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Abstract
Within the framework of p-adaptive flux reconstruction, we aim to construct efficient poly-
nomial multigrid (pMG) preconditioners for implicit time integration of the Navier–Stokes
equations using Jacobian-free Newton–Krylov (JFNK) methods. We hypothesise that in
pseudo transient continuation (PTC), as the residual drops, the frequency of error modes
that dictates the convergence rate gets higher and higher. We apply nonlinear pMG solvers
to stiff steady problems at low Mach number (Ma = 10−3) to verify our hypothesis. It is
demonstrated that once the residual drops by a few orders of magnitude, improved smoothing
on intermediate p-sublevels will not only maintain the stability of pMG at large time steps
but also improve the convergence rate. For the unsteady Navier–Stokes equations, we elab-
orate how to construct nonlinear preconditioners using pseudo transient continuation for the
matrix-free generalizedminimal residual (GMRES)method used in explicit first stage, singly
diagonally implicit Runge–Kutta (ESDIRK) methods, and linearly implicit Rosenbrock–
Wanner (ROW) methods. Given that at each time step the initial guess in the nonlinear
solver is not distant from the converged solution, we recommend a two-level p{p0-p0/2} or
even p{p0-(p0 − 1)} p-hierarchy for optimal efficiency with a matrix-based smoother on
the coarser level based on our hypothesis. It is demonstrated that insufficient smoothing on
intermediate p-sublevels will deteriorate the performance of pMG preconditioner greatly.
The nonlinear pMG preconditioner in this framework is found to be effective in reducing
computational cost, as well as reducing the dimension of Krylov subspace for stiff systems
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arising fromhigh-aspect-ratio elements and lowMach numbers. Specifically, the JFNK-pMG
technique is demonstrated to be more than 5 times faster than pMG nonlinear solvers for
unsteady problems. Compared to the EJ preconditioner, the pMG preconditioner can make
ESDIRK and ROW methods up to 2 times faster for low-Mach-number flow and up to 1.5
times faster for highly anisotropic meshes. Moreover, the pMG preconditioner can reduce
the dimension of Krylov subspace by one order of magnitude. With a pMG preconditioner,
ROW methods are consistently more efficient than ESDIRK methods.

Keywords p-Multigrid · p-Adaptation · GMRES · Rosenbrock–Wanner methods ·
ESDIRK methods · Pseudo transient continuation

1 Introduction

In order to accurately predict turbulent separated flows, scale-resolving simulations are
needed since traditional Reynolds-averaged Navier–Stokes (RANS) modeling approaches
are not sufficently accurate. Scale resolving simulations with high-order methods have been
demonstrated to bemore efficient and accurate for these types of problems when compared to
second-order methods that are widely used in industry [1, 2]. In particular, implicit large eddy
simulation (ILES) [3] with high-order methods have become popular in the computational
fluid dynamics (CFD) community over the years. Results from under-resolved simulations
with high-order methods have been demonstrated to be reliable and accurate [4]. The turn
around time of LES of flows at moderate Reynolds numbers has been significantly reduced
to days [1, 5]. In spite of the recent progress, the Courant–Friedrichs–Lewy (CFL) condition
has been a major restriction in tackling high Reynolds number flows or flow systems that
have strong source terms, such as chemical reaction flows. Unconditionally L-stable implicit
time integrators, however, enable performing time integration with time steps where the CFL
number is � 1, thus significantly decreasing the number of time steps. With efficient low-
storage nonlinear solvers as well as preconditioners, implicit methods is of great potential
to accelerate scale resolving simulations at high Reynolds numbers and they are also more
robust in dealing with low-quality meshes.

It has been an ongoing topic to seek efficient nonlinear solvers that achieve high con-
vergence rates with minimised memory usage for massive parallel simulations of unsteady
flows. Dating back to the last century, Jameson [6] proposed dual time stepping, also widely
known as pseudo transient continuation (PTC), which was coupled to a geometric multigrid
(hMG) method [7] to solve time dependent problems. Since then, different solution strate-
gies of hMG have been established [8–10] in the literature to improve the efficiency of hMG
methods. As high-order methods emerged, the polynomial multigrid method was proposed
by Rønquist and Patera [11] as an alternative, and is analogous to hMG in that a hierarchy
of resolutions is built up using a hierarchy of polynomial degrees [12–16]. Alternatively,
an inexact Newton–Krylov method, usually coupled with pseudo transient continuation, is
another highly popular nonlinear solver used in the CFD community. In practice, for unsteady
problems it is typical to employ the Jacobian–free Newton–Krylov (JFNK) method where
the matrix-vector product in the construction of the Krylov subspace is approximated by a
finite difference approximation [17, 18]. To some extent, in the past decade, pMG or JFNK
accelerated high-order methods have been successfully applied to LES [18–20]. However,
the solution strategy in [19] of using pMG only suffers from low convergence rates for stiff
systems and the element-Jacobi preconditioner used in [18, 20] lacks robustness with limited
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dimension of Krylov subspace for large time steps. And even when a matrix-based approach
is used, a large number for the Krylov subspace is recommended in [21].

Mavriplis et al. [8] demonstrated that a Newton–Kyrlov method with multigrid precond-
tioners works better than a multigrid nonlinear solver for finite volume methods. More
recently, Shahbazi et al. [22] showed that within the DG framework, hpMG preconditioned
GMRES works better than hpMG methods alone. For unsteady simulations of stiff sys-
tems, we are hence motivated to pursue efficient pMG preconditioned JFNK methods for
implicit time integration. Regardless of whether pMG is employed as a nonlinear solver or
preconditioner, one indispensable question is how to efficiently configure pMG for optimal
performance. Fidkowski et al. [14] developed the element-line preconditioner for pMGwith
a two-level {p0-(p0 − 1)} polynomial hierarchy in DG applied to the Navier–Stokes equa-
tions, where p0 is the order of the finest p-sublevel. This choice of polynomial hierarchy
hides the impact of errors on p-resolution less than p0 −1 since a direct solver is used on this
lower p-sublevel. Persson and Peraire [23] also focused on a two-level pMG preconditioner.
They found that when the coarse p-sublevel employed P

1 polynomials, the convergence of
the pMG preconditioner could be almost Mach number independent when using an ILU0
smoother. Moreover, Shahbazi et al. [22] concluded that P0 should be accurately solved for
Euler equations and P

1 should be sufficiently solved for Navier–Stokes equations, where
sufficient smoothing is achieved via employing a saw-tooth like hp-V-cycle starting from the
coarsest level. Even though in their work a dense polynomial hierarchy, {p0-(p0−1)- . . . -1},
was used, investigation of the intermediate p-sublevels was not made. Wang and Yu [24, 25]
recommended to employ {p0-p0/2-p0/4} as the polynomial hierarchy for 3-level pMG
nonlinear solvers based on preliminary numerical results, which worked well for the Euler
equations but was not satisfying for both steady and unsteady Navier–Stokes equations.
Note that P0 was employed at the coarsest p-sublevel and only the EJ smoother was used.
Franciolini et al. [26] recently coupled pMG and p-adaptation for scale-resolving turbu-
lence simulation using discontinuous Galerkin (DG) methods. In their work, the strategy
was to use an element-Jacobi preconditioned and matrix-free GMRES on the finest level and
matrix-basedGMRESwith different preconditioners on coarser levels for a dense polynomial
hierarchy, which was observed to be faster and less memory-consuming than a matrix-based
method with single p-resolution.

In general, the effect of intermediate p-sublevels on convergence for either the pMG
nonlinear solver or preconditioner has been widely overlooked in the literature, with analysis
mainly performed for steady problems. We remark that for unsteady problems, the solution
at time step tn is not very distant from that at time step tn+1 even for implicit time integration,
which is quite different from steady problems where the initial guess is typically significantly
distinct from the converged solution. These overlooked factors motivates us to conduct the
present study.

First, we analyse the performance of the pMGmethod as a nonlinear solver coupled to flux
reconstruction [27–29] for steady solutions of the Navier–Stokes equations. We investigate
the effect of smoother strength at p-sublevels and how this can affect the rate of convergence.
Experiments have been done to demonstrate our hypothesis that in PTC, as the residual drops
the frequency of the error modes that dictates the convergence rate increases. Therefore, it
is possible to use the PTC residual as an indicator to gradually switch the smoother on
intermediate p-sublevel from element-Jacobi (EJ) to MBNK to accelerate convergence at
the expense of small memory overhead. Second, we formulate a general framework of con-
structing nonlinear pMG preconditioners for Krylov subspace methods via pseudo transient
continuation, focusing on GMRES in this work. Since the solution at time step tn is compar-
atively close to that at time step tn+1 for unsteady simulation, the dictating error modes are
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theorised to be on the higher intermediate p-sublevels. Hence, we investigate employing a
strong smoother at intermediate p-sublevel (such as p0/2 or p0 − 1) to address these domi-
nant error modes. We have observed that the pMG preconditioner can significantly speed up
the simulation for stiff systems due to the presence of large aspect ratio meshes and flows in
the low-Mach-number regime. Moreover, the pMG preconditioner can decrease the dimen-
sion of the Krylov subspace by one order of magnitude compared to the EJ preconditioner,
which is vitally important for linearly implicit Rosenbrock–Wanner (ROW) methods [30].
In addition, our analysis couples the pMG solver/preconditioner with the p-adaptive flux
reconstruction method developed by Wang and Yu [20].

The remainder of this paper is organized as follows. In Sect. 2, we briefly review explicit
first stage, singly diagonally implicit Runge–Kutta (ESDIRK) methods and Rosenbrock–
Wanner methods. Using the pseudo transient continuation methodology, we elaborate the
iterative methods that will be used for inexact Newton/Krylov-subspace methods in this
study. In Sect. 3, we first introduce the generic nonlinear pMG method and then formulate
the framework of pMG preconditioner for GMRESmethod used in both ESDIRK and ROW.
And we also address the numerical strategy of using pMG preconditioner for p-adaptive
flux reconstruction method. In Sect. 4.1, we present numerical experiments using pMG for
steady problems and Sect. 4.2 demonstrates the benefits of using pMG preconditioners for
stiff systems. Finally, the conclusions of this study are drawn in Sect. 5 and we provide some
insights for future research directions, specifically on applying pMG preconditioned JFNK
for LES on GPU hardware.

2 Background

2.1 Implicit Time Integration

The compressible Navier–Stokes equations can be written in the general form of a conserva-
tion equation as:

∂q
∂t

+ ∇ · f = 0. (1)

In this work we use the flux reconstruction (FR) method to discretise spatial derivatives. The
FR method — originally introduced by Huynh [27] — has been extended to several element
topologies as well as advection-diffusion equations, and we refer the reader to the works
of Hynuh [27], Wang and Gao [28], Vincent et al. [29], Wang and Yu [31], and references
therein for more details.

In this study two time integration methods are considered for unsteady calculations,
namely the explicit-first-stage singly diagonally implicit Runge–Kutta (ESDIRK) methods
and linearly implicit Rosenbrock–Wanner methods. Considering the integration from time
step n to n + 1, the ESDIRK method reads as

⎧
⎪⎨

⎪⎩

qn+1 = qn + �t
∑s

i=1 bi R(qi ),

q1 = qn,

qi = �t aii R(qi ) + qn + �t
∑i−1

j=1 ai j R(q j ), i = 2, . . . , s,

(2)

where s is the number of stages and R(q) refers to the spatial discretization of ∇ · f . The
ROWmethod can be considered linearly implicit, this refers to the linearization of traditional
DIRK schemes in the ROWmethod such that for each stage one only needs to solve a linear
system — instead of a nonlinear one. The general form of Rosenbrock methods applied to a
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system of conservative equations can be written as

{
qn+1 = qn + ∑s

j=1 m jY j ,(
I

aii�t − ∂R
∂q

)n
Y i = R

(
qn + ∑i−1

j=1 ai jY j

)
+ 1

�t

∑i−1
j=1 ci jY j , i = 1, 2, . . . , s.

(3)

Details of a series of ESDIRK and ROW methods from second order to fourth order can
be found in [18]. When using ESDIRK, it is typical to use an inexact Newton’s method to
approximately solve the linearised system; for example, when using GMRES a reduction in
the residual by one to two orders of magnitude is often sufficient. We should remark at this
point that the stability and accuracy of ROW is solely contingent upon whether the linear
solver can sufficiently reduce the residual, with several orders of magnitude typically being
required.

Second- and fourth- order ESDIRK and ROW methods, i.e., ESDIRK2 [32], ESDIRK4
[33], ROW2 (ROS2PR) [34], and ROW4 (RODASP) [35], are considered in this work.

2.2 Iterative Methods

To solve the nonlinear equations defined in Eq. (2), we can reformulate them as

F(qi ) = 0, (4)

where

F(qi ) =
(

1

aii �t
qi − R(qi )

)

− 1

aii �t

⎛

⎝qn + �t
i−1∑

j=1

ai j R(q j )

⎞

⎠ . (5)

The PCT method, proposed by Jameson [6], is widely used to solve this system by finding a
steady state solution in pseudo-time. This is achieved by introducing a pseudo-time derivative
into Eq. (4), which can then be iteratively solved using a backward Euler method as

∂qi
∂τ

≈ qk+1
i − qki

�τ
= −F(qk+1

i ). (6)

Herein, k is the iteration step for the pseudo-transient continuation. Eq. (6) can then be
linearized as (

I
�τ

+ I
aii�t

− ∂R
∂q

)k

�qki = −F(qki ). (7)

As the pseudo time is marched forward, the series of linear equations given by Eq. (7) are
successively solved until convergence, i.e. qki → qn+1

i as k → ∞. If matrix-free GMRES is
employed as the linear solver, the matrix-vector product used in building the Krylov subspace
is approximated as

(
I

�τ
+ I

aii�t
− ∂R

∂q

)

X = AX ≈
(

I
�τ

+ I
aii�t

)

X − R(q + εX) − R(q)

ε
, (8)

where a fixed value ε = 1 × 10−6 is used in this work. We will use a fixed �τ , which if
not otherwise stated will be set as �τ/�t = 1 for unsteady problems. This setup of �τ

is found to more robust than a direct Newton’s method while the performance is close. In
the literature, when an explicit smoothing technique is used, a locally adpative pseudo time
stepping, for example Loppi et al. [19], can be more rewarding.
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It iswell known that the performance ofGMRES is strongly dependent on preconditioning.
Many preconditioning methods are available, among which the element-Jacobi precondi-
tioner is one of the simplest in the context of high-order spatial discretizations. For the
element-Jacobi precondtioner, one uses the inverse of the diagonal blocks of the matrix A to
get the preconditioned vector Y as

Y = diag(A)−1X = D−1X . (9)

This assumes that diag(A)−1 is a good surrogate for A−1, which for preconditioning of the
Navier–Stokes equations is acceptable when the stiffness is mild. Throughout this work the
preconditioner matrix was evaluated at the beginning of each physical time step for JFNK
methods and no Jacobian-freezing techniques were employed in this study.

When considering steady problems, �t related terms in Eq. (5) are dropped, and we can
use the successive evolution relaxation (SER) algorithm [36] to set �τ as

�τ 0 = �τinit, �τ k+1 = min

(

�τ k
‖Fk+1‖L2

‖Fk‖L2

,�τmax

)

. (10)

Where in the limit as �τ → ∞, Newton’s method is recovered.
Due to the L-stability of implicit time integration methods, the CFL number is now solely

an indicator of the relative scaling of �t to the characteristic time scale of the simulation.
There is still active discussion of a reliable and meaningful definition of CFL number for
high-order methods on curved grids for the Navier–Stokes equations; we opt, therefore, to
simply provide the minimum element size as a reference for interested readers, while our
implementation runs with a dimensionless setup.

3 pMG Solver and pMG Preconditioner

3.1 The Nonlinear pMG Solver

For completeness, we present the general procedure of a two-level pMG method here. The
hierarchy of the polynomial degrees is {p0-p1}. Herein, subscripts ‘0’ or ‘1’ are the first and
second p-levels. This two-level hierarchy leads us to the following nonlinear system at each
level, which can be expressed as

F p0(q p0) − Sp0 = 0, (11a)

F p1(q p1) − Sp1 = 0, (11b)

where F is defined as Eq. (5) for unsteady problems and F = R for steady problems. Here
Sp0 and Sp1 are referred to as forcing terms, noting that by definition

Sp0 = 0. (12)

The procedure for a typical pMG approach [14–16] is then shown diagrammatically in
Fig. 1, and has the following steps:

p0 Smoothing. Before smoothing, the initial value of q at the first level is
qbp0 . Eq. (11a) is then smoothed using an approach such as the element-Jacobi
smoother for a number of steps. The primitive variables after smoothing is
expressed as qap0 . The defect at the first level

d p0 = Sp0 − F p0(q
a
p0). (13)
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Fig. 1 Illustration of a 2-level V-cycle

Restriction. Restrict qap0 at level p0 to the lower p1 level as

qbp1 = �
p0
p1q

a
p0 , (14)

where�
p0
p1 is a restriction operator from p0 to p1. The results, qbp1 , is then the

initial solution at the second level. Calculate the forcing term at the second
level as

Sp1 = F p1(q
b
p1) + �

p0
p1d p0 (15)

p1 Smoothing. Smooth Eq. (11b) to obtain the up-to-date solution qap1 . At this
coarsest level we use either the element-Jacobi smoother or the matrix-based
Newton–Krylov smoother.
Prolongation. Prolongate the change to the solution at level p1 to produce a
correction to the solution at the finest p0 level. This can be written as

qc,bp0 = qap0 + �
p1
p0C p1 (16)

where C p1 = qap1 − qbp1 and �
p1
p0 is the prolongation operator.

p0 Post-smoothing. Post-smoothEq. (11a) using the element-Jacobi smoother
for a few steps with starting value qc,bp0 to obtain the smoothed solution qc,ap0
at the finest level. The result, qc,ap0 , is the final solution, q p0 , after one V-cycle.

Throughout we use the notation that ‘b’ means before smoothing, ‘a’ means after smooth-
ing, and ‘c’ means corrected solution at the current p-level. In this work, the restriction
operator, �

p0
p1 , is defined as the L2 projection from the p0 space to the coarser p1 space,

which reads [14, 15]
�

p0
p1 = (Mp1)−1Mp1 p0 . (17)

Herein, Mp is the mass matrix for basis in a polynomial space Pp , defined as Mp
i j = ∫

l pi l
p
j .

The secondmass matrix, Mp0 p1 , is for a space Pp0 ×P
p1 and is defined as Mp1 p0

i j = ∫
l p1i l p0j .

Note that l pi is the i-th Lagrange polynomial basis for the standard element which has a
polynomial of degree p. The prolongation operator �

p1
p0 is defined as

�
p1
p0 = (Mp0)−1Mp0 p1 . (18)

Since the Lagrange polynomials are not orthogonal, these operators are generally dense
matrices.

In terms of smoothing, we use notation n{n0-n1} for a two-level pMG which means we
use n0 iterations for both pre- and post- smoothing on the p0-sublevel and n1 iterations for
p1-sublevel.
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3.2 Nonlinear pMG Preconditioner

If the linear equation to be solved is expressed as

AX = b, (19)

the following equation
Y = P−1X, (20)

describes a preconditioning procedure in general, where Y is the preconditioned vector, X
is the vector to be preconditioned, and P is the preconditioning matrix. If P−1 = A−1, one
can get the ideal preconditioned vector Y (the solution vector). Linear preconditioners has
mainly focused on how to get a better estimation of A−1. However, in preconditioning, we
essentially want to get a better estimation of A−1X . This offers a possibility to introduce the
pseudo transient continuation technique. Given that A can be written as

A =
(

I
�τ

+ I
aii �t

− ∂R
∂q

)

, (21)

for ESDIRK methods. A linear system from Eq. (20) can be written as
(

I
�τ

+ I
aii �t

− ∂R
∂q

)

Y = X . (22)

It can be reorganized as

0 = X + ∂R
∂q

Y −
(

I
�τ

+ I
aii �t

)

Y . (23)

As we know the approximation R(q +Y)− R(q) ≈ ∂R
∂q Y , we further reorganize Eq. (23) as

0 = X + R(q + Y) −
(

I
�τ

+ I
aii �t

)

(q + Y) − R(q) +
(

I
�τ

+ I
aii �t

)

q. (24)

By letting q̂ = q + Y , the following nonlinear equation is to be solved

0 = X + R(q̂) −
(

I
�τ

+ I
aii �t

)

q̂ − R(q) +
(

I
�τ

+ I
aii �t

)

q (25)

in the pseudo transient continuation preconditioner. Introducing another pseudo time stepping
with step size �τ ∗ using the backward Euler method yields

q̂m+1 − q̂m

�τ ∗ = X + R(q̂m+1
) −

(
I

α�τ
+ I

aii �t

)

q̂m+1 − R(q) +
(

I
�τ

+ I
aii �t

)

q,

(26)
where m is used to differentiate the iteration number for the preconditioner from other iter-
ation numbers. As we march in pseudo time τ ∗, Y = q̂ − q gives a better preconditioned
vector Y , and for all preconditioning techniques this is the primary objective. For instance,
a more accurate approximation of the inverse of the Jacobian matrix will also end up with
a closer approximation of Y = A−1X . We remark that the pseudo transient continuation
preconditioner has made no assumption about the governing equations and neither do any
operation depends on the specific form of the governing equation. Hence it can be applied
to any type of problems if pseudo transient continuation can be introduced. Even though
we use ESDIRK as an example to formulate the general framework using pseudo transient
continuation. One can also employ the same approach for ROWmethods via dropping terms
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which contain �τ in Eq. (26). To avoid confusion, we always set �τ ∗ = �τ if they are both
present in the simulation.

If we use an element-Jacobi method to iteratively solve the Eq. (26) after linearization, one
pseudo time stepping makes this preconditioner recover the element-Jacobi preconditioner.
Moreover, we can directly employ the pMGmethod described in the previous subsection to
solve this nonlinear system. We refer to this approach as the nonlinear pMG preconditioner
to distinguish from other linear ones. In the rest of this paper, we use pMG preconditioner
since there is no ambiguity. There are more choices of different smoothers than the element-
Jacobi preconditioner such as the ILU0 smoother used in [23], the element-line preconditioner
developed in [14],which aremore effective than classic ones, such as theGauss-Seidelmethod
as well as EJ. However, we will limit our discussion to element-Jacobi and matrix-based
Newton–Krylov (MBNK) smoothers. For the matrix-based Newton–Krylov smoother, we
only use tolrgmres = 10−1 as the relative tolerance for GMRES and set the maximum number
of GMRES iterations as 5, which we find are sufficient enough for numerical experiments
considered in this study. In the matrix-based Newton–Krylov smoother, we use ILU0 as the
preconditioner for each block when domain decomposition is used for parallel computing.

3.3 Coupling with p-Adaptation

Wehave demonstrated that p-adaptation is very effective to save both computational time and
total number of degrees of freedom for scale-resolving simulationswith proper load balancing
techniques [20]. The feature-based p-adaptation employs the spectral decay smoothness
indicator to adjust the polynomial degrees in the flow field. The spectral decay smoothness
indicator has been successful used to detect trouble cells for shock-capturing [37]. It is defined
as

ηk =
∥
∥sp − sp−1

∥
∥
L2

∥
∥sp

∥
∥
L2

(27)

for an element k. The polynomial degree p of an element in the flow field is p ∈ [pmin, pmax],
where pmin and pmax are the minimum and maximum polynomial degree, respectively. If not
specifically mentioned, we choose the momentum in x direction, namely ρu, as the quantity
for smoothness indicator calculation; νmax = 0.2 and νmin = 0.001 are employed. We are
going to increase the local polynomial degree by 1 when ηk > νmaxηmax and decrease it by
1 when ηk < νminηmax, where ηmax is the maximum smoothness indicator in the flow field.
We refer readers to [20] for detailed information of p-adaptation that we have developed. In
this study, when we refer to p-adaptive Pk FR, the maximum polynomial degree in the flow
field is pmax = k and the minimum polynomial degree is always pmin = 1.

The necessity of a hierarchy of different p-resolutions in pMG methods does not stop
us from employing them for implicit time integration with p-adaptive flux reconstruction
methods, inwhich numerical solutions are approximated bynon-uniformpolynomial degrees.
Different from the hierarchy of p-uniform pMGmethod illustrated in Fig. 1, for p-adaptive
flux reconstruction methods, we nest polynomial degrees on p-sublevels towards the lower
ones for a given order gap between different sublevels. For example, for a p-adaptive p4

FR method, when the order gap 2 is used for 3 p-sublevels, the polynomial hierarchies for
elements on the finest levelwhich hasP4,P3,P2, andP1 will be p{4-2-0}, p{3-1-0}, p{2-1-0},
and p{1-0-0}, respectively; when the order gap is 1, the polynomial hierarchies for elements
on the finest level which has P4, P3, P2, and P

1 will be p{4-3-2}, p{3-2-1}, p{2-1-0}, and
p{1-0-0}, respectively. With this being said, when it comes to the polynomial hierarchy of
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p-adaptive FR methods, we will only provide that of the elements in the flow field which has
polynomial degree pmax.

4 Numerical Experiments

In this section, we present the results from numerical investigations of pMG methods, first
when applied as a nonlinear solver in steady problems, then when applied as a preconditioner
for unsteady problems. The p-adaptation methods of Sect. 3.3 were coupled to pMG for both
steady and unsteady problems. Furthermore, the smoothing used on the finest p-sublevel was
exclusively the element-Jacobi method; however, the smoother at the coarsest p-sublevel was
subject to investigation.

Throughout these investigations, the flowfieldwas initializedwith the impulsive condition
of (ρ, u, v,Ma)
 = (1, 1, 0,Ma∞)
. All numerical experiments were conducted system
with an Intel Core i7-10750H CPU @ 2.6GHz, and 2 × 8GB DDR4 RAM @ 3200MHz.
All simulations were run using four processes.

4.1 pMG for Steady Problems

4.1.1 Inviscid Flow Over a Sphere

We first investigated the performance of pMG methods for steady problems by simulating
the inviscid flow over a sphere at low Mach number, where Ma∞ = 0.001. The diameter of
the sphere was set as d = 1, with only a quarter of the sphere being meshed with hexahe-
dral elements. Symmetric boundary conditions were applied to the symmetric planes and far
field boundary conditions were applied to the outer boundaries. Inviscid/slip wall boundary
conditions were imposed on the wall. A mesh with a total of 2464 quadratic hexahedral
elements was used, and the near-wall mesh used for this simulation is shown in Fig. 2 as well
as contours of the normalized pressure and Ma. To preserve accuracy and accelerate con-
vergence, the local preconditioning technique originally developed by Weiss and Smith [38]
was applied [39]. At the time of writing, the authors have not observed any acceleration by
applying this local preconditioning to JFNK methods. Therefore, local preconditioning is
restricted to only steady problems.

In tackling this problem, p-adaptive and p-uniform methodologies were applied to P
3

and P
4 FR to investigate how the smoothing method at the coarsest p-sublevel affects the

convergence of pMG. A 3-level pMG nonlinear solver was used with an order gap of two
between adjacent p-sublevels. Specifically, the polynomial hierarchy on P3 and P4 elements
was p{3-1-0} and p{4-2-0}, respectively. The number of smoothing iterations at each level
was n{2-4-5}. Note that the predicted drag coefficient for flows past a sphere is defined as

Cd = 2Fd
ρ∞U 2∞A

, and A = πd2/4. (28)

The results presented in Fig. 2 show no pressure oscillations near the front stagnation
point, which demonstrates that the modified Roe solver in the local preconditioning tech-
nique [38] is able to balance the dissipation on different characteristics of the convection
terms. Furthermore, the polynomial distributions presented in Fig. 3 show that, upon conver-
gence, the p-adaptive field is symmetric for both P

3 and P
4 FR. This is consistent with the

symmetric solution. The predicted drag coefficients obtained via p-adaptive P3 and P
4 FR
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(a) (b)

Fig. 2 Contoured quantities for the inviscid flow past a sphere at Ma∞ = 0.001

(a) (b)

Fig. 3 Distribution of polynomial degrees of p-adaptive a P
3 and b P

4 FR solving inviscid flow over sphere
at Ma∞ = 0.001

are 1.25 × 10−5 and 5.01 × 10−6, respectively. Those obtained from p-uniform P
3 and P

4

FR are 4.42 × 10−7 and 1 × 10−7.
It has previously been shown that feature-based adaptation methodologies are inferior

to output-based ones [40, 41] for steady problems. This investigation is only intending to
study the behaviour of pMG when coupled to p-adaptation, and furthermore, the simple
feature-based p-adaptation approach is advantageous for unsteady problems in terms of
implementation. Further discussion of p-adaptation methodologies is beyond the scope of
this study.

Statistics of p-uniform and p-adaptive FR methods with EJ and MBNK smoothing at the
coarsest level are documented in Table 1. From the residual data presented in Figs. 4 and 5, it
is clear that the residual in some calculations stalled at ∼1× 10−10. For this reason the wall
clock time data present in Table 1 is the time taken for the absolute residual to drop below
5×10−10. For both p-adaptive and p-uniform P

3 FR, a speedup of∼2.5 was observed when
using the MBNK smoother rather than the EJ smoother on the coarsest p-sublevel in pMG.
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Table 1 Statistics of p-adaptive
and p-uniform FR solving
invscid flow over the sphere at
Ma∞ = 0.001 for different
smoothers at the coarsest level

p Adaptation Runtime (s) Speedup
EJ MBNK

3 No 3462 1451 2.49

3 Yes 1364 549 2.48

4 No 20053 12622 1.59

4 Yes 9919 3549 2.79

Speed-up is shown for MBNK relative to EJ

(a) (b)

Fig. 4 Solver statistics for inviscid flow over sphere at Ma∞ = 0.001 using P3 FR in several configurations

(a) (b)

Fig. 5 Solver statistics for inviscid flow over sphere at Ma∞ = 0.001 using P4 FR in several configurations

Similarly for P4 FR, MBNK achieved a speedup of 1.59 and 2.79 for p-uniform and p-
adaptation, respectively. Overall, the significance of employing a matrix-based smoother on
the coarsest p-sublevel is consistent for p-uniform and p-adaptive FR methods. We remark
that without a prior knowledge of the flow field, the p-adaptive solver demonstrates decent
advantages over the p-uniform solver in terms of the computational cost whilst the efforts
on mesh generation would be reduced.
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In the work of Shahbazi et al. [22], a more efficient smoother at the coarsest p-sublevel
(either P0 or P1) was produced by building up deeper hpMG hierarchy and employing saw-
tooth/W-cycle. They found sufficient smoothing on P

0 is critically important when solving
inviscid problems while sufficient smoothing on P

1 is more important for solving viscous
problems, and the results presented in Figs. 4 and 5 are consistent with this conclusion.
Naturally, this benefit motivated us to further improve the smoother quality at intermediate
p-sublevel when the convergence rate of PTC stalls for viscous problemswhichwas observed
in [24].

4.1.2 Viscous Flow Over a Sphere

Using the same mesh as shown in Fig. 2, we considered the case of Red = 118 and Ma∞ =
0.001. Three different strategies were used for P3 FR with p-adaptation:

Strategy 1. The first strategy is 3-level pMG cycle with an order gap 1, where P3 elements
have a p{3-2-1} polynomial hierarchy. EJ is used on all levels except the coarsest level
where MBNK is used;
Strategy 2. The second one uses the same polynomial hierarchy and smoother; how-
ever, after 15 pseudo-time iterations the smoother on the intermediate p-sublevel will be
switched from EJ to MBNK;
Strategy 3. The third strategy employs a 2-level pMG cycle only, which for P3 elements
is a p{3-2} polynomial hierarchy. Similarly, EJ smoothing is used on the finest level, and
MBNK on coarsest level.

Regarding the number of iterations for smoothing, n{10-10} and n{10-10-10} are used for
2-level and 3-level pMG, respectively.

The predicted drag coefficient is 0.9700 which is slightly smaller than 1.002 obtained
in [42] at Ma = 0.2535. The residual histories of these three solution strategies for p-
adaptive p3 FR are depicted in Fig. 6. Ideally, as residual drops, pseudo time step �τ will
keep increasing. However, for the first strategy, when �τ got close to 10, some instability
was triggered and the residual hence increased to a large value (∼ 10−3) and stalled at
such level. For the second strategy, we switched the smoother on P

2 sublevel from EJ to
MBNK after 15 V-cycles or pseudo time iterations. With better smoothing on intermediate
p-sublevel, PTC was stabilized. It is unclear how such switch would quantitatively affect the
CFL condition. When comparing Strategy 3 with Strategy 2, surprisingly the latter was faster
in terms of both convergence rate and convergence speed. We hypothesise that in PTC, at
the initial stage the errors that dictates the convergence rate are those low-frequency modes.
As the residual drops, the frequency of dominating ones gradually gets higher. Consistent
with our assumption, Strategy 3 with MBNK on P

2 actually had smaller convergence rate
initially. This simple numerical experiments raises up two questions to be further explored,
(a) how smoothing on sublevels would affect the stable CFL of pMG and (b) how to design
the smoothing strategy such as when to switch the smoother on intermediate sublevels.

4.2 pMG Preconditioner for Unsteady Problems

In this section we focus on stiff systems arising from low-Mach-number flows and high-
aspect-ratio elements in near wall regions. We present results from investigations which
aimed to demonstrate that JFNK can be greatly accelerated for these problem by using pre-
conditioners other than EJ, in particular an advanced pMGpreconditioner. In this subsection,
we used MNBK as the coarsest sublevel smoother for all pMG solvers and preconditioners.
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(a)

(c)

(b)

Fig. 6 Effect of pMG smoother configuration for viscous flow over sphere at Ma∞ = 0.001 and Red = 118
using p-adaptive P3 FR

4.2.1 Unsteady Flow Over a Cylinder

The first case was 2D unsteady flow over a circular cylinder at Red = 1200 when Ma∞ =
0.01, for diameter d = 1. A similar problem was studied in [18, 33] to evaluate the accuracy
and efficiency of implicit time integration methods at higher Ma numbers.

The mesh used in this investigation had 5316 quadratic quadrilateral elements, with the
first layer of near-wall elements having a height of 0.01. This gave an a prior estimation
of y+ ≈ 0.8. For high-order numerical methods, a different opinion in terms of the a prior
estimation of the element size is that one could use the distance of the first layer solution
points such that the element size can be greatly increased to give a posterior estimation of
y+ close to 1 at these points. However, throughout this work, we followed the convention for
low-order methods. We aimed to investigate the efficacy of pMG methods for stiff systems
in the low Mach number regime. We used ESDIRK2 with a pMG preconditioner to run the
simulation for 150 convective time units and employed the solutions as initial values for our
numerical study. Note that no p-adaptation was used for simulations in this subsection.

The predicted Strouhal number, defined as f d/U∞, is 0.2386, which is slightly smaller
than the predicted value 0.2467 in [33] at Ma = 0.3. Instantaneous contours of vorticity and
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(a)

(b)

Fig. 7 Contours of instantaneous quantities for the viscous flow over a 2D circular cylinder at Red = 1200
and Ma∞ = 0.01

Fig. 8 Pressure field near the stagnation point of viscous flow over 2D circular cylinder at Red = 1200 and
Ma∞ = 0.01

Ma are shown in Fig. 7 as well as the local mesh. In Fig. 8, near the front stagnation point,
we have not observed any pressure oscillations, even though only the original Roe Riemann
solver [43] was employed. For all following comparison in this subsection, we documented
the statistics for 5 convective time units.

Three solution strategies were explored first: pMG as a nonlinear solver with the cycles
p{3-1-0} and p{3-2-1-0} for the ESDIRK2 scheme, as well as JFNKwith EJ preconditioning
as a comparison. The pMG nonlinear solver used smoothing steps n{2-2-5} and n{2-2-2-5}
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for 3-level and 4-level cycles respectively. A limit on pseudo-time iterations was set as
Nmax
ptc = 100 and relative tolerance of PTC, tolrptc = 10−4, was used. When using pMG as

a nonlinear solver in this case, the smoothers were updated every 20 pseudo time iterations
due to the rapid decrease in the convergence rate observed in this case.

For JFNK-EJ, we set the relative tolerance for GMRES as tolrgmres = 10−2. A larger one,

such as tolrgmres = 10−1, would lead to instability of pseudo transient continuation for this
simple EJ preconditioner. We only updated the smoothers each physical time step and the
convergence of PTC was remarkable. Kdim = 30 was set as the maximum dimension of the
Krylov subspace to make sure that GMRES would not diverge.

Statistics of numerical simulations using the pMG nonlinear solver and JFNKwith the EJ
preconditioner are documented in Table 2. This shows a small runtime benefit to the pMG
nonlinear solver with p{3-1-0} over that with p{3-2-1-0}. Presented in Fig. 9 are typical
residual histories for all threemethods. This shows that even though p{3-2-1-0} led to a larger
initial convergence rate, the overhead of the extraP2 sublevel indeedmade the pMGnonlinear
solver slightly slower. This is consistent with observations from the previous steady problem
where Strategy 3 was slower than Strategy 2. Moreover, JFNK-EJ was 2.26 times faster
than the baseline case pMG with p{3-1-0}. A further observation was that pMG nonlinear
solvers needed an order ofmagnitudemore pseudo time iterations to achieve the same residual
drop of 4 orders of magnitude. On the contrary, with JFNK-EJ the convergence rate of PTC
was reminiscent of Newton-like approaches and pseudo transient continuation converged on
average within 8 pseudo time iterations for each stage of ESDIRK2 (N avg

ptc = 7.3); meanwhile

the average number of GMRES iteration for each stage, N avg
gmres, was significant. For both

polynomial hierarchies investigated, the convergence rate for the pMG nonlinear solver got
smaller after the relative residual dropped lower than 10−2. For unsteady flow simulations,
the initial guess of the nonlinear system—which is actually the solution at time step tn—is
close to the solution at tn+1. That is to say, the nonlinear solver started at the stage of PTC
when errors on intermediate p-sublevel dictated convergence. Therefore, extra smoothing
on the P

2 sublevel gave an improved convergence rate initially. However, as the residual
dropped, errors on the P3 sublevel began to dominate and the overhead of the P2-sublevel
was largely wasted. These results shows that tuning the configuration of the pMG nonlinear
solver is unlikely to make it outperform JFNK-EJ.

We further tested how a pMG preconditioner can improve the performance of JFNK used
in ESDIRK. The time step was increased from �t = 0.025 to �t = 0.05. With �t being
doubled, the stiffness of the nonlinear system at each stage of ESDIRK was increased due
to larger source terms. For this larger times steps the lower tolerance of tolrgmres = 10−3 was
used to stabilize JFNK-EJ with a significantly larger dimension of Kdim = 100. The pMG
preconditioner coupled to JFNK was p{3-1} with n{2-2}. The tolerance and dimension of
GMRES for JFNK-pMG were set as tolrgmres = 10−1 and Kdim = 30 with no instability
being observed in PTC. Statistics of this test are documented in Table 3. For JFNK-EJ,
increasing the time step decreased its efficiency. It is observed from Table 3 that, even though
the averaged number of pseudo time iterations of PTC per RK stage N avg

ptc was only slightly

increased, the averaged number of GMRES iterations per RK stage N avg
gmres was increased

by a factor greater than 2. On the contrary, for the larger time step �t = 0.05 JFNK-pMG
was almost 2 times faster than JFNK-EJ and more than 4.5 times faster than the baseline
case; only 44 GMRES iterations were needed per RK stage. Moreover, the dimension of the
Krylov subspace was maintained as that of JFNK-EJ when �t = 0.025.

Then moving on to consider the linearly implicit ROW scheme, as suggested in the
study [18], GMRES has to converge the residual to a relatively smaller value. With this
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Table 2 pMGnonlinear solvers versus JFNK-EJ forESDIRK2 for viscousflowover a cylinder atMa∞ = 0.01

Method p-hierarchy �t Runtime (s) N
avg
ptc N

avg
gmres Speedup

pMG p{3-1-0} 0.025 9163 96.8 – 1

pMG p{3-2-1-0} 0.025 9315 75 – 0.98

JFNK-EJ – 0.025 4053 7.3 357.2 2.26

N
avg
ptc is the averaged number of pseudo time iterations per RK stage and N

avg
gmes is the averaged number of

GMRES iterations per RK stage

(a) (b)

Fig. 9 Residual evolution for the 2D viscous flow over a cylinder at Red = 1200 and Ma∞ = 0.01, using
pMG and JFNK nonlinear solver, with residuals displayed for different ESDIRK2 stages

Table 3 pMG preconditioner versus EJ preconditioner for ESDIRK2 for viscous flow over a cylinder at
Ma∞ = 0.01

Method p-hierarchy �t Runtime (s) N
avg
ptc N

avg
gmres Kdim Speedup

pMG p{3-1-0} 0.025 9163 96.8 – – 1

JFNK-EJ – 0.025 4053 7.3 357.2 30 2.26

JFNK-EJ – 0.05 5227 8.0 861.8 100 1.75

JFNK-pMG p{3-1} 0.05 2008 10.3 43.9 30 4.56

N
avg
ptc is the averaged number of pseudo time iterations per RK stage and N

avg
gmres is the averaged number of

GMRES iterations per RK stage

in mind, the GMRES tolerence of tolrgmres = 10−6 was used when investigating the benefit
of pMG preconditoners. The simulation was run at �t = 0.05 when using ROW2 with both
the EJ and pMG preconditioner, with different configurations of polynomial hierarchy was
also investigated. Statistics of these tests are documented in Table 4. A significant result is
that the advanced pMG preconditoner with p-hierarchy p{3-1} can achieve a speedup of
5.32 compared to the baseline and 1.97 when compared to the EJ preconditioner. N avg

gmres
per RK stage was below 31, one order of magnitude smaller than that of GMRES-EJ. This
data also shows how a bad choice of p-hierarchy can deteriorate the performance of pMG
preconditioner. For example, from Table 4 GMRES-pMG with p{3-0} not only required
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Table 4 pMG preconditioner versus EJ preconditioner for ROW2 for viscous flow over a cylinder at Ma∞ =
0.01

Method p-hierarchy �t Runtime (s) Kdim N
avg
gmres Speedup

pMG {3-1-0} 0.025 9163 – – 1

GMRES-EJ – 0.05 3390 200 293.7 2.70

GMRES-pMG p{3-1} 0.05 1721 30 30.8 5.32

GMRES-pMG p{3-0} 0.05 5257 200 102.1 1.74

GMRES-pMG p{3-2-1} 0.05 1975 30 23.6 4.64

Kdim is the maximum dimension of the Krylov subspace. N avg
gmres is the averaged number of GMRES iterations

per RK stage

a large Kdim = 200 for stability, but also required greater than three times the number of
GMRES iterations per RK stage to converge. Furthermore, the performance of this strategy
was worse than that of the EJ preconditioner. This observation is similar to that of Sect. 4.1
where insufficient smoothing of the dominant error modes would adversely effect the con-
vergence. A final observation was that N avg

gmres of GMRES-pMG with p{3-2-1} was notably
smaller than that of GMRES-pMG with p{3-1}. This could be expected since the additional
smoothing on P

2 better addresses the error modes on this intermediate sublevel. However,
the overhead on this sublevel slightly decreased its efficiency.

To summarize, for a stiff system in the low-Mach-number regime, JFNK is more prefer-
able than pMG to solve the nonlinear system arising from implicit time stepping methods.
ESDIRK2 and ROW2 can be 4.56 and 5.32 times faster, respectively, when GMRES-pMG is
used instead of pMG nonlinear solver. The developed pMG preconditioner can significantly
speed up the simulation by factor of 2.01 and 1.97 for ESDIRK2 and ROW2, respectively,
when compared to EJ preconditioner with proper configuration of the polynomial hierarchy.
Lower RAM usage of pMG preconditioner is realized via using one order of magnitude
smaller dimension number for the Krylov subspace. Similar to the steady problems consid-
ered in this work, insufficient smoothing on intermediate p-sublevels will actually worsen
the performance of pMG preconditioners greatly. Even though a dense pMG can mitigate
the problem, the overhead on relatively high p-sublevel would comprise the efficiency. We
genuinely would recommend a p{p0-(p0/2)} polynomial hierarchy for this type of problem.
With a better preconditioner, pMG in our case, ROW2 was about 1.16 times faster than
ESDIRK2.

4.2.2 Unsteady Flow Over SD7003 Airfoil

We further examined the performance of pMG preconditioners when dealing with high-
aspect-ratio elements clustered to wall boundaries. For the incoming flow, the Reynolds
number based on chord length c = 1 is Rec = 105, Mach number is 0.1, and the angle of
attack is 4◦. The nominal height of first layer of elements in vicinity of the wall is 2× 10−4c
which gives a prior estimation of y+ = 1. In Fig. 10a, we illustrate mesh in near wall region;
the presence of the small trailing edge, which has a radius of 4 × 10−4c, leads to smaller
elements in this region as shown in Fig. 10b; the mesh generator can only project the linear
mesh on to the curved geometry for the first layer of elements to obtain quadratic quadrilat-
eral elements which further worsen the CFL condition in these slim elements as shown in
Fig. 10c. The potential of p-adaptation methods on CPU platforms has been demonstrated
well for external wall-bounded transitional flows in [20]. In this subsection, we employed the
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(a) (b)

(c)

Fig. 10 Near-wall mesh for 2D viscous flow over SD7003 airfoil at Rec = 105

p-adaptive P3 FR flux reconstruction for spatial discretization to evaluate pMGmethods for
non-uniformly distributed polynomial degrees. ESRIRK2 with JFNK-pMG was employed
for time integration to run the simulation for 30 convective time units to obtain the initial
conditions for our further numerical experiments. The averaged lift and drag coefficients in
t ∈ (20, 30] are Cd = 0.0164 and Cl = 0.5501. Experimental Cl from [44] is around 0.6.
In the transitional regime, a simulation of 2D viscous flow is not sufficient to capture the
separation-reattachment phenomenon and current numerical simulation underestimates the
lift coefficient by 8.3%. Instantaneous contours of vorticity and polynomial degree distri-
bution are demonstrated in Fig. 11. The p-refined region is consistent with high vorticity
region.

We used both EJ and pMG preconditioners for GMRES employed in ESDIRK4 and
ROW4 for our comparison. �t = 0.005 was used to resume the simulation for another
400 time steps. �τ = 0.0025 was used for pseudo transient continuation in both ESDIRK4
and preconditioner of GMRES. The pMG preconditioner used in this numerical experiment
employed a 2-level polynomial hierarchy and n{2-2} for smoothing. In Table 5, we present
the statistics of nonlinear/linear solvers used in ESDIRK4. In this table, GMRES-EJ and
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(a) (b)

Fig. 11 Instantaneous contours of 2D viscous flow over SD7003 airfoil

GMRES-pMG used absolute tolerance tolaptc = 10−6 as the convergence tolerance for PTC

and GMRES-EJ∗ used the relative tolerance tolrptc = 10−4. As shown in Fig. 12, pMG
preconditioner made the initial residual much smaller than EJ preconditioner did after the
first pseudo time iteration. Therefore, using tolaptc = 10−6 as the tolerance is important for
a fair comparison. In this case, pMG preconditioner can achieve speedup of 1.20 compared
to EJ preconditioner with remarkably smaller Krylov subspace dimension and fewer pseudo
time iterations. In Table 6, we present the statistics of ROW4 using different preconditioners.
tolrgmres = 10−6 was used to preserve the nominal order of accuracy. We have observed that
a speedup of 1.49 via employing the pMG preconditioner with p{3-2} instead of EJ. Note
that insufficient smoothing on intermediate sublevel when using p{3-1} as the p-hierarchy
worsened the performance of pMG.

For this type of problem, with a pMG preconditioner, ROW4 is more efficient than
ESDIRK4 when the nominal order of accuracy is to be preserved via driving the resid-
ual sufficiently small. More importantly, ROW4 tends to benefit more from employing such
preconditioner in terms of both speedup and reduction of the absolute number of dimension
of Krylov subspace.

We are aware that in LES, sufficient resolution in all directions is warranted such that
the aspect ratio is less likely to be as huge as it would be in RANS. However, for practical
applications with more complicated geometries, it is common to observe highly distorted
elements or elements which are significantly smaller than what y+ requires at locations
where the curvature is large, such as the trailing edge of the SD7003 airfoil studied here. The
pMG preconditioner developed here has the significance of improving the robustness of the
CFD solver for bad quality meshes.

5 Conclusions and FutureWork

We have investigated the performance of pMG when p-adaptation is coupled. We start our
discussion of pMG by analyzing its performance as a nonlinear solver for steady problems.
It is demonstrated that employment of a stronger smoother at coarsest p-sublevel is critically
important for efficiency. Moreover, insufficient smoothing on intermediate p-sublevel would
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Table 5 GMRES with pMG preconditioner versus EJ preconditioner for ESDIRK4 for viscous flow over
SD7003 airfoil with high-aspect-ratio elements in vicinity of wall

Precond p-hierarchy �t Runtime (s) N
avg
ptc N

avg
gmres Kdim Speedup

EJ – 0.005 23363 42.8 865.8 30 1

EJ∗ – 0.005 17307 32.3 632.4 30 1.35

pMG p{3-2} 0.005 19396 26.3 79.1 5 1.20

Note that the p-hierarchy is only the one on elements which have P3 polynomials

Fig. 12 Typical residual history in one stage of ESDIRK4 for 2D viscous flow over SD7003 airfoil

Table 6 GMRES with pMG preconditioner vs. EJ preconditioner for ROW4 for viscous flow over SD7003
airfoil with high-aspect-ratio elements in vicinity of wall

Precond. p-hierarchy �t Runtime (s) Kdim N
avg
gmres Speedup

EJ – 0.005 18463 150 185.4 1

pMG p{3-2} 0.005 12392 30 22.5 1.49

pMG p{3-1} 0.005 34876 30 45.4 0.53

Note that the p-hierarchy is only the one on elements which have P3 polynomials

even introduce instability into pMG nonlinear solvers. We hypothesise that in PTC, as the
residual drops, the frequency of error modes that dictates the convergence rate get higher and
higher, which have been demonstrated through numerical experiment. This is particularly
important for LES since the initial guess in PTC used in implicit time integration is not
distance from the converged solution.

We propose to use pseudo transient continuation in the preconditioning procedure to
construct nonlinear pMG preconditioners for matrix-free GMRES used in implicit time
integration of unsteady problems. We have demonstrated that for stiff systems, JFNK with
even just an element-Jacobi preconditioner can significantly outperform pMG nonlinear
solver by a factor over 2. JFNK with pMG preconditioner can be around 2 times faster for
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low-Mach-number flows and 1.5 times faster for anisotropic meshes than JFNK-EJ. More
importantly, similar to what has been observed in simulation of steady problems, insufficient
smoothing on intermediate p-sublevel can greatlyworsen the performance of pMGwhich has
been overlooked in literature. We genuinely recommend a {p0-p0/2} polynomial hierarchy
for pMGpreconditionerswhen used for unsteady problems, or even {p0-(p0−1)}whenRAM
usage is affordable to use a MBNK smoother at the bottom. Additionally, it is observed that
with a decent preconditioner, namely pMG in this study, ROW is consistently more efficient
than ESDIRK when the residual is required to drop to small enough to preserve the order
of accuracy. In particular, the reduction of the absolute value of the dimension of Krylov
subspace for ROW is more significant than that for ESDIRK.

Researchers recently started to look into employing JFNKmethods onGPUs for LES [45].
We are aware that storing the element-Jacobi smoother of the finest p-sublevel is very over-
whelming for such hardware, especiallywhen the polynomial degree is high. For JFNK-pMG
on GPU, we would like to explore the feasibility of using a first order exponential time inte-
grator [46] as the smoother instead of the EJ smoother and the matrix-based smoother. The
overall RAM usage can potentially be minimised without the presence of an element-Jacobi
smoother on thefinest levelwhen theKrylov subspace dimension is limited and such smoother
would be able to march in pseudo time with large strides since the stability can be improved
with a pMG configuration. Investigation on such topic will be our future work.
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