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Foundations of Supersonic Thin Airfoil Theory

The equations that govern the steady subsonic and supersonic flow of
an inviscid fluid around thin bodies can be shown to be very similar in
appearance to Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0, (1)

which we have used in previous lectures for incompressible flow. In fact, the
equations for a free stream Mach number different from zero are given by

(1−M2
∞)

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (2)

Notice that although Eqns. 1 and 2 look very similar, a fundamental change
in behavior occurs as the free stream Mach Number, M∞, increases past
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the value of 1: the PDE goes from elliptic to hyperbolic and it takes on a
wavelike behavior.

Eqn. 2 governs the behavior of a supersonic flow where only small
disturbances have been introduced.

You should already be familiar with a number of results for two-
dimensional, isentropic, supersonic flow such as the Prandtl-Meyer function
(weak reversible turning analysis, both positive and negative). These notes
expand on that knowledge an apply it to the computation of forces and
moments on supersonic airfoils.

The main difference when compared to incompressible thin airfoil theory
is the appearance of drag (in an inviscid flow). The source of this drag is
the radiation to infinity of pressure waves created by disturbances at the
surface of the airfoil. We will call this drag wave drag.
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Use of 3D Weak-Turning Wave Theory

It can be shown that for small angle changes, either compressive or
expansive, one can relate flow speed and static pressure changes to the
infinitesimal flow angle changes:

du

u
= − dθ√

M2 − 1
(3)

dp

p
= +

γM2dθ√
M2 − 1

.

The idea of thin airfoil theory is to use these expressions directly for finite-
but-small angle changes imposed on the incoming flow by airfoil surface
shapes and angle of attack. Thus, if the airfoil is thin enough and the angle
of attack is small enough, one may expect to be able to approximate flow
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property variations in the forms

∆w

w
= − ∆θ√

M2∞ − 1
(4)

∆p

p
= +

γM2
∞∆θ√

M2∞ − 1
,

where

∆p ≡ p− p∞

∆w ≡ w − U∞,

and where, if (u, v) are the (x, y)-components of the 2D velocity then
w ≡ √

u2 + v2. Also, in these expressions, the local Mach number, M ,
has been replaced by M∞, the incoming Mach number, since the variations
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in M are themselves expected to be small for thin airfoils at low angles
of attack. The situation is illustrated in Fig. 1 for a thin biconvex airfoil
at zero angle of attack. Addition of a small angle of attack α of order
tan−1 t

c ∼ t
c would not change the figure substantially.
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yu(x)

yl(x)

∆θ(x)

0 c

c

t

∆θl = dyl

dx
(x)

p
∞

M
∞

∆θu = −dyu

dx
(x)

Figure 1: Thin Curved Airfoil in Supersonic Flow.
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In order for the airfoil to be thin we require that tan−1 t
c ∼ t

c, i.e.

t

c
<< 1,

where t and c are illustrated in the figure, and, of course, if there were an
angle of attack we would also require that

α << 1 (radians).

The condition that ∆θ is everywhere small implies further that, in thin
airfoil applications

tan∆θ =
v

u
∼ v

U∞
<< 1, (5)

whereas Eqn. 4, together with Eqn. 5, implies that ∆w
w ∼ ∆u

w ∼ ∆u
U∞ << 1.

Thus, in thin airfoil applications one need not distinguish between u and w
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as they occur in Eqns. 4-5. It is also true in the same limit that

∆ρ

ρ
=

M2
∞∆θ√

M2∞ − 1
(6)

∆c

c
=

γ − 1
2

M2
∞

∆θ√
M2∞ − 1

,

and
∆M

M
= −

(
1 +

γ − 1
2

M2
∞

)
∆θ√

M2∞ − 1
. (7)

In all of these expressions, ∆θ is to be taken positive in the compressive
sense. Also, because ∆θ must be small for thin airfoil theory to hold, we
can write

sin∆θ ≈ tan∆θ ≈ ∆θ, cos∆θ ≈ 1
when convenient. Throughout this approximate theory any given quantity
is known or can be calculated only to its lowest order in ∆θ. A variation in
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pressure, for example, is linear in ∆θ; terms of order (∆θ)2 and higher can
and should be consistently neglected. Similarly, a quantity such as airfoil
drag is inherently a product of two linear quantities and thus of order (∆θ)2;
for such quantities, terms of order (∆θ)3 and higher are to be neglected.
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Airfoil Performance: Approximate Thin-Airfoil Version

As sketched in Fig. 1, the upper and lower surfaces of the airfoil are
located at

y = yu(x)

y = yl(x).

On the upper surface, ∆θ is positive (compressive) for yu(x) increasing;
thus, on that surface

∆θu =
dyu

dx
.

On the lower surface, by contrast, ∆θ is in the compressive sense when
yl(x) becomes increasingly negative. In that case

∆θl = −dyl

dx
.
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Using Eqn. 5 together with the expressions above, we have that

∆pu

p∞
=

pu − p∞
p∞

=
γM2

∞√
M2∞ − 1

dyu

dx
(upper surface) (8)

∆pl

p∞
=

pl − p∞
p∞

=
γM2

∞√
M2∞ − 1

dyl

dx
(lower surface)

In aerodynamic applications it is customary to introduce the dimensionless
pressure coefficient, Cp, defined by

Cp ≡ p− p∞
1
2ρ∞U2∞

. (9)

Note that
1
2
ρ∞U2

∞ =
γM2

∞
2

p∞,
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and therefore, for M∞ 6= 0, one can relate ∆p
p∞ and the pressure coefficient

conveniently by

Cp =
2

γM2∞

∆p

p∞
.

Applied to the pressure variations on the upper and lower surfaces of the
airfoil, this gives

Cpu =
2√

M2∞ − 1
dyu

dx
(10)

Cpl
= − 2√

M2∞ − 1
dyl

dx
.

Knowing the approximate surface pressures, this puts us in a position to
be able to calculate both the lift and the drag of the airfoil, to the same
approximation. For example, an element at x on the upper surface, of area
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dx
cos(∆θu(x)) per unit depth into the page, contributes an amount

dlu = −pu

(
dx

cos∆θu

)
cos∆θu = −pudx (11)

to the airfoil lift per unit span. Similarly, an element on the lower surface
contributes

dll = +pldx.

Thus, the lift/unit span is

l =
∫ c

0

(pl(x)− pu(x)) dx. (12)

In coefficient form, this can be shown to be

Cl ≡ 1
c

∫ c

0

(
Cpl

(x)− Cpu(x)
)
dx (13)
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Using our approximate formulas for Cpu and Cpl
we can get an explicit

expression for the thin-airfoil lift coefficient.

Cl = − 2√
M2∞ − 1

1
c

∫ c

0

(
dyl

dx
+

dyu

dx

)
dx

= − 2√
M2∞ − 1

[
yl(c)− yl(0)

c
+

yu(c)− yu(0)
c

]
,

or, since yl(c) = yu(c) and yl(0) = yu(0) for a closed-contour airfoil

Cl = − 4√
M2∞ − 1

yu(c)− yu(0)
c

= +
4√

M2∞ − 1
α, (14)

since yu(c)−yu(0)
c = tan α ≈ α. The angle of attack α is in radians.

This is a classical result in aerodynamics and provides a measure, for
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supersonic airfoils, of achievable lift for wings at small angles of attack. This
approximation works rather well, even when extended to three dimensions,
to predict the lift curve slope of a wing, particularly one where the sections
behave in a two-dimensional fashion (issues of subsonic and supersonic
leading edges and regions of influence need to be considered here).

A review of the derivation clearly shows that the lift coefficient is
independent of the airfoil profile shape: the lift coefficient in supersonic
flow, for a given angle of attack α is the same for a flat plate, a diamond
airfoil, or a biconvex airfoil.
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Wave Drag Calculation

We have just seen that in supersonic thin airfoil theory, the the lift
coefficient is independent of airfoil shape. Airfoil drag, however, is another
matter; this depends strongly on the shape of the airfoil. To obtain its
value, note that an element on the upper surface contributes to the drag
amount (per unit span)

d(drag) = pu
dx

cos∆θu
sin∆θu = pu tan∆θudx = pu

dyu

dx
dx (upper surface),

and, similarly

d(drag) = −pl
dyl

dx
dx (lower surface).
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Integrating over the chord we obtain

drag/unit span =
∫ c

0

(
pu

dyu

dx
− pl

dyl

dx

)
dx,

which in coefficient form can be shown to be

Cd =
1
c

∫ c

0

(
Cpu

dyu

dx
− Cpl

dyl

dx

)
dx. (15)

Using our expressions from the thin airfoil limit we can show

Cd =
2√

M2∞ − 1
1
c

∫ c

0

[(
dyu

dx

)2

+
(

dyu

dx

)2
]

dx (thin airfoil) (16)
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For the case of a flat plate at an angle of attack α

Cd =
4α2

√
M2∞ − 1

, (17)

while for a diamond airfoil with half angle τ

Cd =
4(α2 + τ2)√

M2∞ − 1
. (18)

For a curved biconvex airfoil, Cd must be calculated for each specified
shape.

Notice that the Cd of a thin airfoil in supersonic flow can be shown
to be proportional to the square of the thickness-to-chord ratio. This is
primarily the reason why airfoils in supersonic aircraft are made so thin! In
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addition, one must consider the effect of the shape of the airfoil in the drag
calculation carefully. This leads to very interesting optimizations in inviscid
flow (SSTs, supersonic business jets, boom minimization problem, etc.)
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Location of the Center of Pressure in Supersonic Flow

One of the main differences between subsonic and supersonic flow is
that the center of pressure for a flat plate airfoil is no longer located at
the quarter chord location. In fact, as the flow transitions from subsonic to
supersonic, the center of pressure moves backwards to the c

2 location. This
can be simply shown by the following definition of the aerodynamic center:

L
′
xcp + M

′
le = 0,

which can be used to solve for the location of the center of pressure as

xcp =
M

′
le

L′ .
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By definition of these quantities, one can write:

xcp

c
=

1
c

∫ c

0
x(pl − pu)dx∫ c

0
(pl − pu)dx

=
1
c

∫ c

0
x(Cpl

− Cpu)dx∫ c

0
(Cpl

− Cpu)dx
,

and using the results for Cpu and Cpl
from thin airfoil theory

xcp

c
=

1
c

∫ c

0
x(dyl

dx + dyu
dx )dx∫ c

0
(dyl

dx + dyu
dx )dx

.

For a flat plate at an angle of attack α, one can easily show that dyl
dx =

dyl
dx = − tanα ≈ −α, and therefore

xcp

c
=

1
c

∫ c

0
xdx∫ c

0
dx

=
1
2
,
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which locates the center of pressure at the mid-chord location. All airplanes
that have to fly supersonically must reach their supersonic speeds by going
through the subsonic regime. The large shift in the location of the center
of pressure (similar conclusions can be drawn for the aerodynamic center)
poses significant challenges for the longitudinal stability of this kind of
aircraft. In fact, the Concorde uses a fairly complex system to pump fuel
forward/aft in order to maintain the proper location of the center of gravity
so that a sufficient static margin is achieved.
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Optimizing Lift-to-Drag Ratio

It is apparent from a comparison of the drag coefficients for a flat plate
airfoil and a diamond airfoil at a given Mach Number and at fixed α that
there is no optimum wedge angle (or maximum t/c ratio) than simply
τ = 0. Any τ at all increases the drag relative to the flat plate case. This
is generally true even for more complicated airfoil shapes: at fixed M∞ and
angle of attack (i.e., fixed lift coefficient) any airfoil thickness increases the
drag; the flat plate is the minimum-drag shape for a given lift. Of course,
a flat plate is not a viable option in practical wing or aircraft design.

A more interesting question is the following: given an airfoil shape (for
example, the diamond airfoil with specified τ), at what angle of attack, α,
is the lift-to-drag ratio a maximum? We have in that case

L

D
=

Cl

Cd
=

α

α2 + τ2
,
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from our previous results. It is easy to show from this that the optimum α
is at α = τ and the corresponding maximum lift-to-drag ratio is

L

D

)

max

=
1
2τ

,

with τ expressed in radians.
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