
Computer Physics Communications 311 (2025) 109567

Available online 28 February 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

PyFR v2.0.3: Towards industrial adoption of scale-resolving simulations

Freddie D. Witherden a, Peter E. Vincent b,∗, , Will Trojak c, Yoshiaki Abe d, Amir Akbarzadeh a,
Semih Akkurt b, Mohammad Alhawwary a, Lidia Caros b, Tarik Dzanic e, Giorgio Giangaspero f ,
Arvind S. Iyer g, Antony Jameson a, Marius Koch h, Niki Loppi i, Sambit Mishra a, Rishit Modi a,
Gonzalo Sáez-Mischlich j,k , Jin Seok Park l, Brian C. Vermeire m, Lai Wang n

a Department of Ocean Engineering, Texas A&M University, 3145 TAMU, College Station, 77843, TX, USA
b Department of Aeronautics, Imperial College London, South Kensington, London, SW7 2AZ, UK
c IBM Research UK, Hartree Centre, Warrington, WA4 4AD, UK
d Institute of Fluid Science, Tohoku University, Sendai, Japan
e Lawrence Livermore National Laboratory, Livermore, CA, USA
f Siemens Digital Industries Software, Shepherds Bush Road, London, W6 7NL, UK
g Astrome Technologies, Bangalore, India
h NVIDIA Corporation, Fasanenstr 81, Berlin, 10623, Germany
i NVIDIA Corporation, Porkkalankatu 1, Helsinki, 00180, Finland
j Luminary, 101 S Ellsworth Ave Suite 600, San Mateo, CA, USA
k ISAE SUPAERO, University of Toulouse, 31400 Toulouse, France
l Department of Aerospace Engineering and Program in Aerospace Systems Convergence, Inha University, Incheon, Korea
m Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC, Canada
n Gaithersburg, MD, USA

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Andrew Hazel

Keywords:

High-order accuracy
Flux reconstruction
Computational fluid dynamics

PyFR is an open-source cross-platform computational fluid dynamics framework based on the high-order Flux
Reconstruction approach, specifically designed for undertaking high-accuracy scale-resolving simulations in the
vicinity of complex engineering geometries. Since the initial release of PyFR v0.1.0 in 2013, a range of new
capabilities have been added to the framework, with a view to enabling industrial adoption. In this work, we
provide details of these enhancements as released in PyFR v2.0.3, including improvements to cross-platform
performance (new backends, extensions of the DSL, new matrix multiplication providers, improvements to the
data layout, use of task graphs) and improvements to numerical stability (modal filtering, anti-aliasing, artificial
viscosity, entropy filtering), as well as the addition of prismatic, tetrahedral and pyramid shaped elements,
improved domain decomposition support for mixed element grids, improved handling of curved element meshes,
the addition of an adaptive time-stepping capability, the addition of incompressible Euler and Navier-Stokes
solvers, improvements to file formats and the development of a plugin architecture. We also explain efforts to
grow an engaged developer and user community and provided a range of examples that show how our user
base is applying PyFR to solve a wide range of fundamental, applied and industrial flow problems. Finally, we
demonstrate the accuracy of PyFR v2.0.3 for a supersonic Taylor-Green vortex case, with shocks and turbulence,
and provided latest performance and scaling results on up to 1024 AMD Instinct MI250X accelerators of Frontier
at ORNL (each with two GCDs) and up to 2048 Nvidia GH200 GPUs of Alps at CSCS. We note that absolute
performance of PyFR accounting for the totality of both hardware and software improvements has, conservatively,
increased by almost 50× over the last decade.

Program summary

Program Title: PyFR
CPC Library link to program files: https://doi.org/10.17632/vmgh4kfjk6.1
Developer’s repository link: https://github.com/PyFR/PyFR
Licensing provisions: BSD 3-clause
Programming language: Python (generating C/OpenMP, CUDA, OpenCL, HIP, Metal)

* Corresponding author.
E-mail address: p.vincent@ic.ac.uk (P.E. Vincent).

https://doi.org/10.1016/j.cpc.2025.109567
Received 21 August 2024; Received in revised form 7 February 2025; Accepted 25 February 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0002-1314-8827
https://doi.org/10.17632/vmgh4kfjk6.1
https://github.com/PyFR/PyFR
mailto:p.vincent@ic.ac.uk
https://doi.org/10.1016/j.cpc.2025.109567
https://doi.org/10.1016/j.cpc.2025.109567
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109567&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 311 (2025) 109567

2

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Nature of problem: Accurate and efficient scale-resolving simulation of industrial flows.
Solution method: Massively parallel cross-platform implementation of high-order accurate Flux Reconstruction
schemes.

1. Introduction

Computational Fluid Dynamics (CFD) is used by high-value indus-
tries across the world to reduce costs and improve product performance.
The majority of industrial CFD is undertaken using Reynolds-Averaged
Navier–Stokes (RANS) simulations, which time-average unsteady phe-
nomena, including turbulence, and replace the ‘missing physics’ with a
model. However, it is well established that RANS approaches have lim-
ited applicability when flow is separated and unsteady. To overcome this
limitation, higher-fidelity scale-resolving methods can be used, such as
Large Eddy Simulations (LES), Implicit Large Eddy Simulations (ILES)
and Direct Numerical Simulations (DNS), with DNS being the most ac-
curate; fully resolving all physics of the governing Navier–Stokes equa-
tions. However, the cost of a scale-resolving simulation is typically
orders-of-magnitude higher than that of a RANS simulation, and thus
the use of scale-resolving methods in industry has until recently been
considered intractable.

Our vision with PyFR has been to develop and deliver an open-source
Python framework based on the high-order accurate Flux Reconstruc-
tion (FR) approach [1] that enables real-world scale-resolving simula-
tions to be undertaken in tractable time, at scale, by both academic
and industrial practitioners—helping advance industrial CFD capabili-
ties from their current ‘RANS plateau’. It is one of several international
efforts to enable industrial adoption of scale-resolving simulations, in-
cluding Nektar + + [2,3] and hpMusic [4] which employ high-order
spectral element methods similar to PyFR, HiPSTAR [5,6] which em-
ploys a compact finite-difference scheme, and CharLES (now acquired
and distributed for industrial usage by as Fidelity LES Solver by Ca-
dence Inc) [7,8] which employs a second-order accurate cell-centered
finite volume scheme.

The first version of PyFR—v0.1.0—was released in late 2013 [9]. It
supported solving the compressible Euler and Navier–Stokes equations
on unstructured grids of hexahedral elements, and was able to target
both conventional CPUs and NVIDIA GPUs via a novel domain specific
language based on Mako. In the past decade, there have been over 30
subsequent releases of PyFR, adding a wide range of new capabilities
with a view to enabling industrial adoption, culminating in the current
release of PyFR v2.0.3 which is described in this paper.

2. Flux reconstruction

PyFR implements the Flux Reconstruction (FR) approach [1], which
is a form of discontinuous spectral element method [10,11]. As a brief
overview, consider the first-order hyperbolic conservation law

𝜕𝑢𝛼

𝜕𝑡
+∇ ⋅ 𝐟𝛼 = 0, (1)

where 𝛼 is the field variable index, 𝑢𝛼 = 𝑢𝛼(𝐱, 𝑡) are the conservative
field variables, and 𝐟𝛼 = 𝐟𝛼(𝑢𝛼) are the fluxes of 𝑢𝛼 . In order to solve Eq.
(1) using FR in a domain 𝛀, one must tessellate the domain with 𝑁
non-overlapping conforming elements 𝛀𝑛 as

𝛀 =
𝑁⋃

𝑛=1
𝛀𝑛,

𝑁⋂

𝑛=1
𝛀𝑛 =∅, (2)

see, for example, Fig. 1. Without loss of generality, we assume in this
example all 𝛀𝑛 are of the same type.

Each element 𝛀𝑛 can then be mapped to a reference element �̃� via
a mapping function n defined as

𝐱 =n(�̃�), �̃� =−1
n (𝐱),

where �̃� are coordinates in the reference element, and geometric Jaco-
bian matrices can be defined from the mapping functions as

𝐉n = 𝐽nij =
𝜕ni

𝜕�̃�𝑗
, 𝐽n = det 𝐉n,

𝐉−1n = 𝐽−1
nij =

𝜕−1
ni

𝜕�̃�𝑗
, 𝐽−1

n = det 𝐉−1n = 1
𝐽n

.

For each 𝛀𝑛, these Jacobian matrices can be used to transform Eq. (1)
into reference element space as
𝜕𝑢𝑛𝛼

𝜕𝑡
+ 𝐽−1

n ∇̃ ⋅ 𝐟𝑛𝛼 = 0 and

𝐟n𝛼 = 𝐟n𝛼(�̃�, 𝑡) = 𝐽n(�̃�)𝐉−1n (n(�̃�))𝐟n𝛼(n(�̃�), 𝑡), (3)

where 𝑢𝑛𝛼 and 𝐟n𝛼 are the solution and flux in 𝛀𝑛, respectively, and
∇̃ = 𝜕∕𝜕�̃�𝑖.

We can proceed to define a set of solution points �̃�(𝑢)
𝜁

in the reference
element (see Fig. 1), where 𝜁 is the solution point index which satisfies
0 ⩽ 𝜁 < 𝑁 (𝑢) and 𝑁 (𝑢) is the number of solution points in the reference
element. Now a nodal basis set 𝓁(𝑢)

𝜁
(�̃�) can be defined in the reference

element, where the nodal basis polynomials 𝓁(𝑢)
𝜁

satisfy 𝓁(𝑢)
𝜁
(�̃�(𝑢)𝜎) = 𝛿𝜁𝜎

where 𝛿𝑖𝑗 is the Kronecker delta. We can also define a set of flux points
�̃�(𝑓)
𝜁

on the surface of the reference element (see Fig. 1), where 𝜁 is now
the flux point index which satisfies 0 ⩽ 𝜁 <𝑁 (𝑓) and 𝑁 (𝑓) is the number
of flux points on the surface of the reference element. These flux points
are constrained such that flux points from adjoining elements always
conform at element interfaces.

For a given element, the first step in the FR approach is to obtain the
discontinuous solution at each flux point 𝑢(𝑓)𝜎n𝛼 from the solution at the
solution points 𝑢(𝑢)

𝜁n𝛼 as

𝑢(𝑓)
𝜎n𝛼 =

𝑁 (𝑢)−1∑

𝜁=0
𝑢
(𝑢)
𝜁n𝛼𝓁

(𝑢)
𝜁
(�̃�(𝑓)

𝜎
). (4)

The second step is to obtain a transformed common normal interface
flux at each flux point 𝑓𝐶(f⟂)

𝜎n𝛼 from the discontinuous solution at the flux
point 𝑢(f)𝜎n, the discontinuous solution at the conforming flux point in the
relevant adjoining element 𝑢′ (f)𝜎n , and the surface normal at the flux point
𝐧(f)𝜎n as

𝑓
𝐶(f⟂)
𝜎n𝛼 = F𝛼(𝑢(f)𝜎n, 𝑢

′ (f)
𝜎n , �̂�(f)

𝜎n), (5)

where F𝛼 is e.g. an appropriate Riemann solver.
The third step is to calculate the transformed discontinuous flux at

the solution points 𝐟 (u)𝜎n𝛼 from the solution at solution points 𝐮(u)𝜎n𝛼 using
the system flux function. These values can then be used to calculate the
transformed normal discontinuous flux at the flux points 𝑓 (f⟂)

𝜎n𝛼 as

𝑓
(f⟂)
𝜎n𝛼 = 𝐧(f)

𝜎n ⋅
𝑁 (𝑢)−1∑

𝜁=0
𝐟 (𝑢)
𝜁n𝛼𝓁

(𝑢)
𝜁
(�̃�(𝑓)

𝜎
). (6)

Finally, the transformed divergence of the transformed continuous
flux (∇̃ ⋅ 𝐟)(u)

𝜁n𝛼 can be obtained by propagating the difference between

𝑓
𝐶(f⟂)
𝜎n𝛼 and 𝑓 (f⟂)

𝜎n𝛼 at each flux point into the element using a set of flux
correction functions 𝐠(f)𝜎 , and combining with the divergence of the
transformed discontinuous flux 𝐟 (u)𝜎n𝛼 as

(∇̃ ⋅ 𝐟)(u)
𝜁n𝛼 =

𝑁 (𝑓)−1∑

𝜎=0
∇̃ ⋅ �̃�(f)

𝜎
(�̃�(𝑢)

𝜁
)
(
F𝛼𝑓

(f⟂)
𝜎n𝛼 − 𝑓

(f⟂)
𝜎n𝛼

)

∗ +
𝑁 (𝑢)−1∑

𝜈=0
𝐟 (u)
𝜈n𝛼 ⋅ ∇̃𝓁

(u)
𝜈
(�̃�(𝑢)

𝜁
), (7)

Computer Physics Communications 311 (2025) 109567

3

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 1. (a) Example of an unstructured curved-element tetrahedral mesh around a sphere, (b) fourth-order 𝛼-optimised flux points [11] for a tetrahedron, where
yellow and red indicate doubly and triply collocated points, respectively, and (c) fourth-order 𝛼-optimised solution points [11] for a tetrahedron. (For interpretation
of the colours in the figure(s), the reader is referred to the web version of this article.)

which can then be used to update the solution at the solution points
𝑢
(𝑢)
𝜁n𝛼 via a suitable explicit time integration scheme. For further details

on the FR approach and its implementation in PyFR see [9,12].

3. New capabilities

3.1. Cross-platform performance

The cross-platform performance of PyFR is enabled through backends
which can utilise various matrix multiplication kernels and a Mako de-
rived domain specific language (DSL) which achieves complete feature
parity across all backends, as per Fig. 2.

Backends PyFR v0.1.0 had a C/OpenMP backend for CPUs and a CUDA
backend for NVIDIA GPUs. However, since 2013 additional vendors
have entered the high-end GPU market including AMD, Intel, and even
Apple. As such, PyFR v2.0.3 now contain an additional HIP backend for
AMD GPUs, an OpenCL backend for all GPUs, and a Metal backend for
Apple GPUs.

DSL The capabilities and performance of the DSL have been improved
in PyFR v2.0.3. In particular, there is language-level support for per-
forming reduction operations—for example min—across a data set.
A kernel argument can now be annotated according to reduce(op)
where op is a reduction operator. Whatever value the kernel assigns to
this argument will then be automatically and safely reduced with its
current value in memory using atomic operations. On the performance
side, the DSL is now capable of detecting situations where read-only ker-
nel arguments are likely to be subject to reuse. When running on GPU
platforms, the DSL will automatically take care of loading these argu-
ments into shared memory. This helps to reduce pressure on the L1 and
L2 caches.

Matrix multiplications Many operations within an FR time-step can be
cast in the form of

𝗖← 𝗔𝗕+ 𝛽𝗖,

where 𝗔 is a constant operator matrix, 𝗕 is an input state matrix, and 𝗖
is an output state matrix. PyFR v0.1.0 simply offloaded these operations
to a platform-specific dense BLAS library such as cuBLAS or OpenBLAS.
However, when operating on elements with a tensor-product structure,
the operator matrices can exhibit a significant degree of sparsity. This
can lead to suboptimal performance in cases where the arithmetic in-
tensity of the operation is beyond that of the underlying hardware.

This issue has been addressed by incorporating additional matrix-
multiplication providers into PyFR v2.0.3. When running on with the
CUDA and HIP backends, PyFR v2.0.3 will use the GiMMiK [13] li-
brary to generate a suite of bespoke fully-unrolled kernels for each 𝗔.
During the code generation process, GiMMiK automatically elides multi-
plications through by zero, thus reducing the arithmetic intensity of the
operation. The generated kernels are then competitively benchmarked
against those provided by the dense BLAS library, with PyFR automat-
ically selecting the fastest kernel for each operation. This auto-tuning
is performed autonomously by PyFR at run-time and does not require
any direction from the user. When running on CPUs, a similar result is
accomplished through the use of libxsmm [14] which includes its own
built-in support for automatically choosing between dense and sparse
kernels.

Finally, in situations where the flux points are a strict subset of the so-
lution points, additional logic has been incorporated into PyFR to avoid
the need for multiplications entirely. This leads to further memory and
memory bandwidth savings.

Data layout The primary data structure in PyFR is an 𝑚 by 𝑛 row-major
matrix where, up to padding, 𝑚 is proportional to the number of solu-

Computer Physics Communications 311 (2025) 109567

4

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 2. Overview of how PyFR achieves cross-platform performance. New functionality is marked in blue.

Fig. 3. Data layout methodologies for packing a pair of field variables (denoted by red and blue, respectively), into the rows of a matrix.

tion/flux points and 𝑛 is equal to the product of the number of elements
and the number of field variables. It follows that there is a degree of
freedom regarding how these field variables are packed along a row.
This can be characterised by the stride Δ𝑗 between two subsequent field
variables. The choice of Δ𝑗 = 1 results in an array of structures (AoS)
arrangement, Δ𝑗 =𝑁𝐸 where 𝑁𝐸 is the number of elements results in
a structure of arrays (SoA) arrangement, and Δ𝑗 = 𝑘 results in a hybrid
array of structure of arrays (AoSoA) approach. An illustration of these
arrangements can be seen in Fig. 3.

For simplicity, PyFR v0.1.0 used an SoA approach. However, al-
though this structure is readily amenable to vectorisation, it has some
limitations. Firstly, the large stride between field variables decreases
the efficiency of caches since adjacent field variables are unlikely to
reside in the same cache line. Secondly, it is not friendly to hardware
pre-fetchers: an SoA structure with 𝑣 field variables appears to a CPUs
pre-fetcher like 𝑣 separate arrays. Since CPUs are only capable of pre-
fetching a finite number of data streams, this can lead to stalls. Finally,
given a pointer to one field variable at one point, it is not possible to
access the next field variable unless one also knows 𝑁𝐸 . To avoid these
issues, PyFR v2.0.3 employs the more sophisticated AoSoA packing. The
value of 𝑘 is chosen automatically by the backend based on the vector
length of the underlying hardware.

Additionally, when running on CPUs, PyFR v2.0.3 incorporates an
additional level of blocking. Rather than allocating a single row-major
matrix with 𝑛 columns, the C/OpenMP backend instead allocates 𝑞
smaller matrices each with ∼𝑛∕𝑞 columns. The value of 𝑞 is chosen to
ensure that an entire block can easily remain resident in local caches
and serves to further improve data locality.

Task graphs Strong scaling has also been improved by adding first-class
support for task graphs. The idea is to exploit the fact that PyFR, as with
many scientific codes, repeatedly calls the same sequence of kernels.
By treating each kernel as a vertex in a graph and the dependencies
between kernels as edges, it is possible—on an a priori basis—to form
a task graph corresponding to a single right-hand side evaluation. This
has two key advantages:

1. It presents the underlying runtime with extra opportunities for ex-
tracting parallelism by enabling it to safely identify kernels which
can be run in parallel.

2. It enables a substantial reduction in interface overhead since, once
constructed, task graphs can be launched with just a single function
call as opposed to one function call per kernel.

An example of a task graph for a 2D Navier–Stokes simulation on
a mixed-element grid can be seen in Fig. 4. Looking at the graph, we
observe that there are four root nodes. As these root nodes are—by
definition—independent, it is possible for all four of the kernels to be
executed in parallel. Similarly, we observe that the three bcconu bound-
ary condition kernels are also independent, such that these can also be
executed in parallel. Indeed, careful inspection of the graph shows that
there are always at least two kernels which may be executed at the same
time. When exploited by a backend, this parallelism can improve GPU
utilisation which, in turn, leads to improved strong scaling.

On the CUDA backend, PyFR task graphs map directly onto native
CUDA graphs. Since the NVIDIA A100 generation, there is hardware
support for task graph acceleration, enabling further reductions in over-
head. While HIP does support task graphs, preliminary studies show
their performance to be inferior to launching kernels directly. As such,
task graphs on the HIP backend are emulated by submitting kernels to
a stream in a serial fashion. A similar approach is used on Metal. On
OpenCL, task graphs are emulated using out-of-order queues and events.
This enables the runtime to identify and exploit inter-kernel parallelism
but does not decrease API overhead.

To demonstrate the benefits of native task graphs, we consider the 2D
Incompressible Cylinder Flow test case 2d-inc-cylinder available
from the PyFR Test Case repository on GitHub. This is small mixed-
element case has a high API overhead, and without task graphs, the
run-time on an NVIDIA V100 GPUs is 256 s. However, with task graphs,
this reduces to 122 s.

Cache blocking A powerful means of reducing the memory bandwidth
requirements of a code on conventional CPUs is cache blocking [15]. The
idea is to improve data locality by changing the order in which kernels
are called. An example of this can be seen in Fig. 5 which shows how
a pair of array addition kernels can be rearranged to reduce bandwidth
requirements. A key advantage of cache blocking compared with alter-
native approaches, such as kernel fusion, is that the kernels themselves
do not require modification; all that changes is the arguments to the
kernels.

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-inc-cylinder

Computer Physics Communications 311 (2025) 109567

5

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 4. A task graph generated by the NVIDIA cuGraphDebugDotPrint API for a 2D mixed-element Navier–Stokes test case. Blue shading indicates kernels for
quadrilateral elements, red shading kernels for triangular elements, and green shading for interface kernels. The four root nodes of the graph are marked with red
borders.

Historically, cache blocking has not been viable for high-order codes
due to the size of the intermediate arrays which are generated by ker-
nels. For example, an Intel Ivy Bridge CPU core from 2013 only has
256 KiB of L2 cache which is shared between executable code and data.
As a point of reference, for the Euler equations, storing the solution and
flux for just eight ℘ = 4 hexahedra at double precision requires 160 kB.
Since 2016, however, there has been a marked increase in the size of
private caches, with Intel Golden Cove CPU cores having 2MiB. The
specifics involved in cache blocking FR are detailed in [15,16] and can
improve performance by a factor of two. Within PyFR, cache blocking is
accomplished by calling auxiliary methods on task graphs stating which
kernels in the graph are suitable for blocking transformations. The inter-
face also contains support for eliminating temporary arrays which can
further improve performance.

Multi-node capabilities Distributed memory parallelism is accomplished
via MPI using the mpi4py wrappers [17,18]. As the message format is
standardised across all backends, it is possible for different ranks to em-

ploy different backends, thus enabling heterogeneous computing from a
homogeneous codebase [19]. In order to improve scalability, the back-

end interface in PyFR v2.0.3 has been enhanced to allow backends to
directly pass GPU device pointers to MPI routines. As such, PyFR v2.0.3
is fully capable of exploiting GPUDirect RDMA on NVIDIA platforms via
CUDA Aware MPI, along with its analogue on AMD platforms via HIP
Aware MPI. The impact of this technology depends on both the under-

lying hardware and the degree to which a simulation is strong scaled. In
the most extreme cases, twofold performance improvements have been
observed when running on clusters of NVIDIA A100 GPUs [20].

Computer Physics Communications 311 (2025) 109567

6

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 5. Example of how cache blocking can be applied to a pair of array addition kernels. In the blocked version when the second kernel updates a[i] it will hit in
cache, thus saving a write to and read back from main memory.

3.2. Numerical stability

PyFR is often used to conduct under-resolved DNS (uDNS), also re-
ferred to as ILES of turbulent flow. On account of this under-resolution,
the FR scheme is subject to aliasing-driven instabilities, which can cause
the simulation to diverge [21]. Additionally, FR schemes exhibit in-
stabilities when solutions contain discontinuities such as shocks. PyFR
v0.1.0 had no specialised capabilities for handling either scenario, be-
yond simply increasing grid resolution. However, as of PyFR v2.0.3,
there are now four separate stabilisation strategies available.

Modal filtering The simplest stabilisation technique in PyFR v2.0.3 is
modal filtering, wherein high-order modes of the solution are period-
ically filtered as outlined in [11]. This approach is conservative and
numerically inexpensive. However, it is an indiscriminate approach—
with the filtering applied uniformly across the domain irrespective of
whether it is required, and it exposes several free parameters including
the filter strength, filter frequency and cut-off modes.

Anti-aliasing As noted in [21], the origin of aliasing-driven instabili-
ties is the use of a collocation-type projection of the fluxes. PyFR v2.0.3
resolves this issue by using quadrature to perform a least-squares projec-
tion of the flux instead. To do this, PyFR employs a series of state-of-the
art quadrature rules generated using Polyquad [22], which out-perform
those in literature. Studies have shown the results with anti-aliasing to
be markedly superior to those produced by modal filtering [23]. This
does, however, come with an associated computational cost. For a three-
dimensional simulation where the anti-aliasing degree is one higher
than that of the solution, the run-time of the simulation is typically dou-
bled.

Artificial viscosity Primarily intended for shock capturing, artificial vis-
cosity is another stabilisation approach provided by PyFR v2.0.3, which
dynamically adds extra viscosity into elements whose solutions are ex-
hibiting Gibbs-type phenomena. Based around the widely adopted ap-
proach of [24], the method is functional but, as with modal filtering,
requires a degree of parameterisation. Additionally, whilst the addi-
tional kernels are not particularly expensive—at least within the con-
text of an advection-diffusion type problem such as the Navier–Stokes
equations—the process of adding viscosity can have a negative impact
on the maximum stable explicit time step. As such, the overall cost of
the approach can be high.

Entropy filtering The final approach provided by PyFR v2.0.3 for stabil-
isation and shock capturing is entropy filtering [25–28]. This is based
around selectively applying a modal filter to elements which violate pos-
itivity of density, positivity of pressure or a minimum entropy condition.
The minimum entropy threshold is chosen as the minimum discrete en-
tropy of the element and its Voronoi neighbours at the previous time step
i.e., the local domain of influence of the element. As such, the method
does not explicitly require any problem-dependent parameterisation as

the positivity constraints and entropy thresholds are directly defined. In
practice, a small fixed tolerance in the entropy constraint is allowed to
handle finite precision effects, but this default tolerance is not varied be-
tween problems and does not affect the positivity-preserving properties
of the shock capturing technique.

The utility of the approach is demonstrated in the 2D Double Mach
Reflection test case 2d-double-mach-reflection and the 2D Vis-
cous Shock Tube test case 2d-viscous-shock-tube available from
the PyFR Test Case repository on Github.

3.3. Mixed elements and domain decomposition

PyFR v0.1.0 only included support for three element types: quadri-
laterals and triangles in two dimensions and hexahedra in three dimen-
sions. Given the difficulties of all-hexahedral meshing around complex
geometries, this represented a significant limitation. PyFR v2.0.3 ad-
dresses this limitation by adding in complete support for prisms and
tetrahedra and partial support for pyramids. Specifically, the pyramid
support requires that the quadrilateral base be affine. Given that a major
application for pyramids is as a transition layer between a tetrahedral
near-field and a hexahedral far-field, this restriction is relatively minor.

One practical complication which arises when running on mixed
grids is domain decomposition. The relative performance of different
element types is affected by around half a dozen simulation parameters
including: the polynomial order, location of solution and flux points
and use of anti-aliasing, to name but three. A consequence of this is that
when partitioning a grid, it is not possible to employ a single set of ele-
ment weighting factors. Employing incorrect weighting factors can lead
to load imbalances which negatively impact strong scaling. Compared
with v0.1.0, PyFR v2.0.3 contains two major improvements in this area.

Firstly, whereas v0.1.0 required grids to be partitioned by the mesh
generation software, v2.0.3 includes built-in support for partitioning
and re-partitioning both mesh and solution files. This is accomplished by
having PyFR call out to the METIS [29] and SCOTCH [30] libraries. Us-
ing this functionality, it is relatively simple to experiment with different
weightings and change them in concert with the simulation parameters;
for example, when restarting a simulation at a higher polynomial or-
der, this functionality can be used to appropriately re-weight the mesh.
Moreover, to aid this process, PyFR also includes support for tracking
MPI wait times. This information can be used to identify load imbal-
ances between domains, which the user can then employ to derive more
appropriate weights.

Secondly, there is also support for balanced partitioning wherein
PyFR attempts to assign the same number of elements of each type to
each domain. This ensures optimal load balancing irrespective of the
relative performance differential between element types. However, as
element types are not uniformly distributed throughout the domain—
for example one might have a prismatic boundary layer and a tetra-
hedral wake—balanced partitioning can lead to partitions becoming
non-contiguous when the number of partitions is large. Examples of
weighted and balanced partitioning can be seen in Fig. 6 for the 2D

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-double-mach-reflection
https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-viscous-shock-tube

Computer Physics Communications 311 (2025) 109567

7

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 6. Partitionings of a mixed grid with a quadrilateral boundary layer and triangular far-field partitioned into eight parts. For the weighted strategy, each
quadrilateral was assigned 3∕2 the weight of a triangle.

Fig. 7. Simulation of free-stream flow using second-order solution polynomials on a cubically-curved tetrahedral mesh with cross-product metric as used in PyFR
v0.1.0 (a), and conservative metric as used in PyFR v2.0.3 (b).

Incompressible Cylinder Flow test case 2d-inc-cylinder available
from the PyFR Test Case repository on GitHub.

3.4. Curved elements

To realise the benefits of high-order schemes, it is necessary to em-
ploy grids which, by finite volume standards, are relatively coarse. In
order to still accurately represent the underlying geometry, it is there-
fore important for the elements themselves to be curved. This is accom-
plished by associating metric terms—which take the form of a 2 × 2 or
3 × 3 matrix—within each element.

PyFR v0.1.0 employed the so-called cross-product metric. However,
with this approach, the polynomial order of the spatial metric is twice
that of the shape function for curved grids—possibly exceeding the or-
der of the solution basis. If this is the case, then the metric terms may
not be discretised accurately due to truncation and aliasing errors. In
particular, the divergence of the approximated metric terms may be-
come non-zero, which results in a lack of free-stream preservation, i.e.
the solver cannot maintain a uniform free-stream flow solution.

To overcome this issue, PyFR v2.0.3 instead employs the conserva-
tive metric [31,32], which preserves a uniform free-stream flow even
when discretised. Specifically, this approach constructs the metric terms
as the curl of the function, thus ensuring they are always divergence-free
irrespective of any errors in the function approximation. The approach
greatly increases the robustness of PyFR when running on curved grids.
An example of its impact can be seen in Fig. 7.

Furthermore, in many real-world grids, only elements in and around
the boundary layer are actually curved. PyFR v2.0.3 takes advantage of

this fact by identifying linear elements and, in lieu of computing metric
terms for each solution point on an a priori basis, instead determines
them on the fly based off the geometry of the element. This can lead
to a substantial saving in memory bandwidth. For example, in a ℘ = 4
hexahedral element there are (℘ + 1)3 = 125 solution points and hence
32 × 125 = 1,125 metric terms. However, if the element is linear, then
the metric terms are entirely determined by the corner vertices which
only involve 3 × 8 = 24 terms.

3.5. Adaptive time stepping

When using explicit time stepping, the run-time of a simulation is
directly proportional to the time step size. However, for non-linear prob-
lems, it can be challenging to accurately estimate the maximum stable
step size. PyFR v2.0.3 avoids these issues by including support for low
storage Runge–Kutta methods with embedded pairs. These make it possi-
ble to inexpensively obtain an estimate for the numerical error incurred
when taking a time step [33]. Once suitably normalised, this error is
then used to decide if a time step should be accepted or rejected. More-
over, it is also be used to adapt the step size; increasing for accepted
steps and decreasing for rejected steps.

3.6. Incompressible Euler and Navier–Stokes

PyFR v0.1.0 included a compressible Euler and Navier–Stokes solver.
In PyFR v2.0.3, support has also been added for the incompressible
Navier–Stokes equations. This is accomplished via a combination of the
artificial compressibility method of [34] with the dual-time approach

https://github.com/PyFR/PyFR-Test-Cases/tree/main/2d-inc-cylinder

Computer Physics Communications 311 (2025) 109567

8

F.D. Witherden, P.E. Vincent, W. Trojak et al.

of [35]. The result is an iterative scheme which builds extensively upon
the fast residual evaluation capability of PyFR. Convergence is acceler-
ated through a combination of polynomial multigrid [36] and variable
local time stepping [37].

3.7. File formats

The mesh and solution file formats for PyFR v0.1.0 were based
around NumPy .npy and .npz files. Although simple to read and write
from Python, they are difficult to access from other environments. More-
over, the formats themselves had no provisions for parallel I/O. For
these reasons, PyFR v2.0.3 employs a new set of file formats based
around the industry-standard HDF5 [38,39]. A key advantage of the
HDF5 format is its hierarchical nature and the ability to attach arbi-
trary attributes to most data sets. Moreover, data arrays stored by PyFR
use 64-bit rather than 32-bit integers. This enables a partition to have
in excess of four billion elements and serves to further future-proof the
format for at least the next decade.

To aid in reproducibility, PyFR v2.0.3 solution files embed all of the
configuration files that have been employed in the simulation up until
the current time. This makes it possible to account for the common sit-
uation wherein a simulation is started with one configuration file, run
for a period of time, and then restarted with a different configuration.

Output format support has also been enhanced since PyFR v0.1.0.
Specifically, PyFR v2.0.3 now supports exporting high-order VTU files.
This enables the high-order nature of the solution to be preserved
throughout more of the post-processing pipeline. Furthermore, there is
also support for generating parallel VTU files which can be more effi-
cient in multiprocessing environments.

3.8. Plugin architecture

The PyFR plugin infrastructure provides a lightweight means of
adding new capabilities to the code base. Written in pure Python, plug-
ins are capable of adding new command line arguments, periodically
post-processing the solution, and adding source-terms to the solver.
Since they are written in pure Python plugins are an accessible means for
users to customise PyFR. In their most direct form plugins are given read-
only access to the high-order solution along with—optionally—spatial-
temporal gradients thereof. We note, however, that the plugin architec-
ture makes no attempt to abstract away the mixed-element nature of
grids or the fact the solution is distributed across multiple ranks. While
this does represent an increase in the degree of sophistication required
to author a plugin, it is necessary in order to ensure that plugins are able
to scale to leadership-class simulations with billions of elements.

Examples of a selection of plugins provided with PyFR v2.0.3 are
detailed below.

Point sampling The soln-plugin-sampler is capable of periodically
sampling a set of points in the domain. At start-up, the plugin automat-
ically determines which element each sample point is inside, and then
performs a series of Newton iterations to invert the physical-to-reference
space mapping.

Time averaging The soln-plugin-tavg computes the time-average
of one or more arbitrary functions. The functions, which are specified
in the configuration file, can be parameterised by both the primitive
variables and gradients thereof. Beyond computing time-averages, the
plugin also computes variances, which can be used for the purposes of
uncertainty quantification. Command line support is also included for
merging together multiple time-average files. This is particularly useful
in environments where there is a limit on job run time.

Force calculation The soln-plugin-fluidforce can be used to
compute the net force on boundaries which, in turn, can be used to ob-
tain aerodynamic quantities such as lift and drag. The plugin breaks out
separately the pressure and viscous components of the recorded forces.

Turbulence generation The solver-plugin-turbulence implem-
ents the synthetic eddy method of [40,41], which allows turbulence
to be injected into any portion of the domain. Specifically, isotropic ed-
dies are injected via a source term formulation, where the turbulence
intensity and length scale of the eddies can be specified. The implemen-
tation is designed to scale efficiently and minimise memory bandwidth
requirements. Specifically, by pre-computing and caching element in-
tersections of every injected eddy before the simulation starts, the cost of
the implementation is able to scale as the number of eddies intersecting
an element at a given time—which for sensible grid resolutions will re-
main small—as opposed to scaling with the overall number of injected
eddies, which can be substantial for large domains and small turbulent
length scales. Additionally, the implementation also innovates by pass-
ing single unsigned 32-bit integer seeds to define multiple characteristics
of a given eddy. These are then unrolled by a device side implementa-
tion of a PCG random number generator [42] to produce the actual
random characteristics of the eddy. This saves memory bandwidth cf.
pre-computing random eddy characteristics a priori and passing them
as an array of (potentially 64-bit) floats.

In-situ visualisation The soln-plugin-ascent provides in-situ visu-
alisation capabilities and is powered by the lightweight Ascent library
[43]. Using the plugin, it is possible to produce complex renderings
of the current simulation state without having to write any interme-
diate files to disk. This enables efficient visualisation of large-scale
simulations, for which writing solutions to disk for after-the-fact post-
processing is unfeasible.

4. Developer and user community

Over the past decade, an international community of developers and
users has grown around PyFR, drawn from across academia and in-
dustry. Key to this growth has been the open-source nature of PyFR,
which removes many international and inter-institutional barriers to
collaborative code development practices. Development has also been
supported at a technical level by hosting the code base in a Git repos-
itory on GitHub, which provides a wide range of tooling and helps
define best-practice collaborative processes. The PyFR Github reposi-
tory has currently been forked over 200 times. Also of importance has
been maintaining comprehensive and up-to-date documentation using
Sphinx, which is auto-deployed to Read the Docs on each release, as
well as providing developer and user support via a forum hosted on Dis-
course. Finally, in 2020, we launched a virtual PyFR seminar series on
Cassyni, which comprises invited talks and discussions on a range of top-
ics related to the theory of high-order FR schemes, their implementation
in PyFR and their application to industrially relevant flow problems. The
PyFR seminar series currently has over 500 subscribers.

Our user base has successfully applied PyFR to a wide range of fun-
damental, applied, and industrial flow problems, including: DNS of flow
over low pressure turbine (LPT) cascades [44,45] with MTU Aero En-
gines (see Fig. 8), which demonstrated how high-order accurate GPU-
accelerated DNS could enable reliable virtual testing of new LPT de-
signs, ILES of flow over high-rise buildings [46] with Arup (see Fig. 9),
capturing for the first time experimentally-observed low-pressure sur-
face suction peaks which have implications for loading and design of
cladding, DNS of flow over Martian rotorcraft aerofoils [47,48] with
NASA (see Fig. 10), flow over supersonic re-entry capsules [49] led by
NASA, flow over projectiles [50] led by the Agency for Defense Devel-
opment in South Korea, flow over wind turbines [51,52], and flow in
thermoacoustic engines [53,54], as well as studies of airfoil noise reduc-
tion [55,56], flow control [57,58], wall roughness [59,60], the Coanda
effect [61], surrogate model development [62,63] and fundamental as-
pects of channel flow [58,64], identifying for the first time Eigenmodes
of averaged small-amplitude perturbations to a turbulent base flow. Fi-
nally, PyFR has recently been used to enable ILES-based optimisation of

Computer Physics Communications 311 (2025) 109567

9

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 8. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity
magnitude above the suction side of an MTU-T161 low pressure turbine blade
obtained using the compressible Navier–Stokes solver in PyFR.
Image is from Fig. 12 of Iyer et al. [45]. Copyright Iyer et al. Reused with per-
mission.

Fig. 9. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity
magnitude around a model high-rise building obtained using the incompressible
Navier–Stokes solver in PyFR.
Image is from Fig. 9 of Giangaspero et al. [46]. Copyright Giangaspero et al.
Reused with permission.

turbine cascades [65] and, for the first time, DNS-based optimisation of
Martian rotorcraft aerofoils [66].

5. Accuracy, performance, and scaling

5.1. Accuracy

To demonstrate the accuracy of PyFR v2.0.3 for high-speed flows,
we consider a supersonic Taylor–Green vortex test case at a Mach num-
ber of 1.25 and a Reynolds number of 1,600, which was studied in
Lusher and Sandham [68] and used to benchmark the accuracy and
shock-resolving capabilities of several solvers in Chapelier et al. [69].
Specifically, we solve the compressible Navier-Stokes equations in a do-
main −𝜋 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝜋, subject to the following initial conditions,

Fig. 10. Instantaneous snapshot of a Q-criteria iso-surface coloured by velocity
magnitude around a triangular aerofoil for a Martian helicopter obtained using
the compressible Navier–Stokes solver in PyFR.
Image is from Fig. 10 of Caros et al. [67]. Copyright Caros et al. Reused with
permission.

𝑢(𝑡 = 0,𝐱) = sin(𝑥) cos(𝑦) cos(𝑧), (8a)

𝑣(𝑡 = 0,𝐱) = −cos(𝑥) sin(𝑦) cos(𝑧), (8b)

𝑤(𝑡 = 0,𝐱) = 0, (8c)

𝑝(𝑡 = 0,𝐱) = 𝑝0 +
1
16

[cos(2𝑥) + cos(2𝑦)] [2 + cos(2𝑧)] , (8d)

𝜌(𝑡 = 0,𝐱) = 𝑝(𝑡 = 0,𝐱)∕𝑝0, (8e)

where 𝑝0 and the reference dynamic viscosity were selected to achieve
the desired Mach and Reynolds numbers based on length, velocity and
density scales of unity, and a dynamic viscosity computed using Suther-
land’s law with a reference temperature of 273K [70]. For comparison
with the results in Chapelier et al. [69], the simulations were performed
using computational meshes consisting of 163 , 323, 643 and 1283 hex-
ahedral elements, with a third-order polynomials approximating the
solution within each element. These correspond to 643, 1283, 2563 and
5123 degrees of freedom (DoFs), respectively. Gauss–Legendre–Lobatto
flux and solution points were used, and entropy filtering was employed
as a shock capturing approach.

Fig. 11 shows solenoidal dissipation (enstrophy), defined as

𝜀𝑠 =
1

(2𝜋)3

𝜋

∫
−𝜋

𝜋

∫
−𝜋

𝜋

∫
−𝜋

𝜇 𝜔𝜔𝜔 ⋅𝜔𝜔𝜔 d𝑥d𝑦d𝑧, (9)

as a function of time, as well as a Schlieren-type representation of the
density gradient norm at 𝑡 = 6 for a case computed with 𝑁 = 1283
hexahedral elements (5123 DoFs). The predicted enstrophy profiles are
found to be in excellent agreement with the reference data of Chapelier
et al. [69], computed using a highly resolved (20483 DoFs) high-order
finite difference targeted ENO (TENO) scheme, indicating that PyFR
can accurately resolve small-scale turbulent flow structures in super-
sonic flows. This test case allows for further comparison against the
results of various solvers presented in Chapelier et al. [69]. In partic-
ular, we compare to similar discontinuous finite element-type schemes
(e.g., Discontinuous Galerkin, spectral difference, etc.) with identical
mesh resolution and approximation order, the details of which are sum-
marized in Table 1, as well as the high-order finite difference TENO
scheme which was used to compute the reference results.

Fig. 12 shows dilatational dissipation, defined as

𝜀𝑑 =
4

3(2𝜋)3

𝜋

∫
−𝜋

𝜋

∫
−𝜋

𝜋

∫
−𝜋

𝜇 (𝛁 ⋅ 𝐮)2 d𝑥d𝑦d𝑧, (10)

Computer Physics Communications 311 (2025) 109567

10

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 11. Plot of enstrophy as a function of time (left) and a Schlieren-type representation of the density gradient norm at 𝑡 = 6 (right) for the supersonic Taylor–Green
vortex case computed with 𝑁 = 1283 hexahedral elements (5123 DoFs), along with the reference data of Chapelier et al. [69].

Table 1
Summary of the solvers and numerical methods used for comparison.

Solver Numerical method Order of accuracy Shock capturing method
PyFR Flux Reconstruction 4 Entropy filter
CODA [71] Modal Discontinuous Galerkin 4 Artificial viscosity
FLEXI [72] Nodal Discontinuous Galerkin 4 Subcell finite volume
SD3D [73] Spectral difference 4 Artificial viscosity
OpenSBLI [74] Finite difference 6 Targeted ENO (TENO)

as a function of time for cases computed using 643, 1283, 2563 and 5123
DoFs in comparison to the results of the solvers in Chapelier et al. [69].
The simulations from PyFR generally show less shock dissipation, result-
ing in dilatational dissipation profiles which are closer to the reference
data for a given resolution, indicating that the entropy filtering shock
capturing approach does not introduce excessive numerical dissipation
and can sharply resolve shock profiles.

5.2. Performance and scaling

PyFR has previously been used to undertake petascale simulations
on a range of the world’s largest GPU supercomputers, including Piz
Daint at CSCS and Titan at ORNL. Overall performance and strong and
weak scaling has been demonstrated previously in this context, and in-
deed simulations undertaken with PyFR were shortlisted for the Gordon
Bell Prize in 2016 [75], achieving 13.7 DP-PFLOP/s (58% of theoretical
peak) using 18,000 NVIDIA Tesla K20X GPUs on Titan.

To demonstrate the performance and scaling characteristics of PyFR
v2.0.3, we consider a subsonic version of the Taylor–Green vortex test
case described above, run with double precision arithmetic on Frontier
at ORNL using AMD Instinct MI250X accelerators, and on Alps at CSCS
using NVIDIA GH200 GPUs. For this case, the reference pressure was
modified to achieve a Mach number of 0.08, and the dynamic viscosity
was set to be constant. The computational mesh consisted of 13,891,500
tetrahedral elements, with seventh-order solution polynomials used to
represent the solution within each element, and 𝛼-optimised [11] flux
and solution points were employed. Fig. 13 plots enstrophy as a func-
tion of time for a case run on 512 AMD Instinct MI250X accelerators
of Frontier (each with two GCDs). Results are found to be in excellent
agreement with the reference data of van Rees et al. [76]. Performance
is stated in terms of giga-degrees of freedom per second (GDoF/s) which
considers the time required for a right-hand side evaluation and divides
it by the total number of DoFs in the simulation.

Table 2 and Table 3 present strong scaling of the test case on Frontier
and Alps, respectively, where we note that on Frontier PyFR was run
without HIP-Aware MPI, whereas on Alps, PyFR was run with CUDA-
Aware MPI. In terms of scaling, we observe that at 2048 ranks, both
platforms deliver similar scalability numbers. However, on account of
the superior baseline performance, the NVIDIA system is transferring
∼3.7 times more data over the interconnect. Given both systems make
use of the Cray Slingshot interconnect, this suggests that the network
is not the limiting factor on Frontier. Rather, it is more likely related to
our inability to run with HIP-aware MPI on Frontier, and the inability of
PyFR to employ native HIP graphs due to unresolved issues in the HIP
runtime.

In terms of absolute performance, we note that a single NVIDIA
GH200 is ∼3.7 times faster than one GCD of an AMD MI250X. A sub-
stantial portion of this can be explained by the differences in peak
memory bandwidth. A GH200 uses HBM3 memory with a peak band-
width of 4 TiB / s, whereas the MI250X uses HBM2e memory with a
peak bandwidth per-GCD of 1.6 TiB / s. This gives a ratio of 2.5. More-
over, micro-benchmarks on the MI250X indicate that peak bandwidth is
only reliably achieved for kernels with a 1:1 read-to-write ratio. Outside
of this regime, bandwidths closer to ∼1.2 TiB / s are more commonly
observed. Such a discrepancy is not observed on NVIDIA hardware, how-
ever. Accounting for this gives us a revised performance ratio based on
memory bandwidth of 4∕1.2 ≈ 3.3 which is similar to what is actually
observed. The remaining performance differences are likely due to the
superior caching setup of the NVIDIA GPU which has—in the absence
of shared memory allocations—some 208 KiB available per SM, whereas
AMD only provides 16 KiB per CU. Similarly, whereas NVIDIA provide
50 MiB of shared L2 cache, AMD only provide 8 MiB. These caches are
important for the interface kernels which have an irregular memory ac-
cess pattern.

Finally, we can make a comparison between absolute performance
almost a decade ago using PyFR v0.2.2 on an NVIDIA K40c GPU
[19] with current absolute performance. Specifically, data from Table

Computer Physics Communications 311 (2025) 109567

11

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Fig. 12. Dilatational dissipation as a function of time for the supersonic Taylor–Green vortex case computed with varying mesh resolution in comparison to the
results of the solvers in Chapelier et al. [69].

Table 2
Strong scalability of PyFR on Frontier for the Taylor–Green vortex test case using compress-
ible Navier–Stokes solver on a mesh with 12 × 1053 = 13,891,500 tetrahedral elements and
seventh-order solution polynomials used to represent the solution within each element. The
speedup is relative to 8 AMD Mi250X accelerators each with two GCDs. HIP-Aware MPI was
not employed.

Ranks 16 32 64 128 256 512 1024 2048
GDoF/s 26.21 50.87 98.70 193.37 369.10 669.80 1133.48 1537.68
Speedup 1.0 1.94 3.77 7.38 14.08 25.56 43.25 58.68
Efficiency 1.00 0.97 0.94 0.92 0.88 0.80 0.68 0.46

6 of [19] for a tetrahedrally-dominated mesh with fourth-order solu-
tion polynomials in each element gives an absolute performance of
0.122 GDoF/s per K40c GPU, whereas the 16 rank case from Table 3
here gives an absolute performance of 6.004 GDoF/s per GH200 GPU.
This leads to an absolute performance improvement ratio of 49.2, ac-
counting for the totality of both hardware and software improvements
over the period, and where we note the ratio is conservative since use
of seventh vs. fourth order solution polynomials necessitates substan-
tially more FLOPs/DoF. This conservative estimate of an almost 50×
performance increase over the last decade constitutes a substantial step
towards the industrial adoption of scale-resolving simulations.

6. Conclusions and outlook

Since the initial release of PyFR v0.1.0 in 2013 [9], a range of
new capabilities have been added to the framework, with a view to
enabling industrial adoption. In this work, we have provided details

of these enhancements as released in PyFR v2.0.3, including improve-
ments to cross-platform performance (new backends, extensions of the
DSL, new matrix multiplication providers, improvements to the data
layout, use of task graphs) and improvements to numerical stability
(modal filtering, anti-aliasing, artificial viscosity, entropy filtering), as
well as the addition of prismatic, tetrahedral and pyramid shaped el-
ements, improved domain decomposition support for mixed element
grids, improved handling of curved element meshes, the addition of an
adaptive time-stepping capability, the addition of incompressible Euler
and Navier-Stokes solvers, improvements to file formats and the devel-
opment of a plugin architecture. We have also explained efforts to grow
an engaged developer and user community and provided a range of ex-
amples that show how our user base is applying PyFR to solve a wide
range of fundamental, applied and industrial flow problems. Finally,
we have demonstrated the accuracy of PyFR v2.0.3 for a supersonic
Taylor-Green vortex case, with shocks and turbulence, and provided lat-
est performance and scaling results on up to 1024 AMD Instinct MI250X

Computer Physics Communications 311 (2025) 109567

12

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Table 3
Strong scalability of PyFR on Alps for the Taylor–Green vortex test case using compressible
Navier-Stokes solver on a mesh with 12 × 1053 = 13,891,500 tetrahedral elements and seventh-
order solution polynomials used to represent the solution within each element. The speedup is
relative to 16 GH200 GPUs. CUDA-Aware MPI was employed.

Ranks 16 32 64 128 256 512 1024 2048
GDoF/s 96.07 199.60 404.73 806.95 1599.12 2861.56 4632.03 5753.96
Speedup 1.0 2.08 4.21 8.40 16.64 29.79 48.21 59.89
Efficiency 1.00 1.04 1.05 1.05 1.04 0.93 0.75 0.47

Fig. 13. Plot of enstrophy as a function of time for the subsonic Taylor–Green
vortex case run with PyFR on 512 AMD Instinct MI250X accelerators of Frontier
(each with two GCDs), along with the reference data of van Rees et al. [76].

accelerators of Frontier at ORNL (each with two GCDs) and up to 2048
Nvidia GH200 GPUs of Alps at CSCS. We note that absolute performance
of PyFR accounting for the totality of both hardware and software im-
provements has, conservatively, increased by almost 50× over the last
decade.

As a technology, PyFR is now sufficiently performant and robust
to be used for industrial SRS — with high-order FR schemes proving
the requisite levels of accuracy, mixed-element unstructured grids en-
abling simulations of flow around complex engineering geometries, and
the cross-platform nature of PyFR providing flexibility to use a range
of latest-generation hardware. Moving forwards it will be important
to focus on training and skills development around PyFR, and practi-
cal aspects of running industrial SRS more broadly. This should include
training around best practices for meshing and data processing/analysis,
as well as helping to develop a better understanding how SRS can add
value in an industrial context, and thus when SRS should be deployed
as a complement/alternative to RANS simulations.

CRediT authorship contribution statement

Freddie D. Witherden: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Peter E. Vin-

cent: Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Will Trojak: Writing – review & editing,
Writing – original draft, Visualization, Validation, Supervision, Soft-
ware, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Data curation, Conceptualization.
Yoshiaki Abe: Writing – review & editing. Amir Akbarzadeh: Writing
– review & editing. Semih Akkurt: Writing – review & editing. Moham-

mad Alhawwary: Writing – review & editing. Lidia Caros: Writing –

review & editing. Tarik Dzanic: Writing – review & editing, Writing
– original draft, Visualization, Validation, Supervision, Software, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Data curation, Conceptualization. Giorgio
Giangaspero: Writing – review & editing. Arvind S. Iyer: Writing –
review & editing. Antony Jameson: Writing – review & editing, Super-
vision, Funding acquisition. Marius Koch: Writing – review & editing.
Niki Loppi: Writing – review & editing. Sambit Mishra: Writing –
review & editing. Rishit Modi: Writing – review & editing. Gonzalo
Sáez-Mischlich: Writing – review & editing. Jin Seok Park: Writing –
review & editing. Brian C. Vermeire: Writing – review & editing. Lai
Wang: Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Peter Vincent reports a relationship with Cassyni Limited that includes:
equity or stocks. Freddie Witherden reports a relationship with Cassyni
Limited that includes: equity or stocks. Peter Vincent and Freddie With-
erden are both on the editorial board of Computer Physics Communica-
tions. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

FDW would like to acknowledge support from the Air Force Office
of Scientific Research via grants FA9550-21-1-0190 (“Enabling next-
generation heterogeneous computing for massively parallel high-order
compressible CFD”) and FA9550-23-1-0232 (“Next Generation High-
Order Methods for Multi-Physics Multi-Scale Problems”) under the di-
rection of Dr. Fariba Fahroo. PEV would like to acknowledge support
from the Engineering and Physical Sciences Research Council via awards
EP/K027379/1, EP/R030340/1, EP/R029423/1, EP/L000407/1, the
European Commission via awards 635962 and 814837, the European
Union via award 101138080, the Leverhulme Trust via a Philip Lever-
hulme Prize, Innovate UK via award EP/M50676X/1, and BAE Systems
Submarines. BCV acknowledges support from the Natural Sciences and
Engineering Research Council of Canada (NSERC) under grants RGPAS-
2017-507988 and RGPIN-2017-06773. TD would like to thank Jean-
Baptiste Chapelier and collaborators for providing comparison data for
simulations in this work. An award of computer time was provided by
the Innovative and Novel Computational Impact on Theory and Experi-
ment (INCITE) program. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract DE-AC05-00OR22725. This work also used com-
putational resources of TSUBAME through the HPCI System Research
Project (Project ID: hp190061), was supported by JST FOREST Pro-
gram (Grant Number JPMJFR2124) and JSPS KAKENHI (Grant Number
24K01074), and was partially performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory un-
der contract DE–AC52–07NA27344.

Computer Physics Communications 311 (2025) 109567

13

F.D. Witherden, P.E. Vincent, W. Trojak et al.

Data availability

Data will be made available on request.

References

[1] H.T. Huynh, A flux reconstruction approach to high-order schemes including discon-
tinuous Galerkin methods, in: 18th AIAA Computational Fluid Dynamics Conference,
American Institute of Aeronautics and Astronautics, June 2007.

[2] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De
Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, et al., Nektar + + : an open-source
spectral/hp element framework, Comput. Phys. Commun. 192 (2015) 205–219.

[3] D. Moxey, C.D. Cantwell, Y. Bao, A. Cassinelli, G. Castiglioni, S. Chun, E. Juda, E.
Kazemi, K. Lackhove, J. Marcon, et al., Nektar + + : enhancing the capability and
application of high-fidelity spectral/hp element methods, Comput. Phys. Commun.
249 (2020) 107110.

[4] Z.J. Wang, Y. Li, F. Jia, G.M. Laskowski, J. Kopriva, U. Paliath, R. Bhaskaran, To-
wards industrial large eddy simulation using the FR/CPR method, Comput. Fluids
156 (2017) 579–589.

[5] R.D. Sandberg, Development of a new compressible Navier-Stokes solver for numer-
ical simulations of flows in turbomachinery, in: Progress Report for HPC Europa + +
Transnational Access Project 1264, 2008.

[6] Richard D. Sandberg, Vittorio Michelassi, Richard Pichler, Liwei Chen, Roderick
Johnstone, Compressible direct numerical simulation of low-pressure turbines—part
i: methodology, J. Turbomach. (ISSN 0889-504X) 137 (5) (05 2015) 051011, https://
doi.org/10.1115/1.4028731.

[7] G.A. Bres, S.T. Bose, M. Emory, F.E. Ham, O.T. Schmidt, G. Rigas, T. Colonius, Large-
eddy simulations of co-annular turbulent jet using a voronoi-based mesh generation
framework, in: 2018 AIAA/CEAS Aeroacoustics Conference, 2018, p. 3302.

[8] K.A. Goc, O. Lehmkuhl, G.I. Park, S.T. Bose, P. Moin, Large eddy simulation of air-
craft at affordable cost: a milestone in computational fluid dynamics, Flow 1 (2021)
E14.

[9] F.D. Witherden, A.M. Farrington, P.E. Vincent, PyFR: an open source framework for
solving advection–diffusion type problems on streaming architectures using the flux
reconstruction approach, Comput. Phys. Commun. 185 (11) (2014) 3028–3040.

[10] G. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid
Dynamics, Oxford University Press, USA, 2005.

[11] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, Springer Science & Business Media, 2007.

[12] Freddie David Witherden, On the development and implementation of high-order
flux reconstruction schemes for computational fluid dynamics, PhD thesis, Imperial
College London, 2015.

[13] B.D. Wozniak, F.D. Witherden, F.P. Russell, P.E. Vincent, P.H.J. Kelly, GiMMiK—
generating bespoke matrix multiplication kernels for accelerators: application to
high-order computational fluid dynamics, Comput. Phys. Commun. 202 (2016)
12–22.

[14] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, LIBXSMM: accelerating small ma-
trix multiplications by runtime code generation, in: SC’16: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE, 2016, pp. 981–991.

[15] S. Akkurt, F.D. Witherden, P.E. Vincent, Cache blocking strategies applied to flux
reconstruction, Comput. Phys. Commun. 271 (2022) 108193.

[16] S. Akkurt, Cache blocking strategies applied to flux reconstruction, PyFR Semin. Ser.
(2021), https://doi.org/10.52843/gpnpwx.

[17] L. Dalcín, R. Paz, M. Storti, MPI for Python, J. Parallel Distrib. Comput. 65 (9) (2005)
1108–1115.

[18] L. Dalcín, R. Paz, M. Storti, J. D’Elía, MPI for Python: performance improvements
and MPI-2 extensions, J. Parallel Distrib. Comput. 68 (5) (2008) 655–662.

[19] F.D. Witherden, B.C. Vermeire, P.E. Vincent, Heterogeneous computing on mixed
unstructured grids with PyFR, Comput. Fluids 120 (2015) 173–186.

[20] S. Mishra, F.D. Witherden, D. Chakravorty, L. Perez, F. Dang, Scaling study of flow
simulations on composable cyberinfrastructure, in: Practice and Experience in Ad-
vanced Research Computing, 2023, pp. 221–225.

[21] A. Jameson, P.E. Vincent, P. Castonguay, On the non-linear stability of flux recon-
struction schemes, J. Sci. Comput. 50 (2012) 434–445.

[22] F.D. Witherden, P.E. Vincent, On the identification of symmetric quadrature rules
for finite element methods, Comput. Math. Appl. 69 (10) (2015) 1232–1241.

[23] J.S. Park, F.D. Witherden, P.E. Vincent, High-order implicit large-eddy simulations
of flow over a NACA0021 aerofoil, AIAA J. 55 (7) (2017) 2186–2197.

[24] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin meth-
ods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, p. 112.

[25] T. Dzanic, F.D. Witherden, Positivity-preserving entropy-based adaptive filtering for
discontinuous spectral element methods, J. Comput. Phys. 468 (2022) 111501.

[26] T. Dzanic, F.D. Witherden, Positivity-preserving entropy filtering for the ideal mag-
netohydrodynamics equations, Comput. Fluids 266 (2023) 106056.

[27] T. Dzanic, Positivity-preserving entropy-based adaptive filtering for shock capturing,
PyFR Semin. Ser. (2022), https://doi.org/10.52843/cassyni.pvy6c0.

[28] Will Trojak, Tarik Dzanic, Positivity-preserving discontinuous spectral element
methods for compressible multi-species flows, Comput. Fluids 280 (August 2024)
106343, https://doi.org/10.1016/j.compfluid.2024.106343.

[29] G. Karypis, V. Kumar, METIS: a Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices, 1997.

[30] Cédric Chevalier, François Pellegrini, PT-Scotch: a tool for efficient parallel graph
ordering, Parallel Comput. 34 (6–8) (2008) 318–331.

[31] D.A. Kopriva, Metric identities and the discontinuous spectral element method on
curvilinear meshes, J. Sci. Comput. 26 (2006) 301–327.

[32] Y. Abe, T. Haga, T. Nonomura, K. Fujii, On the freestream preservation of high-order
conservative flux-reconstruction schemes, J. Comput. Phys. 281 (2015) 28–54.

[33] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff
Problems, 2 edition, Springer, Berlin, 1993.

[34] A.J. Chorin, A numerical method for solving incompressible viscous flow problems,
J. Comput. Phys. 135 (2) (1997) 118–125.

[35] A. Jameson, Time dependent calculations using multigrid, with applications to un-
steady flows past airfoils and wings, in: 10th Computational Fluid Dynamics Confer-
ence, 1991, p. 1596.

[36] N.A. Loppi, F.D. Witherden, A. Jameson, P.E. Vincent, A high-order cross-platform
incompressible Navier–Stokes solver via artificial compressibility with application
to a turbulent jet, Comput. Phys. Commun. 233 (2018) 193–205.

[37] N.A. Loppi, F.D. Witherden, A. Jameson, P.E. Vincent, Locally adaptive pseudo-time
stepping for high-order flux reconstruction, J. Comput. Phys. 399 (2019) 108913.

[38] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview of the HDF5
technology suite and its applications, in: Proceedings of the EDBT/ICDT 2011 Work-
shop on Array Databases, 2011, pp. 36–47.

[39] A. Collette, Python and HDF5: Unlocking Scientific Data, O’Reilly Media, Inc., 2013.
[40] G. Giangaspero, F.D. Witherden, P.E. Vincent, Synthetic turbulence generation for

high-order scale-resolving simulations on unstructured grids, AIAA J. 60 (2) (2022)
1032–1051.

[41] G. Giangaspero, Synthetic turbulence generation in PyFR, PyFR Semin. Ser. (2021),
https://doi.org/10.52843/cassyni.249z01.

[42] Melissa E. O’Neill, Pcg: a family of simple fast space-efficient statistically good al-
gorithms for random number generation, https://api.semanticscholar.org/CorpusID:
3489282, 2014.

[43] M. Larsen, E. Brugger, H. Childs, C. Harrison, Ascent: a flyweight in situ library
for exascale simulations, in: Situ Visualization for Computational Science, Springer,
2022, pp. 255–279.

[44] N.F. Afshar, High-order implicit large eddy simulation of flow over a low-
Reynolds turbine cascade, PyFR Semin. Ser. (2021), https://doi.org/10.52843/
cassyni.pw9418.

[45] A.S. Iyer, Y. Abe, B.C. Vermeire, P. Bechlars, R.D. Baier, A. Jameson, F.D. Witherden,
P.E. Vincent, High-order accurate direct numerical simulation of flow over a mtu-
t161 low pressure turbine blade, Comput. Fluids 226 (2021) 104989.

[46] Giorgio Giangaspero, Luca Amerio, Steven Downie, Alberto Zasso, Peter Vincent,
High-order scale-resolving simulations of extreme wind loads on a model high-rise
building, J. Wind Eng. Ind. Aerodyn. 230 (2022) 105169.

[47] L.C. Roca, DNS-based optimisation of airfoils for Martian helicopters using PyFR,
PyFR Semin. Ser. (2023), https://doi.org/10.52843/cassyni.6r5ry1.

[48] L.C. Roca, Martian aerodynamics with PyFR, PyFR Semin. Ser. (2021), https://doi.
org/10.52843/47ly7q.

[49] Rathakrishnan Bhaskaran, Eric C. Stern, Scale Resolving Simulations of Viking ’75
Reentry Capsule Wake Flow, AIAA, 2024, https://arc.aiaa.org/doi/abs/10.2514/6.
2024-4127.

[50] J.S. Park, High-order implicit large-eddy simulations of flow around a projectile us-
ing PyFR, PyFR Semin. Ser. (2021), https://doi.org/10.52843/cassyni.536kkl.

[51] T. Liang, Actuator line model for wind turbine wake prediction with PyFR, PyFR
Semin. Ser. (2024), https://doi.org/10.52843/cassyni.p3fyks.

[52] Tianyang Liang, Changhong Hu, Numerical simulation of wind turbine wake char-
acteristics by flux reconstruction method, Renew. Energy (ISSN 0960-1481) (2024)
121092, https://doi.org/10.1016/j.renene.2024.121092.

[53] N. Blanc, Simulating a thermoacoustic engine with PyFR, PyFR Semin. Ser. (2023),
https://doi.org/10.52843/cassyni.dlsjz8.

[54] Nathan Blanc, Michael Laufer, Steven Frankel, Guy Z. Ramon, High-fidelity numeri-
cal simulations of a standing-wave thermoacoustic engine, Appl. Energy 360 (2024)
122817.

[55] Z. Wan, Noise reduction of serrated trailing edges with implicit large eddy simulation
using PyFR, PyFR Semin. Ser. (2022), https://doi.org/10.52843/cassyni.br5jn1.

[56] Z. Yuan, Numerical simulations of aerofoil tonal noise reduction by roughness ele-
ments, PyFR Semin. Ser. (2023), https://doi.org/10.52843/cassyni.j59tff.

[57] M. Laufer, Implicit LES of NACA 0018 airfoil with active flow control, PyFR Semin.
Ser. (2021), https://doi.org/10.52843/cassyni.nd09lk.

[58] H. Foysi, Active control of compressible supersonic wall-bounded flow using direct
numerical simulations with spanwise velocity modulation at the walls using PyFR,
PyFR Semin. Ser. (2023), https://doi.org/10.52843/cassyni.2g7fx6.

[59] K. Cengiz, Use of high-order curved elements for direct and large eddy simulation
of flow over rough surfaces, PyFR Semin. Ser. (2023), https://doi.org/10.52843/
cassyni.hkqms2.

[60] Kenan Cengiz, Sebastian Kurth, Lars Wein, Joerg R. Seume, Use of high-order
curved elements for direct and large eddy simulation of flow over rough sur-
faces, Tech. Mech. - Eur. J. Eng. Mech. 43 (1) (Feb. 2023) 38–48, https://doi.org/
10.24352/UB.OVGU-2023-043, https://journals.ub.ovgu.de/index.php/techmech/
article/view/2100.

http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0EB1FF073D71ACE0BF7CEA212FFEC583s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0EB1FF073D71ACE0BF7CEA212FFEC583s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0EB1FF073D71ACE0BF7CEA212FFEC583s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibE1E4A5DAE5035F1638D84ED9C5DE1D96s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibE1E4A5DAE5035F1638D84ED9C5DE1D96s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibE1E4A5DAE5035F1638D84ED9C5DE1D96s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF12D3947BE4EC235F1DBF3F7A736C505s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib05DC183C5602A3B80F3CF0CFF44FF288s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib05DC183C5602A3B80F3CF0CFF44FF288s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib05DC183C5602A3B80F3CF0CFF44FF288s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCB17EDC5685F5E975F222AA9FF7139EDs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCB17EDC5685F5E975F222AA9FF7139EDs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCB17EDC5685F5E975F222AA9FF7139EDs1
https://doi.org/10.1115/1.4028731
https://doi.org/10.1115/1.4028731
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA91AC102D2B514FFBEA12F2FF819BB80s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA91AC102D2B514FFBEA12F2FF819BB80s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA91AC102D2B514FFBEA12F2FF819BB80s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF4F8C0A90E3DEFDD64D501D13BD95166s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF4F8C0A90E3DEFDD64D501D13BD95166s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibF4F8C0A90E3DEFDD64D501D13BD95166s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib4E3624E512E3F3B8A1EC31845A03A43Cs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib4E3624E512E3F3B8A1EC31845A03A43Cs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib27826628456ED5470AA745613273279Bs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib27826628456ED5470AA745613273279Bs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib2AEDB5CF4C2C732CA7C1341D22F647DCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib2AEDB5CF4C2C732CA7C1341D22F647DCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib2AEDB5CF4C2C732CA7C1341D22F647DCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5265EE07549E7FC6469B923D833C4677s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5265EE07549E7FC6469B923D833C4677s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5265EE07549E7FC6469B923D833C4677s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5265EE07549E7FC6469B923D833C4677s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96E6D6811AA48834BCA8B8DADA64299Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96E6D6811AA48834BCA8B8DADA64299Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96E6D6811AA48834BCA8B8DADA64299Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96E6D6811AA48834BCA8B8DADA64299Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibC6069E864317A33C547DB8913ED347ABs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibC6069E864317A33C547DB8913ED347ABs1
https://doi.org/10.52843/gpnpwx
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib3B48B667956F55744E822C983C252725s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib3B48B667956F55744E822C983C252725s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibBABC92960075F6DE3D8F6F3787DAD3CAs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibBABC92960075F6DE3D8F6F3787DAD3CAs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib7273A1CB291BEBE6563BDFBC9E06501As1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib7273A1CB291BEBE6563BDFBC9E06501As1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCFB05AD99D5F3018845498CE4644B890s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCFB05AD99D5F3018845498CE4644B890s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibCFB05AD99D5F3018845498CE4644B890s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib03D11BC9DF7FAC5CA7ADFE9CD2DD76ACs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib03D11BC9DF7FAC5CA7ADFE9CD2DD76ACs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibECC082AA250A07BAF6B68D3E6CC297FFs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibECC082AA250A07BAF6B68D3E6CC297FFs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD0849F0C271BBC5043C07201F29D97CCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD0849F0C271BBC5043C07201F29D97CCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib6BD6372BF90DD586A52C5B2B5B4A7647s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib6BD6372BF90DD586A52C5B2B5B4A7647s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib264DD38430811FFA485759230E4A0C33s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib264DD38430811FFA485759230E4A0C33s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD4EC194FD64E5BEA3009DD26767B29E4s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD4EC194FD64E5BEA3009DD26767B29E4s1
https://doi.org/10.52843/cassyni.pvy6c0
https://doi.org/10.1016/j.compfluid.2024.106343
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibC24C0E657DCDC97D3FA720C5FCA2C9A1s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibC24C0E657DCDC97D3FA720C5FCA2C9A1s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibC24C0E657DCDC97D3FA720C5FCA2C9A1s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib9E2DC0325764FBF7E03BC90DE91C97ACs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib9E2DC0325764FBF7E03BC90DE91C97ACs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib216D7E0A124D26CDDB5AB85284DBC9C5s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib216D7E0A124D26CDDB5AB85284DBC9C5s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib8E7812B3E4998283159B717216C56911s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib8E7812B3E4998283159B717216C56911s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib03A73B9E73EB7545E1576F9E86ED1080s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib03A73B9E73EB7545E1576F9E86ED1080s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib459FF5DC46E08DACC3B9E67833D92C8Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib459FF5DC46E08DACC3B9E67833D92C8Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib38AE9A77EA6D0EAD9AAD795C95FF948Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib38AE9A77EA6D0EAD9AAD795C95FF948Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib38AE9A77EA6D0EAD9AAD795C95FF948Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96951E8F2EC2A20D4623C710A3BA4C56s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96951E8F2EC2A20D4623C710A3BA4C56s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib96951E8F2EC2A20D4623C710A3BA4C56s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibB09E5071D7930EF90652B998F03565DDs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibB09E5071D7930EF90652B998F03565DDs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib39DC7668EAC177A023D5691200EAD61Bs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib39DC7668EAC177A023D5691200EAD61Bs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib39DC7668EAC177A023D5691200EAD61Bs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib95B0577592946E9CA209380FFD8531D1s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB7AE6D44A61B32AE8DF9C854DD12E92s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB7AE6D44A61B32AE8DF9C854DD12E92s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibEB7AE6D44A61B32AE8DF9C854DD12E92s1
https://doi.org/10.52843/cassyni.249z01
https://api.semanticscholar.org/CorpusID:3489282
https://api.semanticscholar.org/CorpusID:3489282
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib7DC84E93C453DA7A88A589A8853C533Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib7DC84E93C453DA7A88A589A8853C533Es1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib7DC84E93C453DA7A88A589A8853C533Es1
https://doi.org/10.52843/cassyni.pw9418
https://doi.org/10.52843/cassyni.pw9418
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5D0548FB14DC698E589EC94A04668BB7s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5D0548FB14DC698E589EC94A04668BB7s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib5D0548FB14DC698E589EC94A04668BB7s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA175B244830BF045D13DCD24DD89625As1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA175B244830BF045D13DCD24DD89625As1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibA175B244830BF045D13DCD24DD89625As1
https://doi.org/10.52843/cassyni.6r5ry1
https://doi.org/10.52843/47ly7q
https://doi.org/10.52843/47ly7q
https://arc.aiaa.org/doi/abs/10.2514/6.2024-4127
https://arc.aiaa.org/doi/abs/10.2514/6.2024-4127
https://doi.org/10.52843/cassyni.536kkl
https://doi.org/10.52843/cassyni.p3fyks
https://doi.org/10.1016/j.renene.2024.121092
https://doi.org/10.52843/cassyni.dlsjz8
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0527A08FF018FD2D6179B0C07C785EB2s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0527A08FF018FD2D6179B0C07C785EB2s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib0527A08FF018FD2D6179B0C07C785EB2s1
https://doi.org/10.52843/cassyni.br5jn1
https://doi.org/10.52843/cassyni.j59tff
https://doi.org/10.52843/cassyni.nd09lk
https://doi.org/10.52843/cassyni.2g7fx6
https://doi.org/10.52843/cassyni.hkqms2
https://doi.org/10.52843/cassyni.hkqms2
https://doi.org/10.24352/UB.OVGU-2023-043
https://doi.org/10.24352/UB.OVGU-2023-043
https://journals.ub.ovgu.de/index.php/techmech/article/view/2100
https://journals.ub.ovgu.de/index.php/techmech/article/view/2100

Computer Physics Communications 311 (2025) 109567

14

F.D. Witherden, P.E. Vincent, W. Trojak et al.

[61] T. Regev, GPU-accelerated high-fidelity implicit LES of Coanda cylinder flow insta-
bilities, PyFR Semin. Ser. (2023), https://doi.org/10.52843/cassyni.5yklnq.

[62] Ali Girayhan Özbay, Unsteady 2D flow reconstruction around arbitrary shapes via
conformal mapping aided deep neural networks, PyFR Semin. Ser. (2022), https://
doi.org/10.52843/cassyni.s1q5yf.

[63] Ali Girayhan Özbay, Sylvain Laizet, Deep learning fluid flow reconstruction around
arbitrary two-dimensional objects from sparse sensors using conformal mappings,
AIP Adv. (ISSN 2158-3226) 12 (4) (04 2022) 045126, https://doi.org/10.1063/5.
0087488.

[64] A.S. Iyer, F.D. Witherden, S.I. Chernyshenko, P.E. Vincent, Identifying eigenmodes
of averaged small-amplitude perturbations to turbulent channel flow, J. Fluid Mech.
875 (2019) 758–780, https://doi.org/10.1017/jfm.2019.520.

[65] A. Aubry, Gradient-free aerodynamic shape optimization using PyFR and MADS,
PyFR Semin. Ser. (2021), https://doi.org/10.52843/cassyni.nqp2sp.

[66] Lidia Caros, Oliver Buxton, Peter Vincent, Optimization of triangular airfoils for
martian helicopters using direct numerical simulations, AIAA J. 61 (11) (2023)
4935–4945.

[67] Lidia Caros, Oliver Buxton, Tsuyoshi Shigeta, Takayuki Nagata, Taku Nonomura,
Keisuke Asai, Peter Vincent, Direct numerical simulation of flow over a triangular
airfoil under martian conditions, AIAA J. 60 (7) (2022) 3961–3972.

[68] David J. Lusher, Neil D. Sandham, Assessment of low-dissipative shock-capturing
schemes for the compressible Taylor–Green vortex, AIAA J. 59 (2) (February 2021)
533–545, https://doi.org/10.2514/1.j059672.

[69] Jean-Baptiste Chapelier, David J. Lusher, William Van Noordt, Christoph Wenzel,
Tobias Gibis, Pascal Mossier, Andrea Beck, Guido Lodato, Christoph Brehm, Matteo
Ruggeri, Carlo Scalo, Neil Sandham, Comparison of high-order numerical method-
ologies for the simulation of the supersonic Taylor–Green vortex flow, Phys. Fluids
36 (5) (May 2024), https://doi.org/10.1063/5.0206359.

[70] William Sutherland, III. The viscosity of gases and molecular force, Lond. Edinb.
Dublin Philos. Mag. J. Sci. 36 (223) (December 1893) 507–531, https://doi.org/10.
1080/14786449308620508.

[71] Pedro Stefanin Volpiani, Jean-Baptiste Chapelier, Axel Schwöppe, Jens Jägersküp-
per, Steeve Champagneux, Aircraft simulations using the new CFD software from
ONERA, DLR, and Airbus, J. Aircr. 61 (3) (May 2024) 857–869, https://doi.org/10.
2514/1.c037506.

[72] Nico Krais, Andrea Beck, Thomas Bolemann, Hannes Frank, David Flad, Gregor
Gassner, Florian Hindenlang, Malte Hoffmann, Thomas Kuhn, Matthias Sonntag,
Claus-Dieter Munz, FLEXI: a high order discontinuous Galerkin framework for
hyperbolic–parabolic conservation laws, Comput. Math. Appl. 81 (January 2021)
186–219, https://doi.org/10.1016/j.camwa.2020.05.004.

[73] J.-B. Chapelier, G. Lodato, A. Jameson, A study on the numerical dissipation of the
spectral difference method for freely decaying and wall-bounded turbulence, Com-
put. Fluids 139 (November 2016) 261–280, https://doi.org/10.1016/j.compfluid.
2016.03.006.

[74] David J. Lusher, Satya P. Jammy, Neil D. Sandham, OpenSBLI: automated code-
generation for heterogeneous computing architectures applied to compressible fluid
dynamics on structured grids, Comput. Phys. Commun. 267 (October 2021) 108063,
https://doi.org/10.1016/j.cpc.2021.108063.

[75] P.E. Vincent, F.D. Witherden, B. Vermeire, J.S. Park, A. Iyer, Towards green aviation
with python at petascale, in: SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE, 2016,
pp. 1–11.

[76] Wim M. van Rees, Anthony Leonard, D.I. Pullin, Petros Koumoutsakos, A comparison
of vortex and pseudo-spectral methods for the simulation of periodic vortical flows
at high Reynolds numbers, J. Comput. Phys. 230 (8) (2011) 2794–2805.

https://doi.org/10.52843/cassyni.5yklnq
https://doi.org/10.52843/cassyni.s1q5yf
https://doi.org/10.52843/cassyni.s1q5yf
https://doi.org/10.1063/5.0087488
https://doi.org/10.1063/5.0087488
https://doi.org/10.1017/jfm.2019.520
https://doi.org/10.52843/cassyni.nqp2sp
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib6AF3B096174D3EAF61E00198ED888C84s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib6AF3B096174D3EAF61E00198ED888C84s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib6AF3B096174D3EAF61E00198ED888C84s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib3931A6CCA965CBA3F0EAAED5EE0A9CD8s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib3931A6CCA965CBA3F0EAAED5EE0A9CD8s1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib3931A6CCA965CBA3F0EAAED5EE0A9CD8s1
https://doi.org/10.2514/1.j059672
https://doi.org/10.1063/5.0206359
https://doi.org/10.1080/14786449308620508
https://doi.org/10.1080/14786449308620508
https://doi.org/10.2514/1.c037506
https://doi.org/10.2514/1.c037506
https://doi.org/10.1016/j.camwa.2020.05.004
https://doi.org/10.1016/j.compfluid.2016.03.006
https://doi.org/10.1016/j.compfluid.2016.03.006
https://doi.org/10.1016/j.cpc.2021.108063
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib950F2E79718901E6C0B695886CAE6BCCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib950F2E79718901E6C0B695886CAE6BCCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib950F2E79718901E6C0B695886CAE6BCCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bib950F2E79718901E6C0B695886CAE6BCCs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD8556D66CB307CCEA92E4958E4BBFDCEs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD8556D66CB307CCEA92E4958E4BBFDCEs1
http://refhub.elsevier.com/S0010-4655(25)00070-0/bibD8556D66CB307CCEA92E4958E4BBFDCEs1

	PyFR v2.0.3: Towards industrial adoption of scale-resolving simulations
	1 Introduction
	2 Flux reconstruction
	3 New capabilities
	3.1 Cross-platform performance
	3.2 Numerical stability
	3.3 Mixed elements and domain decomposition
	3.4 Curved elements
	3.5 Adaptive time stepping
	3.6 Incompressible Euler and Navier--Stokes
	3.7 File formats
	3.8 Plugin architecture

	4 Developer and user community
	5 Accuracy, performance, and scaling
	5.1 Accuracy
	5.2 Performance and scaling

	6 Conclusions and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

