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a b s t r a c t 

A von Neumann analysis of the Flux Reconstruction (FR) formulation is performed for the linear 

advection-diffusion equation to investigate the stability, dissipation and dispersion associated with the 

nodal Discontinuous Galerkin (DG) scheme. We show that the maximum stable time step for advection- 

diffusion is stricter than that for pure-advection or pure-diffusion individually. However, the simple har- 

monic sum of the maximum stable time steps for advection and diffusion provides a suitable estimate 

for the linear advection-diffusion and Navier–Stokes equations on unstructured, tensor product elements. 

The estimates are accurate within 50% error on all test cases and are conservative on tests with Cartesian 

grids but not always on unstructured grids. We show that the CFL limit is strongly influenced by the 

choice of interface fluxes and, in general, the limit for a scheme using centered values is much higher 

than that which has one-sided values. We also verify that schemes with centered values produce less 

error for well resolved solutions while schemes with one-sided values produce less error for solutions 

that are under-resolved. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The increased popularity of high-order methods in computa-

ional fluid dynamics (CFD) has led to significant advances in

he simulation of unsteady, vortex dominated flows. These meth-

ds employ higher than second order spatial discretization and

re capable of capturing important time-dependent flow features

hat popular second order methods tend to obscure. Discontin-

ous Galerkin (DG) methods [1,2] have been the focal point of

ecent effort s in developing high-order CFD codes which solve

he Navier–Stokes equations because of their ability to simulate

ows around complex geometries. In particular, collocation based

odal DG [3] and spectral difference (SD) [4,5] methods have been

idely adopted because of their simplicity. In 2007, Huynh [6] pro-

osed a Flux Reconstruction (FR) approach for tensor-product ele-

ents that provides a generalized differential framework for re-

overing both the nodal DG and SD schemes for linear advection.

n 2009, he further extended this framework to diffusion problems

7] . Since then, a proof of linear stability for a specific class of FR

chemes called the energy stable FR (ESFR) schemes [8] has been

eveloped along with theory on non-linear stability and the role of

liasing errors [9,10] . The FR schemes have also been successfully
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xtended to triangular [11,12] and tetrahedral [13] elements. Other

rameworks such as the Correction Procedure via Reconstruction

CPR) [14] have been proposed that unify the FR and the Lifting

ollocation Penalty (LCP) [15] formulations. 

Numerical analysis of DG methods has primarily relied on func-

ional analysis and spectral decomposition. The primary tool for

nalyzing dissipation and dispersion properties has been Fourier

von Neumann) analysis. In the case of linear advection, Hu et al.

16] have shown that the P th order DG scheme results in one phys-

cal mode and P spurious or parasitic modes which dampen out

uickly for an upwind flux but remain indefinitely for a centered

ux. Recently, Moura et al. [17] have shown that these spurious

odes, in fact, replicate the behavior of the physical mode. They

lso provide estimates of the largest wavenumber that can be ac-

urately resolved within a set tolerance for Burgers turbulence.

n the asymptotic limit of small wavenumber kh → 0, Ainsworth

18] proved that for a fixed mesh of spacing h , dissipation and

ispersion errors decay at an exponential rate when 2 P + 1 ≈ κkh

here k is the wavenumber and κ > 1 is some constant. Toulorge

t al. [19] have obtained CFL estimates on triangles through von

eumann analysis of the fully discrete equation for Runge–Kutta

G (RKDG) type schemes. In the case of the FR formulation, Vin-

ent et al. [20] applied Fourier analysis to study the ESFR schemes

or linear advection and were able to identify the ‘ c+ ’ scheme that

ffers the highest CFL limit for a given polynomial order while

sthana et al. [21] have been able to derive a new set of linearly

http://dx.doi.org/10.1016/j.compfluid.2016.09.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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stable schemes which have minimal dissipation and dispersion er-

ror. 

In this paper, we perform Fourier analysis of the FR formula-

tion for the linear advection-diffusion equation. We investigate sta-

bility, dissipation and dispersion over the entire range of resolv-

able wavenumbers to develop an understanding of how FR behaves

when the flow features are under-resolved. Our analysis focuses

on different interface flux formulations of the nodal DG scheme

on Gauss–Legendre points although the same technique can be ap-

plied to any scheme within the FR formulation. In pursuit of an

accurate, stable time step, we provide a method for estimating the

maximum stable time step for the linear advection-diffusion and

Navier–Stokes equations on unstructured, tensor product elements.

The paper is formatted as follows. Section 2 introduces the

semi-discrete advection-diffusion equation for FR and discusses the

dissipation and dispersion properties associated with nodal DG.

Section 3 derives a measure of relative error in order to compare

schemes on the basis of wave-propagation error. In Section 4 , the

fully discrete advection-diffusion equation and its stability criteria

is used to compare the CFL restrictions of different schemes. A con-

servative prediction method for the maximum physical time step

is proposed and extended to multidimensional tensor product el-

ements for the Navier–Stokes equations. Lastly, Section 5 provides

1D and 2D numerical tests in order to verify the results found in

the previous sections. 

2. Fourier (Von Neumann) analysis 

We begin by demonstrating that Fourier analysis provides a

purely element-local description of the 1D semi-discrete linear

advection-diffusion equation. The derived linear dynamical system

can then be solved analytically to obtain the analytical solution

to the semi-discrete equation. The stability, dissipation and disper-

sion properties of any FR scheme follow directly from the corre-

sponding eigensolutions [22] . This section concludes with a short

discussion on the dissipation and dispersion error of the nodal

DG scheme on Gauss–Legendre points for the advection-diffusion

equation. 

2.1. Problem specification 

Consider the 1D linear advection-diffusion equation, 

∂u 

∂ ̂  t 
+ 

ˆ a 
∂u 

∂ ̂  x 
= 

ˆ b 
∂ 2 u 

∂ ̂  x 2 
, ˆ x ∈ R , ˆ t > 0 , (1)

where ˆ a ∈ R is the constant wavespeed and 

ˆ b > 0 is the diffu-

sion coefficient. A periodic initial condition is introduced as an

isolated Fourier component, u ( ̂  x , 0) = exp (i ̂ k ̂ x ) , where ˆ k > 0 is the

wavenumber. Using h as the length scale and h 2 / ̂ b as the time

scale, Eq. (1) and the initial condition can be nondimensionalized

as, 

∂u 

∂t 
+ a 

∂u 

∂x 
= 

∂ 2 u 

∂x 2 
, x ∈ R , t > 0 , 

u ( x, 0 ) = exp ( ikx ) , 

(2)

where the nondimensional parameters are x = ˆ x /h, t = ̂

 t ̂  b /h 2 , k =
ˆ k h, and a = ˆ a h/ ̂ b . 

Following a traditional nodal finite element method, the do-

main is partitioned into non-overlapping elements, � = 

⋃ 

n 
�n 

where �n = { x | x n ≤ x < x n +1 } = [ x n , x n +1 ) and the sequence of

nodes, { x n }, is increasing on the real line. The element is

further discretized into P + 1 distinct solution points x n =
[ x n, 1 , x n, 2 , . . . , x n,P+1 ] 

T where P is the degree of the piecewise in-

terpolating polynomial representing the numerical solution in a

given element. To reduce complexity, a uniform element size of
 = x n +1 − x n , ∀ n is used. A linear isoparametric mapping is intro-

uced from the physical domain x ∈ �n to the parent domain

∈ [ −1 , 1) such that 

| �n 
( x ) = 2 ( x − x n ) − 1 , x ∈ [ x n , x n +1 ) . (3)

he distribution of solution points across all elements in the parent

omain is kept the same, ξ = (ξp ) p=1 , 2 , ... ,P+1 , so that the numerical

olution in the n th element can be represented as 

 

δ
n (ξ , t) = 

P+1 ∑ 

p=1 

u 

δ
n,p (t) � p (ξ ) , ξ ∈ [ −1 , 1) , (4)

here � p is the p th Lagrange polynomial. 

Assuming exact time integration, Eq. (2) leads to a purely

lement-local description of the semi-discrete numerical equa-

ion, 

d u 

δ
n 

dt 
+ 2 a Q 

1 ( k ) u 

δ
n = 4 Q 

2 ( k ) u 

δ
n , ∀ n, t > 0 , 

 

δ
n ( 0 ) = exp ( ik x n ) w 0 ( k ) , 

(5)

here u 

δ
n (t) = (u δn,p (t)) p=1 , 2 , ... ,P+1 denotes the vector of solution

alues, w 0 ( k ) is the collocation projection of the initial condition

nto the solution points, 

 0 (k ) = 

(
exp 

(
ik 

1 

2 

(1 + ξp ) 
))

p=1 , 2 , ... ,P+1 
, (6)

nd Q 

1 (k ) ∈ C 

(P+1) ×(P+1) and Q 

2 (k ) ∈ C 

(P+1) ×(P+1) are the first or-

er and second order numerical differentiation operators in parent

pace. The definition of these operators depend on the numerical

cheme being used and the constants 2 and 4 come from the trans-

ormation of the numerical differentiation operator from parent to

hysical space. 

.2. The Flux Reconstruction method 

Under the Flux Reconstruction method, the first order numer-

cal differentiation operator can be obtained by first defining a

lobally continuous, piecewise numerical solution polynomial of

egree P + 1 using correction function polynomials that convey

oundary information to the interior of the element [6] . The nu-

erical derivative is then obtained by differentiating this globally

ontinuous solution, 

 

δu 

δ
n 

δx 
( ξ , t ) = 2 

[
a 
∂u 

δ
n 

∂ξ
( ξ , t ) + 

(
au 

δ
L − au 

δ
n ( −1 , t ) 

)dg L 
dξ

( ξ ) 

+ 

(
au 

δ
R − au 

δ
n ( +1 , t ) 

)dg R 
dξ

( ξ ) 

]
, ξ ∈ [ −1 , 1 ) , (7)

here g L (ξ ) , g R (ξ ) ∈ P P+1 are the left-boundary and right-

oundary correction functions in the parent space which satisfy

he constraints, 

 L ( −1 ) = g R ( +1 ) = 1 , 

 L ( +1 ) = g R ( −1 ) = 0 , 
(8)

nd can recover nodal DG, SD and various other high-order formu-

ations [6,8] . The common interface fluxes, au δ
L 

and au δ
R 
, are com-

uted from the polynomial functions on either side of the inter-

ace, 

u 

δ
L = (1 − α) u 

δ
n −1 (+1 , t) + αu 

δ
n (−1 , t) , 

 

δ
R = (1 − α) u 

δ
n (+1 , t) + αu 

δ
n +1 (−1 , t) , (9)

here the upwinding coefficient, α, determines the type of com-

on interface value used. A one-sided, upwinding flux is obtained
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or α = 0 . 0 and a centered flux is obtained for α = 0 . 5 . Eqs. (7) and

9) are now utilized to construct the numerical derivative, 

δu 

δ
n 

δx 
(ξ , t) = 2 

[
∂u 

δ
n 

∂ξ
( ξ , t ) + ( 1 −α) 

(
u 

δ
n −1 ( +1 , t ) −u 

δ
n ( −1 , t ) 

)dg L 
dξ

( ξ ) 

+ α
(
u 

δ
n +1 ( −1 , t ) −u 

δ
n ( +1 , t ) 

)dg R 
dξ

( ξ ) 

]
, ξ ∈ [ −1 , 1 ) . 

(10)

his can then be transformed to a matrix-vector operation on u 

δ
n ,

δu 

δ

δx 

∣∣∣
n 

= 

1 ∑ 

j= −1 

C j u 

δ
n + j , (11) 

here C j ∈ R 

(P+1) ×(P+1) is given by 

 −1 = ( 1 − α) g L, ξ� 
T 
+ , 

 0 = D − ( 1 − α) g L, ξ� 
T 
− − αg R, ξ� 

T 
+ , 

 + 1 = αg R, ξ� 
T 
−. 

ere D ∈ R 

(P+1) ×(P+1) is the polynomial differentiation operator 

uch that 

 p,m 

= 

d � m 

d ξ
(ξp ) , p, m = 1 , 2 , . . . , P + 1 , (12)

here � m 

is the m th Lagrange polynomial in the parent domain.

 L,ξ, g R,ξ ∈ R 

(P+1) ×1 are the derivatives of the left-boundary and

ight-boundary correction functions at the solution points, and

 −, � + ∈ R 

(P+1) ×1 are the extrapolated values of the P + 1 Lagrange

asis polynomials, 

 + p = � p (+1) , � −p 
= � p (−1) , p = 1 , 2 , . . . , P + 1 . (13)

he second numerical derivative can be constructed by perform-

ng the same operation on the first numerical derivative. Let v δn =
δu δ

δx 

∣∣
n 
, then, 

δ2 u 

δ

δx 2 

∣∣∣
n 

= 

δv δ

δx 

∣∣∣
n 

= 

1 ∑ 

j= −1 

C j v δn + j . (14) 

The sinusoidal form of the initial condition in Eq. (5) provides

he displacement relations, u 

δ
n −1 

= exp (−ik ) u 

δ
n , u 

δ
n +1 

= exp (ik ) u 

δ
n ,

hich can then be used to obtain the numerical differentiation op-

rators, 

 

1 ( k ) = 

1 ∑ 

j= −1 

C ( 
1 , 1 ) 

j 
exp ( ikj ) , 

 

2 ( k ) = 

2 ∑ 

j= −2 

B j exp ( ikj ) , 

(15) 

here B j ∈ R 

(P+1) ×(P+1) is given by 

 −2 = C ( 
2 , 2 ) 

−1 
C ( 

2 , 1 ) 
−1 

, 

B −1 = C ( 
2 , 2 ) 

−1 
C ( 

2 , 1 ) 
0 

+ C ( 
2 , 2 ) 

0 
C ( 

2 , 1 ) 
−1 

, 

B 0 = C ( 
2 , 2 ) 

+ 1 C ( 
2 , 1 ) 

−1 
+ C ( 

2 , 2 ) 
0 

C ( 
2 , 1 ) 

0 
+ C ( 

2 , 2 ) 
−1 

C ( 
2 , 1 ) 

+ 1 , 

B + 1 = C ( 
2 , 2 ) 

+ 1 C ( 
2 , 1 ) 

0 
+ C ( 

2 , 2 ) 
0 

C ( 
2 , 1 ) 

+ 1 , 

B + 2 = C ( 
2 , 2 ) 

+ 1 C ( 
2 , 1 ) 

+ 1 . 

ere (1, 1), (2, 1) and (2, 2) are identifiers used to differentiate

etween different correction procedures in the advection and dif-

usion terms. The first index in the superscript refers to the first

r second order numerical differentiation operator while the sec-

nd index refers to the correction procedure for the discontinuous
olution or the discontinuous first derivative. The identifier defines

he upwinding coefficient and correction functions used during the

orrection procedure, for example, 

 

(1 , 1) 
+1 

= α(1 , 1) g (1 , 1) 
R,ξ

� T −, 

 

(2 , 1) 
+1 

= α(2 , 1) g (2 , 1) 
R,ξ

� T −, 

 

(2 , 2) 
+1 

= α(2 , 2) g (2 , 2) 
R,ξ

� T −. 

.3. Analytical solution of the semi-discrete and exact equations 

The analytical solution to the semi-discrete numerical equation,

q. (5) , can be found by exactly integrating the linear dynamical

ystem in time using matrix factorization. The semi-discrete nu-

erical equation can be rewritten as 

du 

δ
n 

dt 
+ R(a, k ) u 

δ
n = 0 , ∀ n, t > 0 , (16)

here R(a, k ) ∈ C 

(P+1) ×(P+1) and, 

(a, k ) = 2 a Q 

1 (k ) − 4 Q 

2 (k ) . (17)

ssuming R ( a, k ) is diagonalizable, 

(a, k ) = W (a, k ) �(a, k ) W 

−1 (a, k ) , (18)

here � is the diagonal matrix of eigenvalues γp (a, k ) ∈ C for

p = 1 , 2 , . . . , P + 1 and W ∈ C 

P +1 ×P +1 is the dense matrix contain-

ng eigenvectors of the differentiation operator. The initial condi-

ion can also be expanded in the basis of the eigenvectors, 

 0 (k ) = W (a, k ) β(a, k ) , (19)

here βp (a, k ) ∈ C is the expansion coefficient along the p th

olumn of W , w p ( a, k ), for p = 1 , 2 , . . . , P + 1 . The solution to

q. (5) can now be written as 

 

δ
n ( t ) = exp ( −tR ) u 

δ
n ( 0 ) 

= W exp ( −t�) W 

−1 exp ( ik x n ) W β

= exp ( ik x n ) W exp ( −t�) β

= exp ( ik x n ) 

P+1 ∑ 

p=1 

exp ( −γp t ) βp w p . (20) 

his shows that the numerical solution is a superposition of P + 1

igenmodes along the eigenvectors of R weighted by the expansion

oefficients, βp , of the initial condition. The time evolution of these

odes is dictated by the eigenvalues γ p . 

The analytical solution to the exact equation, Eq. (2) , on the

ector of solution points x n = x n + 

1 
2 (1 + ξ) can be found by sam-

ling the functional form exp (ikx ) exp (−(aik + k 2 ) t) , 

 n (t) = exp (ikx n ) exp (−(aik + k 2 ) t) 
P+1 ∑ 

p=1 

βp w p , (21) 

.4. Stability, dissipation, dispersion and modal weights 

The stability, dissipation and dispersion properties of the nu-

erical scheme can be determined directly from the eigenvalues

nd eigenvectors of R . The condition for numerical stability can be

ritten as 

Re 
p (a, k ) ≥ 0 for p = 1 , 2 , . . . , P + 1 , (22)

hich must hold for k ∈ [0 , (P + 1) π ] where the upper bound cor-

esponds to the Nyquist limit for the mesh. The criteria for nu-

erical dissipation and dispersion can be determined from the
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Table 1 

Upwinding coefficients and common names for DG schemes with different interface flux 

formulations. 

Scheme α(1, 1) α(2, 1) α(2, 2) Common name for DG scheme 

Centered-centered 0 .5 0 .5 0 .5 Centered advection - BR1 diffusion 

Upwind-centered 0 .0 0 .5 0 .5 Upwinded advection - BR1 diffusion 

Centered-one-sided 0 .5 1 .0 0 .0 Centered advection - LDG diffusion 

Upwind-one-sided 0 .0 1 .0 0 .0 Upwinded advection - LDG diffusion 
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equation for absolute error of the numerical solution, 

e n ( t ) = u 

δ
n ( t ) − u n ( t ) = exp ( ik x n ) exp 

(
−
(
aik + k 2 

)
t 
)

×
P+1 ∑ 

p=1 

[
exp 

(
−
(
γp −
(
aik + k 2 

))
t 
)

− 1 

]
βp w p . (23)

For the initial condition of an isolated Fourier component, each

eigenmode contributes a certain amount of numerical dissipation

and dispersion to the numerical solution. The numerical dissipa-

tion in an eigenmode is characterized by γ Re 
p (a, k ) − k 2 > 0 and

leads to a mode which decays in amplitude more rapidly than the

prescribed decay rate of physical diffusion. An eigenmode can also

exhibit numerical anti-dissipation if 0 ≤ γ Re 
p (a, k ) < k 2 . In this case,

the mode decays in amplitude at a slower rate. Numerical disper-

sion is present in an eigenmode if γ Im 

p (a, k ) − ak 	 = 0 . This causes

the mode to propagate at an incorrect speed. 

Since all P + 1 eigenmodes are present in the numerical solu-

tion, it’s important to determine how each mode contributes quan-

titatively through the modal weights, βp . This quantity can best

be described as a distribution of energy among all eigenmodes

[21,22] and is important in determining whether the solution will

decay or propagate at an incorrect speed. 

2.5. Dissipation and dispersion error of nodal DG for 

advection-diffusion 

The FR formulation can be used to recover various high-order

schemes. In this study, we will focus our analysis on the nodal DG

scheme on Gauss–Legendre points with different interface flux for-

mulations. Table 1 defines the set of upwinding coefficients used

to obtain common interface values for four different types of inter-

face flux formulations. Since the nodal DG correction functions are

used, the flux formulations for diffusion are able to recover two

common schemes within the DG community: BR1 introduced by

Bassi and Rebay [23] and local Discontinuous Galerkin (LDG) intro-

duced by Cockburn and Shu [24] . For simplicity, the penalty term

often used to stabilize the schemes [3] will be omitted so that LDG

becomes minimal dissipation LDG [25] . 

The numerical dissipation and dispersion properties for the so-

lution of advection-diffusion problems is dependent on the non-

dimensional parameter a . For most results in this paper, a non-

dimensional parameter of a = 10 is chosen for illustration. Figs. 1–3

show the dissipation, dispersion and modal weight of each eigen-

mode for a centered-centered and upwind-one-sided schemes of

polynomial order, P = 2 . We see that for one of the modes, des-

ignated mode 1, the dissipation and dispersion errors vanish in

the asymptotic limit of k → 0, and the squared modal weight

| β1 | 2 → P + 1 . This mode is defined as the physical mode and its

existence and uniqueness have been proven for advection prob-

lems [22] . Regarding the effect of interface fluxes, we see that both

schemes have little dispersion or dissipation for low wavenum-

bers. For higher wavenumbers, the physical mode of the upwind-

one-sided scheme remains dominant and the scheme is more dis-

sipative. On the other hand, the physical mode of the centered-

centered scheme loses its dominance as can be seen from Fig. 3 .
oreover, close to the Nyquist limit, all the modes for this scheme

re anti-dissipative. 

Even though the chosen flux is a linear function of the state,

he state itself is sinusoidal and cannot be expressed in any finite-

imensional polynomial basis. Correspondingly, the location of so-

ution points has a direct impact on the distribution of the ini-

ial condition among the P + 1 eigenmodes. This can be observed

rom Fig. 4 which plots the distribution of energy among the

 eigenmodes for the centered-centered DG scheme with P =
 , advection-diffusion parameter a = 10 , using Gauss–Legendre,

quidistant and Gauss–Lobatto points respectively. 

. Spectral comparison 

This section provides an investigation into the relative error

enerated by the nodal DG scheme with different interface flux

ormulations for the full range of resolvable wavenumbers. A re-

olving efficiency is defined in order to measure the fraction of

esolved waves that propagate with minimal error. We see that

he centered-centered scheme produces the least amount of rela-

ive error for a well resolved solution while the centered-one-sided

cheme leads to the least amount of relative error for solutions

hat are under-resolved. 

.1. Relative error and resolving efficiency 

A measure of relative error can be derived by using the vector

 

2 norm of absolute error. The use of a pointwise error is moti-

ated by the nodal nature of the FR formulation and is different

rom the L 2 functional norm that measures integrated error over

 fixed domain. Consider the vector � 2 norm of the absolute error

sing Eq. (23) , 

 e n (t) ‖ � 2 = ‖ u 

δ
n (t) − u n (t) ‖ � 2 

= exp (−k 2 t) 

∥∥∥∥∥P+1 ∑ 

p=1 

[
exp 

(
−
(
γp −
(
aik + k 2 

))
t 
)
−1 
]
βp w p 

∥∥∥∥∥
� 2 

, 

(24)

here we have used that | exp (ζ ) | = 1 if ζ is purely imaginary.

imilarly, the norm of the analytical solution to the exact equation,

q. (21) is given by 

 u n ( t ) ‖ � 2 = exp 

(
−k 2 t 
)‖ w 0 ‖ � 2 , 

= exp 

(
−k 2 t 
)√ 

P+1 ∑ 

p=1 

∣∣∣exp 

(
ik 

1 

2 

( 1 + ξp ) 

)∣∣∣2 , 
= exp 

(
−k 2 t 
)√ 

P + 1 . (25)

 relative error can then be defined by taking the difference be-

ween Eqs. (24) and (25) , 

‖ e n (t) ‖ � 2 

‖ u n (t) ‖ � 2 
= 

1 √ 

P + 1 

∥∥∥∥∥P+1 ∑ 

p=1 

[
exp (−(γp −(aik + k 2 )) t) − 1 

]
βp w p 

∥∥∥∥∥
� 2 

. 

(26)
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Fig. 1. Numerical dissipation in each eigenmode p = 1 , 2 , 3 for the DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, 

a = 10 . 

Fig. 2. Numerical dispersion in each eigenmode p = 1 , 2 , 3 for the DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, 

a = 10 . 

Fig. 3. Energy distributed among each eigenmode p = 1 , 2 , 3 for the DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, 

a = 10 . 
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he triangle inequality can be used to eliminate the dependency

n the eigenvectors, 

‖ e n ( t ) ‖ � 2 

‖ u n ( t ) ‖ � 2 
≤ 1 √ 

P + 1 

P+1 ∑ 

p=1 

‖ 

[
exp 

(
−
(
γp −
(
aik + k 2 

))
t 
)
−1 

]
βp w p ‖ � 2 ,

= 

1 √ 

P + 1 

P+1 ∑ 

p=1 

∣∣exp 

(
−
(
γp −
(
aik + k 2 

))
t 
)

− 1 

∣∣| βp | . 

(27
hen in the limit of t → 0, 

im 

→ 0 

‖ e n (t) ‖ � 2 

‖ u n (t) ‖ � 2 
≤ 1 √ 

P + 1 

P+1 ∑ 

p=1 

∣∣γp − (aik + k 2 ) 
∣∣| βp | t + O(t 2 ) , (28)

hich gives an upper bound on the initial relative error. In other

ords, the initial slope of the relative error can be written as 

im 

→ 0 

1 

t 

‖ e n (t) ‖ � 2 

‖ u n (t) ‖ � 2 
≤ 1 √ 

P + 1 

P+1 ∑ 

p=1 

∣∣γp −(aik + k 2 ) 
∣∣| βp | = φ(a, k ) , (29)
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Fig. 4. Energy distributed among each eigenmode p = 1 , 2 , 3 for the centered-centered, DG scheme of order P = 2 solving the advection-diffusion equation, a = 10 . 

Fig. 5. Upper bound on initial slope of the relative error vs. nondimensional wavenumber for the DG scheme of order P = 2 using Gauss–Legendre solution points solving 

the advection-diffusion equation, a = 10 . 
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which shows that the initial growth of error is determined by the

products of eigenvalue errors and modal weights of the system.

Based on [21,26] , a resolving efficiency can now be defined as 

η = 

k f 

(P + 1) π
, (30)

where k f is such that 

φ(a, k ) ≤ ε for k ≤ k f . (31)

η measures the fraction of resolved waves that are propagated

with minimal error. The initial growth rate of error for these waves

are guaranteed to be less than the specified slope tolerance, ε. 

3.2. Spectral comparison of nodal DG with different interface fluxes 

Fig. 5 plots the initial slope of the relative error, Eq. (29) ,

for the four types of interface flux formulations in Table 1 for

an advection-diffusion problem with a = 10 . We see that for

low wavenumbers or well resolved waves, the centered-centered

scheme produces the least amount of error. For larger wavenum-

bers up to k/ (P + 1) ≈ 2 , the centered-one-sided scheme generates

the least amount of error. 

Table 2 lists the resolving efficiencies for different interface flux

formulations and polynomial orders. A slope tolerance of ε = 0 . 1 is

used to compare the ability of a scheme to capture well resolved

waves. We see that the centered-centered scheme produces a bet-

ter resolving efficiency for even or high polynomial orders while

the centered-one-sided scheme produces a higher resolving effi-

ciency for odd polynomials of low order. Interestingly, the com-

monly used upwind-one-sided scheme is not the best for any poly-

nomial order. 
. Time integration and CFL restriction 

This section discusses the CFL restriction of nodal DG with

ifferent interface flux formulations for the advection, diffusion

nd advection-diffusion equations on tensor product elements. To-

ards this end, the fully discrete advection-diffusion equation is

onstructed for a general explicit, M-stage Runge–Kutta (RK) type

cheme and the stability criterion is imposed to solve for the max-

mum nondimensional time step of the discrete linear dynamical

ystem. We show that the minimum of the maximum stable time

teps for pure-advection and pure-diffusion is inadequate when

hoosing a maximum stable time step for the advection-diffusion

quation. However, a conservative prediction can be obtained from

he harmonic sum of the maximum stable time steps for the ad-

ection and diffusion equations. We propose extensions to mul-

idimensional tensor product elements in structured as well as

nstructured grids and to the Navier–Stokes equations. Along the

ay, we also show that the centered-centered scheme has the least

estrictive CFL with a limit around 5 times larger than the CFL limit

or the upwind-one-sided scheme for certain wavenumbers. 

.1. Multi-stage explicit time integration scheme 

The fully discrete numerical update equation can be obtained

rom Eq. (16) 

δu 

δ
n = −R(a, k ) u 

δ
n , ∀ n, t > 0 . (32)
δt 



J. Watkins et al. / Computers and Fluids 139 (2016) 233–247 239 

Table 2 

Resolving efficiencies, ε = 0 . 1 , for the DG scheme using Gauss–Legendre solution points solv- 

ing the advection-diffusion equation, a = 10 . 

P Centered-centered Upwind-centered Centered-one-sided Upwind-one-sided 

1 0 .0296 0 .0297 0 .0469 0 .0464 

2 0 .0887 0 .0650 0 .0684 0 .0507 

3 0 .0872 0 .0842 0 .0932 0 .0884 

4 0 .1145 0 .1120 0 .1091 0 .1034 

5 0 .1482 0 .1350 0 .1245 0 .1211 
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Table 3 

Maximum nondimensional time steps for the RK44, DG 

scheme using Gauss–Legendre points. 

�t adv 
max �t di f f 

max 

P Centered Upwind Centered One-sided 

1 0 .707 0 .464 0 .174 0 .0773 

2 0 .349 0 .235 0 .0426 0 .0187 

3 0 .213 0 .145 0 .0158 0 .00634 

4 0 .143 0 .100 0 .00719 0 .00266 

5 0 .103 0 .0736 0 .00373 0 .00129 
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a
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�  
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�  
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f

�
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e  
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�

F  

i  
n the case of a general explicit, M-stage Runge–Kutta (RK) time

ntegration scheme, the numerical solution can be written as 

 

δ
n (t + �t) = S(a, k, �t ) u 

δ
n (t ) , ∀ n, t > 0 , (33)

here �t is the numerical time step and S ( a, k, �t ) is the numer-

cal integration operator, 

(a, k, �t) = 

M ∑ 

m =0 

(−1) m 

νm 

m ! 
�t m R(a, k ) m , (34)

here νm 

for m = 0 , 1 , . . . , M are coefficients of the RK scheme and

 is the number of stages. 

.2. Stability criteria 

The stability criteria of the discrete linear dynamical system in

q. (33) can be written as 

(S(a, k, �t)) ≤ 1 ∀ k ∈ [0 , (P + 1) π ] , (35)

here ρ is the spectral radius. The computation of the spectral ra-

ius requires the eigenvalues of S ( a, k, �t ) which can be found by

sing the eigendecomposition from Eq. (18) as 

 ( a, k, �t ) = W ( a, k ) 

[ 
M ∑ 

m =0 

( −1 ) 
m 

νm 

m ! 
�t m �( a, k ) 

m 

] 
W 

−1 ( a, k ) , 

= W ( a, k ) �( a, k, �t ) W 

−1 ( a, k ) (36) 

here � is the diagonal matrix of eigenvalues λp (a, k, �t) ∈ C for

p = 1 , 2 , . . . , P + 1 . The maximum time step can then be obtained

s the solution to 

aximize �t 

ubject to 

P+1 
max 

p=1 
| λp ( a, k, �t ) | ≤ 1 , ∀ k ∈ [ 0 , ( P + 1 ) π ] , (37) 

or a given time integration scheme and nondimensional

avespeed a . To find the stability criteria, the nondimensional

imestep is transformed back into a physical time step using the

ransformation introduced in the beginning of Section 2 , 

ˆ t ≤ �ˆ t max = �t max 
h 

2 

ˆ b 
. (38) 

n the subsections to follow, we use a standard 4 stage, 4th order

unge–Kutta (RK44) scheme for illustration. A bisection method is

sed to find �t max . 

.3. CFL restrictions on advection-diffusion 

The maximum physical time step, �ˆ t max , is used to compare

he CFL restrictions for all wavenumbers for advection, diffusion

nd advection-diffusion problems. Fig. 6 plots the maximum phys-

cal time step for different equations using P = 2 and P = 3 . The

gure shows that the coupling of advection and diffusion decreases

he maximum physical time step for all wavenumbers leading to a

tricter CFL limit. Hence, choosing the minimum of the maximum

table time steps for the advection equation and diffusion equa-

ion is inadequate when choosing a time step for the advection-

iffusion equation. 
.4. CFL restrictions of nodal DG with different interface fluxes 

Fig. 7 plots the maximum nondimensional time step for the

our types of interface flux formulations in Table 1 using P = 2 and

 = 3 for an advection-diffusion problem with a = 10 . We see that

he centered-centered scheme has the least restrictive CFL limit

hile the upwind-one-sided scheme has the most restrictive CFL

imit. In fact, the CFL limit of the centered-centered scheme is

arger than the upwind-one-sided scheme for all wavenumbers and

round 5 times larger for certain wavenumbers. 

.5. Conservative prediction method for �ˆ t 

The stability criterion in Eq. (38) gives an exact value for the

aximum physical time step for an advection-diffusion problem

ut requires the knowledge of a multi-variable, nonlinear function

t max which changes depending on the time integration scheme,

hoice of correction function, common interface value, polynomial

rder and non-dimensional parameter a = ˆ a h/ ̂ b . Several prediction

ethods are often used in an effort to reduce the dependency of

t max on a with the hopes that the method is conservative. One

ethod is to use the minimum of the maximum stable time steps

or pure-advection and pure-diffusion, 

�ˆ t ≤ min 

(
�t adv 

max 

h 

ˆ a 
, �t diff

max 

h 

2 

ˆ b 

)
or 

t max = min 

(
�t adv 

max 

1 

a 
, �t diff

max 

)
, (39) 

here �t adv 
max and �t 

di f f 
max are the maximum nondimensional time

teps for the advection and diffusion equations, respectively. These

alues can be determined by removing the diffusion or advection

erm in the fully discrete equation and solving the optimization

roblem in Eq. (37) . Table 3 provides these values for a variety of

ommon interface values and polynomial orders. 

A more conservative method that is used for the Navier–Stokes

quation [3,27,28] is the harmonic sum of the maximum stable

ime steps for the advection equation and the diffusion equation,

ˆ t ≤ 1 

ˆ a 
�t adv 

max h 
+ 

ˆ b 

�t di f f 
max h 2 

or �t max = 

1 

a 
�t adv 

max 

+ 

1 

�t di f f 
max 

. (40) 

ig. 8 shows how these methods compare with the exact max-

mum nondimensional time step for P = 2 . The estimate in



240 J. Watkins et al. / Computers and Fluids 139 (2016) 233–247 

Fig. 6. Maximum physical time step, �ˆ t max , vs. nondimensional wavenumber for the RK44, DG, centered-centered scheme using Gauss–Legendre solution points. 

Fig. 7. Maximum nondimensional time step, �t max , vs. nondimensional wavenumber, k/ (P + 1) , for the RK44, DG scheme using Gauss–Legendre solution points solving the 

advection-diffusion equation, a = 10 . 

Fig. 8. Maximum nondimensional time step estimates vs. nondimensional wavespeed for the RK44, DG scheme of order P = 2 using Gauss–Legendre solution points. 
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Fig. 9. A visual representation of a quadrilateral element for a polynomial order of 

P = 1 . The flux points are marked by red squares and west, east, south and north 

faces are represented by W, E, S, N , respectively. The distances between flux points, 

h 1, 6 , h 3, 8 , h 2, 5 , h 4, 7 are used to estimate the maximum time step in the element. 

e  

P  

A

�  

w  

m  

i  

t  

c

�

�

 

b  

m

�

4

S

w

U

F  

w

d  

p

q. (39) is at or above the maximum allowable timestep for all

alues of a clearly showing that it fails as a conservative predic-

ion method. On the other hand, the harmonic sum gives conserva-

ive predictions for the full range of advection-diffusion problems.

oreover, in the case of the upwind-one-sided scheme, a predic-

ion based on the harmonic sum almost exactly matches the ex-

ct CFL limit. These observations hold for other choices of com-

on interface values and polynomial orders as well, showing that

q. (40) can be used as a conservative estimate for the CFL restric-

ion. Fig. 8 also shows that a ≈ 10 is near a region where the cou-

ling of advection and diffusion has a dramatic effect on the CFL

imit of the scheme. In the case of the centered-centered scheme,

he harmonic sum is still conservative but loses accuracy near

 ≈ 10. 

.6. Extension to tensor product elements 

The 1D FR formulation for advection-diffusion can be extended

o quadrilateral and hexahedral elements as discussed in [6,7,29] .

his subsection proposes a method for extending the time step es-

imate from Eq. (40) to non-curved tensor product elements. For

implicity, the discussion focuses on rectilinear and quadrilateral

eshes but the methodology can be easily extended to hexahedral

lements. 

Consider a multidimensional linear advection-diffusion prob-

em, 

∂u 

∂ ̂  t 
+ 

N d ∑ 

d=1 

ˆ a d 
∂u 

∂ ̂  x d 
= 

ˆ b 

N d ∑ 

d=1 

∂ 2 u 

∂ ̂  x 2 
d 

, ˆ x d ∈ R , ˆ t > 0 , 

here N d is the number of spatial dimensions, ˆ a d is the advec-

ion coefficient in the d th dimension and the domain is partitioned

nto N eles non-overlapping, conforming tensor product elements,

= 

N eles ⋃ 

n =1 

�n . 

In the special case of a rectangular element, the element do-

ain is defined by �n = { [ x d,n , x d,n +1 ) for d = 1 , 2 , . . . , N d } . Each

lement is further discretized into (P + 1) N d distinct solution

oints where each point belongs to N d sets of P + 1 collinear points

llowing for a simple extension of the one-dimensional case to

ultiple dimensions. The rectangular element size is defined by

 d side lengths of h d = x d,n +1 − x d,n for d = 1 , 2 , . . . , N d and a lin-

ar isoparametric mapping is again used on the physical domain.

he fully discrete numerical equation can now be constructed by

ollowing the same procedure as before, 

δu 

δ
n 

δt 
= − ˆ R u 

δ
n , ∀ n, t > 0 . (41)

here ˆ R is defined as, 

̂ 
 

(
ˆ a 1 , · · · , ̂  a N d , ̂

 b , ̂  k 1 , · · · , ̂  k N d , h 1 , · · · , h N d 

)
= 

N d ∑ 

d=1 

[
2 ̂

 a d 
h d 

Q 

1 
d 

(
ˆ k d h d 

)
− 4 ̂

 b 

h 

2 
d 

Q 

2 
d 

(
ˆ k d h d 

)]
, (42) 

nd the equation can again be integrated using a general ex-

licit, M-stage RK scheme to produce a similar stability crite-

ia as Eq. (35) . The conservative prediction method for �ˆ t from

q. (40) can now be extended, in a similar manner, to estimate the

ime step of the problem, 

ˆ t ≤ 1 

N d ∑ 

d=1 

[ 
ˆ a d 

�t adv 
max h d 

+ 

ˆ b 

�t di f f 
max h 2 

d 

] . (43) 

In the case of a non-rectangular element, we can construct a

aximum time step estimate as the harmonic sum of estimates for
ach dimension. Each edge of the quadrilateral element contains

 + 1 distinct flux points for a total of N fpts = 4(P + 1) flux points.

 time step estimate on each flux point can be computed as, 

ˆ t m 

= 

�t adv 
max h m 

| ̂  a m 

| + 

�t di f f 
max h 

2 
m 

ˆ b 
m = 1 , 2 , . . . , N fpts , (44)

here | ̂  a m 

| is the absolute value of the advection coefficient nor-

al to the face and h m 

are distances between flux points defined

n Fig. 9 , for example, h 1 = h 6 = h 1 , 6 . The minimum time step is

hen computed on each face. From Fig. 9 , the minimum time steps

omputed on the west, east, south and north faces are 

ˆ t W = min 

(
�ˆ t 7 , �ˆ t 8 

)
, �ˆ t E = min 

(
�ˆ t 3 , �ˆ t 4 

)
, (45) 

ˆ t S = min 

(
�ˆ t 1 , �ˆ t 2 

)
, �ˆ t N = min 

(
�ˆ t 5 , �ˆ t 6 

)
. (46) 

Finally from Eq. (40) , the maximum time step estimate can be

ased on a harmonic sum of the minimum time step for each di-

ension, 

ˆ t ≤ 1 

1 

min ( �ˆ t W , �ˆ t E ) 
+ 

1 

min ( �ˆ t S , �ˆ t N ) 

. (47) 

.7. Extension to Navier–Stokes equations 

Consider the unsteady, two-dimensional, compressible Navier–

tokes equations in conservative form, 

∂U 

∂ ̂  t 
+ 

∂F inv 

∂ ̂  x 1 
+ 

∂G inv 

∂ ̂  x 2 
= 

∂F visc 

∂ ̂  x 1 
+ 

∂G visc 

∂ ̂  x 2 
(48) 

here, 

 = 

⎛ ⎜ ⎝ 

ρ
ρu 

ρv 
e 

⎞ ⎟ ⎠ 

, F inv = 

⎛ ⎜ ⎝ 

ρu 

ρu 

2 + p 
ρu v 

(e + p) u 

⎞ ⎟ ⎠ 

, G inv = 

⎛ ⎜ ⎝ 

ρv 
ρv u 

ρv 2 + p 
(e + p) v 

⎞ ⎟ ⎠ 

, 

 visc = 

⎛ ⎜ ⎝ 

0 

σ11 

σ12 

uσ11 + v σ21 − q 1 

⎞ ⎟ ⎠ 

, G visc = 

⎛ ⎜ ⎝ 

0 

σ21 

σ22 

uσ12 + v σ22 − q 2 

⎞ ⎟ ⎠ 

, (49)

here ρ is density, u, v are the velocity components in the ˆ x 1 , ̂  x 2 
irections, respectively, and e is total energy per unit volume. The

ressure is determined from the equation of state, 

p = (γ − 1) 
(

e − 1 

2 

ρ
(
u 

2 + v 2 
))

, (50) 
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where γ is the ratio of specific heats. For a Newtonian fluid, the

viscous stresses are 

σi j = μ

(
∂u i 

∂ ̂  x j 
+ 

∂u j 

∂ ̂  x i 

)
− 2 

3 

μδi j 

∂u k 

∂ ̂  x k 
, (51)

and the heat fluxes are 

q i = −k 
∂T 

∂ ̂  x i 
, (52)

where k = C p μ/ Pr , T = p/ (ρR ) , Pr is the Prandtl number, C p is the

specific heat at constant pressure, R is the gas constant and μ is

the dynamic viscosity. 

As before, a time step estimate on each flux point can be com-

puted as, 

�ˆ t m 

= 

�t adv 
max h m 

| λm 

| + 

�t di f f 
max h 

2 
m 

νm 

m = 1 , 2 , . . . , N fpts , (53)

where λm 

and νm 

are the numerical wavespeeds and numerical

diffusion coefficients on each flux point, respectively. From [28] ,

these can be estimated as, 

| λm 

| = | V m 

| + c m 

, νm 

= max 

(
μm 

ρm 

, 
γμm 

Pr ρm 

)
, m = 1 , 2 , . . . , N fpts

(54)

where V m 

is the velocity normal to the face and c m 

= 

√ 

γ p m 
ρm 

is the

speed of sound. The maximum time step can then be estimated

from Eq. (47) . 

5. Numerical tests 

In this section, we verify the results obtained in the previ-

ous sections by solving the advection-diffusion and Navier–Stokes

equations on 1D uniform, 2D rectilinear and 2D unstructured

grids. The numerical tests for advection-diffusion confirm that the

centered-centered scheme generates the least amount of error for

well resolved solutions while the centered-one-sided scheme gen-

erates the least amount of error for solutions that are under-

resolved. For the Navier–Stokes equations, P = 2 , the upwind-

centered scheme generates the least amount of error for well re-

solved solutions while the upwind-one-sided scheme generates

the least amount of error for solutions that are under-resolved.

These results match the expectations in Section 3 . The CFL restric-

tions established in Section 4 are also verified and the formula in

Eq. (43) is shown to be an effective prediction for the maximum

stable time step for both the advection-diffusion and Navier–Stokes

equations on Cartesian grids. In the case of unstructured grids, this

time step estimate is not always conservative but it is still fairly

accurate. 

In the numerical tests that follow, the correction functions

and solution point locations are chosen to recover the nodal DG

scheme on Gauss–Legendre points and a standard 4 stage, 4th or-

der RK scheme is used for time integration. 

5.1. Case 1: 1D advection-diffusion of an approximate Gaussian 

The first test case involves the solution of the 1D advection-

diffusion equation with an initial condition of an approximate

Gaussian and periodic boundary conditions. The domain is cho-

sen as ˆ x ∈ [ −10 , 10] and N eles = 20 elements are used to construct

a uniform mesh with h = 1 . An advection speed of ˆ a = 10 and a

diffusion coefficient of ˆ b = 1 are used in order to test cases with

a nondimensional wavespeed of a = 10 . All cases have been ver-

ified to be stable using the maximum stable time step estimate

proposed in Eq. (40) . We choose to use half of this estimate to

minimize time integration errors. 
The initial condition and exact solution of an approximate

aussian can be computed from, 

 n,p 

(
ˆ t 
)

= 

N ˆ k ∑ 

j= −N ˆ k 

θ j exp 

(
−ˆ b ̂ k 2 j ̂  t 

)
cos 

(
ˆ k j 
(

ˆ x n,p − ˆ a ̂ t 
))

, (55)

here θ j is the j th spectral weight, ˆ k j = 2 π j/L is the j th wavenum-

er associated with the domain length, L = 20 , and N ˆ k 
is the num-

er of waves used. N ˆ k 
is chosen to be the largest value under the

onstraint ˆ k N ˆ k 
≤ (P + 1) π/h . The spectral weights are defined as 

j = 

exp (−(σ ˆ k j ) 
2 / 2) 

√ 

2 πσ
N ˆ k ∑ 

s = −N ˆ k 

exp (−(σ ˆ k s ) 2 / 2) 

, −N ˆ k 
≤ j ≤ N ˆ k 

, (56)

here σ is the standard deviation of the Gaussian. The standard

eviation dictates the width of the Gaussian and changes the spec-

ral weight distribution across the wave spectrum. 

The vector � 2 norm of the relative error is computed as 

‖ u 

δ( ̂ t ) − u ( ̂ t ) ‖ � 2 

‖ u ( ̂ t ) ‖ � 2 

= 

⎛ ⎜ ⎜ ⎝ 

N eles ∑ 

n =1 

P+1 ∑ 

p=1 

∣∣u 

δ
n,p ( ̂ t ) − u n,p ( ̂ t ) 

∣∣2 
N eles ∑ 

n =1 

P+1 ∑ 

p=1 

∣∣u n,p ( ̂ t ) 
∣∣2 

⎞ ⎟ ⎟ ⎠ 

1 
2 

, (57)

here u δn,p ( ̂ t ) is the numerical solution in the n th element at the

 th solution point. We also compute the L 2 functional norm of the

elative error for comparison, 

‖ u 

δ( ̂  x , ̂  t ) − u ( ̂  x , ̂  t ) ‖ L 2 

‖ u ( ̂  x , ̂  t ) ‖ L 2 
= 

⎛ ⎜ ⎜ ⎝ 

N eles ∑ 

n =1 

∫ 
�n 

∣∣u 

δ
n ( ̂  x , ̂  t ) − u n ( ̂  x , ̂  t ) 

∣∣2 d�

N eles ∑ 

n =1 

∫ 
�n 

∣∣u n ( ̂  x , ̂  t ) 
∣∣2 d�

⎞ ⎟ ⎟ ⎠ 

1 
2 

, 

(58)

here the integral is approximated numerically using Gaussian

uadrature with 12 quadrature points in each element. 

We begin with the case of a well resolved Gaussian with σ =
 / 
√ 

2 π and a solution polynomial of P = 2 . Fig. 10 , which plots

he initial condition and the spectral weight distribution of this

aussian, shows that the initial condition is indeed well resolved.

ig. 11 plots the relative error for different interface fluxes. As ex-

ected from the results in Fig. 5 , the centered-centered scheme

roduces less error. 

For the next case, the standard deviation of the Gaussian is de-

reased to σ = 1 / 
√ 

2 π . Fig. 12 plots the initial condition and the

pectral weight distribution for this Gaussian showing that the ini-

ial condition is now poorly resolved. Fig. 13 plots the relative error

or different interface fluxes. Once again, as expected from the re-

ults in Fig. 5 , the least amount of error is now exhibited by the

enter-one-sided scheme. 

.2. Case 2: 2D advection-diffusion of an approximate Gaussian 

We now consider the 2D advection-diffusion equation in a pe-

iodic box. The domain is chosen to be square, ˆ x 1 ∈ [ −10 , 10] , ˆ x 2 ∈
 −10 , 10] and 20 0 0 elements are used to construct a 2D, nonuni-

orm, rectilinear grid with a minimum element size of h 1 = 0 . 2 and

 2 = 0 . 1 near the center of the domain as shown in Fig. 14 . All

ases have been verified to be stable when using the maximum

table time step estimate proposed in Eq. (43) . We choose to use

alf of this estimate to minimize time integration errors. 
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Fig. 10. High resolution approximate Gaussian, P = 2 , σ = 8 / 
√ 

2 π . 

Fig. 11. Relative error vs. time periods for the RK44, DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, a = 10 , on a 

high resolution approximate Gaussian, σ = 8 / 
√ 

2 π . 

Fig. 12. Low resolution approximate Gaussian, P = 2 , σ = 1 / 
√ 

2 π . 
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Fig. 13. Relative error vs. time periods for the RK44, DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, a = 10 , on a 

low resolution approximate Gaussian, σ = 1 / 
√ 

2 π . 

Fig. 14. Nonuniform rectilinear grid with 40 × 50 elements and a minimum ele- 

ment size of h 1 = 0 . 2 and h 2 = 0 . 1 . 
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The initial condition and exact solution can be computed

from, 

u n,p 

(
ˆ t 
)

= 

N ˆ k 2 ∑ 

j 2 = −N ˆ k 2 

N ˆ k 1 ∑ 

j 1 = −N ˆ k 1 

θ j 1 , j 2 

2 ∏ 

d=1 

× exp 

(
−
(

ˆ b ̂ k 2 d, j d 
ˆ t 

)
cos 

(
ˆ k d, j d 

(
ˆ x d,n,p − ˆ a d ̂  t 

)))
, (59)

where θ j 1 , j 2 
is defined as 

θ j 1 , j 2 = 

exp (−σ 2 ( ̂ k 2 
1 , j 1 

+ ̂

 k 2 
2 , j 2 

) / 2) 

2 πσ

N ˆ k 2 ∑ 

s 2 = −N ˆ k 2 

N ˆ k 1 ∑ 

s 1 = −N ˆ k 1 

exp (−σ 2 ( ̂ k 2 
1 , j 1 

+ ̂

 k 2 
2 , j 2 

) / 2) 

, ∀ j 1 , j 2 . 

(60)

The relative error is computed using Eq. (57) . 

The first case uses a well resolved Gaussian with σ = 8 / 
√ 

2 π
and a solution polynomial of P = 2 . Fig. 15 plots the initial condi-

tion and relative error for different interface fluxes. As in the 1D

case, the centered-centered scheme produces the least amount of

error. 

The standard deviation of the Gaussian is now decreased to σ =
1 / 

√ 

2 π so that the initial condition is now under-resolved. Fig. 16

plots the initial condition and relative error for different interface
uxes. Since the grid is nonuniform, the Gaussian travels through

 refined region during the first quarter period leading to smaller

rrors for the centered-centered and upwind-centered schemes. As

he Gaussian travels through the less refined region near the half

eriod, the centered-one-sided scheme starts producing the least

mount of error resulting in the most accurate solution at the end

f one period. 

.3. Case 3: 2D Couette flow 

The last numerical test involves the solution of air passing be-

ween two parallel plates, separated by a distance H . The lower

late is kept stationary at a fixed temperature T l = 300 K while the

pper plate travels with constant velocity U u and at a fixed tem-

erature T u = 315 K. U u is computed from a set Mach number of

a u = 0 . 2 . The Reynolds number of this flow is set to Re u = 20

nd the dynamic viscosity, μ, is held constant. The ratio of specific

eats, γ , and the Prandtl number, Pr, are set to 1.4 and 0.72, re-

pectively. The domain is rectangular, ˆ x 1 ∈ [ −1 , 1] , ˆ x 2 ∈ [0 , 1] , with

eriodic boundary conditions on the left and right boundaries and

xed and moving isothermal boundary conditions on the bottom

nd top boundaries, respectively. The flow field is initialized with

he velocity of the top plate and RK44 is used to march the simu-

ation to a steady state solution. The exact solution for the velocity

rofile is 

 ( ̂  x ) = 

U u ̂  x 2 
H 

, v ( ̂  x ) = 0 . (61)

A series of Cartesian and unstructured quadrilateral meshes are

sed to solve the Navier–Stokes equations. For example, Fig. 17

hows a (32 × 16) Cartesian mesh and a unstructured quadrilat-

ral mesh with (639) elements along with the numerical Mach

ontours. For any given mesh, the nondimensional wavespeed, a ,

an be approximated by using Eq. (54) based on the properties of

he flow attached to the upper plate, 

 ≈ λu h 

νu 
= 

(U u + c u ) h 

max 
(

μ
ρu 

, 
γμ

Pr ρu 

) . (62)

or air, max 
(

μ
ρu 

, 
γμ

Pr ρu 

)
= 

γμ
Pr ρu 

. a can now be reduced by using the

eynolds number, 

e u = 

ρu U u H 

μ
, (63)

 = 

Pe u ( Ma u + 1) 

γ Ma u H 

h, (64)
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Fig. 15. Initial condition and relative error for the RK44, DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, a = 10 , 

on a high resolution approximate Gaussian, σ = 8 / 
√ 

2 π . 

Fig. 16. Initial condition and relative error for the RK44, DG scheme of order P = 2 using Gauss–Legendre solution points solving the advection-diffusion equation, a = 10 , 

on a low resolution approximate Gaussian, σ = 1 / 
√ 

2 π . 

Table 4 

Element size ‘ h ’ and nondimensional parameter ‘ a ’ for the meshes employed 

for Couette flow. 

N eles 

(4 × 2) (8 × 4) (16 × 8) (32 × 16) (159) (639) 

h 0 .5 0 .25 0 .125 0 .0625 0 .07931 0 .03956 

a 30 .86 15 .43 7 .714 3 .857 4 .894 2 .441 

w  

t  

e  

e

 

s  

v  

w

 

T  

t  

Table 5 

Couette flow results for the RK44, DG scheme using Gauss–Legendre solution points 

on Cartesian quadrilateral meshes. 

Upwind-centered Upwind-one-sided 

P N eles L 2 Error Order �ˆ t max 

�ˆ t pred 
L 2 Error Order �ˆ t max 

�ˆ t pred 

2 (4 × 2) 4.415e −05 – 1 .3 4.358e −05 – 1 .1 

(8 × 4) 5.256e −06 3 .07 1 .4 5.427e −06 3 .01 1 .0 

(16 × 8) 5.934e −07 3 .15 1 .5 6.430e −07 3 .08 1 .0 

(32 × 16) 6.546e −08 3 .18 1 .3 7.741e −08 3 .05 1 .0 

3 (4 × 2) 4.584e −07 – 1 .3 4.380e −07 – 1 .1 

(8 × 4) 3.089e −08 3 .89 1 .4 2.706e −08 4 .02 1 .0 

(16 × 8) 1.995e −09 3 .95 1 .2 1.622e −09 4 .06 1 .0 

(32 × 16) 1.274e −10 3 .97 1 .1 1.004e −10 4 .01 1 .0 

s  

u  

m  

l  

F  

l  
here Pe u = Re u Pr = 14 . 4 is the Péclet number. For a given mesh,

he element size h is computed as h = 

√ 

2 
N eles 

which recovers the

xact element size for a Cartesian mesh. a is then computed for

ach mesh and shown in Table 4 . 

Convergence of the L 2 velocity error with grid spacing h is

hown in Fig. 18 for P = 2 and Fig. 19 for P = 3 . The rates of con-

ergence for both Cartesian and unstructured meshes match well

ith the expected orders of around P + 1 [30] . 

The L 2 velocity errors and orders of accuracy are given in

able 5 for the Cartesian meshes and Table 6 for unstruc-

ured meshes. For P = 2 , Cartesian meshes, the upwind-one-sided
cheme produces less error for the less refined case while the

pwind-centered scheme produces less error when the mesh is

ore refined. For P = 3 , the upwind-one-sided scheme produces

ess error for all meshes which matches the results from Table 2 .

or unstructured meshes, the upwind-centered scheme produces

ess error for P = 2 and upwind-one-sided scheme produces less
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Fig. 17. Couette flow Mach contours, DG upwind-one-sided scheme using Gauss–Legendre solution points, P = 3 . 

Fig. 18. 3rd order results for Couette flow, RK44, DG scheme using Gauss–Legendre solution points, P = 2 . 

Fig. 19. 4th order results for Couette flow, RK44, DG scheme using Gauss–Legendre solution points, P = 3 . 
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error for P = 3 . This matches well with the results from the Carte-

sian meshes since the meshes are more refined. 

The ratios of maximum allowable time step over the estimated

time step computed using Eq. (47) , �ˆ t max 

�ˆ t pred 
, are shown in Table 5 for

the Cartesian meshes. The results show that the time step estimate

remains conservative for both schemes and matches almost exactly

for the upwind-one-sided scheme as was expected from Fig. 8 . It’s
lso important to note that in the case of the upwind-centered

cheme, the time step estimate loses accuracy near a ≈ 10, as ex-

ected from Fig. 8 . 

The results from the unstructured meshes in Table 6 show that

he time step estimate is conservative for the upwind-centered

cheme but not for the upwind-one-sided scheme, however, the

ime step estimate is still fairly accurate for both cases. 
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Table 6 

Couette flow results for the RK44, DG scheme using Gauss–Legendre solution 

points on unstructured quadrilateral meshes. 

Upwind-centered Upwind-one-sided 

P N eles L 2 Error Order �ˆ t max 

�ˆ t pred 
L 2 Error Order �ˆ t max 

�ˆ t pred 

2 (159) 5.214e −07 – 1 .5 5.432e −07 – 0 .9 

(639) 5.249e −08 3 .31 1 .4 6.003e −08 3 .18 0 .9 

3 (159) 1.777e −09 – 1 .3 1.529e −09 – 0 .8 

(639) 9.192e −11 4 .27 1 .3 7.922e −11 4 .27 0 .8 
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. Conclusion 

In this paper, Fourier analysis is performed for the FR formu-

ation for the linear advection-diffusion equation. In our analysis,

e have focused on different interface flux formulations of the

odal DG scheme on Gauss–Legendre points although the same

echnique can be applied to any scheme within the FR formula-

ion. The contributions of this study can be split into two main

esults. First, we have provided a maximum stable time step es-

imate for the linear advection-diffusion and Navier–Stokes equa-

ions on unstructured, tensor product elements. The estimates are

ccurate within 50% error on all test cases and are conservative

n tests with Cartesian grids but not always on unstructured grids.

econd, we presented both theoretical and numerical verification

hat schemes with centered values produce less error for well re-

olved solutions while schemes with one-sided values produce less

rror for solutions that are under-resolved. 
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