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In this paper, we develop the first entirely graphics processing unit (GPU) based ℎ-adaptive flux 
reconstruction (FR) method with linear trees. The adaptive solver fully operates on the GPU 
hardware, using a linear quadtree for two dimensional (2D) problems and a linear octree for 
three dimensional (3D) problems. We articulate how to efficiently perform tree construction, 
2:1 balancing, connectivity query, and how to perform adaptation for the flux reconstruction 
method on the GPU hardware. As a proof of concept, we apply the adaptive flux reconstruction 
method to solve the inviscid isentropic vortex propagation problem on 2D and 3D meshes and 
transitional flow over a 3D square cylinder at Re = 400 to demonstrate the efficiency of the 
developed adaptive FR method on a single GPU card. Depending on the computational domain 
size, acceleration of one or two orders of magnitude can be achieved compared to uniform 
meshing for long distance transportation. The total computational cost of adaption, including tree 
manipulations, connectivity query and data transfer, compared to that of the numerical solver, is 
insignificant. It can be less than 2% of the total wall clock time for 3D problems when we perform 
adaptation every 10-40 time steps with an explicit 3-stage Runge–Kutta time integrator.

1. Introduction

The computational fluid dynamics (CFD) 2030 vision study stated that “An engineer/scientist must be able to generate, analyze, 
and interpret a large ensemble of related simulations in a time-critical period (e.g., 24 hours), without individually managing each 
simulation, to a pre-specified level of accuracy and confidence” [1]. To this end, we would like to reduce the human intervention as 
much as possible in all stages of CFD simulations, including mesh generation, simulation, and data analyzing.

A Cartesian-grid-based solver can be a powerful tool for automated CFD simulations since it can almost eliminate human inter-

vention in meshing and it has more flexibility to deal with moving and deforming objects. There are two major challenges of utilizing 
a Cartesian grid for wall-bounded CFD simulations, namely, (a) how to resolve wall boundaries accurately with/without turbulence 
modeling and (b) how to perform automated adaptive mesh refinement (AMR), including initial meshing and mesh adaptation for 
CFD solvers. To address the first issue, the immersed boundary method [2] has been arguably the most popular method for low-to-

medium Reynolds numbers. The immersed boundary method can be generally divided into two broad categories, (a) the continuous 
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forcing approach [3] and (b) the discrete forcing approach [4]. The continuous forcing IBM would only be first order accurate in 
near wall region. In contrast, the discrete forcing IBM, often with ghost-cell techniques, were reported to achieve high-order accuracy 
for finite difference methods [5]. The cut-cell approach [6,7] can accurately resolve the wall as the voxel meshes will be cut into 
in-solid and in-fluid parts by the wall boundaries. In the context of discontinuous Galerkin methods, one can divide those cut-cell 
polygons into elements, such as tetrahedral elements, whose quadrature rules are easy to find. To overcome the CFL limit of explicit 
time stepping, extrapolating the polynomial basis functions from intact elements to small corners [8] can be used. Alternatively, the 
discontinuous Galerkin difference discretization [9] can be formulated such that the stiffness of the system will not severely dete-

riorate at the cost of compactness. The extended finite element method [10] was originally developed to handle crack propagation 
in solid mechanics by Moës et al. Recently, Kummer et al. extended the idea to discontinuous Galerking methods to deal with wall 
boundaries [11] with enriched basis functions for the cut cells and agglomeration was needed to circumvent the CFL restriction for 
small cells. A Cartesian grid can also serve as the background grid in the overset method [12,13] to handle high Reynolds number 
flows with near-wall body-fitted meshes and wall models [14]. However, more efforts will then be needed to automate the mesh 
generation for the boundary layer, such as extruding the surface mesh in the wall-normal direction, and it will be more challenging 
when the body starts to deform. Regardless of which type of methods is used to handle wall geometries, without AMR one would 
have to manually refine the mesh resolution in the near-body region and wake region. A nonconforming Cartesian mesh is normally 
required to reduce the element count due to topological requirements. Moreover, if one is to study the maneuver of any vehicle, the 
enlarged refined region to account for the motion would lead to an overwhelming total number of elements and hence a waste of 
computational resources.

The last decade has witnessed the revolution of CFD embarked by the development of high-order methods, such as discontinuous 
Galerkin methods [15] and flux reconstruction methods [16], which are better suited for parallel computing [17] and the devel-

opment of modern accelerators, such as the graphics processing unit (GPU). Discontinuous finite element type high-order methods 
are compact in nature and they have been found to be more efficient in scale-resolving simulations than their low-order counter-

parts [18]. The compactness of these methods makes them great candidates to work with AMR methodologies for Cartesian grids in 
the sense that fewer number of elements will be needed to achieve the same resolution compared to other non-compact high-order 
methods such as the finite volume methods and the cost of adaptation will hence be lower. In addition, the complexity of building 
up the high-order stencil on a non-uniform mesh for high-order finite difference methods will require more efforts on searching and 
bookkeeping of neighboring elements. GPU-based solvers have become more and more popular due to the tremendous speedup they 
offer compared to traditional CPU-based solvers. In foreseeable future, utilizing the computational power of GPU cards would be 
more affordable compared to CPUs for massive problem sizes. There are developments done regarding GPU-based adaptive solvers 
using octrees. Many of them relied on the CPU hardware to perform the mesh adaptation and information would be sent to GPU from 
CPU [19]. This streamline will magnify the bottleneck of data transfer between CPU and GPU. Hence, we would strive to develop 
efficient high-order CFD solvers with AMR that entirely operate on the GPU cards. We are interested in discontinuous finite element 
methods in particular due to the fact that elements will only need to communication through interface fluxes instead of relying on 
continuous values on element vertices as continuous Galerkin method does.

Tree structures are widely used in AMR [20]. Specifically, one can use a quadtree for two dimensional problems and an octree for 
three dimensional problems. There are two prevalent approaches, namely, top-bottom and bottom-up trees. The top-bottom approach 
is intuitively straightforward in the sense that one starts from the root node and gradually performs refinement until satisfaction and 
its implementation is commonly based on pointers. However, a plain pointer-based implementation does not have great data locality. 
A linear tree (quadtree/octree) is ubiquitous in that only a linear array is used to store the leaf nodes of the tree. And each leaf node 
is usually represented by a unique ID, such as the Morton ID, which encodes all the information, namely, coordinates and depth, of 
the represented leaf node. The bottom-up tree construction normally starts with spatial distribution of points that we are interested 
in, such as a human skull surface mesh we would like to render or a surface mesh of the airplane we would like to perform CFD 
studies. These points are immediately encoded as scattered octants. One needs to perform tree completion such that the resulting 
octants will continuously fill the domain with no holes and overlaps and all initial points are encapsulated in the finest octants or 
leaf nodes. In computational graphics, researchers have so far developed GPU-based octree data structures which can perform the 
bottom-up tree completion. However, when used in CFD, a tree needs to be 2:1 balanced. 2:1 balance refers to the fact that the depth 
difference of two adjacent octants cannot exceed 2 and it is needed for an easy enforcement of conservation. A meshless method 
could be an exception. One example is that in [21], Jambunathan and Levin developed a meshless Monte-Carlo method using an 
unbalanced octree on GPUs, where the initial tree was built on CPU first. In the work of Pavlukhin and Menshov [22], an entirely 
GPU-based tree was implemented. And information of three levels of tree nodes was stored, two of which are interior nodes. Not 
enough information was provided on 2:1 balancing of the tree. The approach is overall different from the classic linear tree. The 
challenge of 2:1 balancing is to efficiently find the neighbors of any given octant in the tree. Sundar et al. [23] proposed to use 
searching keys to perform binary search in the sorted tree for efficient balancing and the local balancing on CPU hardware will rely 
on hash tables to reduce the duplicates of octants for optimal performance. On GPU hardware with massive parallelism, a thread-safe 
hash table with no locks is not readily available. In this paper, we are going to articulate how one can performance efficient linear 
tree completion and tree balancing for GPU hardware without any hash tables.

We argue that a tree of octants is not functionally equivalent to a mesh of elements for CFD simulations. Finding connectivity 
among different entities in the mesh, such as elements, faces, points, is as important as the tree manipulation algorithms for finite 
element methods. On massively parallel hardware, the absence of efficient thread-safe hash tables would make the mesh generation 
2

challenging, which normally requires hash tables to find unique points, edges, faces, and the connectivity of them. We will explain 
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in this paper what makes discontinuous finite element methods great candidates to work with linear trees for efficient AMR on GPU 
hardware.

Mesh adaptation (ℎ-adaptation) and polynomial adaptation (𝑝-adaptation) methods are widely used for high-order discontinuous 
methods. Polynomial adaptation is commonly praised for its ease of implementation compared to mesh adaptation and the great 
speedup that it can offer [24]. However, things will be quite different for GPU computations. For massive parallelism with graphics 
cards, minimization of thread divergence is warranted for performance. Generally, there are two major types of calculation for any 
high-order discontinuous finite element methods, namely, element-related and interface-related calculations. For mesh adaptation 
with linear trees, regardless of the depth of any octant in the tree, element-related calculations will be identical for all voxel el-

ements (quadrilateral elements in 2D and hexahedral elements in 3D) including interpolations to the interfaces. Only conforming 
and nonconforming interior interfaces and boundary faces will need different procedures of common flux calculations and they are 
resolution-indifferent. For polynomial adaptation, the numerical discretization operators will be completely polynomial-degree de-

pendent. Moreover, optimization of the data layout and shared memory utilization, could be very different and special treatment will 
be needed for high polynomial degrees since the shared memory would not be big enough to fit the entire numerical operator, such 
as the projection matrices for data transfer in adaptation. The more polynomial degrees are used, the more significant the divergence 
would be. Therefore, mesh adaptation appears to be more attractive for GPU hardware for optimal performance.

Contributions. In this paper, we report a GPU-based ℎ-adaptive flux reconstruction method with linear trees. This is the first paper 
that elaborates the novel algorithms for tree completion and tree balancing and how to efficiently use linear tree for discontinuous 
finite element methods on GPU hardware. We provide enough algorithm/coding details for the readers. The developed method has 
shown significant speedup for long distance vortex propagation. For 3D simulations, the adaptation cost including tree manipulations, 
face query and data transfer, can be less than 2% of the overall computational cost when we perform adaptation every 10-40 times 
with explicit time integrators for both inviscid flows and transitional flows. This work paves the way for further development of 
automated Cartesian-grid-based CFD solver which can utilizing massively parallel hardware.

Organization. The remainder of this paper is organized as follows. In Section 2, we introduce the flux reconstruction method and 
linear trees briefly. Section 3 documents in detail how to construct and balance a linear tree entirely on GPU hardware. And we 
also illuminate how to build the face connectivity for the flux reconstruction method. In Section 4, we articulate how to perform 
adaptation and how data should be transferred in the adaptation procedure. We will present the numerical experiments in Section 5. 
Section 6 summarizes this work.

2. Background

2.1. The flux reconstruction method

The flux reconstruction method was originally proposed by Huynh [16] for tensor product elements. Researchers have extensively 
studied and enriched this family of high-order methods [25–28] since then. We remark that for high-order collocation methods, the 
nested inner resolution has a great potential of making the right hand side evaluation dominate the total computational cost such 
that the cost of mesh adaptation can be significantly smaller compared to low order methods. This has previously been observed 
with a 𝑝-adaptive flux reconstruction method on unstructured grids [24] where as the polynomial degree increases, the adaptation 
overhead gets smaller.

Considering the following 3D conservation law (2D problems are treated similar)

𝜕𝑢

𝜕𝑡
+ 𝜕𝑓

𝜕𝑥
+ 𝜕𝑔

𝜕𝑦
+ 𝜕ℎ

𝜕𝑧
= 0 (1)

on a Cartesian grid, we can calculate the spatial derivatives dimension by dimension as illuminated by Huynh [16]. In this work, 
local coordinate 𝜉, 𝜂, 𝜁 are aligned with 𝑥, 𝑦, 𝑧, respectively. Therefore, taking 𝑓 as an example, we first construct the corrected flux 
polynomial 𝑓 as

𝑓 = 𝑓 (𝜉) + 𝑔𝐿(𝜉)(𝑓 (−1) − 𝑓 (−1)) + 𝑔𝑅(𝜉)(𝑓 (1) − 𝑓 (1)), (2)

in the local coordinate system, where the local flux polynomial 𝑓 (𝜉) is represented using a Lagrangian polynomial as

𝑓 (𝜉) =
𝑘+1∑
𝑖=1

𝑙𝑖(𝜉)𝑓𝑖, (3)

and 𝑘 is the polynomial degree of 𝑙𝑖(𝜉). 𝑓 (±1) are numerical fluxes at the interfaces, which are referred to as the common fluxes. 
And a Riemann solver is normally used for their calculations. 𝑔𝐿 and 𝑔𝑅 are left and right correction functions, which are symmetric 
with respect to 𝜉 = 0. The derivative of the corrected flux polynomial can be expressed as

𝑓 ′ =
𝑘+1∑
𝑖=1

𝑙′𝑖 (𝜉)𝑓𝑖 + 𝑔
′
𝐿
(𝜉)(𝑓 (−1) − 𝑓 (−1)) + 𝑔′

𝑅
(𝜉)(𝑓 (1) − 𝑓 (1)). (4)

In terms of implementation, these differentiation operators are pre-computed. In our GPU implementation, we store the local 
differentiation operator of 𝑓 as well as 𝑔′

𝐿
(𝜉) in the constant memory. Radau polynomials are used in this work [16] to recover the 
3

discontinuous Galerkin method. The derivative with respect to 𝑥 can be computed as
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𝜕𝑓

𝜕𝑥
= 𝜕𝑓

𝜕𝜉

𝜕𝜉

𝜕𝑥
+ 𝜕𝑓

𝜕𝜂

𝜕𝜂

𝜕𝑥
+ 𝜕𝑓

𝜕𝜁

𝜕𝜁

𝜕𝑥
. (5)

Since 𝜉, 𝜂, 𝜁 are aligned with 𝑥, 𝑦, and 𝑧 respectively, 𝜕𝑓
𝜕𝜂

𝜕𝜂

𝜕𝑥
= 𝜕𝑓

𝜕𝜁

𝜕𝜁

𝜕𝑥
= 0 and the above equation is simplified as

𝜕𝑓

𝜕𝑥
= 𝜕𝑓

𝜕𝜉

𝜕𝜉

𝜕𝑥
. (6)

The local discontinuous Galerkin method [29] is utilized for viscous problems and we refer readers to [17] for implementation 
details for unstructured meshes whilst a 1D approach is also used for viscous terms in this work. Even though the mesh in AMR is 
non-uniform, Δ𝑥 of every element is not explicitly stored since it can be inferred from the encoded information of each element, 
which will be explained in the following content. In our current study, a three stage and third order explicit Runge–Kutta method is 
used for time integration [30]. From time step 𝑡𝑛 to time step 𝑡𝑛+1, the solution update is organized as⎧⎪⎨⎪⎩

𝑢1 = 𝑢𝑛 +Δ𝑡𝑅(𝑢𝑛),
𝑢2 = 3

4𝑢
𝑛 + 1

4𝑢
1 + 1

4Δ𝑡𝑅(𝑢
1),

𝑢𝑛+1 = 1
3𝑢
𝑛 + 2

3𝑢
2 + 2

3Δ𝑡𝑅(𝑢
2),

(7)

where 𝑅 = − 𝜕𝑓

𝜕𝑥
− 𝜕𝑔

𝜕𝑦
− 𝜕ℎ

𝜕𝑧
, which is referred to as the right hand side. Efficient octree algorithms would make building up a 

ℎ-multigrid framework for implicit time integration straightforward on the GPU hardware. We would like to explore whether 
previously-developed implicit methods [31,32] can be accelerated with a ℎ-multigrid solver or preconditioner for compressible 
flows, given that the 𝑝-multigrid methods in [32] do not work well on GPU for compressible flows when Ma >= 0.1. Throughout this 
paper, we are going to use “dim” to indicate the dimension of the problem.

2.2. Linear trees and Morton IDs

In tree structures, such as the binary search tree, a leaf node is a node in the tree that does not have any child nodes. A linear 
tree (quadtree for 2D and octree for 3D) refers to the fact that only the leaf nodes of the tree are stored as a sorted array of integers 
where each integer represents a leaf node in the tree. A node is usually referred to as an octant in an octree. And we use an octant 
to represent a node in a quadtree for consistency. In this paper, we are concerned with using Morton encoding to get the Morton ID 
of each node of the tree. The sorted array of Morton IDs is one type of space filling curves (SFC) and when it is visualized, we can 
observe curves of zigzag shapes filling the entire domain, as shown in Fig. 1a, and they are usually called Z-shape SFC.

Morton encoding can encrypt both the coordinates and the depth of an octant in the tree. With predefined spatial resolution, one 
would take the coordinates of one corner of the octant and convert them into an integer. The encoded corner is referred to as the 
anchor of the octant [23]. As shown in Fig. 1b, in this paper we use the left-front-bottom corner as the anchor. In Morton encoding, 
the inclusive region of the octant 𝑂𝑗 at depth 𝐷𝑗 is defined as [𝐱𝑗 , 𝐱𝑗 +Δ𝑥𝑗 ), where 𝐱𝑗 is the coordinate of the anchor and Δ𝑥𝑗 is the 
width of the octant. In this paper, the widths of any octant in the tree in all directions are the same if not specifically mentioned. As 
the size of the octants are sorted out at different depths, one can always convert the coordinates of the mesh from floats to integers. 
To distinguish, we use [𝐱𝑓

𝑗
, 𝐱𝑓
𝑗
+Δ𝑓 𝑥𝑗 ) to denote the region of an octant in the actual physical domain, and we use [𝐱𝐼

𝑗
, 𝐱𝐼
𝑗
+Δ𝐼𝑥𝑗 )

for the normalized integer representation of the octant domain. For any octant 𝑂𝑗 at depth 𝐷𝑗 , we can perform the Morton encoding 
by interleaving the bits of different components of 𝐱𝐼

𝑗
first and then append the level information. If we define the maximum depth 

allowed in the octree as 𝐷𝑚𝑎𝑥, the overall algorithm is described in Algorithm 1, following the work of Sundar el al. [23]. Note the 
difference between raw Morton ID 𝑂𝑗 and Morton ID 𝑂𝑗 is that the former only has the coordinate information.

Algorithm 1 Morton Encoding.

1: Determine the maximum tree depth 𝐷𝑚𝑎𝑥 and minimum element size Δ𝑥𝑓
𝑚𝑖𝑛

for the application and calculate the maximum number of bits, 𝑚𝑏 , that is needed to 
represent 𝐷𝑚𝑎𝑥 .

2: Convert the float coordinates 𝐱𝑓
𝑗

of any octant into integer coordinates 𝐱𝐼
𝑗

based on Δ𝑥𝑓
𝑚𝑖𝑛

and determine the depth of 𝐷𝑗 .

3: Interleave the bits of three components of the coordinate as 𝒙𝐷𝑗−1… 𝒙1
𝒙
0 to get the raw Morton ID 𝑂𝑗 , where 𝒙𝑘 = 𝑥𝑘3𝑥𝑘2𝑥𝑘1 for 3D and 𝒙𝑘 = 𝑥𝑘2𝑥𝑘1 for 2D in this 

algorithm, which means retrieving the 𝑘-th bit of each component of 𝐱𝐼
𝑗

and putting them together to get a binary number of 2/3 bits for a 2/3-dimensional 
problem.

4: Add padding bits to the raw Morton ID 𝑂𝑗 as 𝒙𝐷𝑗−1… 𝒙1
𝒙
0 0

⏟⏟⏟
repeat dim ⋅(𝐷𝑚𝑎𝑥−𝐷𝑗 )

.

5: Append the binary representation of the depth (𝐷𝑗 )2 to the result obtained in previous step as 𝒙𝐷𝑗−1 … 𝒙1
𝒙
0 0

⏟⏟⏟
repeat dim ⋅(𝐷𝑚𝑎𝑥−𝐷𝑗 )

(𝐷𝑗 )2
⏟⏟⏟
𝑚𝑏bits

to get the Morton ID 𝑂𝑗

which includes all the information that we need.

Once we obtain the Morton IDs of all octants in the tree, we sort the linear tree in ascending order to get  , which is the post-

order traversal of the tree. We refer readers to the work of Sundar el al. [23] for other interesting properties. Given the Morton ID 
of an octant, one can always decode it to retrieve the normalized integer coordinates as well as the width of the octant. Therefore, 
there is no need to save the non-uniform element size information explicitly. There are various ways of efficient implementation of 
interleaving the integer bits (Step 3 in Algorithm 1). We recommend the open-source software libmorton [33] for a collection of 
4

different approaches. In our GPU implementation, we utilize the magic number approach in [33].
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Fig. 1. Illustration of Z-curve and anchor.

3. GPU-based tree algorithms for discontinuous methods

Without some efficient thread-safe data structures, especially hash tables, on GPU, we have to redesign the algorithms for tree 
manipulations. When we combine linear trees with adaptive CFD methods, efficient algorithms of building up the mesh connectivity 
will be equally important as tree completion and balancing algorithms. We are going to articulate the algorithms that we design for 
efficient tree manipulations and connectivity query. Some common algorithms such as sorting, binary search, etc., are from the open 
source library THRUST from NVIDIA [34]. Detailed coding techniques will be explained if it is important for readers to understand 
how the algorithms work.

3.1. Tree construction

A set of octants is said to be complete if the union of these octants covers the entire domain. Alternatively, one can also define 
a complete linear tree as a linear tree in which every interior node has exactly eight child nodes in 3D and four child nodes in 
2D [23]. The algorithm that we use for tree completion follows the idea developed by Sundar et al. [23] with novel optimizations 
for the GPU hardware. An efficient GPU implementation will need to make use of the shared memory within one block of threads 

Algorithm 2 Tree construction on GPU hardware using shared memory and atomic counters.

1: Encoding the scattered points 𝐱𝑗 into Morton ID 𝑂𝑗 . And sort the array in ascending order to get the initial incomplete tree 𝑖𝑛𝑖𝑡.
2: For two consecutive octants 𝑂𝑗 and 𝑂𝑗+1 of 𝑖𝑛𝑖𝑡 , find the largest common ancestor (LCA).

• Split the LCA to get 2dim child octants 𝐶𝑖 , where 𝑖 = 1, … , 2dim .

• Update the parent octants of 𝑂𝑗 and 𝑂𝑗+1 from 𝐶𝑖 ;
• For the rest octants in 𝐶𝑖 , store any 𝑂𝑗 < 𝐶𝑖 < 𝑂𝑗+1 in the shared memory for new block-local array of octants 𝑙𝑜𝑐 .
• Repeat the procedure separately for parents of 𝑂𝑗 and 𝑂𝑗+1 , until 𝑂𝑗 and 𝑂𝑗+1 can be found in the new array of 𝐶𝑖 .

3: Sort the block-local array 𝑙𝑜𝑐 and remove the duplicates within the kernel function. In the meantime, use block-local atomic counter to record the number of new 
octants in each block of threads.

4: Update global atomic counter with the local one and write the block-local array to tail of the global array 𝑖𝑛𝑖𝑡.
5: Sort the tree in ascending order using thrust::sort.

6: Linearize the tree to get the complete tree  .

to store the newly generated octants and then write the results into global memory of the GPU card. Two atomic counters are used 
in our implementation. The first one is a block-local counter to record locally how many new octants are created and the second 
one is a global counter to record and synchronize among blocks for all the new octants. One caveat is that since the shared memory 
is used to store the newly generated Morton IDs, the total amount could exceed the full capacity of the shared memory under rare 
circumstances. Out of shared memory in tree algorithms is not as intimidating as it sounds. It just means the sparsity of the initial 
octants cause excessive octants generation within one GPU block. We can always repeat the procedure when out of shared memory 
happens and note that for next round, the problem will be greatly alleviated since we have already injected a significant amount new 
octants into the tree. We need to linearize the tree, which refers to removing the duplicates and overlaps in the tree.

Linearized tree. A linearized tree is a non-overlapping and complete tree. We propose the following simple algorithm for tree 
linearization as documented in Algorithm 3. The designed algorithm fits data parallel paradigm very well by reversing the tree and 
5

utilizing the thrust::unique algorithm in THRUST.
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Algorithm 3 Tree linearization using THRUST.

1: Reverse the tree (change the tree from ascending order to descending order).

2: Perform the algorithm thrust::unique in the thrust library with a binary predicate which tells if two consecutive Morton IDs are overlapping.

3: Reverse the remaining tree back.

Fig. 2. Illustration of the searching keys for neighbors of an octant.

3.2. 2:1 balance of the linear tree

The linearized complete tree from Algorithm 2 is not a 2:1 balanced tree. 2:1 balance refers to the depth difference of any two 
adjacent octants must not exceed 2. In this paper, we pursue strong 2:1 balance, namely, any two adjacent octants that share either 
an edge or a face must not have tree-depth difference larger than 1. Similar to polynomial balancing in polynomial adaptation [24], 
the canonical method of balancing the tree is to start from the finest resolution to ensure the 2:1 rule is enforced and then repeat 
the same process for coarser resolution one by one. The most challenge part of balancing a linear tree is to find the neighbors of any 
given octant in the tree. With a linear sorted tree represented by Morton IDs, finding a neighbor of an octant is equivalent to finding 
the lower bound of the corresponding Morton ID in the sorted array.

Lower bound. For any given Morton ID 𝑂𝑗 , we define the lower bound location of 𝑂𝑗 in the linear tree  as the location 𝑗 where 
 [𝑗 ] ≥ 𝑂𝑗 . We use notation 𝑎[𝑖] to indicate 𝑖-th entry in array 𝑎 in this manuscript. The algorithm thrust::lower_bound in 
THRUST is used since it can efficiently find lower bounds of an input array in another array. Based on the properties of Morton IDs, 
we have three significant scenarios, which will be used later, listed as follows:

⎧⎪⎨⎪⎩
 [𝑗 ] =𝑂𝑗, i.e., lower bound of 𝑂𝑗 in the tree is 𝑂𝑗 itself;
 [𝑗 − 1] ∋𝑂𝑗, i.e., the octant on the left of the lower bound of 𝑂𝑗 is the parent of 𝑂𝑗 ;
 [𝑗 ] −𝑂𝑗 = 1 and  [𝑗 − 1] ∈𝑂𝑗, i.e., the lower bound is the first child of octant 𝑂𝑗.

(8)

Note that in this paper, we use 𝐴 ∈ 𝐵 to denote that 𝐴 is a child of 𝐵 and 𝐵 ∋ 𝐴 to denote 𝐵 is a parent of 𝐴. We adopt the 
concept of searching corners used by Sundar et al. [23]. A searching corner is the octant on the finest resolution that shares a vertex 
with both the current octant and the parent octant. The searching keys are octants that make the shared vertex as the center of a 
cube/square formed by the searching corner and keys. We remark that a searching key does not have to be in the tree and one can 
always find either the searching key itself or an ancestor of the searching key as long as the tree is complete and linearized. The 
schematic diagram of a searching corner and corresponding searching keys are presented in Fig. 2 and we also visually show what is 
a lower bound for a given searching key.

The algorithm that we develop to balance a tree at depth 𝐷 is presented in Algorithm 4. The optimization here for multi-threading, 
compared to the work of Sundar et al. [23], is that we collect all the searching keys together and perform data parallel computing. 
In the course of balancing a tree, the searching keys and local refinement of target octants will end up with lots of duplicated child 

Algorithm 4 Balancing tree at depth 𝐷 on GPU.

1: Collect all the Morton IDs that are on depth 𝐷 in the tree  and store them as 𝐷 .

2: Find all the searching keys of all the Morton IDs in 𝐷 and store the unique values as 𝐷 .

3: For every searching key in 𝐷 , find the location of its lower bound in the tree  and store the results in 𝐷 .

4: For each searching corner 𝑗 in 𝐷 , if  [𝐷,𝑗 − 1] is a parent of 𝑗 , refine  [𝐷,𝑗−1] and store any octant which is not a parent of 𝑗 in the shared memory. 
Repeat the process for the new parent octant of 𝑆𝑗 until the depth of these new octants reaches 𝐷+ 1.

5: Perform a block-lock removal of duplicates and use a block-local atomic counter to record the total unique Morton IDs per block.

6: Use the block-local counter to update the global atomic counter of the total number of new octants and in the meantime write new octants to the tail of tree  .

7: Sort and linearize the updated tree  .

octants. One could utilize a hash table to quickly remove duplicates on the fly as Step 4 of Algorithm 4 generates new octants if 
the algorithm were implemented for CPU hardware. On GPU hardware, we use the same approach as in Algorithm 2 for duplicates 
removal. Note that as long as the tree is completed, we do not have to perform tree completion anymore in the 2:1 balancing 
6

algorithm. One additional note is that in numerical experiments, out of shared memory is more likely to happen in Algorithm 4
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Fig. 3. Face numbering for 2D and 3D elements.

instead of Algorithm 2 in the phase of building an initial mesh. In CFD simulations, since the mesh before adaptation is already 
completed and balanced, it would not be an issue.

3.3. Interface data structure and connectivity

A linear tree of octants is not equivalent to a mesh of elements. For methods like continuous Galerkin methods, nodal information 
such as how a node is connected to elements is needed. Finding such information is trivial on CPU hardware with hash tables but 
challenging if done entirely on GPU. Fortunately, for discontinuous method, such as the flux reconstruction method used in the work, 
we only need to know how elements communicate through faces.

Data structures. For a tree of length 𝑀 , we define an array  of length 𝑛𝑓 ⋅𝑀 , where 𝑛𝑓 = 2 ⋅ dim is the number of faces that an 
octant has and dim is the dimension of the problem. Following C++ convection of array indexing, the entries in [𝑛𝑓 ⋅ 𝜄𝑒, 𝑛𝑓 ⋅ (𝜄𝑒 + 1))
store the indices of the neighboring elements of the current element 𝜄𝑒. For any octant, we define the face indices as illustrated in 
Fig. 3.

Face matching. With the linear data structure defined for face matching, the remaining question is to find the neighbors. Similarly, 
we need to identify the searching keys first. The nuance here is that we define the searching keys on the same depth as the current 
octant. There are three types of faces in the nonuniform mesh represented by a linear tree, namely, conforming faces, nonconforming 
faces and single-sided faces. Both conforming and nonconforming faces are interior faces and single-sided faces will only appear on 
the boundary. The algorithm to find the matching pair for the faces that an octant have is organized in Algorithm 5.

Algorithm 5 Build face connectivity.

1: Find the search keys of any octant 𝑂𝑗 in tree  by calculating the Morton IDs of all its neighbors which share faces with it as shown in Fig. 4 and store in 𝑆 .

2: Find lower bounds in the current tree  for all keys and store in 𝐵.

• If  [𝐵𝑗 ] = 𝑆𝑗 , then the neighbor of 𝑂𝑗 , namely, 𝑆𝑗 is in the tree and the corresponding face of 𝑆𝑗 is the matching conforming face.

• If  [𝐵𝑗 − 1] ∋ 𝑆𝑗 , then the neighbor of 𝑂𝑗 is the parent of 𝑆𝑗 . The corresponding face of  [𝐵𝑗 − 1] is the coarse face of a nonconforming pair.

When we build up the searching keys 𝑆 in Algorithm 5, these keys do not have to be in the tree, similar to the searching keys for 
2:1 balance. In Step 2 of Algorithm 5, the spatial relationship of two sides of one conforming pair is straightforward. For the 𝑖𝑓 -th 
face of 𝑂𝑗 , its matching conforming face will be the (𝑖𝑓 + 1)-th face of the neighboring element if 𝑖𝑓 is an even number or 𝑖𝑓 − 1 if 
𝑖𝑓 is an odd number, following the numbering convention shown in Fig. 3. Note that raw Morton ID 𝑂𝑗 is obtained by removing the 
padding zero bits and depth bits of 𝑂𝑗 . Taking Face 0 of 𝑂𝑗 and 𝑂𝑗 + 2 in Fig. 5 as an example, they both have Face 1 of 𝑂𝑐,0 as 
the matching face. When we need to project the working variables from the fine faces (Face 0 of 𝑂𝑗 and 𝑂𝑗 + 2) to the coarse face 
(Face 1 of 𝑂𝑐,1), we can retrieve the last two bits of 𝑂𝑗 and 𝑂𝑗 + 2 to get 0 and 2 in decimal representation. As we define the first 
contributor along one axis will be the one that has smaller coordinates, we will know 𝑂𝑗 is the first contributor and 𝑂𝑗 + 2 is the 
second in the projection procedure of common flux calculations. Similarly, for Face 2 of 𝑂𝑗 and 𝑂𝑗 +1, the last two bits of these two 
numbers will be 0 and 1 and 𝑂𝑗 is first contributor for the nonconforming face formed with coarser octant 𝑂𝑐,1. We remark that for 
any 2dim−1 siblings that form a nonconforming face with another coarser element, we do not care if the other 2dim−1 − 1 siblings are 
interior nodes or leaf nodes in the tree.

We explain the reason why we do not try to find the neighbors of any element that shares a face with 2dim−1 finer elements. 
Considering the example presented in Fig. 6, for 𝑂𝑐,0, one needs to find both 𝑂𝑘 or 𝑂𝑗 because their Morton IDs cannot be inferred 
from each other due to the presence of refined sibling octant on the right side of 𝑂𝑗 . Hence, more searching and bookkeeping will 
be needed. More information regarding how the face connectivity information will be used in discontinuous Galerkin methods will 
7

be illuminated in next section. It is noteworthy that what is needed for discontinuous Galekin methods can simply be obtained by 
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Fig. 4. Illustration of the searching keys of an octant for interface matching.

Fig. 5. Illustration of face matching in quadtree, where all siblings of 𝑂𝑗 are in the tree.

Fig. 6. Illustration of face matching in quadtree, where 𝑂𝑘 and 𝑂𝑗 cannot be inferred from each other.

performing series of binary searches for the searching keys. The methods are indifferent to nodal connectivity, which would normally 
require data structures like hash tables to efficiently obtain. The attributes that discontinuous methods have make them better suited 
8

for AMR on GPU than continuous Galerkin methods.
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4. The 𝒉-adaptive flux reconstruction method

4.1. Adaptation procedure

The procedure that we use to carry out adaptation is organized as in Algorithm 6. For coarsening, one has to first rectify the 
marking in Step 3 of Algorithm 6 simply due to the fact that an interior node of the tree could have child nodes and grandchild 
nodes at the same time. Moreover, we would have to identify those interior node in Step 4 and then remove the child nodes in Step 
5 while no extra action is needed for refinement. The tree linearization will automatically remove any octant which is refined in the 
array. Our algorithm of adaptation procedure also implies that we can at most refine or coarsening an octant once in one adaptation 
procedure. Step 4 relies on the properties of the siblings illustrated in Fig. 5, where in the sorted array 2dim siblings are consecutively 
stored with increment of the raw Morton ID equals to 1.

Adaptation criteria for CFD simulations of unsteady problems have been widely studied in literature. There are featured-

based [24], discretization-error based, truncation-error based, and adjoint-based based [35] methodologies, etc. Discussion or 
evaluation of these different methodologies will be beyond the scope of this work and we recommend the work of Naddei et al. [36]

and Ims and Wang [37]. When AMR is coupled with the flux reconstruction method, we would like to, in this work, focus on the 
performance of tree balancing, connectivity query, data transfer, compared to that of the flux reconstruction solver. Therefore, we 
are going to use feature-based approaches for the problems studied in the numerical experiment studies.

Algorithm 6 Adaptation procedure of the tree.

1: Evaluate the adaptation flags for each element in the mesh. Elements will be marked with flag -1 and 1 for coarsening and refinement, respectively. Flag 0 means 
the element will remain the same.

2: Refinement of any octant will be honored via directly splitting the octant and append the child octants to the tail of tree  . Similar techniques of using block-local 
and global atomic counters are used as those used in 2:1 balance.

3: Rectify coarsening flags by reverting flag -1 to 0 if any octant does not have all its siblings existing in  .

4: If all child octants of an interior node are marked for coarsening, collect the parent Morton ID in  .

5: Remove those Morton IDs in  which can find its parent in  and append  to  afterwards.

6: Sort and linearize  .

4.2. Solution data transfer

Data transfer between the new tree 𝑛 and old tree 𝑜 on GPU relies on the mapping between the two trees. There are three types 
of data transfer in an adaptation procedure.

Direct copy. Octants in 𝑛 and 𝑜 that have the same Morton IDs are elements which are kept as the same in one adaptation 
procedure. A direct copy of the solution variables is sufficient.

Interpolation. When an octant is split into 2dim children, the working variables in these children can be interpolated from the 
parent octant. Note that the interpolation coefficients can be directly evaluated within the kernel function through tensor products of 
1D Lagrange interpolations. We opt to use interpolation instead of projection for refinement to reduce the copy of a dense projection 
matrix into the shared memory here.

Projection. When 2dim siblings are merged into one parent octant, a 𝐿2 projection is used to transfer the data from child octants 
to the parent octant. Given 𝐾𝜄, where 𝜄 = 1, 2, … , 2dim, are the child octants which are fused into the parent octant 𝑃 . The discrete 
formulation to project the state variables 𝒖𝜄

𝐾
of children octants to 𝒖𝑃 of the parent octant can be formulated as

𝒖𝑃 =𝑴
−1

2dim∑
𝜄=1

𝑺
𝜄
𝒖
𝜄
𝐾
. (9)

𝑴
−1
𝑺
𝜄 is the projection matrix accounting for the contribution of the 𝜄-th child. We refer readers to [38] for detailed derivations. 

These matrices are precomputed and stored in the global memory of the GPU hardware. In the kernel function that deals with 
volumetric projection, each thread will process one solution point of the parent octant. And the projection is done in order through 
𝜄 = 1 to 𝜄 = 2dim with corresponding projection matrix 𝑴−1

𝑺
𝜄 and state variables 𝒖𝜄

𝐾
loaded into the shared memory each time. Note 

that raw Morton IDs of these child octants are consecutive such that for the mapping between the old and new trees, one only need 
to find the first contributor and the rest can be inferred.

At this point, readers should be familiar with the usage of lower bounds and would not be surprised that we are going to use a 
similar approach to find the mapping between old tree 𝑜 and new tree 𝑛. In Algorithm 7, we present the algorithm to identify the 
mapping. The Step 5 of Algorithm 7 is needed because when we use atomic counters to write information into the data arrays on 
the global memory, there is no rule that regulates which thread writes first. By sorting the IDs, we can coalesce the memory access 
as much as possible in the data transfer procedure. As stated in Step 4 of Algorithm 7, the Morton ID of these child octants are 
9

consecutive.
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Algorithm 7 Mapping between old and new tree.

1: Find the lower bounds for all Morton IDs 𝑂𝑗 of the new tree 𝑛 in the old tree 𝑜 and store in 𝐵.

2: If 𝑜[𝐵𝑗 ] =𝑂𝑗 , then this is a direct-copy octant.

3: If 𝑜[𝐵𝑗 − 1] is a parent of 𝑂𝑗 , then the 𝑜[𝐵𝑗 − 1] is refined to get 𝑂𝑗 .
4: If 𝑜[𝐵𝑗 ] −𝑂𝑗 = 1, then this octant 𝑜[𝐵𝑗 ] together with following 2dim − 1 octants in the old tree are fused to get 𝑂𝑗 .
5: Store corresponding 𝐵𝑗 and 𝑂𝑗 for all different scenarios. After done, sort the 𝐵𝑗 and 𝑂𝑗 arrays based on the value of 𝑂𝑗 .

4.3. Common flux calculations on interfaces

In Section 3.3, we present the data structures and algorithms to identify the face connectivity information that is needed for the 
flux reconstruction method. In this section, we are going to explain how to perform the common flux calculations for inter-element 
communication in the flux reconstruction method. To avoid thread divergence, we will group the common flux calculations into 
three different types, namely, (1) conforming interior face pairs, (b) nonconforming interior face pairs, and (c) exterior boundary 
faces. For periodic boundary faces, they eventually become interior faces. The special treatment is that when we try to identify the 
searching keys in the 2:1 balancing algorithm or the face connectivity query algorithm we need to take into account the periodicity 
of integer coordinates. At a pair of conforming faces, one would only need to use the working variable from both sides 𝒖𝑙 and 𝒖𝑟 to 
calculate the common flux. At nonconforming interfaces, we use the approach proposed by Kopriva [38]. The procedure to perform 
common flux calculations for mortar faces is described in Algorithm 8.

Algorithm 8 Procedure of common flux calculations.

1: Interpolate the solution from interior solution points to local flux points.

2: Project the local solution on the flux points to the mortar face.

3: Compute the common fluxes using a Riemann solver on the mortar face.

4: Project the common fluxes back to each side of the local elements.

𝐿2 projections are used in the process to ensure conservation of the numerical methods. Taking the illustration in Fig. 7 as an 
example, the projection between the local faces Ω1,2

𝑓
and mortar faces Ξ1,2

𝑚 is straightforward. Since they are conforming and the 
polynomial degrees are the same, a direct copy is all we need. The projection from 𝒖Ω𝑐 on the local face Ω𝐶 to �̂�Ξ𝜄𝑚 on mortar faces 
Ξ𝜄𝑚, 𝜄 = 1, 2, … , 2dim−1 can be achieved as

�̂�Ξ𝜄𝑚 =𝑴
−1
Ξ𝜄𝑚

𝑺Ξ𝜄𝑚𝒖Ω𝑐 , (10)

where 𝑴−1
Ξ𝜄𝑚

𝑺Ξ𝜄𝑚 is the projection matrix [38]. After the conserved variables are ready on the mortar faces, we use a Rusanov solver 
for the common inviscid flux calculations in this work. The projection of common fluxes from the mortar faces to the coarse face is 
a bit more complicated since 2dim−1 mortar faces will contribute to the same coarse face. The projection reads

𝑭Ω𝑐 =𝑴
−1
Ω𝑐

2dim−1∑
𝜄=1

𝑺
𝜄
Ω𝑐
�̂� Ξ𝜄𝑚 , (11)

where 𝑴−1
Ω𝑐
𝑺
𝜄
Ω𝑐

is the corresponding projection matrix for the 𝜄-th face that contributes to the projection [38]. We follow the similar 
procedure for the LDG method to deal with viscous problems. These projection operators in Eqs. (10) and (11) are pre-computed and 
stored in the global memory.

We remark that there is one major difference for the projections at nonconforming interfaces, compared to the projection for 
volumetric data transfer in Eq. (9). As mentioned in Section 3.3, we find the neighbors of finer elements at nonconforming interfaces. 
And the kernel function would be organized to calculate the common fluxes on the finer sides of the nonconforming faces, which 
are aligned with the mortar faces. Hence, the projection in Eq. (10) can be locally done within one thread block and each thread 
deals with one flux points after loading the corresponding operator and state variables into shared memory. However, mortar faces 
that contribute to the projection summation in Eq. (11) would possibly not be in the same block of threads such that different 
threads ought to write to the same destination in global memory. To protect the calculations from thread racing, we need to use the 
atomicAdd algorithm. Additionally, only one projection matrix will be loaded into the shared memory for the chunk of threads in 
a block that deal with the current mortar face.

5. Numerical results

In this section, a brief comparison of the GPU and CPU version of the tree completion and balancing algorithms is conducted 
first. We will then focus on the performance of the adaptive solver in terms of both accuracy and computational cost for inviscid and 
viscous flows. All simulations were run on a Windows Subsystem for Linux 2 (WSL2) with the Ubuntu 22.04.2 LTS Linux distribution 
while the host laptop has a NVIDIA GeForce RTX 2060 GPU card. There are 1920 CUDA cores, 6 GB memory for this GPU card and 
the bandwidth is 264.05 GB/s. The host laptop has an Intel i-10750H CPU with 6 cores. Note that the CUDA runtime and libraries 
10

would occupy around 1.2 GB GPU memory such that only 4.8 GB were available for the simulations.
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Fig. 7. Illustration of the mortar interface.

Fig. 8. (a) Stanford bunny and (b) balanced tree.

5.1. Tree completion and tree balancing

In this section, we aim to test the efficiency of the tree completion and balancing algorithms for the algorithms that we developed. 
As a reference, we also implemented the CPU version of the code, which was made easy by the multi-platform support of THRUST 
and C++ template programming. The major difference is that in the CPU version we used std::unordered_map from the standard 
template library (STL) in C++, which essentially is a hash table data structure and a std::mutex is used to protect it from data 
racing. In all initial mesh generations of our numerical examples, we are going to use 𝐷𝑚𝑖𝑛 to generate a coarse background mesh 
and 𝐷𝑚𝑎𝑥 will be where the initial mesh points are encoded.

The Stanford bunny was used to test the robustness and performance of the developed tree completion and balancing algorithms. 
In Fig. 8, we present the geometry and the balanced tree. For this testing case, the minimum tree depth 𝐷𝑚𝑖𝑛 was set as 𝐷𝑚𝑖𝑛 = 4
for this case and the maximum tree depth 𝐷𝑚𝑎𝑥 = 9, 10 were tested. In Fig. 9, the computational cost of tree completion and tree 
balancing are illustrated for both CPU version and GPU version of the code. When 𝐷𝑚𝑎𝑥 = 9, the final element count is around 0.4 
million. Overall, the computational cost of tree completion is trivial compared to that of 2:1 balancing for both CPU version and 
GPU version of the algorithms. Compared to parallel CPU version of the code (the CPU has 6 physical cores with hyper-threading 
enabled), we can get a speedup of 5.11 for 2:1 balancing using the newly developed GPU code. In average we allow each thread to 
create 16 new octants and the rest of the shared memory was used for sorting and removing duplicates within the block of threads. 
When 𝐷𝑚𝑎𝑥 = 10, the newly generated octants in tree balancing Algorithm 4 would exceed the allocated cap. To resolve this issues, 
we performed the tree balance algorithm again and a speedup of 3.72 was achieved while the final element count is around 0.9 
million. Even though, we have to repeat Algorithm 4, the speedup of the GPU code compared to the CPU version is still significant. 
Note that as long as we start CFD simulations with a complete and balanced tree, out of shared memory for refinement would not 
happen because we only allow any octant to be refined once per adaptation.

The speedup of GPU-based tree construction and balancing through this test is promising. Admittedly, until this point, we are 
still steps away from automated initial mesh generation for CFD simulations. One would need to refine the octants near the surface. 
Another data structure, namely, the GPU-based linear bounded volume hierarchy [39], can be used to accelerate the ray casting 
algorithms for this purpose. We will further discuss its application to an automated CFD solver in the future. In next section, we are 
11

going to focus on the accuracy and efficiency of 𝑝-adaptive FR using linear trees.



Journal of Computational Physics 502 (2024) 112823L. Wang, F. Witherden and A. Jameson

Fig. 9. Computational cost of tree completion and 2:1 balancing for Stanford bunny.

5.2. Performance study of the adaptive solver

As a proof of concept, we opt to use the canonical inviscid isentropic vortex propagation problem to study the performance of the 
adaptive solver with linear trees. The mathematical description of the vortex is formulated as

⎧⎪⎪⎨⎪⎪⎩

𝛿𝑢 = − 𝛼

2𝜋 (𝑦− 𝑦0)𝑒
𝜙(1−𝑟2),

𝛿𝑣 = 𝛼

2𝜋 (𝑥− 𝑥0)𝑒
𝜙(1−𝑟2),

𝛿𝑤 = 0,
𝛿𝑇 = − 𝛼2(𝛾−1)

16𝜙𝛾𝜋2 𝑒
2𝜙(1−𝑟2),

(12)

where 𝜙 = 1
2 , 𝛼 = 5, and 𝑟 = (𝑥 − 𝑥𝑐(𝑡))2 + (𝑦 − 𝑦𝑐(𝑡))2. (𝑥𝑐(𝑡), 𝑦𝑐(𝑡))⊤ is the axis of the vortex center. Initially, the vortex is centered at 

axis (0, 0)⊤. The free stream is defined as (𝜌, 𝑢, 𝑣, 𝑤, Ma) = (1, 1, 1, 0, 0.5). A fixed time step size Δ𝑡 = 0.001 is used for all simulations. 
The minimum element sizes in the mesh Δ𝑥𝑚𝑖𝑛 were chosen as 25∕64, 25∕128, 25∕256 for all simulations.

The first set of simulations were run with a 2D computational domain of size [−12.5, 12.5]2. Grid refinement study was performed 
on both uniform and non-uniform meshes. For AMR with octree trees, the minimum tree depth was set as 𝐷𝑚𝑖𝑛 = 3 for all 2D 
simulations and the maximum tree depth would vary from 6,7,8 for different Δ𝑥𝑚𝑖𝑛. We used a solution-based adaptation criterion 
to focus on the computational cost of tree manipulations, data transfer, and solver time. The adaptation criterion was defined as the 
following list.

• For an element, if there are more solution points within 
√
(𝑥− 𝑥𝑐(𝑡))2 + (𝑦− 𝑦𝑐(𝑡))2 < 5 than those are√

(𝑥− 𝑥𝑐(𝑡))2 + (𝑦− 𝑦𝑐(𝑡))2 > 6, then this element is marked for refinement.

• For an element, if there are fewer solution points within 
√
(𝑥− 𝑥𝑐(𝑡))2 + (𝑦− 𝑦𝑐(𝑡))2 < 5 than those are√

(𝑥− 𝑥𝑐(𝑡))2 + (𝑦− 𝑦𝑐(𝑡))2 > 6, then this element is marked for coarsening.

• Otherwise, the element remains the same.

Adaptation was performed every 10 time steps. Herein, 𝐿2 norm of the density error, which is defined as

𝐿2(𝑒𝜌) =

√
∫ (𝜌𝑒𝑥𝑎𝑐𝑡 − 𝜌𝑛𝑢𝑚)2𝑑𝑉 , (13)

is used for the grid refinement study and the order of accuracy is defined as

Order = 𝑙𝑜𝑔(𝑒𝜌,1∕𝑒𝜌,2)∕𝑙𝑜𝑔(Δ𝑥𝑚𝑖𝑛,1∕Δ𝑥𝑚𝑖𝑛,2) (14)

in this work for any Mesh 1 and Mesh 2.

The statistics of simulations run on uniform meshes are presented in Table 1. Nominal orders of accuracy were preserved through 
the grid refinement study. In Fig. 10, we showcase the final nonuniform mesh of the simulation run using 𝑝3 FR. The naive refinement 
12

methodology ended up with a very conservative/big refined region. Statistics of simulations performed on non-uniform meshes can 
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Table 1

Grid refinement study on domain [−12.5, 12.5]2 with 2D uniform meshes.

Non-adaptive 𝑝1 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 1.750𝑒− 02 32.02 4096

25∕128 2.68𝑒− 03 2.71 79.66 16384

25∕256 4.01𝑒− 04 2.74 215.87 65536

Non-adaptive 𝑝2 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 4.30𝑒− 04 40.45 4096

25∕128 5.86𝑒− 05 2.87 125.45 16384

25∕256 8.59𝑒− 06 2.77 423.95 65536

Non-adaptive 𝑝3 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 1.22𝑒− 05 70.03 4096

25∕128 5.21𝑒− 07 4.55 194.93 16384

25∕256 3.24𝑒− 08 4.01 685.51 65536

Table 2

Grid refinement study on domain [−12.5, 12.5]2 with 2D nonuniform meshes.

Adaptive 𝑝1 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 1.75𝑒− 02 40.00 10.22 865 6

25∕128 2.68𝑒− 03 2.71 47.24 14.74 2803 7

25∕256 4.01𝑒− 04 2.74 66.18 17.62 10519 8

Adaptive 𝑝2 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 4.30𝑒− 04 40.45 9.91 856 6

25∕128 5.86𝑒− 05 2.87 53.82 14.78 2809 7

25∕256 8.59𝑒− 06 2.77 114.05 22.87 10513 8

Adaptive 𝑝3 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 1.22𝑒− 05 39.94 9.46 856 6

25∕128 5.21𝑒− 07 4.55 60.54 14.60 2809 7

25∕256 3.25𝑒− 08 4.00 162.58 25.22 10627 8

be found in Table 2. The adaptation cost in this table includes all aspects related to adaptation, such as tree manipulations, data 
transfer and face query. And we only observed trivial 𝐿2(𝑒𝜌) differences between simulations running on uniform and non-uniform 
meshes. As expected, the computational cost can be significantly reduced through mesh adaptation. In Fig. 11a, we present the plots 
of total cost vs. 𝐿2(𝑒𝜌) for these simulations. As shown in Fig. 11b, when the polynomial degree increases, the achieved speedup 
increases as well. And a speedup of 4.22 was achieved for 𝑝3 FR when 𝐷𝑚𝑎𝑥 = 8. This is a good testimony of the advantage of using 
high-order methods with octree-based adaptation techniques and is consistency with what we observed in our previous work of 
polynomial adaptation [24]. For the same polynomial degree, when the mesh was refined, speedup became more significant simply 
due to the fact the reduction in total element count became more profound. Note that for small problems, the overhead of adaptation 
was overwhelming such that no or trivial speedup was achieved. In Fig. 12a, 12b, and 12c, we illustrate runtime of different parts in 
the adaptive solver including total cost, total solver cost, and total adaptation cost, where three different components of adaptation 
cost, namely, tree manipulations, data transfer and face connectivity query are also shown. Note that tree manipulations includes 
tree adaptation, 2:1 balancing, and finding the mapping between old and new trees. For 2D problems, tree manipulations took the 
most part of the adaptation time. As the problem size increases, the cost of data transfer, compared to that of the building the face 
connectivity gradually increases. In Fig. 12d, the percentiles of the adaptation cost in the total cost are illustrated. Overall, as the 
polynomial degree increases, the ratio of Adaptation

Total cost
will decrease. For 𝑝3 polynomials on the finest mesh, adaptation only took around 

15% of the total cost. For 𝑝1 polynomials, it could be as much as 31.2% of the total cost.

The second test we performed was on a larger computational domain, such that the vortex could propagate a longer distance 
within one period and larger maximum tree depths could be used to test the efficiency of our adaptive solver. The computational 
domain was within [−50, 50]2 and the final status of the mesh and vortex are shown in Fig. 13. Overall statistics of the simulations 
on uniform meshes and nonuniform meshes are documented in Table 3 and Table 4. We could not run the simulation on the finest 
uniform mesh with 𝑝3 FR because of not enough GPU memory. The speedup that AMR offers for this particular experiment, shown 
in Fig. 14, is around a factor of 49 for 𝑝2 polynomials on the finest mesh. In Fig. 15, bar charts of different components of the entire 
solver are plotted. The trends of different components are similar to what are observed for simulations run on the smaller domain. 
13

The overhead of adaptation compared to the total cost slightly increased. In Fig. 16, we present the effect of tree depth on the 
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Table 3

Grid refinement study on domain [−50, 50]2 with 2D uniform meshes.

𝑝1 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 4.65𝑒− 02 870.31 65536

25∕128 9.19𝑒− 03 2.34 3108.43 262144

25∕256 1.28𝑒− 03 2.84 11554.10 1048576

𝑝2 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 1.17𝑒− 03 1747.67 65536

25∕128 9.15𝑒− 05 3.68 6299.62 262144

25∕256 9.49𝑒− 06 3.27 23706.10 1048576

𝑝3 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Element count

25∕64 2.68𝑒− 05 2720.30 65536

25∕128 5.34𝑒− 07 5.64 9993.02 262144

Table 4

Grid refinement study on domain [−50, 50]2 with 2D nonuniform meshes.

Adaptive 𝑝1 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 4.64𝑒− 02 182.39 56.75 961 8

25∕128 9.19𝑒− 03 2.33 211.71 77.14 2899 9

25∕256 1.28𝑒− 03 2.84 294.26 92.44 10615 10

Adaptive 𝑝2 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 1.18𝑒− 03 168.80 49.13 952 8

25∕128 9.19𝑒− 05 3.68 230.35 76.90 2905 9

25∕256 9.54𝑒− 06 3.27 488.48 115.14 10609 10

Adaptive 𝑝3 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝑒𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 2.68𝑒− 05 176.38 49.69 952 8

25∕128 5.34𝑒− 07 5.64 273.20 75.77 2905 9

25∕256 3.46𝑒− 08 3.95 710.11 135.08 10723 10
14

Fig. 10. Final status of the vortex on 2D mesh at 𝑡 = 25 for small domain size. 𝐷𝑚𝑖𝑛 = 3 and 𝐷𝑚𝑎𝑥 = 8.
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Fig. 11. Runtime vs. error for FR with/without AMR for simulations run on 2D domain [−12.5,12.5]2 .

adaptation cost. When larger tree depth is allowed, in Algorithm 4, one need to perform balancing for more levels. Therefore, it is 
reasonable to see that the normalized adaptation cost of simulations run using 𝐷𝑚𝑎𝑥 = 10 was larger than that using 𝐷𝑚𝑎𝑥 = 8 given 
that the element count were close.

The third tests were conducted on 3D meshes. Simulations were all run with adaptation turned on. The domain on the 𝑥𝑦 plane 
was [−12.5, 12, 5]2 and the thickness of the domain in 𝑧 direction was 1.5625. We showcase a quarter of the vortex and domain after 
one period with mesh turned on in Fig. 17. The 3D effect would lead to a significant element count in the vortex region as we refine 
the mesh. The minimum tree depth was set as 𝐷𝑚𝑖𝑛 = 4 such that in the coarsest region, there was only one element in 𝑧 direction. 
The maximum tree depth 𝐷𝑚𝑎𝑥 varied from 6 to 8 for this test. We used the same adaptation criteria as that in 2D simulations. In 
Table 5, we present the overall statistics. In Fig. 18a, 18b, and 18c, the computational cost of different components of the entire 
solver is illustrated. For 3D simulations, the overhead of adaptation compared to the total cost is significantly smaller. Similar to 2D 
results, tree manipulations took most of the time in adaptation. In Fig. 18d, we observe that as the total element count increases or 
the polynomial degree increases, the ratio Adaptation

Total cost
will decrease. For 𝑝2 FR with 𝐷𝑚𝑎𝑥 = 8, it is slightly less than 2%; and for 𝑝3 FR 

with 𝐷𝑚𝑎𝑥 = 8, it is slightly smaller than 1.5%. Compared to low-order methods or 2D problems, more inner points are nested within 
one element such that the element count becomes relatively smaller compared to the total number of solution points. This further 
demonstrates that with high-order methods, we can minimize the overhead of adaptation on the GPU hardware.

For dynamic memory management, thrust::device_vector, a container from THRUST, that we use for data storage will 
automatically allocate a new chunk of memory, then copy the data from the old memory space to the new space, and finally release 
the old memory, when its resize functionality is invoked and the demanded memory exceeds its capacity. This background procedure 
would cause the code to crash when the hardware is heavily loaded. Therefore, in the framework of the developed adaptive solver, 
pre-allocating is employed to minimize allocation overhead and memory fragmentation for the adaptive solver as well as preventing 
crash. For the adaptive solver, we use element number as 17,000 as the value to pre-allocate memory. In Fig. 19, the memory 
consumption details are presented for the adaptive solver on simulating the problem on the 3D domain. The tree used around 25 
megabytes of memory only. The memory usage of the tree was 0.60%, 1.34%, and 3.57% of the total usage for 𝑝3, 𝑝2 and 𝑝1 FR 
methods, respectively. One would expect the ratio to further increase for 2D problems. But overall, the fluid solver would consume 
most of the memory.

5.3. Viscous flow over a square cylinder

Flows over square cylinders are of engineering significance for structure design, flow-induced vibration analysis, etc. In this work, 
we present simulation results of the flow over a square cylinder of aspect ratio 𝐴 = 6, defined by 𝐴 =𝐿∕𝑊 , where 𝐿 is the spanwise 
length of the cylinder and 𝑊 is the width of the cylinder. The studied Reynolds number was Re∞ = 400 in this work and Ma∞ = 0.1. 
In the work of Sohankar et al. [40], simulations of Re∞ ranging from 150 to 500 can be found for incompressible flows. Minimum tree 
depth for this simulation was fixed as 𝐷𝑚𝑖𝑛 = 6. We truncated the tree in 𝑧-direction, such that there was only one element at far-field 
in 𝑧-direction. 𝐷𝑚𝑎𝑥 = 12 and 𝐷𝑚𝑎𝑥 = 13 were used such that there were 64 elements and 128 elements in the spanwise direction 
in the vicinity of the wall, respectively. The smallest elements had a dimension of (0.0625𝑊 , 0.0625𝑊 , 0.09375𝑊 ) for 𝐷𝑚𝑎𝑥 = 12
and (0.03125𝑊 , 0.03125𝑊 , 0.046875𝑊 ) for 𝐷𝑚𝑎𝑥 = 13. The domain size in this work was [−128𝑊 , 128𝑊 ]2 × [0, 6𝑊 ], which was 
significantly larger in 𝑥𝑦-plane than the one studied in [40] because truncation of the tree was only supported in 𝑧-direction in the 
developed code. A simple feature-based adaptation methodology was used for this study. We computed the smoothness indicator of 
15

an element 𝑒 based on variable 𝜙 as
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Fig. 12. Computational cost of different components of the adaptive 𝑝1 , 𝑝2 , and 𝑝3 on 2D domain [−12.5,12.5]2 .

Table 5

Grid refinement study on domain [−12.5, 12.5]2 × [0, 1.5625] with 3D nonuniform meshes.

Adaptive 𝑝1 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 2.19𝑒− 02 59.05 11.36 3049 6

25∕128 3.35𝑒− 03 2.71 244.39 26.43 20703 7

25∕256 5.01𝑒− 04 2.74 1473.02 61.72 160220 8

Adaptive 𝑝2 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 5.37𝑒− 04 122.56 14.22 3028 6

25∕128 7.32𝑒− 05 2.88 607.23 27.23 20759 7

25∕256 1.07𝑒− 05 2.77 4193.54 81.39 160346 8

Adaptive 𝑝3 FR

Δ𝑥𝑚𝑖𝑛 𝐿2(𝜌) Order Total cost (s) Adaptation (s) Element count 𝐷𝑚𝑎𝑥

25∕64 1.53𝑒− 05 226.83 17.32 3028 6

25∕128 6.52𝑒− 07 4.55 1301.09 36.72 20787 7

25∕256 4.05e-08 4.00 9051.31 123.37 162082 8
16
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Fig. 13. Final status of the vortex on 2D mesh at 𝑡 = 100 for larger domain size using 𝑝3 FR. 𝐷𝑚𝑖𝑛 = 3 and 𝐷𝑚𝑎𝑥 = 10.

Fig. 14. Runtime vs. error for FR with/without AMR for simulations run on 2D domain [−50,50]2 .

𝜂𝑒 =
||𝜙𝑝 − 𝜙𝑝−1||𝐿2||𝜙𝑝||𝐿2

, (15)

which was modified from the work of Persson and Peraire [41] by Naddei et al. [36] for feature-based adaptation. In this work, we 
calculated smoothness indicators for any element 𝜂𝑣𝑖𝑒 based on modified momentum 𝜌𝑣𝑖+𝜌∞𝑈∞, 𝑖 = 1, … , dim. The extra term 𝜌∞𝑈∞
was used to avoid zero denominators since the flow field was initialized using (𝜌∞, 𝑈∞, 0, 0, Re∞). The coarsening and refinement 
criteria were defined as follows.

• For any element, if either one of the smoothness indicator 𝜂𝑣𝑖𝑒 > 𝛼 𝜂
𝑣𝑖
𝑒,𝑚𝑎𝑥, then the element will be marked for refinement, where 

𝜂
𝑣𝑖
𝑒,𝑚𝑎𝑥 is the maximum value of 𝜂𝑣𝑖𝑒 of all elements.

• For any element, if all of the smoothness indicators 𝜂𝑣𝑖𝑒 < 𝛽 𝜂
𝑣𝑖
𝑒,𝑚𝑎𝑥, then the element will be marked for coarsening.

• Otherwise, the element remains the same.

𝛼 = 0.1 and 𝛽 = 0.001 were used for 𝑝3 FR and 𝛼 = 0.1 and 𝛽 = 0.01 were used for 𝑝2 FR with adaptation in this study. Since 
transition happens in the wake, the above featured-based refinement procedure would lead to elements being refined to 𝐷𝑚𝑎𝑥 in the 
17

wake region such that the program would crash due to insufficient memory on the GPU card. To get some meaningful results with 
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Fig. 15. Computational cost of different components of adaptive 𝑝1 , 𝑝2 , and 𝑝3 FR on 2D domain [−50,50]2 .

limited hardware, for adaptive 𝑝3 FR, elements were not allowed to be refined to 𝐷 = 12 when 𝑥 > 0.875𝑊 ; for 𝑝2 FR, elements were 
not allowed to be refined to 𝐷 = 13 when 0.625𝑊 < 𝑥 < 2𝑊 and were not allowed to be refined to 𝐷 = 12 when 𝑥 > 2𝑊 . Octants 
were not allowed to be refined when 𝑥 > 20𝑊 . Note that the center of the cylinder was coincident with 𝑧-axis.

In this work, due to the problem size, single precision calculations were used such that all simulations could fit in the available 
memory. Witherden and Jameson reported that for unsteady simulations of turbulent flows, the predictions of single precision 
calculations were favorably close to those of double precision calculations [42]. Δ𝑡 = 0.0002𝑊 ∕𝑈∞ was used for all simulations. 
𝑝3 FR without adaptation was used to run the simulation to 𝑡 = 200𝑊 ∕𝑈∞ and there were 178,424 elements and 𝐷𝑚𝑎𝑥 = 12. The 
solutions at 𝑡 = 100𝑊 ∕𝑈∞ were used as the initial conditions for 𝑝2 FR without adaptation where the mesh was refined in the vicinity 
of the wall as well as the near-wall wake region such that 𝐷𝑚𝑎𝑥 = 13 and the total number of elements was increased to 349,840. 
Illustrations of these two different meshes are shown in Fig. 20.

Simulations using 𝑝2 and 𝑝3 FR with adaptation were also started from the initial state at 𝑡 = 100𝑊 ∕𝑈∞ and the initial meshes 
were the ones shown in Fig. 20a and Fig. 20b, respectively. Mesh adaptations were performed every 40 time steps for both simu-

lations. The overall statistics of 4 simulations are documented in Table 6 and they were collected for 𝑡 ∈ (100𝑊 ∕𝑈∞, 200𝑊 ∕𝑈∞]. 
Force histories in this time period are depicted in Fig. 21a. The results of current study using different polynomial degrees and 
mesh resolutions agree well with each other. Slight oscillations were observed in the 𝐶𝑑 histories of the adaptive solver, which is 
believed to be caused by the ad hoc restrictions of the feature-based adaptation algorithms to avoid crash since such behavior was 
not observed in our experiments with 2D square cylinder when those restrictions were not used. The differences of averaged drag 
coefficients 𝐶𝑑 are within 1.5% and that of root mean squares of lift coefficients 𝐶 ′

𝐿
are within 2%. The Strauhal number 𝑆𝑡 predic-
18

tions are the same. Isosurface of 𝑄-criterion where 𝑄 = 0.5 of these 4 simulations are shown in Fig. 22. Fig. 21b demonstrates that 
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Fig. 16. Effect of tree depth on the cost of adaptation for 2D simulations.

Fig. 17. Top-right quarter final mesh using 𝑝2 FR with adaptation for vortex propagation on the 3D domain.

the unsteadiness of the transitional flow will lead to non-trivial variations in the total number of elements when the feature-based 
adaptation was used. Qualitatively, the vortex structures predicted with adaptation are close to those predicted without adaptation. 
The tips of the hair-pin structures were slightly better resolved with adaptation off. In Fig. 23, the mesh distributions at different 
slices of the adaptive solvers are shown. Mesh were more dense to resolve high vorticity region and mesh distribution at different 
slices along the spanwise direction were observed to be quite different. For simulating the stationary square cylinder, the speedup 
factor that adaptation can offer is around 1.17 for 𝑝2 FR and 1.25 for 𝑝3 FR while the corresponding reductions in the element count 
are 16% and 29%. The speedup is consistent with the reduction of element count. This is encouraging as we would expect when 
applied to a problem of large object motions, the adaptive solver that can save more significant computational cost, as indicated by 
the vortex propagation studied in the previous section.

We are more interested in the efficiency of the adaptation algorithms via linear trees for this study. In Fig. 24, we illustrate the 
computational cost of different components of the adaptive solver. The overall ratio Adaptation

Total cost
is 0.6% for 𝑝2 and 1% for 𝑝3 FR with 

adaptation. The observed low overhead of adaptation is consistent with results using double precision calculations for the inviscid 
vortex propagation. It is noteworthy that the ratio is higher for 𝑝3 FR when its element count is only 43.3% of that of 𝑝2 FR. The 
difference in the adaptation cost mainly comes from tree manipulation while the costs of data transfer and face connectivity are 
close. As shown in Fig. 23, for the simulation using 𝑝2 FR, elements at depth 𝐷 = 11 are densely distributed to resolve the vortices 
while with 𝑝3 FR, the elements at depth 𝐷 = 11 are more sparse in the wake. This sparsity would possibly lead to inefficiency in 
tree manipulations since in a thread block, there would be more thread divergence. Nonetheless, the adaptation cost is considered to 
19

be insignificant compared to that of the fluid solver when the fluid physics leads to nonuniform mesh distributions and we restrain 



Journal of Computational Physics 502 (2024) 112823L. Wang, F. Witherden and A. Jameson

Fig. 18. Computational cost of different components of adaptive 𝑝1 , 𝑝2 , and 𝑝3 FR on domain [−12.5,12.5]2 × [0,1.5625].

Table 6

Simulation results of the flow over a square cylinder at Re = 400.

Numerical methods 𝑆𝑡 𝐶𝑑 𝐶 ′
𝐿

Adaptation Element count Time (hours) 𝐷𝑚𝑎𝑥

𝑝2 FR 0.131 1.685 0.76 No 349,840 44.56 13

𝑝2 FR 0.131 1.681 0.75 Yes 293,040 38.15 13

𝑝3 FR 0.131 1.707 0.775 No 178,424 51.03 12

𝑝3 FR 0.131 1.703 0.758 Yes 127,000 40.71 12

2nd order FV [40] 0.136 1.67 0.64 N/A 168 × 120 × 24 N/A N/A

ourselves from further investigations. Note that single precision were used for the fluid solver which would be around 100% faster 
than double precision calculations while the number representations of the tree algorithms remained the same, compared to what 
has been discussed in previous section.

As mentioned earlier, we would preallocate memory for the tree as well as the fluid solver. The overall feature-based adaptation 
algorithms with the additional ad hoc restrictions on refinement made sure the total number of element would under control as 
shown in Fig. 21b. The number of elements that we used for preallocation was 390,000 for 𝑝2 FR and 170,000 for 𝑝3 FR. The 
memory consumption of the adaptive solver is illustrated in Fig. 25. The tree used 25 megabytes and 57 megabytes of memory for 
20

𝑝3 and 𝑝2 FR methods. In the meantime, the fluid solver took around 4 gigabytes of memory for both methods.
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Fig. 19. Memory consumption of the adaptive solver on the 3D mesh of vortex propagation.

Fig. 20. Mesh (a) for 𝑝2 FR and (b) for 𝑝3 FR simulations of the flow over a square cylinder without adaptation.
21

Fig. 21. Time history of different statistics of the flow over the square cylinder. (The reader is referred to the web version of this article for colored plots.)
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Fig. 22. Instantaneous isosurface of 𝑄-criterion where 𝑄 = 0.5 colored by momentum in 𝑥 direction. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)
22

Fig. 23. Mesh distributions at different slices for the adaptive solver. The contour is the vorticity magnitude in gray scale.
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Fig. 24. Computational cost of different components of the adaptive solver for flow over square cylinder.

Fig. 25. Memory consumption of the adaptive solver for flow over the square cylinder.

6. Conclusion and future work

We develop the first entirely GPU-based adaptive flux reconstruction method enabled by linear trees for 2D and 3D problems. 
Novel algorithms are proposed for tree construction, tree balancing as well as connectivity query. The entire solver runs on GPU 
except that CPU codes are used to launch the kernel functions. We first show that the GPU version of tree balancing can be 4 to 
5 times faster than the parallel CPU version. We demonstrate that significant accelerations for long distance vortex propagation 
problems can be achieved, compared to uniform meshing. We systematically analyze the computational cost of different components 
of the entire solver. It is found that the overhead of adaptation, including tree adaptation, tree balancing, mapping, data transferring, 
face connectivity query, is insignificant compared to the total cost, for both inviscid and viscous transitional flows. In 3D simulations, 
Adaptation

Total cost
can be smaller than 2% when adaptation is performed every 10-40 time steps with explicit time stepping. The memory 

footprint of the linear tree is trivial compared to that of the fluid solver. Overall, high-order methods with efficient AMR can be 
achieved entirely operating on GPU. Additionally, high-order methods tend to benefit more from adaptation compared to low-order 
ones. We are to address the initial meshing and wall boundary treatment in our future work as well as extending the developed 
methods to support multiple GPUs.

Admittedly, only bluff bodies can be tackled by the solver developed in this work for wall bounded flows. However, the developed 
AMR framework can still be useful for a wide range of CFD applications, such as atmosphere modeling [43], jet flow studies [44], 
etc. Recently, Kou et al. implemented the volume penalty method with the flux reconstruction formulation [45] for viscous flows 
23

and Funada and Imamura [46] developed a discrete forcing IBM method with ghost/image points for flux reconstruction solution of 
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inviscid flows. We have tested both methods for viscous flows. The continuous forcing approach by Kou et al. [45] is only first order 
in near wall region and often requires significantly smaller elements in near the wall compared to body-fitted mesh with high-order 
methods, which would limit its applications with explicit time stepping on GPU as Re gets higher. The approach of Funada and 
Imamura can preserve the nominal order of accuracy for inviscid flows over a 2D cylinder and 3D sphere. However, ghost-cell-type 
IBM methods normally would have accuracy inconsistency and stability issues up to how the image points are configured [5]. These 
methods are fairly simple to implement and are suitable for problems with large deformations and we will leave detailed discussion 
for future work. Moreover, we would also look into coupling the developed method in this work with the overset method developed 
by Crabill et al. [13] for high Reynolds number flows with wall modeling.
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