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Lifting Line Theory

We are now concerned with the application / extension of our two
dimensional theories to flows that are truly three-dimensional in nature.
The results from two-dimensional theory can be considered to apply to
three-dimensional wings of infinite span. However, when the spanwise
extent of the wing is abruptly truncated, additional physical phenomena
(trailing vortices) appear that modify the two-dimensional flow substantially.
Accounting for this new modification to the flow is absolutely necessary to
obtain data on the aerodynamic performance of finite wings. Otherwise,
the results obtained using two-dimensional theories, even for wings of
moderately high aspect ratio are bound to be incorrect.
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Key Elements of Lifting Line Theory

We have already seen that in two dimensions, the governing equations
of motion can be used to determine the incompressible, inviscid, flow
solution about an arbitrarily shaped body up to a constant. The value of
this constant is directly related to the circulation around the body, and
therefore, to the total lift produced.

For inviscid flows, the Kutta condition was used to remove this
arbitrariness and to yield accurate results in the computation of total
lift.

With the Kutta-Joukowski theorem one can see that lift and circulation
are intimately related by the equation

L = ρV∞ × Γ (1)
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In two dimensions, we had assumed that the circulation was created by an
infinite vortex filament, perpendicular to the plane of the airfoil, located at
the quarter chord. The vortex filament was allowed to proceed all the way
to +∞ and −∞ without questioning what happened to it.

In the case where wings are finite (the wing ends at some well-defined
tips), where do the vortex filaments go? Do they continue on to ±∞ or do
they abruptly end in the fluid?

Arguments that can lead to possible solutions to this vortex filament
path question can be found in Helmholz’s vortex laws (consequences of
Kelvin’s theorem of circulation), which state that:

1. A vortex filament cannot end in the fluid. Vortex filaments must either
propagate to infinity, or must arrange themselves to form closed loops.

2. The strength of a vortex filament must be constant along its length.
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This can be shown by using Gauss’ theorem on a cylindrical surface that
encloses the filament for a certain distance.

3. The path of a vortex filament is such that it follows fluid particles. An
alternative formulation to this law is the well-known Kelvin theorem.

The vortex filaments that run along the surface of the wing (producing
a given circulation at any given spanwise station and therefore creating a
given amount of sectional lift) cannot continue along the spanwise direction
beyond the wing tips (according to the third theorem). The physical picture
of what is occurring in the flow can then be mathematically approximated
by a superposition of horseshoe vortices of varying spanwise extent that
trail towards −∞. The key elements of this theory are that

1. The lift distribution along the span of the wing is allowed to vary
almost arbitrarily since we can superimpose an infinite number of vortex
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filaments there, whose strengths add up to the desired circulation at any
given spanwise station.

2. The trailing vortex system convects downstream mainly in the direction
of the free stream, although they mutually interact with each other to
distort or roll-up the shape of the wake.

3. The trailing vortex system generates a downwash at the wing that alters
the local angle of attack of every wing cross section, therefore changing
the amount of lift that it produces.

4. The local strength of the trailing vortex system is a function of the
change in circulation in the spanwise direction at the wing

5. The lift distribution on the wing and the strength of the trailing vortex
system are intimately related and cannot be chosen arbitrarily: they must
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agree with each other as we will see later.

All of these observations lead to the mathematical modeling of finite wings
according to the diagram in Figure 1.

Figure 1: The Lifting Line Approximation
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Using small angle approximations, the lift per unit width L′ and the
induced drag per unit width, D′ can be calculated from the Kutta-Joukowski
formula taking into account the fact that the incoming free stream is now
deflected downwards by an amount that is determined by the strength of
the downwash velocity w(y), or by the corresponding induced angle αi(y)
according to:

L′(y) ≈ ρV∞Γ(y) (2)

D′
i(y) ≈ ρw(y)Γ(y)

≈ ρV∞Γ(y)αi(y)

The downwash velocity and the induced angle are related by the following
equation

αi(y) ≈ w(y)
v∞

(3)
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Lifting line theory makes no particular assumption about the geometry
of each of the cross sections that make up the wing. Instead, it assumes
that the sectional lift coefficient at any given spanwise station has been
computed (using thin airfoil theory or any other means) and can be expressed
as follows:

cl(y) = clα(α(y)− αL0(y)− αi(y)) (4)

where clα is the lift curve slope (which could also be a function of y), α(y)
is the geometric angle of attack, and αL0 is the zero-lift angle of attack
(due to camber) of that particular cross-section. Since

cl =
L′

1
2ρ∞V 2∞c(y)
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where c(y) is the local chord, then

Γ(y) =
1
2
clαV∞c(α− αL0 − αi) (5)

This assumes that the flow is locally two-dimensional, and therefore, its
validity improves at the aspect ratio, AR = b2/S, increases. In this
definition, b is the wing span, and S is its planform area.

Before we are able to compute the induced angle of attack αi(y) from
the strength of the trailing vortex system, we have to understand how the
strength of each vortex filament in the wake relates to the strength of the
circulation on the wing itself, Γ(y). Notice from Figure 2 that the amount
of vorticity shed into the wake is proportional to the decrease in circulation
along the span of the wing.
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Figure 2: Downwash due to the trailing vortex system of a lifting line

In other words, it can be easily shown that

γx(y) = −dΓ(y)
dy

(6)
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where γx(y) is the strength of the vortex filament located at a spanwise
station y. The x subscript in its definition simply indicates that the trailing
vortices contain vorticity that is aligned with the free stream direction.

The computation of the induced angle of attack is greatly simplified in
lifting line theory by the fact that the trailing vortex system is assumed
to be aligned with the free stream (in a planar wake). By symmetry, the
downwash at the bound vortex location is exactly half of what it would be
should the trailing vortex system continue upstream of the wing to −∞.
If this were the situation, the downwash can be computed using effectively
two-dimensional theory. See Figure 3 below for more details.
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Figure 3: Quasi-Infinite System of Trailing Vortices

A view of this infinite trailing vortex system from downstream can be
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seen in Figure 4. The total downwash velocity generated at any given
spanwise station can be calculated as

Figure 4: View of Downwash from Downstream
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2w(y) =
1
2π

P

∫ b
2

−b
2

γx(t)dt

t− y
(7)

where the integral is a principal value integral in the same sense as
discussed during our lectures on thin airfoil theory. Using the definitions of
both γx(y) and αi(y) in Equations 6 and 3 we can see that

αi(y) =
1

4πV∞
P

∫ b
2

−b
2

Γ′(t)dt

y − t
(8)

and plugging into Equation 5 we have an integro-differential equation for
Γ(y) assuming that αL0, c, and clα are given as functions of y

Γ(y) =
1
2
V∞c clα

[
α− αL0 − 1

4πV∞
P

∫ b
2

−b
2

Γ′(t)dt

y − t

]
(9)
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The only unknown in this equation is Γ(y). If we were able to solve
Equation 9 for Γ(y), we could compute every other quantity of interest as
we shall show later.
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Lifting Line Theory

We are now familiar with the basic concepts of finite wing theory, also
called lifting line theory. Mathematical modelling of a lifting wing via the
superposition of a number of horseshoe vortices that obey Helmholz’s laws
yields a good approximation to the flow around a wing of high apect ratio.
The key elements of this theory are can be described as follows:

“The main problem of finite-wing theory is the determination of
the distribution of airloads on a wing of given geometry flying at a
given speed and orientation in space. The analysis is based on the
assumption that at every point along the span the flow is essentially
two-dimensional; thus the resultant force per unit span at any point is
that calculated for the airfoil using two-dimensional thin airfoil theory,
but at an angle of attack corrected for the influence of the trailing
vortex configuration that itself depends on the spanwise variation of
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the lift distribution on the wing.”

Figure 5 below presents a good summary of the various elements involved
in this theory that we have discussed so far. The key thing to understand
is that there is strong feedback between a lift distribution and its wake: the
spanwise derivative of the wing lift distribution determines the local strength
of the wake, which, in turn, determines the distribution of downwash at the
wing, which, again, determines the lift distribution along the span of the
wing. The key is to determine a distribution of lift/circulation along the
span of the wing which is in harmony with the downwash created by its
wake. Once this is accomplished all aerodynamic performance parameters
can be derived, including the total lift and drag of the wing, the downwash
distribution and the deviation of the produced lift distribution from the
optimum one. More importantly, lifting line theory can tell us about the
effect of variations in the wing planform and twist distributions on the
performance of the actual wing.
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Figure 5: Summary of Key Elements of Lifting Line Theory
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Consider the unknown spanwise distribution of circulation to be given
by Γ(y). The strength of the circulation at any point of the wake is then
given by

γx(y) =
dΓ(y)

dy
.

The net effect of this trailing vortex system on any point on the bound
vortex is a downwash, w(y), whose magnitude at at each point is given by
the integrated effect of the continuous distribution of semi-infinite vorticity
over the range −b/2 < y < b/2. Notice from the Figure that resultant
velocity at the wing has two components V∞ and w, at each point, which
define the induced angle of attack

αi(y) = tan−1 w(y)
V∞

(10)

Using the Kutta-Joukwoski law, the force per unit span on the bound vortex
has magnitude ρV Γ and it is normal to V , that is, it is inclined with respect
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to the z-axis at an angle αi. Using small angle approximations, these
various quantities can be shown to be

αi(y) =
w

V∞
L′(y) = ρV∞Γ

D′
i(y) = −L′αi = −ρwΓ

We have shown that the net effect of the wake on the wing is the downwash
velocity which can be calculated as

αi(y) =
w(y)
V∞

= − 1
4πV∞

P

∫ b
2

−b
2

dΓ(t)
dt

y − t
dt (11)
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We had also seen that

cl(y) = clα(α(y)− αL0(y)− αi(y)) (12)

where clα is the lift curve slope (which could also be a function of y), α(y)
is the geometric angle of attack, and αL0 is the zero-lift angle of attack
(due to camber) of that particular cross-section. Since

cl =
L′

1
2ρ∞V 2∞c(y)

where c(y) is the local chord, then

Γ(y) =
1
2
clαV∞c(α− αL0 − αi) (13)
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and plugging in Equation 13 into Equation 11 we obtain the governing
equation for Γ(y) as

Γ(y) =
1
2
V∞c clα

[
α− αL0 − 1

4πV∞
P

∫ b
2

−b
2

Γ′(t)dt

y − t

]
(14)
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Elliptical Lift Distribution

Equation 14 is easily solved for c(y) if we were given Γ(y). This procedure
involves the solution of an algebraic equation, rather than an integral
equation. The most important case of this type of solution procedure is
that of the elliptical lift distribution. Suppose that Γs represents the value of
the circulation at the plane of symmetry. Then, an elliptical lift distribution
can be written as

Γ = Γs

√
1−

(
y

b/2

)2

. (15)

The induced angle of attack created by this elliptical load distribution can
be computed by subtituting Equation 15 into Equation 11. One can then
show that

αi(y) = − Γs

4πV∞
P

∫ b
2

−b
2

d
dt

√
1−

(
t

b/2

)2

y − t
dt
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Using the Glauert trigonometric substitution that we have seen several times
by now, we can show that

αi(θ0) =
Γs

2πbV∞
P

∫ π

0

cos θdθ

cos θ0 − cos θ

which can be shown to be equal to a constant

αi = − Γs

2bV∞
(16)

Therefore, the angle of attack of every airfoil section on the wing is constant
(assuming no geometric twist). If we further assume that the sectional lift-
curve slope is independent of y, both the sectional lift and drag coefficient
will also be independent of y. Therefore

cl = clαα0
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cdi
=

D′
i

q∞c
= −clαi

Using these conditions, the product of clαα0c must vary elliptically, since

L′ = ρV∞Γs

√
1−

(
y

b/2

)2

= clαα0
1
2
ρV 2
∞c

clαα0c =
2Γs

V∞

√
1−

(
y

b/2

)2

Assuming that clαα0 is a constant (untwisted wing of identical cross-
sectional properties) this indicates that in order to obtain an elliptically
loaded wing, we must have an elliptical planform. If the planform were
not elliptical, an elliptical load distribution can still be achieved by making
sure that the wing be twisted in such a way that the product of clαα0c still
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varied elliptically. Notice that although this is fine in theory, extreme taper
ratios may lead to excessively high sectional lift coefficients in the outboard
wing sections that may exceed the local clmax and lead to stall.

The wing properties of this elliptical lift distribution can be computed
by integrating the spanload variations as follows

CL =
1

1
2ρV 2∞S

∫ b
2

−b
2

L′dy =
Γsπb

2V∞S

The wing lift coefficient and the sectional lift coefficient are equal when
the sectional lift coefficients are constant along the span, and therefore,
CL = cl.

Solving for Γs in the expression above, and substituting into the
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expression for the induced angle of attack we find that

αi = − CL

πAR
= − cl

πAR

and then, the wing induced drag coefficient is given by

CDi
= cdi

= −CLαi =
C2

L

πAR

The expression for the lift curve slope is then given by

CLα =
clα

1 + clα/πAR
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Γ(y) Solution for Arbitrary Lift Distributions

Assume that you are given the geometry of the wing and the two-
dimensional lift curve slope of each of its cross sections. That is, the
quantities αL0, c(y), and clα(y) are known. What is the best approach
to solve for Γ(y)? The solution procedure should bring about a sense of
déja-vu from thin airfoil theory.

Let us transform the spanwise coordinate y into a polar variable θ
according to

t =
b

2
cos θ

y =
b

2
cos θ0
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Then,

Γ(y) = g(θ0) =
1
2
clαs

csV∞
∑
n=1

An sinnθ0 (17)

where the constant outside the summation is included for convenience and
the s subscripts indicate values at the symmetry plane. Note that the An

coefficients are all non-dimensional, since the circulation Γ has units of
L L/T . In addition

Γ′(t)dt =
dΓ
dθ

dθ

dt
dt = g′(θ)dθ

=
1
2
clαs

csV∞
∑
n=1

nAn cos nθdθ

and

P

∫ b
2

−b
2

Γ′(t)dt

y − t
=

1
2
clαs

csV∞
∑
n=1

nAn P

∫ 0

π

cos nθdθ
b
2(cos θ0 − cos θ)
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You may remember the value of the following principal value integral from
thin airfoil theory

P

∫ π

0

cos nθ

cos θ − cos θ0
=

π sinnθ0

sin θ0

which can be used to evaluate the integral and, substituting the result and
Equation 17 into Equation 14 we get

∑
n=1

An sinnθ0 =
c clα

csclαs

(α− αL0)− c clα

4b

∑
n=1

nAn
sinnθo

sin θ0
(18)

which must be solved for the values of An. This is typically done with
the collocation method by truncating the series after a certain value of n
and evaluating the expression at n different values of θ0 to create a linear
system of n equations in n unknowns An. Unfortunately, the only way to
check if your truncation was too crude is to repeat the procedure with a
higher value of n and compute the difference between the results.
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Assuming that we are able to solve the Equation 18 for the unknown
coefficients of the circulation distribution An, we can now use these values
to compute the lift and drag coefficients of the wing. Firstly, the sectional
lift and drag coefficients can be found to be

cl =
ρV∞Γ
q∞c

=
clαs

cs

c

∞∑
m=1

An sinnθ (19)

cdi
= −clαi =

c2
lαs

c2
s

4bc

( ∞∑
n=1

An sinnθ

)( ∞∑

k=1

kAk
sin kθ

sin θ

)

which can be integrated to yield

CL =
∫ b

2

−b
2

clq∞cdy

q∞S
=

clαs
cs

S

∫ π

0

∞∑
n=1

An sinnθ
b

2
sin θdθ
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The integration is carried out easily by switching the orders of integration
and summation and noting that

∫ π

0

sin nθ sin kθdθ =
{

0 for n 6= k
π
2 for n = k

Since k = 1 in all of the terms of the interal above, all terms vanish except
for the n = 1 term and therefore we have

CL =
clαs

csπb

4S
A1 (20)

and therefore, the wing lift coefficient for an arbitrary symmetrical circulation
distribution is proportional to A1 and independent of all other Fourier
coefficients. For an elliptical lift distribution CL was proportional to Γs

which is the only surviving term in the Fourier expansion.
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Similarly, the coefficient of drag of the wing can be computed as follows

CDi
=

∫ b
2

−b
2

cdi
q∞cdy

q∞S
=

c2
lαs

c2
s

8S

∫ π

0

∞∑
n=1

∞∑

k=1

kAnAk sin nθ sin kθdθ

which can be shown to be

CDi
=

c2
lαs

c2
sπ

16S

∞∑
n=1

nA2
n

which proves that, for a given lift coefficient (A1 6= 0), the optimum lift
distribution (the one that yields minimum induced drag) is the one that
minimizes CDi

. In other words, all Ai except for A1 must be equal to zero.
This corresponds to the elliptic lift distribution that we have been discussing
earlier.
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Interestingly, using the result for CL in Equation 20, one can show that
the induced drag coefficient for the wing is given by

CDi
=

C2
L

πAR

∞∑
n=1

n

(
An

A1

)2

which is simply the result for the elliptically loaded wing with a correction
factor that is sometimes called the span efficiency factor, e, defined as

1
e

=
∞∑

n=1

n

(
An

A1

)2
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Wings with Symmetric Loading

In the case of symmetric loadings, the situation is simplified considerably.
If we can safely assume that

Γ(y) = −Γ(−y)

then all of the even coefficients of the series expansions, A2, A4, ... are
zero.
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Comparison with Experiment

Classical results on rectangular planforms reported by Prandtl can be
seen in the following Figures. Seven wings of aspect ratios between 1 and
7 were tested in a wind tunnel. Figure 6 shows the variation of CL vs the
geometric angle of attack. In Figure 6 the results have also been corrected
by the induced angle for AR = 5
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Figure 6: CL vs. α and α′ for 1 ≤ AR ≤ 7
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α′ = α +
CL

π

(
1
5
− 1

AR

)

Figure 7 show the drag polars for each of these wings, where

CD = CD0 + CDi

In Figure 7 these graphs have also been corrected to AR = 5 so the new
drag coefficient, CD′ becomes

CD′ = CD +
C2

L

π

(
1
5
− 1

AR

)
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Figure 7: CL vs. CD and C ′Dfor 1 ≤ AR ≤ 7

The corrected Figures show that there is indeed significant departure
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from the theory for aspect ratios under AR = 3. If AR is larger than
this value, significant departures from elliptical wing loading can still be
tolerated by this theory. In fact, it is typical to introduce the span efficiency
factor, s, to account for some of these deviations so that

CDi
=

C2
L

πARs

where s = 1.0 for a perfectly elliptically loaded wing, while it is smaller
(typically in the range 0.9 ≤ s ≤ 1.0) for wings with lift distributions that
deviate from the elliptical load.
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