if the upwind biased interpolation is used, thenun+13 = �uh3 + Pupwind(�un+1 � uH)3= �uh3 + �uH2 � uH2 = 1:5



See also Figure 4.
Fig. 3. Oscillation caused by linear interpolation. From left to right: un, �uh, uH , �uH , and un+1.The black dots denote coarse grid points.
Fig. 4. No oscillation using upwind biased interpolation. From left to right: un, �uh, uH , �uH , andun+1.2.3. Coarse grid update. Unfortunately, we note that even with the use ofupwind restriction and interpolation, oscillations can still occur. In Figure 5, we show asimilar sequence of pictures as in Figure 3 with slightly di�erent starting data un wherethe discontinuity is shifted by one grid point. We see that this time, undershoot occursat un+13 . Our �x is to replace the standard update formula byun+1 = �uh + P (�uH �Ruun):The idea is to compute the coarse grid error by the di�erence of the coarse grid evolvedfunction �uH and the restriction of the original function un, instead of �uh. As shownin Figure 6, the oscillation is eliminated. In fact, we can justify theoretically thatoscillations will not occur in Section 4.
Fig. 5. Oscillation caused by standard update. From left to right: un, �uh, uH , �uH , and un+1.6



Fig. 6. No oscillation using the new coarse grid update formula. From left to right: un, �uh, uH ,�uH , and un+1.2.4. Algorithms. We note that fHj can be further simpli�ed in the linear waveproblem: fHj = 1�xH (uHj � uHj�2)� 12(�rhj + �rhj�1)= 12�xh (�uhj � �uhj�2)� 12�xh [(�uhj � �uhj�1) + (�uhj�1 � �uhj�2)]= 0:The �nal algorithm of the two-level multigrid time stepping is:Algorithm: Multiplicative Scheme (two-grid)�uhj = unj � �(unj � unj�1)�uHj = �uhj � �(�uhj � �uhj�2)~uhj = �uHj~uhj�1 = �uhj�1 + �uHj�2 � unj�2 9>=>; j = 0; 2; 4; : : :un+1j = ~uhjSince the coarse grid uses the most update information (�uh) on the �ne grid, thisapproach is also commonly known as the multiplicative scheme in the multigrid litera-ture.Another possibility is that we restrict and propagate un on all the coarse grids;thus all the computations can be carried out in parallel. Since this approach is similarin idea to the additive Schwarz method [33] in domain decomposition and the BPXalgorithm [3], we call this the additive multigrid time stepping:Algorithm: Additive Scheme (two-grid)�uhj = unj � �(unj � unj�1)�uHj = unj � �(unj � unj�2)~uhj = �uHj~uhj�1 = �uhj�1 + �uHj�2 � unj�2 9>=>; j = 0; 2; 4; : : :un+1j = ~uhjRemark: The wave propagation by the multiplicative scheme is generally twice as fast7



as the additive scheme (cf. Gauss-Seidel vs Jacobi).The multilevel scheme is straightforward; apply the two-level scheme recursively onthe coarser grids. We denote functions on the �rst grid, which is also the �nest grid,by superscript (1); the second grid by (2), and so on. The multilevel multiplicative andadditive algorithms are as follows:Algorithm: Multiplicative Scheme (multi-grid)u(1) = unDe�ne ~u(k)=MG(u(k)) by:if k = L,~u(k)j = u(k)j � �(u(k)j � u(k)j�2k�1) j = 0; 2k�1; 2 � 2k�1; : : : :else�u(k)j = u(k)j � �(u(k)j � u(k)j�2k�1) j = 0; 2k�1; 2 � 2k�1; : : : :u(k+1)j = �u(k)j j = 0; 2k; 2 � 2k; : : : :~u(k+1)=MG(u(k+1))~u(k)j = ~u(k+1)j j = 0; 2k; 2 � 2k; : : : :~u(k)j�2k�1 = �u(k)j�2k�1 + ~u(k+1)j�2k � u(k)j�2k j = 0; 2k; 2 � 2k; : : : :endun+1=MG(u(1))Algorithm: Additive Scheme (multi-grid)u(1) = unDe�ne ~u(k)=MG(u(k)) by:if k = L,~u(k)j = unj � �(unj � unj�2k�1) j = 0; 2k�1; 2 � 2k�1; : : : :else�u(k)j = unj � �(unj � unj�2k�1) j = 0; 2k�1; 2 � 2k�1; : : : :u(k+1)j = u(k)j j = 0; 2k; 2 � 2k; : : : :~u(k+1)=MG(un, k + 1)~u(k)j = ~u(k+1)j j = 0; 2k; 2 � 2k; : : : :~u(k)j�2k�1 = �u(k)j�2k�1 + ~u(k+1)j�2k � unj�2k j = 0; 2k; 2 � 2k; : : : :endun+1=MG(u(1))3. Nonlinear wave equation. In this section, we generalize the methodology forlinear wave equations to nonlinear equations. We consider the model inviscid Burgers'equation in one dimension:ut + (12u2)x = 0 0 < x < 1;(4) 8



with appropriate boundary and initial conditions. Again, we are interested in obtainingthe steady state solution fast.We discretize the equations by the EO scheme [10]:un+1j = unj � �(FEO(unj ; unj+1)� FEO(unj�1; unj )):(5)The numerical ux FEO is de�ned asFEO(uL; uR) = 12(u+L)2 + 12(u�R)2;where u+ � max(u; 0) and u� � min(u; 0). We note that the �rst order EO scheme isused for illustration purpose only; other schemes such as Godunov or more sophisticatedhigh order schemes [25] can be used as well.The basic format of the multigrid time stepping schemes, either multiplicative oradditive, is essentially unchanged even in the nonlinear case; we smooth or propagatethe wave on the �ne grid, and accelerate the propagation on the coarse grids. We need,however, to make several modi�cations. For instance, the upwinding smoothing (2) isnow substituted by the EO smoothing (5). The restriction and interpolation requiremore detail explanation which are described in the following.3.1. Nonlinear Upwind Restriction and Interpolation. In the linear case,the characteristics are constantly from left to right at each grid point. For the nonlinearBurgers' equation, however, the characteristic directions changes from grid points to gridpoints. In addition, shocks and rarefaction waves can occur anywhere. Hence, we needto determine whether the coarse grid point should interpolate (restrict) to the left orright, and more importantly, how to handle shocks and rarefactions. Since restrictionand interpolation essentially are based on the same principle, we shall describe theinterpolation only.Consider a two-level method. As shown in Figure 7, given the coarse grid valuesuHi and uHi+1 at the coarse grid points xHi (=xh2i) and xHi+1 (=xh2i+2), respectively, whichvalue should we select at the �ne grid point xh2i+1? If both values are positive (negative),the wave propagates to the right (left) locally and it resembles the linear case. Thus, wesimply take uHi (uHi+1) for the value at xh2i+1. When uHi is positive and uHi+1 is negative,i.e. a shock, we have information coming from both sides. Now, which one should wetake? In the opposite case, when uHi is negative and uHi+1 is positive, rarefaction occurs.This situation seems even worse since the information is now going away.Our idea is based on characteristics and is motivated by the following key observa-tion. We consider the problem shown in Figure 7 as a local two-point boundary valueproblem. For the linear wave equation (one boundary value is in fact redundant), itcan be written as: ut + ux = 0 xHi < x < xHi+1u(xHi ; t) = uHiu(x; 0) = �uh: 9
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2i+1uhFig. 7. The interpolation value at the noncoarse grid point xh2i+1 is given by the solution of a localPDE problem for the linear wave equation, and the Riemann solution for the Burgers' equation.We then de�ne the interpolation value at xh2i+1 as the solution of the local two-pointboundary value problem. Such interpolation method turns out to be exactly the sameas the upwind biased interpolation described in Section 2.1. In other word, we can viewthe upwind biased interpolation as solving local boundary value problems.Generalizing this idea to Burgers' equation, we solve a local Riemann probleminstead: ut + (12u2)x = 0u(x; 0) = ( uHi xHi < x < xh2i+1uHi+1 xh2i+1 < x < xHi+1:Then, the interpolation value at xh2i+1 is given by the Riemann solution. More precisely,if uHi > uHi+1, a shock occurs and its speed, s = uHi +uHi+12 . If s � 0, then uh2i+1 = uHi ;if s < 0, then uh2i+1 = uHi+1. If uHi < uHi+1, it is a rarefaction wave. If they are of thesame sign, then uh2i+1 = uHi if they are positive, and uh2i+1 = uHi+1 if they are negative.Finally, if uHi < 0 < uHi+1, then the rarefaction wave turns out to be zero at xh2i+1and hence uh2i+1 = 0. Thus, the interpolation is completely determined by the localRiemann solutions. We note that the same interpolation would be obtained if we usean argument based on characteristics.Applying the Riemann solutions to the multilevel multiplicative scheme, the inter-polation value ~u(k)j�2k�1 is de�ned as:if �u(k)j�2k � 0, �u(k)j � 0,~u(k)j�2k�1 = �u(k)j�2k�1 + �u(k+1)j�2k � u(k+1)j�2kif �u(k)j�2k � 0, �u(k)j � 0,~u(k)j�2k�1 = �u(k)j�2k�1 + �u(k+1)j � u(k+1)jif �u(k)j�2k�1 � 0 � �u(k)j ,~u(k)j�2k�1 = 8<: �u(k)j�2k�1 + �u(k+1)j�2k � u(k+1)j�2k if �u(k)j�2k�1 � 0�u(k)j�2k�1 + �u(k+1)j � u(k+1)j if �u(k)j�2k�1 < 010



if �u(k)j�2k < 0 < �u(k)j ,~u(k)j�2k�1 = �u(k)j�2k�1.For the additive scheme, the interpolation is de�ned similarly.We remark that constructing interpolation by solving local linear boundary valueproblem has been used in multigrid methods for elliptic and convection-di�usion equa-tions [14, 38]. Solving local Riemann problem has been extensively used in designingnumerical schemes (e.g. Godunov schemes) for conservation laws [25]; however, it hasnot been used in the context of multigrid interpolation to the best of the authors'knowledge.4. Analysis. In our construction of interpolation, restriction, and coarse grid up-date, the primary focus is to minimize oscillations. In this section, we justify thistheoretically for the linear wave equation. Here, we consider the two multigrid methodsas time stepping schemes, and each multigrid cycle as a time stepping. Like discretiza-tion schemes for conservation laws, one important measure of nonoscillatory schemesis whether it preserves monotonicity. More precisely, if un is a nonincreasing (nonde-creasing) function, after one time stepping (in our case, one multigrid cycle), un+1 mustremain nonincreasing (nondecreasing). Another important measure is total variationdiminishing (TVD), which requires that the total variation of un+1 does not exceed thatof un. Both concepts are fundamental to designing numerical schemes for conservationlaws, but nevertheless, have never been used to analyze multigrid methods.Hence, the primary focus of our analysis is on the monotonicity and total variationdiminishing properties of the proposed schemes. In particular, we prove that both thetwo-level multiplicative and additive schemes preserve monotonicity and are TVD; andthe same holds for multilevel additive scheme. These results are essentially due to theuse of the upwind biased restriction and interpolation operators, which in turn leads tofast propagation on multiple grids. We �rst consider the two-level case.Theorem 4.1 (Jameson). Both two-level multiplicative and additive multigridtime stepping schemes preserve monotonicity.Proof. For j even, we haveun+1j = ~uhj = �uHj = �uhj � �(�uhj � �uhj�2);un+1j�1 = ~uhj�1 = �uhj�1 + �uHj�2 � unj�2= �uhj�1 + �uhj�2 � �(�uhj�2 � �uhj�4)� unj�2= �uhj�1 � �(unj�2 � unj�3)� �(�uhj�2 � �uhj�4):Subtracting the two,un+1j � un+1j�1(6) = (1� �)(�uhj � �uhj�1)� �(�uhj�1 � �uhj�2) + �(unj�2 � unj�3) + �(�uhj�2 � �uhj�3)+ �(�uhj�3 � �uhj�4)= (1� �)2(unj � unj�1) + �(1 � �)(unj�1 � unj�2)� �(1 � �)(unj�1 � unj�2)11



� �2(unj�2 � unj�3) + �(unj�2 � unj�3) + �(1 � �)(unj�2 � unj�3) + �2(unj�3 � unj�4)+ �(1 � �)(unj�3 � unj�4) + �2(unj�4 � unj�5)= (1� �)2(unj � unj�1) + 2�(1 � �)(unj�2 � unj�3) + �(unj�3 � unj�4)+�2(unj�4 � unj�5):Similarly, for j � 1 being odd, we have,un+1j�1 � un+1j�2 = ~uhj�1 � ~uhj�2 = �uhj�1 + �uHj�2 � unj�2 � �uHj�2(7) = �uhj�1 � unj�2= (1 � �)(unj�1 � unj�2):For stability, it must hold that on each grid,0 � � � 1:Thus, if un is monotone, for instance,unj � unj�1 � 0 8j;then un+1 is also monotone sinceun+1j � un+1j�1 � 0un+1j�1 � un+1j�2 � 0 ) j = 0; 2; 4; : : :for 0 � � � 1.For the additive scheme, the calculations are similar. For even j, we haveun+1j = ~uhj = �uHj = unj � �(unj � unj�2);un+1j�1 = ~uhj�1 = �uhj�1 + �uHj�2 � unj�2= unj�1 � �(unj�1 � unj�2)� �(unj�2 � unj�4):Thus un+1j � un+1j�1(8) = unj � unj�1 � �(unj � unj�2) + �(unj�1 � unj�2) + �(unj�2 � unj�4)= (1� �)(unj � unj�1) + �(unj�2 � unj�3) + �(unj�3 � unj�4);and un+1j�1 � un+1j�2(9) = unj�1 � unj�2 � �(unj�1 � unj�2)� �(unj�2 � unj�4) + �(unj�2 � unj�4)= (1 � �)(unj�1 � unj�2):Therefore, monotonicity is preserved for 0 � � � 1.As a direct consequence, we can easily show that these two schemes are also TVD.12



Theorem 4.2. The two-level multiplicative and additive multigrid time steppingschemes are TVD.Proof. Denote the total variation of a function u by TV(u). For the multiplicativescheme, using the formulae in (6) and (7),TV(un+1)= Xj jun+1j � un+1j�1 j= Xeven j jun+1j � un+1j�1 j+ jun+1j�1 � un+1j�2 j= Xeven j j(1� �)2(unj � unj�1) + 2�(1 � �)(unj�2 � unj�3) + �(unj�3 � unj�4)+ �2(unj�4 � unj�5)j+ j(1 � �)(unj�1 � unj�2)j:� Xeven j(1 � �)2junj � unj�1j+ (1� �)2junj�1 � unj�2j+ (1 � � � (1� �)2)junj�1 � unj�2j+ 2�(1 � �)junj�2 � unj�3j+ �junj�3 � unj�4j+ �2junj�4 � unj�5j= (1 � �)2 TV(un) + Xeven j �(1 � �)junj�1 � unj�2j+ �(1 � �)junj�2 � unj�3j+ �(1 � �)junj�2 � unj�3j+ �junj�3 � unj�4j+ �2junj�4 � unj�5j= ((1 � �)2 + �(1 � �)) TV(un) + Xeven j �(1 � �)junj�2 � unj�3j+ �(1 � �)junj�3 � unj�4j+ (�� �(1 � �))junj�3 � unj�4j+ �2junj�4 � unj�5j= ((1 � �)2 + 2�(1 � �)) TV(un) + Xeven j �2junj�3 � unj�4j+ �2junj�4 � unj�5j= ((1 � �)2 + 2�(1 � �) + �2) TV(un)= TV(un)Similarly, for the additive scheme, we haveTV(un+1)= Xeven j jun+1j � un+1j�1 j+ jun+1j�1 � un+1j�2 j= Xeven j j(1� �)(unj � unj�1) + �(unj�2 � unj�3) + �(unj�3 � unj�4)j+ j(1 � �)(unj�1 � unj�2)j� Xeven j(1� �)junj � unj�1j+ (1 � �)junj�1 � unj�2j+ �junj�2 � unj�3j+ �junj�3 � unj�4j= TV(un): 13



For the multilevel algorithms, it turns out that the multiplicative algorithm doesnot preserve monotonicity in general. However, the oscillations appear to be very smalland do not seem to a�ect the fast wave propagation; see the numerical results in Section5. For the multilevel additive scheme, it still has the monotonicity preserving and TVDresult. We �rst extend the formulae in (8) and (9) to the multilevel case.Lemma 4.3. For the k-level additive multigrid time stepping scheme, and j = 2k�1,it holds thatun+1j � un+1j�1 = (1 � �)(unj � unj�1) + �(unj�2k�1 � unj�2k)un+1j�m � un+1j�m�1 = (1 � �)(unj�m � unj�m�1) m = 1; : : : ; 2k�1 � 1:Proof. We prove by induction. Suppose L is the number of multigrid levels. ForL = 2, it is proved in the proof of Theorem 4.1. Suppose it is true for L = k. Now weconsider the case L = k + 1. For j=a constant multiple of 2k+1,un+1j = ~u(2)jun+1j�1 = �u(1)j�1 + ~u(2)j�2 � unj�2;where the superscript (1) denotes functions on the �rst grid, which is also the �nestgrid, and (2) functions on the second grid. Subtracting the two,un+1j � un+1j�1 = ~u(2)j � ~u(2)j�2 � (1 � �)(unj�1 � unj�2):Since we use the previous values un on all the coarse grids, the update of ~u(2)j from u(2)j ,j = 0; 2; : : : ; is completely independent of the update on the �nest grid. In other words,~u(2)j can be thought of being obtained by applying the level k additive scheme to un onthe even points. By induction hypothesis, we obtainun+1j � un+1j�1 = (1 � �)(unj � unj�2) + �(unj�2k � unj�2k+1) � (1 � �)(unj�1 � unj�2)= (1 � �)(unj � unj�1) + �(unj�2k � unj�2k+1):Similarly, since un+1j�2 = ~u(2)j�2, we haveun+1j�1 � un+1j�2 = �uj�1 + ~u(2)j�2 � unj�2 � ~u(2)j�2 = (1 � �)(unj�1 � unj�2):We compute one more di�erence:un+1j�2 � un+1j�3 = ~u(2)j�2 � (�u(1)j�3 � ~u(2)j�4 � unj�4)= (1� �)(unj�2 � unj�4)� (1 � �)(unj�3 � unj�4)= (1� �)(unj�2 � unj�3);by induction hypothesis on ~u(2)j�2 � ~u(2)j�4. The rest is essentially the same and we shallomit the calculations. In conclusion, the formulae are also true for L = k + 1.14



Now, the main result for the multilevel additive scheme follows directly from Lemma4.3. Theorem 4.4. The multilevel additive multigrid time stepping scheme preservesmonotonicity and are TVD.Proof. The monotonicity preserving property is clear from the formulae given byLemma 4.3. The TVD property can be seen by (assuming k-level)TV(un+1)= Xj jun+1j � un+1j�1 j= Xj=multiple of 2k�1(jun+1j � un+1j�1 j+ jun+1j�1 � un+1j�2 j+ � � �+ jun+1j�2k�1+1 � un+1j�2k�1j)= Xj=multiple of 2k�1[ j(1 � �)(unj � unj�1) + �(unj�2k�1 � unj�2k)j+(1 � �)junj�1 � unj�2j+ � � �+ (1� �)junj�2k�1+1 � unj�2k�1j ]� (1 � �)TV(un) + �TV(un)= TV(un):5. Numerical results. In this section, we verify numerically that the proposedschemes are nonoscillatory and the steady state solution can be reached in small num-ber of multigrid cycles by considering the linear wave equation (1) and the nonlinearBurgers' equation (4).For the linear wave equation, the boundary condition is chosen as 0 and the initialcondition is a square wave. Therefore, the steady state solution u � 0. We apply the3-level multiplicative and additive schemes to solving the equation with CFL number� = 1:0. Thus, the �ne grid evolution given by the upwinding is in fact exact. Theresults are shown in Figure 8 and 9, respectively. First, in contrast with the standardmultigrid approach (see Figure 1), the initial square wave remains as a square wave asit propagates. We remark that the multiplicative scheme in general does not preservemonotonicity and is not TVD when the number of grids is more than 2, but with thespecial choice of CFL number, � = 1:0, there are no oscillations.Secondly, the theoretically results by Jespersen [21] and Gustafsson and L�otstedt[13] estimate that the optimal speed of propagation is:optimal speed of multigrid = 2k � 1;where k is the number of grids. By careful inspection, we can see that the speedof propagation of the wave given by the multiplicative scheme is precisely 23 � 1=7times than the speed of upwinding on a single grid, since the wave takes 128/7 � 18multigrid cycles to propagate out of the boundary. Thus, it achieves the theoreticaloptimal speed, while the oscillations produced by the standard multigrid method delaythe convergence. 15
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Fig. 8. The numerical solution given by the 3-level multiplicative scheme, � = 1:0, at (a) timestep = 0, (b) time step = 4, (c) time step = 8, (d) time step = 12.
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Fig. 9. The numerical solution given by the 3-level additive scheme, � = 1:0, at (a) time step =0, (b) time step = 8, (c) time step = 16, (d) time step = 24.Finally, comparing the propagation speeds of the multiplicative and the additiveschemes, the former is about twice as fast as the latter (cf Gauss-Seidel vs Jacobi).When the CFL number 6= 1.0, e.g. � = 0:5, the multiplicative scheme introducesoscillations. In Figure 10, second left plot, we can see a small dip on the top of thesolution; i.e. the scheme does not preserve monotonicity and is not TVD. However, wenote that the oscillations appear to be very minimal and do not seem to a�ect the fastwave propagation. The additive scheme remains nonoscillatory, as is proved in Section4; see Figure 11.
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Fig. 10. The numerical solution given by the 3-level multiplicative scheme, � = 0:5, at (a) timestep = 0, (b) time step = 8, (c) time step = 16, (d) time step = 24.Next, we apply the two schemes together with nonlinear upwind restriction andinterpolation to solve the Burgers' equation. We start with a shock problem, which hasalso been tested by Ferm and L�otstedt [11], with boundary conditions: u(0; t) = 1 and16
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Fig. 11. The numerical solution given by the 3-level additive scheme, � = 0:5, at (a) time step =0, (b) time step = 16, (c) time step = 32, (d) time step = 48.u(1; t) = �1, and piecewise constant initial condition as shown in Figure 12 and 13.Thus the steady state solution isu = ( 1 if 0 � x < 0:5�1 if 0:5 < x � 1.with a discontinuity at x = 0:5. The intermediate solutions given by the four-levelmultiplicative and additive schemes are shown in Figure 12 and 13. On a single grid,EO scheme alone takes 81 time steps to reach the steady state. The optimal linearspeedup for a four-level method is 24�1=15, and hence the optimal number of multigridtime steps is 81=15 � 6, which is achieved by the multiplicative scheme. The four-leveladditive scheme takes 10 multigrid time steps, which is about half the speedup of themultiplicative scheme, as expected.In the previous example, only shocks are developed. We also test the schemes withthe initial condition being u(x; 0) = cos(5�x), thus both shocks and rarefactions aredeveloped during time steppings. The steady state solution, however, is the same asthe previous example. We again apply the four-level schemes and the results are shownin Figure 14 and 15. The single-grid EO scheme takes 143 time steps whereas themultiplicative and additive schemes take 10 and 19 multigrid time steps, respectively.As before, the multiplicative scheme nearly achieves the optimal speedup of 15, and theadditive scheme is about half as e�cient.
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1Fig. 13. The numerical solution given by the 4-level additive scheme, � = 1:0, at (a) time step =0, (b) time step = 3, (c) time step = 6, (d) time step = 9.
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