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PyFR is an open-source cross-platform computational fluid dynamics framework based on the high-order Flux 
Reconstruction approach, specifically designed for undertaking high-accuracy scale-resolving simulations in the 
vicinity of complex engineering geometries. Since the initial release of PyFR v0.1.0 in 2013, a range of new 
capabilities have been added to the framework, with a view to enabling industrial adoption. In this work, we 
provide details of these enhancements as released in PyFR v2.0.3, including improvements to cross-platform 
performance (new backends, extensions of the DSL, new matrix multiplication providers, improvements to the 
data layout, use of task graphs) and improvements to numerical stability (modal filtering, anti-aliasing, artificial 
viscosity, entropy filtering), as well as the addition of prismatic, tetrahedral and pyramid shaped elements, 
improved domain decomposition support for mixed element grids, improved handling of curved element meshes, 
the addition of an adaptive time-stepping capability, the addition of incompressible Euler and Navier-Stokes 
solvers, improvements to file formats and the development of a plugin architecture. We also explain efforts to 
grow an engaged developer and user community and provided a range of examples that show how our user 
base is applying PyFR to solve a wide range of fundamental, applied and industrial flow problems. Finally, we 
demonstrate the accuracy of PyFR v2.0.3 for a supersonic Taylor-Green vortex case, with shocks and turbulence, 
and provided latest performance and scaling results on up to 1024 AMD Instinct MI250X accelerators of Frontier 
at ORNL (each with two GCDs) and up to 2048 Nvidia GH200 GPUs of Alps at CSCS. We note that absolute 
performance of PyFR accounting for the totality of both hardware and software improvements has, conservatively, 
increased by almost 50× over the last decade.
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Nature of problem: Accurate and efficient scale-resolving simulation of industrial flows.
Solution method: Massively parallel cross-platform implementation of high-order accurate Flux Reconstruction 
schemes. 

1. Introduction

Computational Fluid Dynamics (CFD) is used by high-value indus-
tries across the world to reduce costs and improve product performance. 
The majority of industrial CFD is undertaken using Reynolds-Averaged 
Navier–Stokes (RANS) simulations, which time-average unsteady phe-
nomena, including turbulence, and replace the ‘missing physics’ with a 
model. However, it is well established that RANS approaches have lim-
ited applicability when flow is separated and unsteady. To overcome this 
limitation, higher-fidelity scale-resolving methods can be used, such as 
Large Eddy Simulations (LES), Implicit Large Eddy Simulations (ILES) 
and Direct Numerical Simulations (DNS), with DNS being the most ac-
curate; fully resolving all physics of the governing Navier–Stokes equa-
tions. However, the cost of a scale-resolving simulation is typically 
orders-of-magnitude higher than that of a RANS simulation, and thus 
the use of scale-resolving methods in industry has until recently been 
considered intractable.

Our vision with PyFR has been to develop and deliver an open-source 
Python framework based on the high-order accurate Flux Reconstruc-
tion (FR) approach [1] that enables real-world scale-resolving simula-
tions to be undertaken in tractable time, at scale, by both academic 
and industrial practitioners—helping advance industrial CFD capabili-
ties from their current ‘RANS plateau’. It is one of several international 
efforts to enable industrial adoption of scale-resolving simulations, in-
cluding Nektar + + [2,3] and hpMusic [4] which employ high-order 
spectral element methods similar to PyFR, HiPSTAR [5,6] which em-
ploys a compact finite-difference scheme, and CharLES (now acquired 
and distributed for industrial usage by as Fidelity LES Solver by Ca-
dence Inc) [7,8] which employs a second-order accurate cell-centered 
finite volume scheme.

The first version of PyFR—v0.1.0—was released in late 2013 [9]. It 
supported solving the compressible Euler and Navier–Stokes equations 
on unstructured grids of hexahedral elements, and was able to target 
both conventional CPUs and NVIDIA GPUs via a novel domain specific 
language based on Mako. In the past decade, there have been over 30 
subsequent releases of PyFR, adding a wide range of new capabilities 
with a view to enabling industrial adoption, culminating in the current 
release of PyFR v2.0.3 which is described in this paper.

2. Flux reconstruction

PyFR implements the Flux Reconstruction (FR) approach [1], which 
is a form of discontinuous spectral element method [10,11]. As a brief 
overview, consider the first-order hyperbolic conservation law

𝜕𝑢𝛼

𝜕𝑡 
+∇ ⋅ 𝐟𝛼 = 0, (1)

where 𝛼 is the field variable index, 𝑢𝛼 = 𝑢𝛼(𝐱, 𝑡) are the conservative 
field variables, and 𝐟𝛼 = 𝐟𝛼(𝑢𝛼) are the fluxes of 𝑢𝛼 . In order to solve Eq. 
(1) using FR in a domain 𝛀, one must tessellate the domain with 𝑁
non-overlapping conforming elements 𝛀𝑛 as

𝛀 =
𝑁⋃

𝑛=1 
𝛀𝑛, 

𝑁⋂

𝑛=1 
𝛀𝑛 =∅, (2)

see, for example, Fig. 1. Without loss of generality, we assume in this 
example all 𝛀𝑛 are of the same type.

Each element 𝛀𝑛 can then be mapped to a reference element �̃� via 
a mapping function n defined as

𝐱 =n(�̃�), �̃� =−1
n (𝐱),

where �̃� are coordinates in the reference element, and geometric Jaco-
bian matrices can be defined from the mapping functions as

𝐉n = 𝐽nij =
𝜕ni

𝜕�̃�𝑗
, 𝐽n = det 𝐉n,

𝐉−1n = 𝐽−1
nij =

𝜕−1
ni

𝜕�̃�𝑗
, 𝐽−1

n = det 𝐉−1n = 1 
𝐽n

.

For each 𝛀𝑛, these Jacobian matrices can be used to transform Eq. (1)
into reference element space as
𝜕𝑢𝑛𝛼

𝜕𝑡 
+ 𝐽−1

n ∇̃ ⋅ 𝐟𝑛𝛼 = 0 and

𝐟n𝛼 = 𝐟n𝛼(�̃�, 𝑡) = 𝐽n(�̃�)𝐉−1n (n(�̃�))𝐟n𝛼(n(�̃�), 𝑡), (3)

where 𝑢𝑛𝛼 and 𝐟n𝛼 are the solution and flux in 𝛀𝑛, respectively, and 
∇̃ = 𝜕∕𝜕�̃�𝑖.

We can proceed to define a set of solution points �̃�(𝑢)
𝜁

in the reference 
element (see Fig. 1), where 𝜁 is the solution point index which satisfies 
0 ⩽ 𝜁 < 𝑁 (𝑢) and 𝑁 (𝑢) is the number of solution points in the reference 
element. Now a nodal basis set 𝓁(𝑢)

𝜁
(�̃�) can be defined in the reference 

element, where the nodal basis polynomials 𝓁(𝑢)
𝜁

satisfy 𝓁(𝑢)
𝜁
(�̃�(𝑢)𝜎 ) = 𝛿𝜁𝜎

where 𝛿𝑖𝑗 is the Kronecker delta. We can also define a set of flux points 
�̃�(𝑓 )
𝜁

on the surface of the reference element (see Fig. 1), where 𝜁 is now 
the flux point index which satisfies 0 ⩽ 𝜁 <𝑁 (𝑓 ) and 𝑁 (𝑓 ) is the number 
of flux points on the surface of the reference element. These flux points 
are constrained such that flux points from adjoining elements always 
conform at element interfaces.

For a given element, the first step in the FR approach is to obtain the 
discontinuous solution at each flux point 𝑢(𝑓 )𝜎n𝛼 from the solution at the 
solution points 𝑢(𝑢)

𝜁n𝛼 as

𝑢(𝑓 )
𝜎n𝛼 =

𝑁 (𝑢)−1∑

𝜁=0 
𝑢
(𝑢)
𝜁n𝛼𝓁

(𝑢)
𝜁
(�̃�(𝑓 )

𝜎
). (4)

The second step is to obtain a transformed common normal interface 
flux at each flux point 𝑓𝐶(f⟂)

𝜎n𝛼 from the discontinuous solution at the flux 
point 𝑢(f )𝜎n, the discontinuous solution at the conforming flux point in the 
relevant adjoining element 𝑢′ (f )𝜎n , and the surface normal at the flux point 
𝐧(f )𝜎n as

𝑓
𝐶(f⟂)
𝜎n𝛼 = F𝛼(𝑢(f )𝜎n, 𝑢

′ (f )
𝜎n , �̂�(f )

𝜎n), (5)

where F𝛼 is e.g. an appropriate Riemann solver.
The third step is to calculate the transformed discontinuous flux at 

the solution points 𝐟 (u)𝜎n𝛼 from the solution at solution points 𝐮(u)𝜎n𝛼 using 
the system flux function. These values can then be used to calculate the 
transformed normal discontinuous flux at the flux points 𝑓 (f⟂)

𝜎n𝛼 as

𝑓
(f⟂)
𝜎n𝛼 = 𝐧(f )

𝜎n ⋅
𝑁 (𝑢)−1∑

𝜁=0 
𝐟 (𝑢)
𝜁n𝛼𝓁

(𝑢)
𝜁
(�̃�(𝑓 )

𝜎
). (6)

Finally, the transformed divergence of the transformed continuous 
flux (∇̃ ⋅ 𝐟)(u)

𝜁n𝛼 can be obtained by propagating the difference between 

𝑓
𝐶(f⟂)
𝜎n𝛼 and 𝑓 (f⟂)

𝜎n𝛼 at each flux point into the element using a set of flux 
correction functions 𝐠(f )𝜎 , and combining with the divergence of the 
transformed discontinuous flux 𝐟 (u)𝜎n𝛼 as

(∇̃ ⋅ 𝐟)(u)
𝜁n𝛼 =

𝑁 (𝑓 )−1∑

𝜎=0 
∇̃ ⋅ �̃�(f )

𝜎
(�̃�(𝑢)

𝜁
)
(
F𝛼𝑓

(f⟂)
𝜎n𝛼 − 𝑓

(f⟂)
𝜎n𝛼

)

∗ +
𝑁 (𝑢)−1∑

𝜈=0 
𝐟 (u)
𝜈n𝛼 ⋅ ∇̃𝓁

(u)
𝜈
(�̃�(𝑢)

𝜁
), (7)
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Fig. 1. (a) Example of an unstructured curved-element tetrahedral mesh around a sphere, (b) fourth-order 𝛼-optimised flux points [11] for a tetrahedron, where 
yellow and red indicate doubly and triply collocated points, respectively, and (c) fourth-order 𝛼-optimised solution points [11] for a tetrahedron. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

which can then be used to update the solution at the solution points 
𝑢
(𝑢)
𝜁n𝛼 via a suitable explicit time integration scheme. For further details 

on the FR approach and its implementation in PyFR see [9,12].

3. New capabilities

3.1. Cross-platform performance

The cross-platform performance of PyFR is enabled through backends 
which can utilise various matrix multiplication kernels and a Mako de-
rived domain specific language (DSL) which achieves complete feature 
parity across all backends, as per Fig. 2.

Backends PyFR v0.1.0 had a C/OpenMP backend for CPUs and a CUDA 
backend for NVIDIA GPUs. However, since 2013 additional vendors 
have entered the high-end GPU market including AMD, Intel, and even 
Apple. As such, PyFR v2.0.3 now contain an additional HIP backend for 
AMD GPUs, an OpenCL backend for all GPUs, and a Metal backend for 
Apple GPUs.

DSL The capabilities and performance of the DSL have been improved 
in PyFR v2.0.3. In particular, there is language-level support for per-
forming reduction operations—for example min—across a data set. 
A kernel argument can now be annotated according to reduce(op) 
where op is a reduction operator. Whatever value the kernel assigns to 
this argument will then be automatically and safely reduced with its 
current value in memory using atomic operations. On the performance 
side, the DSL is now capable of detecting situations where read-only ker-
nel arguments are likely to be subject to reuse. When running on GPU 
platforms, the DSL will automatically take care of loading these argu-
ments into shared memory. This helps to reduce pressure on the L1 and 
L2 caches.

Matrix multiplications Many operations within an FR time-step can be 
cast in the form of

𝗖← 𝗔𝗕+ 𝛽𝗖,

where 𝗔 is a constant operator matrix, 𝗕 is an input state matrix, and 𝗖
is an output state matrix. PyFR v0.1.0 simply offloaded these operations 
to a platform-specific dense BLAS library such as cuBLAS or OpenBLAS. 
However, when operating on elements with a tensor-product structure, 
the operator matrices can exhibit a significant degree of sparsity. This 
can lead to suboptimal performance in cases where the arithmetic in-
tensity of the operation is beyond that of the underlying hardware.

This issue has been addressed by incorporating additional matrix-
multiplication providers into PyFR v2.0.3. When running on with the 
CUDA and HIP backends, PyFR v2.0.3 will use the GiMMiK [13] li-
brary to generate a suite of bespoke fully-unrolled kernels for each 𝗔. 
During the code generation process, GiMMiK automatically elides multi-
plications through by zero, thus reducing the arithmetic intensity of the 
operation. The generated kernels are then competitively benchmarked 
against those provided by the dense BLAS library, with PyFR automat-
ically selecting the fastest kernel for each operation. This auto-tuning 
is performed autonomously by PyFR at run-time and does not require 
any direction from the user. When running on CPUs, a similar result is 
accomplished through the use of libxsmm [14] which includes its own 
built-in support for automatically choosing between dense and sparse 
kernels.

Finally, in situations where the flux points are a strict subset of the so-
lution points, additional logic has been incorporated into PyFR to avoid 
the need for multiplications entirely. This leads to further memory and 
memory bandwidth savings.

Data layout The primary data structure in PyFR is an 𝑚 by 𝑛 row-major 
matrix where, up to padding, 𝑚 is proportional to the number of solu-
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Fig. 2. Overview of how PyFR achieves cross-platform performance. New functionality is marked in blue. 

Fig. 3. Data layout methodologies for packing a pair of field variables (denoted by red and blue, respectively), into the rows of a matrix. 

tion/flux points and 𝑛 is equal to the product of the number of elements 
and the number of field variables. It follows that there is a degree of 
freedom regarding how these field variables are packed along a row. 
This can be characterised by the stride Δ𝑗 between two subsequent field 
variables. The choice of Δ𝑗 = 1 results in an array of structures (AoS) 
arrangement, Δ𝑗 =𝑁𝐸 where 𝑁𝐸 is the number of elements results in 
a structure of arrays (SoA) arrangement, and Δ𝑗 = 𝑘 results in a hybrid 
array of structure of arrays (AoSoA) approach. An illustration of these 
arrangements can be seen in Fig. 3.

For simplicity, PyFR v0.1.0 used an SoA approach. However, al-
though this structure is readily amenable to vectorisation, it has some 
limitations. Firstly, the large stride between field variables decreases 
the efficiency of caches since adjacent field variables are unlikely to 
reside in the same cache line. Secondly, it is not friendly to hardware 
pre-fetchers: an SoA structure with 𝑣 field variables appears to a CPUs 
pre-fetcher like 𝑣 separate arrays. Since CPUs are only capable of pre-
fetching a finite number of data streams, this can lead to stalls. Finally, 
given a pointer to one field variable at one point, it is not possible to 
access the next field variable unless one also knows 𝑁𝐸 . To avoid these 
issues, PyFR v2.0.3 employs the more sophisticated AoSoA packing. The 
value of 𝑘 is chosen automatically by the backend based on the vector 
length of the underlying hardware.

Additionally, when running on CPUs, PyFR v2.0.3 incorporates an 
additional level of blocking. Rather than allocating a single row-major 
matrix with 𝑛 columns, the C/OpenMP backend instead allocates 𝑞
smaller matrices each with ∼𝑛∕𝑞 columns. The value of 𝑞 is chosen to 
ensure that an entire block can easily remain resident in local caches 
and serves to further improve data locality.

Task graphs Strong scaling has also been improved by adding first-class 
support for task graphs. The idea is to exploit the fact that PyFR, as with 
many scientific codes, repeatedly calls the same sequence of kernels. 
By treating each kernel as a vertex in a graph and the dependencies 
between kernels as edges, it is possible—on an a priori basis—to form 
a task graph corresponding to a single right-hand side evaluation. This 
has two key advantages:

1. It presents the underlying runtime with extra opportunities for ex-
tracting parallelism by enabling it to safely identify kernels which 
can be run in parallel.

2. It enables a substantial reduction in interface overhead since, once 
constructed, task graphs can be launched with just a single function 
call as opposed to one function call per kernel.

An example of a task graph for a 2D Navier–Stokes simulation on 
a mixed-element grid can be seen in Fig. 4. Looking at the graph, we 
observe that there are four root nodes. As these root nodes are—by 
definition—independent, it is possible for all four of the kernels to be 
executed in parallel. Similarly, we observe that the three bcconu bound-
ary condition kernels are also independent, such that these can also be 
executed in parallel. Indeed, careful inspection of the graph shows that 
there are always at least two kernels which may be executed at the same 
time. When exploited by a backend, this parallelism can improve GPU 
utilisation which, in turn, leads to improved strong scaling.

On the CUDA backend, PyFR task graphs map directly onto native 
CUDA graphs. Since the NVIDIA A100 generation, there is hardware 
support for task graph acceleration, enabling further reductions in over-
head. While HIP does support task graphs, preliminary studies show 
their performance to be inferior to launching kernels directly. As such, 
task graphs on the HIP backend are emulated by submitting kernels to 
a stream in a serial fashion. A similar approach is used on Metal. On 
OpenCL, task graphs are emulated using out-of-order queues and events. 
This enables the runtime to identify and exploit inter-kernel parallelism 
but does not decrease API overhead.

To demonstrate the benefits of native task graphs, we consider the 2D 
Incompressible Cylinder Flow test case 2d-inc-cylinder available 
from the PyFR Test Case repository on GitHub. This is small mixed-
element case has a high API overhead, and without task graphs, the 
run-time on an NVIDIA V100 GPUs is 256 s. However, with task graphs, 
this reduces to 122 s.

Cache blocking A powerful means of reducing the memory bandwidth 
requirements of a code on conventional CPUs is cache blocking [15]. The 
idea is to improve data locality by changing the order in which kernels 
are called. An example of this can be seen in Fig. 5 which shows how 
a pair of array addition kernels can be rearranged to reduce bandwidth 
requirements. A key advantage of cache blocking compared with alter-
native approaches, such as kernel fusion, is that the kernels themselves 
do not require modification; all that changes is the arguments to the 
kernels.

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-inc-cylinder
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Fig. 4. A task graph generated by the NVIDIA cuGraphDebugDotPrint API for a 2D mixed-element Navier–Stokes test case. Blue shading indicates kernels for 
quadrilateral elements, red shading kernels for triangular elements, and green shading for interface kernels. The four root nodes of the graph are marked with red 
borders.

Historically, cache blocking has not been viable for high-order codes 
due to the size of the intermediate arrays which are generated by ker-
nels. For example, an Intel Ivy Bridge CPU core from 2013 only has 
256 KiB of L2 cache which is shared between executable code and data. 
As a point of reference, for the Euler equations, storing the solution and 
flux for just eight ℘ = 4 hexahedra at double precision requires 160 kB. 
Since 2016, however, there has been a marked increase in the size of 
private caches, with Intel Golden Cove CPU cores having 2MiB. The 
specifics involved in cache blocking FR are detailed in [15,16] and can 
improve performance by a factor of two. Within PyFR, cache blocking is 
accomplished by calling auxiliary methods on task graphs stating which 
kernels in the graph are suitable for blocking transformations. The inter-
face also contains support for eliminating temporary arrays which can 
further improve performance.

Multi-node capabilities Distributed memory parallelism is accomplished 
via MPI using the mpi4py wrappers [17,18]. As the message format is 
standardised across all backends, it is possible for different ranks to em-

ploy different backends, thus enabling heterogeneous computing from a 
homogeneous codebase [19]. In order to improve scalability, the back-

end interface in PyFR v2.0.3 has been enhanced to allow backends to 
directly pass GPU device pointers to MPI routines. As such, PyFR v2.0.3 
is fully capable of exploiting GPUDirect RDMA on NVIDIA platforms via 
CUDA Aware MPI, along with its analogue on AMD platforms via HIP 
Aware MPI. The impact of this technology depends on both the under-

lying hardware and the degree to which a simulation is strong scaled. In 
the most extreme cases, twofold performance improvements have been 
observed when running on clusters of NVIDIA A100 GPUs [20].
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Fig. 5. Example of how cache blocking can be applied to a pair of array addition kernels. In the blocked version when the second kernel updates a[i] it will hit in 
cache, thus saving a write to and read back from main memory.

3.2. Numerical stability

PyFR is often used to conduct under-resolved DNS (uDNS), also re-
ferred to as ILES of turbulent flow. On account of this under-resolution, 
the FR scheme is subject to aliasing-driven instabilities, which can cause 
the simulation to diverge [21]. Additionally, FR schemes exhibit in-
stabilities when solutions contain discontinuities such as shocks. PyFR 
v0.1.0 had no specialised capabilities for handling either scenario, be-
yond simply increasing grid resolution. However, as of PyFR v2.0.3, 
there are now four separate stabilisation strategies available.

Modal filtering The simplest stabilisation technique in PyFR v2.0.3 is 
modal filtering, wherein high-order modes of the solution are period-
ically filtered as outlined in [11]. This approach is conservative and 
numerically inexpensive. However, it is an indiscriminate approach—
with the filtering applied uniformly across the domain irrespective of 
whether it is required, and it exposes several free parameters including 
the filter strength, filter frequency and cut-off modes.

Anti-aliasing As noted in [21], the origin of aliasing-driven instabili-
ties is the use of a collocation-type projection of the fluxes. PyFR v2.0.3 
resolves this issue by using quadrature to perform a least-squares projec-
tion of the flux instead. To do this, PyFR employs a series of state-of-the 
art quadrature rules generated using Polyquad [22], which out-perform 
those in literature. Studies have shown the results with anti-aliasing to 
be markedly superior to those produced by modal filtering [23]. This 
does, however, come with an associated computational cost. For a three-
dimensional simulation where the anti-aliasing degree is one higher 
than that of the solution, the run-time of the simulation is typically dou-
bled.

Artificial viscosity Primarily intended for shock capturing, artificial vis-
cosity is another stabilisation approach provided by PyFR v2.0.3, which 
dynamically adds extra viscosity into elements whose solutions are ex-
hibiting Gibbs-type phenomena. Based around the widely adopted ap-
proach of [24], the method is functional but, as with modal filtering, 
requires a degree of parameterisation. Additionally, whilst the addi-
tional kernels are not particularly expensive—at least within the con-
text of an advection-diffusion type problem such as the Navier–Stokes 
equations—the process of adding viscosity can have a negative impact 
on the maximum stable explicit time step. As such, the overall cost of 
the approach can be high.

Entropy filtering The final approach provided by PyFR v2.0.3 for stabil-
isation and shock capturing is entropy filtering [25–28]. This is based 
around selectively applying a modal filter to elements which violate pos-
itivity of density, positivity of pressure or a minimum entropy condition. 
The minimum entropy threshold is chosen as the minimum discrete en-
tropy of the element and its Voronoi neighbours at the previous time step 
i.e., the local domain of influence of the element. As such, the method 
does not explicitly require any problem-dependent parameterisation as 

the positivity constraints and entropy thresholds are directly defined. In 
practice, a small fixed tolerance in the entropy constraint is allowed to 
handle finite precision effects, but this default tolerance is not varied be-
tween problems and does not affect the positivity-preserving properties 
of the shock capturing technique.

The utility of the approach is demonstrated in the 2D Double Mach 
Reflection test case 2d-double-mach-reflection and the 2D Vis-
cous Shock Tube test case 2d-viscous-shock-tube available from 
the PyFR Test Case repository on Github.

3.3. Mixed elements and domain decomposition

PyFR v0.1.0 only included support for three element types: quadri-
laterals and triangles in two dimensions and hexahedra in three dimen-
sions. Given the difficulties of all-hexahedral meshing around complex 
geometries, this represented a significant limitation. PyFR v2.0.3 ad-
dresses this limitation by adding in complete support for prisms and 
tetrahedra and partial support for pyramids. Specifically, the pyramid 
support requires that the quadrilateral base be affine. Given that a major 
application for pyramids is as a transition layer between a tetrahedral 
near-field and a hexahedral far-field, this restriction is relatively minor.

One practical complication which arises when running on mixed 
grids is domain decomposition. The relative performance of different 
element types is affected by around half a dozen simulation parameters 
including: the polynomial order, location of solution and flux points 
and use of anti-aliasing, to name but three. A consequence of this is that 
when partitioning a grid, it is not possible to employ a single set of ele-
ment weighting factors. Employing incorrect weighting factors can lead 
to load imbalances which negatively impact strong scaling. Compared 
with v0.1.0, PyFR v2.0.3 contains two major improvements in this area.

Firstly, whereas v0.1.0 required grids to be partitioned by the mesh 
generation software, v2.0.3 includes built-in support for partitioning 
and re-partitioning both mesh and solution files. This is accomplished by 
having PyFR call out to the METIS [29] and SCOTCH [30] libraries. Us-
ing this functionality, it is relatively simple to experiment with different 
weightings and change them in concert with the simulation parameters; 
for example, when restarting a simulation at a higher polynomial or-
der, this functionality can be used to appropriately re-weight the mesh. 
Moreover, to aid this process, PyFR also includes support for tracking 
MPI wait times. This information can be used to identify load imbal-
ances between domains, which the user can then employ to derive more 
appropriate weights.

Secondly, there is also support for balanced partitioning wherein 
PyFR attempts to assign the same number of elements of each type to 
each domain. This ensures optimal load balancing irrespective of the 
relative performance differential between element types. However, as 
element types are not uniformly distributed throughout the domain—
for example one might have a prismatic boundary layer and a tetra-
hedral wake—balanced partitioning can lead to partitions becoming 
non-contiguous when the number of partitions is large. Examples of 
weighted and balanced partitioning can be seen in Fig. 6 for the 2D 

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-double-mach-reflection
https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-viscous-shock-tube
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Fig. 6. Partitionings of a mixed grid with a quadrilateral boundary layer and triangular far-field partitioned into eight parts. For the weighted strategy, each 
quadrilateral was assigned 3∕2 the weight of a triangle.

Fig. 7. Simulation of free-stream flow using second-order solution polynomials on a cubically-curved tetrahedral mesh with cross-product metric as used in PyFR 
v0.1.0 (a), and conservative metric as used in PyFR v2.0.3 (b).

Incompressible Cylinder Flow test case 2d-inc-cylinder available 
from the PyFR Test Case repository on GitHub.

3.4. Curved elements

To realise the benefits of high-order schemes, it is necessary to em-
ploy grids which, by finite volume standards, are relatively coarse. In 
order to still accurately represent the underlying geometry, it is there-
fore important for the elements themselves to be curved. This is accom-
plished by associating metric terms—which take the form of a 2 × 2 or 
3 × 3 matrix—within each element.

PyFR v0.1.0 employed the so-called cross-product metric. However, 
with this approach, the polynomial order of the spatial metric is twice 
that of the shape function for curved grids—possibly exceeding the or-
der of the solution basis. If this is the case, then the metric terms may 
not be discretised accurately due to truncation and aliasing errors. In 
particular, the divergence of the approximated metric terms may be-
come non-zero, which results in a lack of free-stream preservation, i.e. 
the solver cannot maintain a uniform free-stream flow solution.

To overcome this issue, PyFR v2.0.3 instead employs the conserva-
tive metric [31,32], which preserves a uniform free-stream flow even 
when discretised. Specifically, this approach constructs the metric terms 
as the curl of the function, thus ensuring they are always divergence-free 
irrespective of any errors in the function approximation. The approach 
greatly increases the robustness of PyFR when running on curved grids. 
An example of its impact can be seen in Fig. 7.

Furthermore, in many real-world grids, only elements in and around 
the boundary layer are actually curved. PyFR v2.0.3 takes advantage of 

this fact by identifying linear elements and, in lieu of computing metric 
terms for each solution point on an a priori basis, instead determines 
them on the fly based off the geometry of the element. This can lead 
to a substantial saving in memory bandwidth. For example, in a ℘ = 4
hexahedral element there are (℘ + 1)3 = 125 solution points and hence 
32 × 125 = 1,125 metric terms. However, if the element is linear, then 
the metric terms are entirely determined by the corner vertices which 
only involve 3 × 8 = 24 terms.

3.5. Adaptive time stepping

When using explicit time stepping, the run-time of a simulation is 
directly proportional to the time step size. However, for non-linear prob-
lems, it can be challenging to accurately estimate the maximum stable 
step size. PyFR v2.0.3 avoids these issues by including support for low 
storage Runge–Kutta methods with embedded pairs. These make it possi-
ble to inexpensively obtain an estimate for the numerical error incurred 
when taking a time step [33]. Once suitably normalised, this error is 
then used to decide if a time step should be accepted or rejected. More-
over, it is also be used to adapt the step size; increasing for accepted 
steps and decreasing for rejected steps.

3.6. Incompressible Euler and Navier–Stokes

PyFR v0.1.0 included a compressible Euler and Navier–Stokes solver. 
In PyFR v2.0.3, support has also been added for the incompressible 
Navier–Stokes equations. This is accomplished via a combination of the 
artificial compressibility method of [34] with the dual-time approach 

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-inc-cylinder
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of [35]. The result is an iterative scheme which builds extensively upon 
the fast residual evaluation capability of PyFR. Convergence is acceler-
ated through a combination of polynomial multigrid [36] and variable 
local time stepping [37].

3.7. File formats

The mesh and solution file formats for PyFR v0.1.0 were based 
around NumPy .npy and .npz files. Although simple to read and write 
from Python, they are difficult to access from other environments. More-
over, the formats themselves had no provisions for parallel I/O. For 
these reasons, PyFR v2.0.3 employs a new set of file formats based 
around the industry-standard HDF5 [38,39]. A key advantage of the 
HDF5 format is its hierarchical nature and the ability to attach arbi-
trary attributes to most data sets. Moreover, data arrays stored by PyFR 
use 64-bit rather than 32-bit integers. This enables a partition to have 
in excess of four billion elements and serves to further future-proof the 
format for at least the next decade.

To aid in reproducibility, PyFR v2.0.3 solution files embed all of the 
configuration files that have been employed in the simulation up until 
the current time. This makes it possible to account for the common sit-
uation wherein a simulation is started with one configuration file, run 
for a period of time, and then restarted with a different configuration.

Output format support has also been enhanced since PyFR v0.1.0. 
Specifically, PyFR v2.0.3 now supports exporting high-order VTU files. 
This enables the high-order nature of the solution to be preserved 
throughout more of the post-processing pipeline. Furthermore, there is 
also support for generating parallel VTU files which can be more effi-
cient in multiprocessing environments.

3.8. Plugin architecture

The PyFR plugin infrastructure provides a lightweight means of 
adding new capabilities to the code base. Written in pure Python, plug-
ins are capable of adding new command line arguments, periodically 
post-processing the solution, and adding source-terms to the solver. 
Since they are written in pure Python plugins are an accessible means for 
users to customise PyFR. In their most direct form plugins are given read-
only access to the high-order solution along with—optionally—spatial-
temporal gradients thereof. We note, however, that the plugin architec-
ture makes no attempt to abstract away the mixed-element nature of 
grids or the fact the solution is distributed across multiple ranks. While 
this does represent an increase in the degree of sophistication required 
to author a plugin, it is necessary in order to ensure that plugins are able 
to scale to leadership-class simulations with billions of elements.

Examples of a selection of plugins provided with PyFR v2.0.3 are 
detailed below.

Point sampling The soln-plugin-sampler is capable of periodically 
sampling a set of points in the domain. At start-up, the plugin automat-
ically determines which element each sample point is inside, and then 
performs a series of Newton iterations to invert the physical-to-reference 
space mapping.

Time averaging The soln-plugin-tavg computes the time-average 
of one or more arbitrary functions. The functions, which are specified 
in the configuration file, can be parameterised by both the primitive 
variables and gradients thereof. Beyond computing time-averages, the 
plugin also computes variances, which can be used for the purposes of 
uncertainty quantification. Command line support is also included for 
merging together multiple time-average files. This is particularly useful 
in environments where there is a limit on job run time.

Force calculation The soln-plugin-fluidforce can be used to 
compute the net force on boundaries which, in turn, can be used to ob-
tain aerodynamic quantities such as lift and drag. The plugin breaks out 
separately the pressure and viscous components of the recorded forces.

Turbulence generation The solver-plugin-turbulence implem- 
ents the synthetic eddy method of [40,41], which allows turbulence 
to be injected into any portion of the domain. Specifically, isotropic ed-
dies are injected via a source term formulation, where the turbulence 
intensity and length scale of the eddies can be specified. The implemen-
tation is designed to scale efficiently and minimise memory bandwidth 
requirements. Specifically, by pre-computing and caching element in-
tersections of every injected eddy before the simulation starts, the cost of 
the implementation is able to scale as the number of eddies intersecting 
an element at a given time—which for sensible grid resolutions will re-
main small—as opposed to scaling with the overall number of injected 
eddies, which can be substantial for large domains and small turbulent 
length scales. Additionally, the implementation also innovates by pass-
ing single unsigned 32-bit integer seeds to define multiple characteristics 
of a given eddy. These are then unrolled by a device side implementa-
tion of a PCG random number generator [42] to produce the actual 
random characteristics of the eddy. This saves memory bandwidth cf. 
pre-computing random eddy characteristics a priori and passing them 
as an array of (potentially 64-bit) floats.

In-situ visualisation The soln-plugin-ascent provides in-situ visu-
alisation capabilities and is powered by the lightweight Ascent library 
[43]. Using the plugin, it is possible to produce complex renderings 
of the current simulation state without having to write any interme-
diate files to disk. This enables efficient visualisation of large-scale 
simulations, for which writing solutions to disk for after-the-fact post-
processing is unfeasible.

4. Developer and user community

Over the past decade, an international community of developers and 
users has grown around PyFR, drawn from across academia and in-
dustry. Key to this growth has been the open-source nature of PyFR, 
which removes many international and inter-institutional barriers to 
collaborative code development practices. Development has also been 
supported at a technical level by hosting the code base in a Git repos-
itory on GitHub, which provides a wide range of tooling and helps 
define best-practice collaborative processes. The PyFR Github reposi-
tory has currently been forked over 200 times. Also of importance has 
been maintaining comprehensive and up-to-date documentation using 
Sphinx, which is auto-deployed to Read the Docs on each release, as 
well as providing developer and user support via a forum hosted on Dis-
course. Finally, in 2020, we launched a virtual PyFR seminar series on 
Cassyni, which comprises invited talks and discussions on a range of top-
ics related to the theory of high-order FR schemes, their implementation 
in PyFR and their application to industrially relevant flow problems. The 
PyFR seminar series currently has over 500 subscribers.

Our user base has successfully applied PyFR to a wide range of fun-
damental, applied, and industrial flow problems, including: DNS of flow 
over low pressure turbine (LPT) cascades [44,45] with MTU Aero En-
gines (see Fig. 8), which demonstrated how high-order accurate GPU-
accelerated DNS could enable reliable virtual testing of new LPT de-
signs, ILES of flow over high-rise buildings [46] with Arup (see Fig. 9), 
capturing for the first time experimentally-observed low-pressure sur-
face suction peaks which have implications for loading and design of 
cladding, DNS of flow over Martian rotorcraft aerofoils [47,48] with 
NASA (see Fig. 10), flow over supersonic re-entry capsules [49] led by 
NASA, flow over projectiles [50] led by the Agency for Defense Devel-
opment in South Korea, flow over wind turbines [51,52], and flow in 
thermoacoustic engines [53,54], as well as studies of airfoil noise reduc-
tion [55,56], flow control [57,58], wall roughness [59,60], the Coanda 
effect [61], surrogate model development [62,63] and fundamental as-
pects of channel flow [58,64], identifying for the first time Eigenmodes 
of averaged small-amplitude perturbations to a turbulent base flow. Fi-
nally, PyFR has recently been used to enable ILES-based optimisation of 
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Fig. 8. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity 
magnitude above the suction side of an MTU-T161 low pressure turbine blade 
obtained using the compressible Navier–Stokes solver in PyFR.
Image is from Fig. 12 of Iyer et al. [45]. Copyright Iyer et al. Reused with per-
mission.

Fig. 9. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity 
magnitude around a model high-rise building obtained using the incompressible 
Navier–Stokes solver in PyFR.
Image is from Fig. 9 of Giangaspero et al. [46]. Copyright Giangaspero et al. 
Reused with permission.

turbine cascades [65] and, for the first time, DNS-based optimisation of 
Martian rotorcraft aerofoils [66].

5. Accuracy, performance, and scaling

5.1. Accuracy

To demonstrate the accuracy of PyFR v2.0.3 for high-speed flows, 
we consider a supersonic Taylor–Green vortex test case at a Mach num-
ber of 1.25 and a Reynolds number of 1,600, which was studied in 
Lusher and Sandham [68] and used to benchmark the accuracy and 
shock-resolving capabilities of several solvers in Chapelier et al. [69]. 
Specifically, we solve the compressible Navier-Stokes equations in a do-
main −𝜋 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝜋, subject to the following initial conditions,

Fig. 10. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity 
magnitude around a triangular aerofoil for a Martian helicopter obtained using 
the compressible Navier–Stokes solver in PyFR.
Image is from Fig. 10 of Caros et al. [67]. Copyright Caros et al. Reused with 
permission.

𝑢(𝑡 = 0,𝐱) = sin(𝑥) cos(𝑦) cos(𝑧), (8a)

𝑣(𝑡 = 0,𝐱) = −cos(𝑥) sin(𝑦) cos(𝑧), (8b)

𝑤(𝑡 = 0,𝐱) = 0, (8c)

𝑝(𝑡 = 0,𝐱) = 𝑝0 +
1 
16

[cos(2𝑥) + cos(2𝑦)] [2 + cos(2𝑧)] , (8d)

𝜌(𝑡 = 0,𝐱) = 𝑝(𝑡 = 0,𝐱)∕𝑝0, (8e)

where 𝑝0 and the reference dynamic viscosity were selected to achieve 
the desired Mach and Reynolds numbers based on length, velocity and 
density scales of unity, and a dynamic viscosity computed using Suther-
land’s law with a reference temperature of 273K [70]. For comparison 
with the results in Chapelier et al. [69], the simulations were performed 
using computational meshes consisting of 163 , 323, 643 and 1283 hex-
ahedral elements, with a third-order polynomials approximating the 
solution within each element. These correspond to 643, 1283, 2563 and 
5123 degrees of freedom (DoFs), respectively. Gauss–Legendre–Lobatto 
flux and solution points were used, and entropy filtering was employed 
as a shock capturing approach.

Fig. 11 shows solenoidal dissipation (enstrophy), defined as

𝜀𝑠 =
1 

(2𝜋)3

𝜋

∫
−𝜋 

𝜋

∫
−𝜋 

𝜋

∫
−𝜋 

𝜇 𝜔𝜔𝜔 ⋅𝜔𝜔𝜔 d𝑥d𝑦d𝑧, (9)

as a function of time, as well as a Schlieren-type representation of the 
density gradient norm at 𝑡 = 6 for a case computed with 𝑁 = 1283
hexahedral elements (5123 DoFs). The predicted enstrophy profiles are 
found to be in excellent agreement with the reference data of Chapelier 
et al. [69], computed using a highly resolved (20483 DoFs) high-order 
finite difference targeted ENO (TENO) scheme, indicating that PyFR 
can accurately resolve small-scale turbulent flow structures in super-
sonic flows. This test case allows for further comparison against the 
results of various solvers presented in Chapelier et al. [69]. In partic-
ular, we compare to similar discontinuous finite element-type schemes 
(e.g., Discontinuous Galerkin, spectral difference, etc.) with identical 
mesh resolution and approximation order, the details of which are sum-
marized in Table 1, as well as the high-order finite difference TENO 
scheme which was used to compute the reference results.

Fig. 12 shows dilatational dissipation, defined as

𝜀𝑑 =
4 

3(2𝜋)3

𝜋

∫
−𝜋 

𝜋

∫
−𝜋 

𝜋

∫
−𝜋 

𝜇 (𝛁 ⋅ 𝐮)2 d𝑥d𝑦d𝑧, (10)
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Fig. 11. Plot of enstrophy as a function of time (left) and a Schlieren-type representation of the density gradient norm at 𝑡 = 6 (right) for the supersonic Taylor–Green 
vortex case computed with 𝑁 = 1283 hexahedral elements (5123 DoFs), along with the reference data of Chapelier et al. [69].

Table 1
Summary of the solvers and numerical methods used for comparison.

Solver Numerical method Order of accuracy Shock capturing method 
PyFR Flux Reconstruction 4 Entropy filter 
CODA [71] Modal Discontinuous Galerkin 4 Artificial viscosity 
FLEXI [72] Nodal Discontinuous Galerkin 4 Subcell finite volume 
SD3D [73] Spectral difference 4 Artificial viscosity 
OpenSBLI [74] Finite difference 6 Targeted ENO (TENO) 

as a function of time for cases computed using 643, 1283, 2563 and 5123
DoFs in comparison to the results of the solvers in Chapelier et al. [69]. 
The simulations from PyFR generally show less shock dissipation, result-
ing in dilatational dissipation profiles which are closer to the reference 
data for a given resolution, indicating that the entropy filtering shock 
capturing approach does not introduce excessive numerical dissipation 
and can sharply resolve shock profiles.

5.2. Performance and scaling

PyFR has previously been used to undertake petascale simulations 
on a range of the world’s largest GPU supercomputers, including Piz 
Daint at CSCS and Titan at ORNL. Overall performance and strong and 
weak scaling has been demonstrated previously in this context, and in-
deed simulations undertaken with PyFR were shortlisted for the Gordon 
Bell Prize in 2016 [75], achieving 13.7 DP-PFLOP/s (58% of theoretical 
peak) using 18,000 NVIDIA Tesla K20X GPUs on Titan.

To demonstrate the performance and scaling characteristics of PyFR 
v2.0.3, we consider a subsonic version of the Taylor–Green vortex test 
case described above, run with double precision arithmetic on Frontier 
at ORNL using AMD Instinct MI250X accelerators, and on Alps at CSCS 
using NVIDIA GH200 GPUs. For this case, the reference pressure was 
modified to achieve a Mach number of 0.08, and the dynamic viscosity 
was set to be constant. The computational mesh consisted of 13,891,500
tetrahedral elements, with seventh-order solution polynomials used to 
represent the solution within each element, and 𝛼-optimised [11] flux 
and solution points were employed. Fig. 13 plots enstrophy as a func-
tion of time for a case run on 512 AMD Instinct MI250X accelerators 
of Frontier (each with two GCDs). Results are found to be in excellent 
agreement with the reference data of van Rees et al. [76]. Performance 
is stated in terms of giga-degrees of freedom per second (GDoF/s) which 
considers the time required for a right-hand side evaluation and divides 
it by the total number of DoFs in the simulation.

Table 2 and Table 3 present strong scaling of the test case on Frontier 
and Alps, respectively, where we note that on Frontier PyFR was run 
without HIP-Aware MPI, whereas on Alps, PyFR was run with CUDA-
Aware MPI. In terms of scaling, we observe that at 2048 ranks, both 
platforms deliver similar scalability numbers. However, on account of 
the superior baseline performance, the NVIDIA system is transferring 
∼3.7 times more data over the interconnect. Given both systems make 
use of the Cray Slingshot interconnect, this suggests that the network 
is not the limiting factor on Frontier. Rather, it is more likely related to 
our inability to run with HIP-aware MPI on Frontier, and the inability of 
PyFR to employ native HIP graphs due to unresolved issues in the HIP 
runtime.

In terms of absolute performance, we note that a single NVIDIA 
GH200 is ∼3.7 times faster than one GCD of an AMD MI250X. A sub-
stantial portion of this can be explained by the differences in peak 
memory bandwidth. A GH200 uses HBM3 memory with a peak band-
width of 4 TiB / s, whereas the MI250X uses HBM2e memory with a 
peak bandwidth per-GCD of 1.6 TiB / s. This gives a ratio of 2.5. More-
over, micro-benchmarks on the MI250X indicate that peak bandwidth is 
only reliably achieved for kernels with a 1:1 read-to-write ratio. Outside 
of this regime, bandwidths closer to ∼1.2 TiB / s are more commonly 
observed. Such a discrepancy is not observed on NVIDIA hardware, how-
ever. Accounting for this gives us a revised performance ratio based on 
memory bandwidth of 4∕1.2 ≈ 3.3 which is similar to what is actually 
observed. The remaining performance differences are likely due to the 
superior caching setup of the NVIDIA GPU which has—in the absence 
of shared memory allocations—some 208 KiB available per SM, whereas 
AMD only provides 16 KiB per CU. Similarly, whereas NVIDIA provide 
50 MiB of shared L2 cache, AMD only provide 8 MiB. These caches are 
important for the interface kernels which have an irregular memory ac-
cess pattern.

Finally, we can make a comparison between absolute performance 
almost a decade ago using PyFR v0.2.2 on an NVIDIA K40c GPU 
[19] with current absolute performance. Specifically, data from Table 
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Fig. 12. Dilatational dissipation as a function of time for the supersonic Taylor–Green vortex case computed with varying mesh resolution in comparison to the 
results of the solvers in Chapelier et al. [69].

Table 2
Strong scalability of PyFR on Frontier for the Taylor–Green vortex test case using compress-
ible Navier–Stokes solver on a mesh with 12 × 1053 = 13,891,500 tetrahedral elements and 
seventh-order solution polynomials used to represent the solution within each element. The 
speedup is relative to 8 AMD Mi250X accelerators each with two GCDs. HIP-Aware MPI was 
not employed.

# Ranks 16 32 64 128 256 512 1024 2048 
GDoF/s 26.21 50.87 98.70 193.37 369.10 669.80 1133.48 1537.68 
Speedup 1.0 1.94 3.77 7.38 14.08 25.56 43.25 58.68 
Efficiency 1.00 0.97 0.94 0.92 0.88 0.80 0.68 0.46 

6 of [19] for a tetrahedrally-dominated mesh with fourth-order solu-
tion polynomials in each element gives an absolute performance of 
0.122 GDoF/s per K40c GPU, whereas the 16 rank case from Table 3
here gives an absolute performance of 6.004 GDoF/s per GH200 GPU. 
This leads to an absolute performance improvement ratio of 49.2, ac-
counting for the totality of both hardware and software improvements 
over the period, and where we note the ratio is conservative since use 
of seventh vs. fourth order solution polynomials necessitates substan-
tially more FLOPs/DoF. This conservative estimate of an almost 50×
performance increase over the last decade constitutes a substantial step 
towards the industrial adoption of scale-resolving simulations.

6. Conclusions and outlook

Since the initial release of PyFR v0.1.0 in 2013 [9], a range of 
new capabilities have been added to the framework, with a view to 
enabling industrial adoption. In this work, we have provided details 

of these enhancements as released in PyFR v2.0.3, including improve-
ments to cross-platform performance (new backends, extensions of the 
DSL, new matrix multiplication providers, improvements to the data 
layout, use of task graphs) and improvements to numerical stability 
(modal filtering, anti-aliasing, artificial viscosity, entropy filtering), as 
well as the addition of prismatic, tetrahedral and pyramid shaped el-
ements, improved domain decomposition support for mixed element 
grids, improved handling of curved element meshes, the addition of an 
adaptive time-stepping capability, the addition of incompressible Euler 
and Navier-Stokes solvers, improvements to file formats and the devel-
opment of a plugin architecture. We have also explained efforts to grow 
an engaged developer and user community and provided a range of ex-
amples that show how our user base is applying PyFR to solve a wide 
range of fundamental, applied and industrial flow problems. Finally, 
we have demonstrated the accuracy of PyFR v2.0.3 for a supersonic 
Taylor-Green vortex case, with shocks and turbulence, and provided lat-
est performance and scaling results on up to 1024 AMD Instinct MI250X 
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Table 3
Strong scalability of PyFR on Alps for the Taylor–Green vortex test case using compressible 
Navier-Stokes solver on a mesh with 12 × 1053 = 13,891,500 tetrahedral elements and seventh-
order solution polynomials used to represent the solution within each element. The speedup is 
relative to 16 GH200 GPUs. CUDA-Aware MPI was employed.

# Ranks 16 32 64 128 256 512 1024 2048 
GDoF/s 96.07 199.60 404.73 806.95 1599.12 2861.56 4632.03 5753.96 
Speedup 1.0 2.08 4.21 8.40 16.64 29.79 48.21 59.89 
Efficiency 1.00 1.04 1.05 1.05 1.04 0.93 0.75 0.47 

Fig. 13. Plot of enstrophy as a function of time for the subsonic Taylor–Green 
vortex case run with PyFR on 512 AMD Instinct MI250X accelerators of Frontier 
(each with two GCDs), along with the reference data of van Rees et al. [76].

accelerators of Frontier at ORNL (each with two GCDs) and up to 2048 
Nvidia GH200 GPUs of Alps at CSCS. We note that absolute performance 
of PyFR accounting for the totality of both hardware and software im-
provements has, conservatively, increased by almost 50× over the last 
decade.

As a technology, PyFR is now sufficiently performant and robust 
to be used for industrial SRS — with high-order FR schemes proving 
the requisite levels of accuracy, mixed-element unstructured grids en-
abling simulations of flow around complex engineering geometries, and 
the cross-platform nature of PyFR providing flexibility to use a range 
of latest-generation hardware. Moving forwards it will be important 
to focus on training and skills development around PyFR, and practi-
cal aspects of running industrial SRS more broadly. This should include 
training around best practices for meshing and data processing/analysis, 
as well as helping to develop a better understanding how SRS can add 
value in an industrial context, and thus when SRS should be deployed 
as a complement/alternative to RANS simulations.
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