MONOTONICITY PRESERVING AND TOTAL VARIATION
DIMINISHING MULTIGRID TIME STEPPING METHODS
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Abstract. We propose a fast multiplicative and additive multigrid time stepping schemes for
solving linear and nonlinear wave equations in one dimension. The idea is based on an upwind biased
interpolation and residual restriction operators, and a nonstandard coarse grid update formula for
linear equations. We prove that the two-level schemes preserve monotonicity and are total variation
diminishing, and the same results hold for the multilevel additive scheme. We generalize the idea
to nonlinear equations by solving local Riemann problems. We demonstrate numerically that these
schemes are essentially nonoscillatory, and that the optimal speed of wave propagation of 2% — 1 is
achieved, where M is the number of grids.
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1. Introduction. Multigrid has shown to be a powerful and one of the most ef-
ficient numerical techniques for solving elliptic partial differential equations (PDEs)
[4, 5, 14, 38]; its convergence rate is often independent of the mesh size. Well es-
tablished convergence theory [2, 14, 40] and sophisticated smoothing [4, 35, 38, 39],
coarsening [7, 8, 34, 36], and interpolation [1, 6, 31, 32, 37, 41] techniques have been
developed. However, the fundamental study of multigrid for hyperbolic equations is less
well-developed. One major difficulty is that the discretization matrices of hyperbolic
equations are in general nonsymmetric, and hence the smoothing property of relaxation
methods, and the minimization property of Galerkin coarse grid correction, both of
which are essentially due to symmetry and positive definiteness, may not hold anymore
for hyperbolic equations. If the multigrid principle of reducing the high and low fre-
quency errors reflects the smoothing nature of elliptic operators, then the intrinsic wave
propagation nature of hyperbolic equations must also be reflected in the hyperbolic
multigrid methods. The objective of this paper is to study and analyze the wave prop-
agation property of specially designed monotonicity preserving multigrid time stepping
methods.

Multigrid methods for hyperbolic equations, in particular, steady Euler equations,
are first proposed by Ni [30] and Jameson [19]. In their approach, the key is to accelerate
wave propagation on multiple grids since larger time steps can be taken on coarse grids
without violating the CFL condition. Thus, low frequency disturbances are rapidly
expelled through the outer boundary whereas high frequency errors are locally damped.
Multigrid time stepping schemes exploiting this effect have also been proposed in [15,
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16]. Other references using a similar approach can be found in the survey paper by
Hemker and Johnson [17].

In the approach of Ni [30], Lax-Wendroff type time stepping as smoother is used
which is not dissipative. Thus, artificial viscosity is introduced to damp the high fre-
quencies. Intergrid transfer operator is the standard linear interpolation. In the ap-
proach of Jameson [19], multistage Runge Kutta type time stepping [20] is used in con-
junction with volume-weighted restriction and linear interpolation. The Runge-Kutta
coefficients are selected to optimize the local damping and hence artificial viscosity is
not necessary. For both approaches, it can be verified numerically [22] and proved the-
oretically [13, 27] that the multigrid time stepping scheme on M-grid is consistent and
first order accurate, with effective time step

M
At =" Aty
k

where Aty is the time step taken on grid k.

Further algorithmic improvements have been developed. In [23], an upwind pro-
longation is used, and the restriction essentially is the adjoint of the prolongation. A
similar prolongation and restriction technique based on characteristics is use in [24]
for unstructured grid computations. Upwind prolongation based on MUSCL recon-
struction is used in [12] for solving the Navier-Stokes equations. Residual dependent
restriction is used in [11]. Different relaxation smoothings are compared in [29] to solve
the one-dimensional Burgers’ equation. Multiple semi-coarsening is used in [28] to han-
dle anisotropic PDE coefficients arising from the alignment of flow with the grid. Higher
order transfer operators are considered in [9] to maintain stability of the coarse grid
problem.

In this paper, the numerical analysis of two schemes proposed by Jameson is stud-
ied and extended for the steady state solution of one-dimensional scalar linear and
nonlinear wave equations. The primary focus is on the monotonicity preserving and
total variation diminishing (TVD) properties which have not been studied in the con-
text of multigrid. Although the main purpose is to rapidly expell the low frequency
disturbances out of the boundary, it turns out that numerical oscillations can delay
the propagation substantially. As an example, we apply the standard multigrid with
Jacobi smoothing, linear interpolation, and Galerkin coarse grid correction to solve the
one-dimensional linear wave equation. The initial condition (disturbance) is a square
wave. The numerical solution at the subsequent multigrid cycles are shown in Figure 1.
On a grid of 128 grid points, a single-grid method requires 128 time step to propagate
the square wave out of the boundary on the right. The 3-level multigrid method still
requires more than 60 time steps (or iterations) to convergence due to the numerical
oscillations generated at the tail of the square wave. Thus, it is imperative to design
multigrid algorithms which preserve monotonicity and are TVD.

In Section 2, we describe an upwind biased residual restriction and interpolation
operators for solving the linear wave equation, and in Section 3, their generalization
to the nonlinear inviscid Burgers’ equation. In Section 4, we present analysis on the
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monotonicity preserving and TVD properties of the proposed multigrid schemes in the
case of two-level as well as multilevel. Finally, numerical results are presented in Section
5 to demonstrate their effectiveness of accelerating wave propagation on multiple grids.
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Fi1c. 1. The numerical solution given by the standard multigrid at (a) time step = 0, (b) time step
= 20, (c) time step = 40, (d) time step = 60.

2. Linear wave equation. We consider the linear wave equation in one dimen-
sion:

(1) wtu, = 0 0<z<l,
w(0,t) = 0, u(z,0) = wug(x).

We are interested in the steady state solution which, in this case, is u = 0. We discretize
the equations by the standard first order upwind scheme:

u?"’l = uj — AMu; —uj_;),

where A = At"/Az" is the CFL number. If a single grid with N grid points is used, it
will take

1 1

Ath )\
time steps to march to the steady state. The objective is to accelerate propagation on
multiple grids while preserving monotonicity and being TVD for A < 1.

We first describe a standard two-level algorithm for solving hyperbolic equations.
Here are some notations. Given a fine grid {w;‘}, g =0,1,2,.... N, the grid points
with even indices are selected as coarse grid points {:Bf}, g = 0,2,4,...,N. The
superscripts h and H denote functions on the fine and coarse grids, respectively, whereas
the subscript j denotes the corresponding jth grid point.

In a standard two-level algorithm (FAS-cycle for nonlinear equations) [4, 17], we
start with the current approximation u™. The fine grid evolution consists of one step of
upwinding:

(2) @:@—M@—@J

In our approach, we focus on fast propagation to reach the steady state and hence it
is not important whether the upwinding step will damp the high frequencies (indeed it
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does for 0 < A < 1). Let R, and R, be the restriction operators for the solution and the
residual, respectively. On the coarse grid, we compute the coarse grid approximation
as follows:

fine grid residual:

= (u; —ul_,)/Ax”

restriction of @": ug R u2j
coarse grid RHS: f2] = (ug ush_,)/ Azt — R, 7

coarse grid evolution: w3} = ugl — At7((ug} —ul_,)/ Azt — f1).

= ug )\(ug u2]_2) + AtHfg.
Finally, we interpolate the coarse grid correction to the fine grid and obtain the new
iterate:

(3) u'tt =@ + P(af — R,a"),

where P is an interpolation operator. Thus, the crucial choices of the restriction and
interpolation operators R,, R,, P will determine the effectiveness of the resulting multi-
grid method. As we shall see in the next sections, standard restriction and interpolation
may lead to oscillations. We shall describe how we obtain monotonicity preserving and
TVD multigrid by the use of upwind biased restriction and interpolation.

It is interesting to note [26] that, as opposed to elliptic multigrid, the restriction
operators R, and R, should not be identical. In fact, the use of identical operators can
lead to instability unless A is small enough.

LEMMA 2.1. The coarse grid evolution will be unstable if Ry, = R, unless 0 < A <

Proof. Consider the coarse grid evolution:

af = uf = M —ufl,) + AR
= uf — )\( uf 5) + ( H_2) — AtH’RTF;‘
1

Azxh
= R, [u — 2A(@

- u? 1)]

= Ruiil! — AR, (-— (@} —al_,))
—h
.7

Thus, @ is essentially the restriction of the evolution of " with CFL number 2\ which
is stable if and only if 0 < A < %

Hence, to allow large time steps, we must choose R, different from R,. For the
restriction of solution, we use injection, i.e.

_h
(R ) = Uyy-
In the next section, we describe an appropriate residual restriction and interpolation.

2.1. Upwind Restriction and Interpolation. To achieve fast wave propaga-
tion without generating oscillations, Jameson proposed an upwind-biased residual re-
striction and interpolation. To define a conservative restriction operator, he used simple
averaging restriction. There are two possible options:
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(i) Ryl = 2(7h + 7)), (il) R, = $(Fr + 7).

Since the characteristics is from left to right, we select (i) as the residual restriction
which collects information from behind; see Figure 2(a). This idea is essentially the
same as the upwind schemes.

Similarly, we also have two possibilities for interpolating a coarse grid function v*:

(1) (’P’UH)zi == (PUH)2i+1 = ’Ug. (ll) (’P’UH)% == (PUH)zi_l = ’Ug.

Again, based on the characteristics, we use the interpolation in (i) to predict information
to the right; see Figure 2(b).

Interpolation based on characteristics have been used in [18, 24]. In [18], their
restriction and interpolation are basically transpose of each other; ours are not. In
elliptic multigrid, it is typical that R, = P7T since the resulting multigrid method
will be symmetric. However, since the discretization matrix of hyperbolic equations
is not symmetric in general, such constraint is unnecessary. In [24], their restriction
and interpolation are basically the same as ours for the linear wave equation. However,
our generalization to nonlinear equations is very different. Furthermore, we propose a
new update formula for the coarse grid correction, which eliminates another source of
numerical oscillations, as described in Section 2.3.

fine — e o o e fine
2i-3 2i-2 2i-1 2i 2i-2 2i-1 2i 2i+1
° ®—— coarse ° ® coarse
2i-2 2i 2i-2 2i
upwind biased restriction upwind biased interpolation

Fic. 2. (a) Upwind biased restriction (b) Upwind biased interpolation.

2.2. Higher order interpolation. In elliptic multigrid, linear interpolation is
often used. It turns out that for the linear wave equation, the use of linear interpolation

h

will, in fact, lead to oscillations. In Figure 3, we show the discrete functions u™, @", etc,

as defined in Section 2. The current approximation u™ is defined as:
o 1 j5=0,1,2.
710 j=3,4,....8

The functions @", u, and @* are computed based on the two-level algorithm with

A = 1. In the final step, we see that overshoot occurs at uj*™: by (3),

n _h _H H
uyt™ = ag + Plinear(#” — )3
R B Y B U
I 2 2 2 2
As for comparisons, if the upwind biased interpolation is used, then
n —h —n H
ug™ = g+ Pupwind(u -t

—h  -H __H
= Ug + Uy —uy; =1.
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See also Figure 4.

Fic. 3. Oscillation caused by linear interpolation. From left to right: u", v, v, u¥, and u"+1,
The black dots denote coarse grid points.

Fic. 4. No oscillation using upwind biased interpolation. From left to right: u", u", ¥, u¥, and

whtl,

2.3. Coarse grid update. Unfortunately, we note that even with the use of
upwind restriction and interpolation, oscillations can still occur. In Figure 5, we show a
similar sequence of pictures as in Figure 3 with slightly different starting data «™ where
the discontinuity is shifted by one grid point. We see that this time, undershoot occurs
at 5T, Our fix is to replace the standard update formula by

"t =@ 4 P(a — R,um™).

The idea is to compute the coarse grid error by the difference of the coarse grid evolved
function @ and the restriction of the original function ", instead of @". As shown
in Figure 6, the oscillation is eliminated. In fact, we can justify theoretically that

oscillations will not occur in Section 4.

Fic. 5. Oscillation caused by standard update. From left to right: v, u*, v, u¥, and u"+1.



Fic. 6. No oscillation using the new coarse grid update formula. From left to right: u™, u", u®,

w¥, and w” T,

2.4. Algorithms. We note that f]H can be further simplified in the linear wave

problem:
H 1 H_H Loy oo
;i = AwH(uj —Uj_p) — 5(’3 +751)
1 ~ 1 B ) ) i
= g =) — gl — ) + (W, — )]
= 0.

The final algorithm of the two-level multigrid time stepping is:

Algorithm: Multiplicative Scheme (two-grid)
_Z[ - u;‘h— )\(u?h_ u%bl)

i o= uy — ANuj —ui_,)

’UJ‘Z = _‘ZLH o J7=0,2,4,

Uiy = Uj_q T Uy — (G

u;‘ b — ﬂ;‘

Since the coarse grid uses the most update information (@") on the fine grid, this
approach is also commonly known as the multiplicative scheme in the multigrid litera-
ture.

Another possibility is that we restrict and propagate w™ on all the coarse grids;
thus all the computations can be carried out in parallel. Since this approach is similar
in idea to the additive Schwarz method [33] in domain decomposition and the BPX
algorithm [3], we call this the additive multigrid time stepping:

Algorithm: Additive Scheme (two-grid)
ﬂ;‘ = u} — AMu} —u} )

1}%{ ’l_L;;— )\(u? — u’;_2)

ujy = U 1 =20,2.4,
17’?—1 = ﬂ?—l + ﬂf—z — U 2

i = il

Remark: The wave propagation by the multiplicative scheme is generally twice as fast
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as the additive scheme (cf. Gauss-Seidel vs Jacobi).

The multilevel scheme is straightforward; apply the two-level scheme recursively on
the coarser grids. We denote functions on the first grid, which is also the finest grid,
by superscript (1); the second grid by (2), and so on. The multilevel multiplicative and
additive algorithms are as follows:

Algorithm: Multiplicative Scheme (multi-grid)
w) =y
Define 4*)=MG(u*) by:
k=1L
i = ul? =A@l —ul, ) G =021 2. 21
else
@) = ul? — Al — ) §=0,281 2. 281
u{ = M) j=0,282.2%
) MG (1)
@l = g+ j=0,2F2.2k
W = @\ Al —ulY, =028 2008
end
"t =MG (u")

Algorithm: Additive Scheme (multi-grid)
u®) =
Define 4*)=MG(u*) by:
if k=1L,
A = Mup -l ) §=0,2002098
else
Al =t — N —ul_g) j=0,281 2. 201
w4 j=0,2%2.2% .
aF+)=MG (u™, k + 1)
@l = g+ j=0,28 2.2k .
A = Al Al = 0,282.28
end
"t =MG (u")

3. Nonlinear wave equation. In this section, we generalize the methodology for
linear wave equations to nonlinear equations. We consider the model inviscid Burgers’

equation in one dimension:

1
Zu?),

Ut—|-(2

(4)

0<xe <,




with appropriate boundary and initial conditions. Again, we are interested in obtaining
the steady state solution fast.
We discretize the equations by the EO scheme [10]:

(5) wpth =i — MFO(uf, ufyy) — FPO(u_y,uf)).

The numerical flux FZO is defined as

1 1
FEO(ug, up) = 5(“7‘5)2 + 5(“15)27
where vt = max(u,0) and v~ = min(u,0). We note that the first order EO scheme is

used for illustration purpose only; other schemes such as Godunov or more sophisticated
high order schemes [25] can be used as well.

The basic format of the multigrid time stepping schemes, either multiplicative or
additive, 1s essentially unchanged even in the nonlinear case; we smooth or propagate
the wave on the fine grid, and accelerate the propagation on the coarse grids. We need,
however, to make several modifications. For instance, the upwinding smoothing (2) is
now substituted by the EO smoothing (5). The restriction and interpolation require
more detail explanation which are described in the following.

3.1. Nonlinear Upwind Restriction and Interpolation. In the linear case,
the characteristics are constantly from left to right at each grid point. For the nonlinear
Burgers’ equation, however, the characteristic directions changes from grid points to grid
points. In addition, shocks and rarefaction waves can occur anywhere. Hence, we need
to determine whether the coarse grid point should interpolate (restrict) to the left or
right, and more importantly, how to handle shocks and rarefactions. Since restriction
and interpolation essentially are based on the same principle, we shall describe the
interpolation only.

Consider a two-level method. As shown in Figure 7, given the coarse grid values

H h

H H (=ab) and 2| (=a%,,,), respectively, which

uf and ufl, at the coarse grid points z

value should we select at the fine grid point =}, +17 If both values are positive (negative),

the wave propagates to the right (left) locally and it resembles the linear case. Thus, we
H

simply take X (ufl,) for the value at 2}, ;. When uf? is positive and ufl; is negative,

i.e. a shock, we have information coming from both sides. Now, which one should we
H

take? In the opposite case, when u;" 1s negative and ug_l is positive, rarefaction occurs.
This situation seems even worse since the information is now going away.

Our idea is based on characteristics and 1s motivated by the following key observa-
tion. We consider the problem shown in Figure 7 as a local two-point boundary value
problem. For the linear wave equation (one boundary value is in fact redundant), it

can be written as:

U +u, = 0 JB?<ZB<£B£_1
u(ai' 1) = w
u(z,0) = a".



il
l't21i+1 I

XH X*2~|i+1 )<|-i|+1

Fic. 7. The interpolation value at the noncoarse grid point x’gﬂrl is given by the solution of a local
PDE problem for the linear wave equation, and the Riemann solution for the Burgers’ equation.

We then define the interpolation value at x4, as the solution of the local two-point
boundary value problem. Such interpolation method turns out to be exactly the same
as the upwind biased interpolation described in Section 2.1. In other word, we can view
the upwind biased interpolation as solving local boundary value problems.
Generalizing this idea to Burgers’ equation, we solve a local Riemann problem

instead:

1
ug + (Zu?), = 0

2
- uf{ w?<w<w§i+1
“(5570) = H h g pH
Uipr Toipr ST < Ty

Then, the interpolation value at z%; +1 18 given by the Riemann solution. More precisely,
H H
if ¥ > u,, a shock occurs and its speed, s = W—‘*;"—l If s > 0, then ul, ; = uf;

if s < 0, then u§i+1 = uﬁ_l. If uf < uﬁ_l, it is a rarefaction wave. If they are of the

same sign, then u§i+1 = ufl if they are positive, and u§i+1 = ug_l if they are negative.
Finally, if uf < 0 < uf},, then the rarefaction wave turns out to be zero at %,
and hence u?, +1 = 0. Thus, the interpolation is completely determined by the local
Riemann solutions. We note that the same interpolation would be obtained if we use
an argument based on characteristics.

Applying the Riemann solutions to the multilevel multiplicative scheme, the inter-

(%)

polation value @ ,,_, is defined as:

Dk
if @y >0, a5 >0,

W = a4 )
if @, <0, " <o,

if @y >0 >4
® { Al al ) — WM M, >0
2k—1'_

—9k j—2k
ﬂ(k) _I_ ﬂ(k+1) _ ,u'(.k‘l'l) lf

J J j—ok
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For the additive scheme, the interpolation is defined similarly.

We remark that constructing interpolation by solving local linear boundary value
problem has been used in multigrid methods for elliptic and convection-diffusion equa-
tions [14, 38]. Solving local Riemann problem has been extensively used in designing
numerical schemes (e.g. Godunov schemes) for conservation laws [25]; however, it has
not been used in the context of multigrid interpolation to the best of the authors’
knowledge.

4. Analysis. In our construction of interpolation, restriction, and coarse grid up-
date, the primary focus is to minimize oscillations. In this section, we justify this
theoretically for the linear wave equation. Here, we consider the two multigrid methods
as time stepping schemes, and each multigrid cycle as a time stepping. Like discretiza-
tion schemes for conservation laws, one important measure of nonoscillatory schemes
is whether it preserves monotonicity. More precisely, if «™ is a nonincreasing (nonde-
creasing) function, after one time stepping (in our case, one multigrid cycle), «"*! must
remain nonincreasing (nondecreasing). Another important measure is total variation
diminishing (TVD), which requires that the total variation of u"*! does not exceed that
of u™. Both concepts are fundamental to designing numerical schemes for conservation
laws, but nevertheless, have never been used to analyze multigrid methods.

Hence, the primary focus of our analysis is on the monotonicity and total variation
diminishing properties of the proposed schemes. In particular, we prove that both the
two-level multiplicative and additive schemes preserve monotonicity and are TVD; and
the same holds for multilevel additive scheme. These results are essentially due to the
use of the upwind biased restriction and interpolation operators, which in turn leads to
fast propagation on multiple grids. We first consider the two-level case.

THEOREM 4.1 (JAMESON). Both two-level multiplicative and additive multigrid
time stepping schemes preserve monotonicity.
Proof. For j even, we have

Wt = al = @l = @l - @@l -4y,
witl = Ay = Ay g, —uy
= ﬂ?—l + ﬂ?—z - )‘(ﬂ?—z - ﬂ?—4) - u?_2
= ﬂ?—l - )‘(u?—z - u?—3) - )‘(ﬂ?—z - _?—4)
Subtracting the two,
6 g
= (1- /\)(ﬁh - u?—l) - )‘(ﬂ?—l - u?_2) + Muj_y —uj_g) + )‘(ﬂ?—z - u?_?,)



— N(ul_y —uf ) + )\(u@ g —uy_g) + AL — A)(u}
+ AL = A)(uj_s —ufy) + )‘2(“? 4= Uj_s)

= (1- )2(u’; —uj_ 1) ‘|' 2)‘(1 A (wf_y —uf_g) + Auf_g — uj_y)

N (uf_y — ).

.3
&
|
S
e
_|_
%
mgs
&
|
mgs
&

Similarly, for j — 1 being odd, we have,

n+1 +1 _  ~h ~h  _ =h —H —H
(7) U — Uj_s Gl T Uy = U T Uy — Uy — U,
_ =h n
Uj_g — Uy
n n
= (1-2) ;g — uj—2)

For stability, it must hold that on each grid,
0<A<L

Thus, if «™ is monotone, for instance,

J Jj-1
then «"*! is also monotone since
n+1 n+1
A §=0,24,. ..
u’;""ll—u’;fg > 0 T
for 0 <A <1.
For the additive scheme, the calculations are similar. For even j, we have
n+l _  ~h _ -H __ n n n
) = ay = a; = uj— Mu; —uj_,),
n+1 ~h —h n
i1 Ujy = Ujy +Uj_y — Ujy
= u?—l - )‘(u?—l - u?—z) - )‘(u?—z - u’;_4)

Thus

n+1 n+1
(8) U u;

= “1; - u?—l - )\(u? - u’;_2) + )‘(u?—l U ; o) + )\(u'] 2 — Uy 4)
= (1- )\)(u? - “1; )+ )‘(u?—z - “1; s) + )‘(u?—3 - u’; )
and
) it —
= u?—l - u?—z - (u?—l —uy 2) - )\(u?_2 - un—4) + )\(u’;_2 - un—4)
= (1 - )‘) u?—l - u?_2

Therefore, monotonicity is preserved for 0 < A < 1. [

As a direct consequence, we can easily show that these two schemes are also TVD.
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THEOREM 4.2. The two-level multiplicative and additive multigrid time stepping
schemes are TVD.

Proof. Denote the total variation of a function u by TV(u). For the multiplicative
scheme, using the formulae in (6) and (7),

TV(u™tt)
Yt -]
j

= > T w4 gty — i

even j
- Z . (1 — )\)2(147‘ — u’;_l) +2A(1 — )\)(u’;_2 T 3)+ )\(u? 3 u?_4)
even j

+ AN (g — ufg)] + (1= Ny — uf,)l.
Z (1—)\)2|u’;—u’;_1|—|—(1— )|u —u’; 2]

even j
(1= A= (1= Ay = ufoyf + 201 = A)uf_y — ufy|
+ Auf_g — 4|+ )\2|u’;_4 —uj_g|
= (1=X2TV(") + Y ML=, —uf o + ML= N|uf, —uf

even j
+ AL = A)|uf_y —uj 3| + )\|“? s — Wiyl + )‘2|“? 4~ U]
= (1=X>+A1-X)T )+ Z ML= X))y — g
even j
+ A(1 - )‘)|“?—3 - u’;_4| + (A= A(L - )‘))|“?—3 - u’;_4| + )‘2|“?—4 - u’;_5|
= (1=XA)42X1-X) TV(@") + > )\2|u§‘_3 —uj_|+ )\2|u§‘_4 — U}

even j
= (1 =X)2+2X1 =X+ A TV(u")
= TV(u")

IA

Similarly, for the additive scheme, we have

TV(u™th)

= Xt g et =)
even j

= 2 A=) —ufy) + Ay — ufg) + Auj_g — uj_y)|
even j

+ (1 - )‘)(u?—l - u’;_2)|

< Z (1— )‘)|“? - u’;_1| +(1- )\)|u§‘_1 - u’;_2| + )\|u§‘_2 - u?_3
even j
+ /\|u§‘_3 - u’;_4|
= TV(u™).
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For the multilevel algorithms, it turns out that the multiplicative algorithm does
not preserve monotonicity in general. However, the oscillations appear to be very small
and do not seem to affect the fast wave propagation; see the numerical results in Section
5. For the multilevel additive scheme, it still has the monotonicity preserving and TVD
result. We first extend the formulae in (8) and (9) to the multilevel case.

LEMMA 4.3. For the k-level additive multigrid time stepping scheme, and j = 2871,
it holds that

Wit — = (1= Al — ) + AU — o g)
Wit — i = (L= A — g ,y) m=1,...,21 -1

Proof. We prove by induction. Suppose L is the number of multigrid levels. For
L = 2, 1t 1s proved in the proof of Theorem 4.1. Suppose it is true for L = k. Now we
consider the case L = k 4 1. For j=a constant multiple of 2++1,

n41 ~(2)
) =
w1 ~(2)
(A Uiy + Uiy — Uy,

where the superscript (1) denotes functions on the first grid, which is also the finest
grid, and (2) functions on the second grid. Subtracting the two,

1?-|—1 o (2)
J

n+1
J j—1

u wyt =y — 1152_)2 — (T = M) (uf_y —uf_y).

(2) (2)
J I
g =0,2,...,1s completely independent of the update on the finest grid. In other words,

11;2) can be thought of being obtained by applying the level & additive scheme to u™ on

Since we use the previous values u™ on all the coarse grids, the update of %"’ from w

the even points. By induction hypothesis, we obtain

“?H - “?jll = (1- )\)(u? - u?—z) + )‘(u?—zk - u?—2k+1) —(1- )‘)(u?—l - u?—z)
= (1- )\)(u? - u?—l) + )‘(u?—zk - “1; gh+1)
Similarly, since u’;fg = 11;2_)2, we have
n T ~(2 7 ~(2 17
u]j—ll - UJE = Uj-1 + ug—)z —Ujg — u;_)z = (1 = M(uj_; —uf,)

Wt = Al - (@ - Al -y
(L= M)y —uf_y) — (1= A)(uj_g —ujy)
(LN, ).

(2) (2)

by induction hypothesis on 4;”, — u;”,. The rest is essentially the same and we shall
omit the calculations. In conclusion, the formulae are also true for L = k+ 1. O
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Now, the main result for the multilevel additive scheme follows directly from Lemma

4.3.

THEOREM 4.4. The multilevel additive multigrid time stepping scheme preserves
monotonicity and are TVD.

Proof. The monotonicity preserving property is clear from the formulae given by
Lemma 4.3. The TVD property can be seen by (assuming k-level)

TV(u"+1)
Yyt
j

= Z (|u?+1 - u?j—11| + |u1;j_11 - u?j—21| R |u'1;j—21k—1_|_1 - u’?j—;k—l |)

j=multiple of 2~F~1

= > (L= A) (] — i) + A gems — uf_o)
j=multiple of 21
‘|'(1 - )\)|u?_1 - u’;_2| +oeee (1 - )‘)|u?—2k—1+1 - u?—zk—1| ]
(1 — \)TV(u®) + ATV (u")
TV (u").

5. Numerical results. In this section, we verify numerically that the proposed
schemes are nonoscillatory and the steady state solution can be reached in small num-
ber of multigrid cycles by considering the linear wave equation (1) and the nonlinear
Burgers’ equation (4).

For the linear wave equation, the boundary condition is chosen as 0 and the initial
condition is a square wave. Therefore, the steady state solution w = 0. We apply the
3-level multiplicative and additive schemes to solving the equation with CFL number
A = 1.0. Thus, the fine grid evolution given by the upwinding is in fact exact. The
results are shown in Figure 8 and 9, respectively. First, in contrast with the standard
multigrid approach (see Figure 1), the initial square wave remains as a square wave as
it propagates. We remark that the multiplicative scheme in general does not preserve
monotonicity and is not TVD when the number of grids is more than 2, but with the
special choice of CFL number, A = 1.0, there are no oscillations.

Secondly, the theoretically results by Jespersen [21] and Gustafsson and Lotstedt
[13] estimate that the optimal speed of propagation is:

optimal speed of multigrid = 2% — 1,

where k is the number of grids. By careful inspection, we can see that the speed
of propagation of the wave given by the multiplicative scheme is precisely 2% — 1=7
times than the speed of upwinding on a single grid, since the wave takes 128/7 ~ 18
multigrid cycles to propagate out of the boundary. Thus, it achieves the theoretical
optimal speed, while the oscillations produced by the standard multigrid method delay
the convergence.

15



Fic. 8. The numerical solution given by the 3-level multiplicative scheme, A = 1.0, at (a) time
step = 0, (b) time step = 4, (c) time step = 8, (d) time step = 12.

Fi1c. 9. The numerical solution given by the 3-level additive scheme, A = 1.0, at (a) time step =
0, (b) time step = 8, (c) time step = 16, (d) time step = 24.

Finally, comparing the propagation speeds of the multiplicative and the additive
schemes, the former is about twice as fast as the latter (cf Gauss-Seidel vs Jacobi).

When the CFL number # 1.0, e.g. A = 0.5, the multiplicative scheme introduces
oscillations. In Figure 10, second left plot, we can see a small dip on the top of the
solution; 1.e. the scheme does not preserve monotonicity and is not TVD. However, we
note that the oscillations appear to be very minimal and do not seem to affect the fast
wave propagation. The additive scheme remains nonoscillatory, as is proved in Section
4; see Figure 11.

08
04
02 s
o

Fic. 10. The numerical solution given by the 3-level multiplicative scheme, A = 0.5, at (a) time
step = 0, (b) time step = 8, (c¢) time step = 16, (d) time step = 24.

Next, we apply the two schemes together with nonlinear upwind restriction and
interpolation to solve the Burgers’ equation. We start with a shock problem, which has
also been tested by Ferm and Lotstedt [11], with boundary conditions: «(0,¢) = 1 and

16
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Fic. 11. The numerical solution given by the 3-level additive scheme, A = 0.5, at (a) time step =
0, (b) time step = 16, (c) time step = 32, (d) time step = 48.

u(1,t) = —1, and piecewise constant initial condition as shown in Figure 12 and 13.
Thus the steady state solution is

1 if0<z<05
YT 21 ifos <<

with a discontinuity at « = 0.5. The intermediate solutions given by the four-level
multiplicative and additive schemes are shown in Figure 12 and 13. On a single grid,
EO scheme alone takes 81 time steps to reach the steady state. The optimal linear
speedup for a four-level method is 2* —1=15, and hence the optimal number of multigrid
time steps is 81/15 & 6, which is achieved by the multiplicative scheme. The four-level
additive scheme takes 10 multigrid time steps, which is about half the speedup of the
multiplicative scheme, as expected.

In the previous example, only shocks are developed. We also test the schemes with
the initial condition being u(z,0) = cos(bmz), thus both shocks and rarefactions are
developed during time steppings. The steady state solution, however, is the same as
the previous example. We again apply the four-level schemes and the results are shown
in Figure 14 and 15. The single-grid EO scheme takes 143 time steps whereas the
multiplicative and additive schemes take 10 and 19 multigrid time steps, respectively.
As before, the multiplicative scheme nearly achieves the optimal speedup of 15, and the
additive scheme is about half as efficient.

Fi1c. 12. The numerical solution given by the 4-level multiplicative scheme, A = 1.0, at (a) time
step = 0, (b) time step = 2, (¢) time step = 4, (d) time step = 6.
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Fi1c. 13. The numerical solution given by the 4-level additive scheme, A = 1.0, at (a) time step =
0, (b) time step = 3, (c) time step = 6, (d) time step = 9.

Fic. 14. The numerical solution given by the 4-level multiplicative scheme, A = 1.0, at (a) time
step = 0, (b) time step = 3, (c) time step = 6, (d) time step = 9.

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter. The multi-grid method for
the diffusion equation with strongly discontinuous coeflicients. SIAM J. Sci. Stat. Comput.,
2(4):430-454, 1981.

[2] J. Bramble. Multigrid Methods. Longman Scientific & Technical, Essex, UK, 1993.

[3] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp., 55:1-22,
1990.

[4] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31:333-390,
1977.

[6] T. F. Chan and W. L. Wan. Robust multigrid methods for elliptic linear systems. J. Comput.
Appl. Math., 123:323-352, 2000.

[6] J. E. Dendy, Jr. Black box multigrid. J. Comp. Phys., 48:366-386, 1982.

[7] J. E. Dendy, Jr., M. P. Ida, and J. M. Rutledge. A semi-coarsening multigrid algorithm for SIMD
machines. SIAM J. Sci Stat. Comput., 13:1460-1469, 1992.

[8] J. E. Dendy, Jr., S. F. McCormick, J. W. Ruge, T. F. Russell, and S. Schaffer. Multigrid meth-
ods for three-dimensional petroleum reservoir simulation. In 10th Symposium on Reservoir

Simulation, Houston, pages 19-25. Society of Petroleum Engineers (SPE), Inc., February 6-8
1989.
[9] P. Eliasson. Dissipation Mechanisms and Multigrid Solutions in a Multiblock Solver for Com-

pressible Flow. PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 1993.

[10] B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic flow
calculations. Math. Comp., 34:45-75, 1980.

[11] L. Ferm and P. Lotstedt. Two-grid solution of shock problems. STAM J. Sci. Comput., 18:1533—
1552, 1997.

[12] F. Grasso and M Marini. Solutions of hypersonic viscous flows with total variation diminishing
multigrid techniques. Comput. & Fluids, 24:571-592, 1995.

[13] B. Gustafsson and P. Lotstedt. Analysis of the multigrid method applied to first order systems. In
J. Mandel et al., editor, Proceedings of the Fourth Copper Mountain Conference on Multigrid

18



Fi1c. 15. The numerical solution given by the 4-level additive scheme, A = 1.0, at (a) time step =
0, (b) time step = 6, (c) time step = 12, (d) time step = 18.

Methods, pages 181-233, Philadelphia, PA, 1989. STAM.

[14] W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag, Berlin, 1985.

[15] M. G. Hall. Cell vertex multigrid schemes for solution of the Euler equations. In IMA Conference
on Numerical Methods for Fluid Dynamics, Reading, April 1985.

[16] P. W. Hemker. Multigrid methods for problems with a small parameter. In D.F. Griffiths, editor,
Proceedings, Dundee, June—July 1983, Lecture Notes in Mathematics 1066, pages 106-121,
Berlin, 1983. Springer-Verlag.

[17] P. W. Hemker and G. M. Johnson. Multigrid approaches to the Euler equations. In S. McCormick,
editor, Multigrid Methods, pages 57-72. STAM, 1987.

[18] P. W. Hemker and S. P. Spekreijse. Multigrid solution of the steady Euler equations. In Ober-
wolfach Meeting on Multigrid Methods, December 1984.

[19] A. Jameson. Solution of the Euler equations for two dimensional transonic flow by a multigrid
method. Appl. Math. Comp., 13:327-355, 1983.

[20] A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the Euler equations by finite
volume methods using Runge-Kutta time-stepping schemes. AIAA paper 81-1259, 1981.

[21] D. C. Jespersen. Recent developments in multigrid methods for the steady Euler equations. In
Lecture Notes for Lecture Series on Computational Fluid Dynamics. von Karman Institute
for Fluid Dynamics, Rhode—St.—Genese, Belgium, 1984.

[22] D. C. Jespersen. A time-accurate multiple-grid algorithm. AIAA paper 85-1493-CP, 1985.

[23] B. Koren and P. W. Hemker. Damped, direction-dependent multigrid for hypersonic flow com-
putations. Appl. Numer. Math., 7:309-328, 1991.

[24] M. P. Leclercq and B. Stoufflet. Characteristic multigrid method application to solve the Euler
equations with unstructured and unnested grids. J. Comput. Phys., 104:329-346, 1993.

[25] R. LeVeque. Numerical Methods for Conservation Laws. Birkhauser, Ziirich, 1992.

[26] X. Liu. Private communication. 2000.

[27] P. Lotstedt and B. Gustafsson. Fourier analysis of multigrid methods for general systems of
PDEs. Math. Comp., 60:473-493, 1993.

[28] W. Mulder. A new multigrid approach to convection problems. J. Comp. Phys., 83:303, 1989.

[29] W. A. Mulder. Multigrid for the one-dimensional invscid burgers equations. SIAM J. Sci.
Comput., 11:33-50, 1990.

[30] R. H. Ni. A multiple-grid scheme for solving the euler equations. AIAA, 20:1565-1571, 1982.

[31] A. Reusken. Multigrid with matrix-dependent transfer operators for a singular perturbation
problem. Computing, 50:199-211, 1993.

[32] J. W. Ruge and K. Stiiben. Algebraic multigrid. In S. McCormick, editor, Multigrid Methods,
pages 73-130. STAM, 1987.

[33] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, 1996.

[34] R. A.Smith and A. Weiser. Semicoarsening multigrid on a hypercube. SIAM J. Sci Stat. Comput.,
13:1314-1329, 1992.

[35] W. P. Tang and W. L. Wan. Sparse approximate inverse smoother for multi-grid. SIAM J. Matriz

19



Anal. Appl., 21:1236-1252, 2000.

[36] W. L. Wan. Interface preserving coarsening multigrid for elliptic problems with highly discontin-
uous coeflicients. Numer. Lin. Alg. Appl., 7:727-741, 2000.

[37] W. L. Wan, T. F. Chan, and B. Smith. An energy-minimizing interpolation for robust multigrid.
SIAM J. Sci. Comput., 21:1632-1649, 2000.

[38] P. Wesseling. An Introduction to Multigrid Methods. Wiley, Chichester, 1992.

[39] G. Wittum. On the robustness of ilu smoothing. SIAM J. Sci. Stat. Comput., 10:699-717, 1989.

[40] J. Xu. Iterative methods by space decomposition and subspace correction. STAM Review, 34:581—
613, 1992.

[41] P. M. De Zeeuw. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver.

J. Comp. Appl. Math., 33:1-27, 1990.

20



