
We start with the analysis of a very thin cambered plate and will build up the solution to a more arbitrary airfoil.

A distribution of vorticity on the airfoil will be a solution to Laplace's equation. It will satisfy the boundary conditions 
if the combination of the velocity induced by the vortices cancels the component of the freestream normal to the 
plate: 

(where small angle approximations have been introduced)

The basic approximation of thin airfoil theory is that the velocity induced
at some point x due to the vorticity at x'...

... may be approximated by the velocity induced at the same x position on the x axis due to a vortex on the x axis:

The velocity induced by this bit of vorticity is computed from the basic vortex singularity. The formula is known as 
the Biot-Savart Law and in 2-D for the element of vorticity at x', it reads:

So, the total induced velocity at the point x is given by:

Combining this expression with the flow-tangency boundary condition, we have the basic integral equation to be 
solved for the unknown vorticity distribution:

The approach to solving this equation is to change variables:

5.7.2.1. Thin Airfoil Theory Derivation



and to write  as a Fourier series:

Substituting (4) into (2) and using the trigonometric relations:

yields:

Finally, we multiply both sides by cos m  and integrate from 0 to :

We can substitute these coefficients into the expression for (4), to find the vorticity, pressures, lift, and moment as 
a function of the surface slope distribution, dz/dx.

In particular, the expressions for the local pressure difference and integrated lift and moment about the leading edge 
are:

(Note that the expression relating C  and  applies only to thin airfoils. )

This method of computing the circulation distribution permits us to compute the pressure  across the 
airfoil. The pressures on the upper and lower surfaces may also be computed by noting that at the surface the 
perturbation velocities in the x direction caused by the singularities are zero except for those due to the local vorticity:

The only contribution to du(x) is from the local vorticity (at x). It can be shown that this perturbation velocity is du = 
± / 2, with the + sign for the upper surface and the - sign for the lower surface.
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The basic equations derived from thin airfoil theory are repeated below:

Several important results are derived from these expressions and are described in the following sections.

5.7.2.2. Thin Airfoil Theory Results

Ideal angle of attack

The constants A  just depend on the airfoil shape -- except for A  which depends also on the angle of attack. The

A term is a strange term in the Fourier series for  since it leads to a singularity at the leading edge (  -> infinity). 

Thus, there is one angle of attack, called the ideal angle of attack, at which A  = 0 and the vorticity goes to 0 at the 

leading edge. This angle is called the ideal angle of attack.

Of course in real flows, the vorticity would not become infinite (why?), but the concept of ideal angle of attack is still 
important, identifying the flow conditions for which leading edge pressure peaks are avoided.
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Lift curve slope

The rate of change of lift coefficient with angle of attack, dC /d can be inferred from the expressions above.

The result, that C  changes by 2  per radian change of angle of attack (.1096/deg) is not far from the measured 

slope for many airfoils. The effects of thickness and viscosity which are ignored here cancel each other out to some 
extent with the result that most airfoils have a lift curve slope within 10% of the 2 value given by thin airfoil theory.
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Aerodynamic center and pitching moment at L = 0

The expression for pitching moment coefficient measured about the leading edge is given above. If we measure the 
moment about another reference center at a position x /c, the expression becomes:

Note that if we choose the point x  = 0.25c, then the lift dependence drops out and the moment coefficient 

measured about this point is independent of the angle of attack*. The point about which dC /dC  = 0 is called the

aerodynamic center and according to thin airfoil theory it is the quarter chord point of the airfoil. Experiments show 
this to be quite close.
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*The C  about this point, denoted C , is therefore equal to the C  at zero lift. C , as it is written, is also 

independent of the moment reference location and so is a particularly useful quantity:
C  = C

Results for a general example + Rules of Thumb

The parabolic camber meanline is used as an example of thin airfoil theory. Results for this case serve as useful first 
approximations for any thin cambered airfoil.

Assume: z(x) = 4 h x (1-x)

Thin airfoil theory can also be used to estimate the effect of flap deflection on airfoil lift and moment. It also provides 
an estimate of the hinge moments vs. the deflection angle and the angle of attack. This is a good problem to work on 
your own. 

The results are:

where:

Because of the effects of viscosity, these results tend to overestimate, to some extent, the lift and moment due to flap 
deflections.
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The basic thin airfoil theory formulation can be used to design airfoils with a desired pressure distribution. This 
process is actually easier than the direct analysis. The integral equation used to obtain the circulation distribution given 
the airfoil shape:

can be evaluated directly if we know the circulation distribution. 

We evaluate the integral at several values of x to find the surface slope dz/dx along the airfoil. 

which can be integrated to obtain:

C and  can be chosen to make z(0) = z(1) = 0.

5.7.2.3. Thin Airfoil Inverse Design
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