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Various methods are explored in the computation of time-periodic solutions for au-
tonomous systems. The purpose of the work is to illuminate the capabilities and limita-
tions of methods, including a new method developed as part of the work, not based on
time integration, for the fast computation of limit-cycle oscillations (LCO). Discussion will
focus on methodology, robustness, accuracy, and frequency prediction. Results for two sim-
plified model problems are presented in which temporal discretization errors during LCO
are taken to machine zero. One, a typical airfoil section with nonlinear structural coupling
and the other, a nonlinear panel in high speed flow. Treatment of sharp transients during
LCO is also discussed.

I. INTRODUCTION

Limit-cycle oscillation (LCO) is a limited-amplitude, self-sustaining oscillation produced by an aero-
structural interaction. LCO results in an undesirable airframe vibration and limits the performance of the
flight vehicle.

The prediction and alleviation of LCOs in air vehicles continues to be a challenge. State-of-the-art
computational techniques for predicting LCO responses in aeroelastic systems still use time-integration
methods which require a great deal of computational effort which translates into long turn-around times.
When LCOs experience a limited number of periods of sharp response, the number of variables needed to
discretize the cycle can be quite large. It becomes crucial to keep the expansions compact especially for
systems with many spatial variables.

These features make these methods not suitable for design optimization or routine use in the test and
evaluation environment. The goal of the current work is to determine the range of applicability of models
of varying fidelity to the numerical prediction of LCOs and the development of fast spectral methods for
evaluating the dependence of LCOs on stochastic system parameters.
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A cyclic method was developed to compute LCOs for potentially large, nonlinear, multidisciplinary
systems of equations.1 To improve on this 2nd-order cyclic/finite difference method, two spectral based
techniques are implemented. One is the time spectral method2 developed at Stanford University which is
along the lines of the harmonic balance method3 developed at Duke University. These are algorithms that
use a Fourier representation in time. The second method is the spectral element method4,5 implemented here
in a novel way for periodic systems in time. A space-time finite element method has been used previously6,7

for predicting the periodic steady-state in helicopter rotor dynamics using an aeroelastic analysis.
This paper will compares and contrasts the three methodologies, their robustness, accuracy and frequency

prediction capabilities. A simple model of an aeroelastic airfoil with nonlinear structural coupling is used to
demonstrate the efficacy of the procedure in detail. In addition, results for a nonlinear semi-infinite panel
problem is discussed.

II. Formulation

In this section, the mathematical formulation of the problem is described. The cyclic method in com-
bination with the finite difference method for the time discretization has been described in previous work.1

The cyclic method is described here for clarity. Two other computational techniques, the Time Spectral
method and the Spectral Element method is used in conjunction with the cyclic method in place of the finite
difference discretization.

A. Cyclic Method

Time-periodic solutions of the autonomous system

dx
dt

= f(x, λ)

are sought, where t is time, x(t) is an Nf -dimensional array of real variables, and f is an array of Nf

nonlinear functions, dependent on x and a free parameter λ. The period of the response is denoted by T ,
such that

x(t) = x(t + T ).

The time variable is scaled, s ≡ t/T , leading to an equation in which the period appears explicitly,

dx
ds

= T f(x, λ). (1)

A set of points on the periodic orbit at Nt time levels is selected, leading to an expanded set of NtNf

unknowns,
X ≡ (X1,X2, ...XNt)

T = (x(s1),x(s2), ...,x(sNt))
T ,

where the subscript specifies the time level(i.e., sj+1 = sj + ∆s; ∆s = 1/Nt when Nt are uniformly dis-
tributed).

Using the trapezoidal rule, (1) is discretized to yield an expanded collection of equations:

Gj ≡ T

2
(Fj−1 + Fj)−

(
dX
ds

)

j

= 0 (j = 1, ..., Nt), (2)

where Fj ≡ f(x(sj)). The time derivative term dX
ds is discretized using three different strategies and is

described in later sections.
A closed set of equations,

G ≡ (G1,G2, ...,GNt ,GNt+1,GNt+2)T = 0,
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is obtained by adding a pair of scalar constraints to (2) that prevent the solution from being trivial (i.e.
X = 0 for all j):

GNt+1 ≡ (Xj)k1 − β1 = 0, (3)

GNt+2 ≡ (Xj)k2 − β2 = 0, (4)

where j is an arbitrary point on the cycle, usually taken to be 1, and k1 and k2 are indices corresponding to
two different variables at that time instance. Constraint (3) is used to identify the “starting” point of the
cycle, such that β1 = 0 (assuming an oscillation approximately centered about 0 for the selected variable).
Likewise, (4) is used to set the amplitude of the cycle, such that β2 6= 0.

The addition of two equations is accompanied by an increase in the number of unknowns by 2. These
unknowns are XNt+1 ≡ λ and XNt+2 ≡ T . Thus, a total of NtNf + 2 equations are solved for not only the
LCO solution, but also the period of the oscillation and the value of the free parameter λ at which the LCO
meets the amplitude constraint (4).

In symbolic form, the complete system of “cyclic” equations is expressed as

G(X) = 0, (5)

where this system is solved for expanded form of X,

X = (X1,X2, ...XNt , λ, T )T .

System (5) is solved with Newton’s method, and IMSL/LAPACK routines are used to carry out the matrix
calculations.

B. Constructing the Time Derivative Operator

In the next few subsections the three different methodologies used to construct the time derivative term,
DsX is discussed. This is used in combination with (2) in the cyclic formulation explained earlier. One is the
finite difference method which has been discussed previously by Beran et.al. 1 Second is the Time Spectral
method which uses global basis functions. And the last one is the Spectral Element method which divides
the orbit into number of sub-time intervals and represents each interval with a polynomial of order P.

1. Finite Difference Formulation

The time derivative term is discretized using finite differences, so that,

(DsX)j ≡
(

dX
ds

)

j

=
Xj+1 −Xj

∆s
.

Periodicity is enforced in closing (5) at the end points. For the form of discretization described above, the
last equation takes the form,

(DsX)Nt ≡
(

dX
ds

)

Nt

=
X1 −XNt

∆s
.

With this modification, the time derivative operator takes the shape of a periodic-banded structure, i.e. a
banded matrix with a wrap-around term.
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2. The Time Spectral Method

The Time Spectral Method was originally proposed and validated in.2 This method falls into the same
category of algorithms called Harmonic Balance methods developed by K. Hall3 from Duke University and
Nonlinear Frequency Domain methods developed by McMullen et.al.8,9 from Stanford University. This
class of algorithms take advantage of the periodic nature of the problem, and use a Fourier representation
in time. Whereas Harmonic Balance techniques use Fast Fourier Transforms (FFTs), the Time Spectral
method works in the time domain by expressing the time-derivative operator as a matrix operator.

Recall that
X = (X1,X2, ...XNt

, λ, T )T

where
X1 = (x1, x2, x3, ..., xNf

)1,

i.e., X1 is an array of all points in the Nf -dimensional array at time level 1. Construct an array w which
consists of one variable at all time levels. The discrete Fourier transform of w, for a time period “1” (scaled
time s has a period of 1), is given by

ŵk =
1
Nt

Nt−1∑
n=0

wne−ik2πn∆s

and its inverse transform,

wn =

Nt
2 −1∑

k=−Nt
2

ŵkeikn2π∆s , (6)

where the time period is divided into Nt equal time intervals(Nt even), ∆s = 1/Nt.
From (6), the time discretization operator Ds can be written as

Dsw
n = 2π

Nt
2 −1∑

k=−Nt
2

ikŵkeik2πn∆s .

This summation involving the Fourier modes ŵk, can be rewritten in terms of w in the time domain, both
for even and odd Nt as,2,10,11

Deven
s wn =

Nt
2 −1∑

m=−Nt
2 +1

deven
m wn+m,

and

Dodd
s wn =

Nt−1
2∑

m=
1−Nt

2

dodd
m wn+m,

where

deven
m =

{
π(−1)m+1 cot(πm

Nt
) : m 6= 0
0 : m = 0

and

dodd
m =

{
π(−1)m+1cosec(πm

Nt
) : m 6= 0
0 : m = 0
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Note that d−m = −dm for both even and odd Nt. Hence Ds takes the form of a central difference operator
connecting all the time levels, yielding an integrated space-time formulation which requires the simultaneous
solution of the equations for all time levels.

Since the computation of Ds involves terms at all the time levels (i.e., full stencil), the time derivative
matrix operator is full, which is typical of spectral methods. And since spectral methods use global basis
functions in the form of sines and cosines, periodicity need not be explicitly enforced.

3. Spectral Element Formulation

The spectral element method is a high-order finite element technique pioneered by Patera.4 As the name
suggests it combines the geometric flexibility of finite elements with the high accuracy of spectral methods.
Spectral methods are essentially discretization methods for the solution of partial differential equations
expressed in a weak form. It is assumed that the solution can be expressed as a series of polynomial
basis functions, which can approximate the solution well in some norm, as the polynomial degree tends to
infinity. Typically the basis is chosen to be orthogonal in a weighted inner-product. Lagrange interpolants
are used within each element, where the nodes of these shape functions are placed at the zeros of Legendre
polynomials(Gauss-Lobatto points).

In this section, the formulation of the spectral element method for the system (1) will be presented. First,
multiply (1) by the test function v(s) and integrate over the orbit to get the weak form of the equation,

∮
v(s)

dw

ds
ds =

∮
v(s)Tf(w(s))ds.

Using periodicity and the chain rule, rewrite as,

−
∮

w(s)
dv

ds
ds = T

∮
v(s)f(w(s))ds.

Since the entire orbit/domain is divided into a number of sub-time intervals, consider the integral in each
interval,

−
∫

Ωj

wj(s)
dvj

ds
ds = T

∫

Ωj

vj(s)fj(w(sj))ds,

using vj(s) = φj

T

∫

Ωj

φp
jfj(w(sj))ds +

∫

Ωj

wj(s)
dφp

j

ds
ds = 0.

Using a change of variables, s = sj + ψ+1
2 (sj+1 − sj), rewrite as

T

1∫

−1

φp
j (ψ)fj(w(ψ))

ds

dψ
dψ +

1∫

−1

wj(ψ)
dφp

j

dψ
dψ = 0

This equation is integrated using Gauss quadrature within each sub-time interval. Since the orbit is
divided into sub-intervals, the time derivative in each sub-interval is directly dependent only on the points
in its own sub-interval. In this way, some level of sparsity is retained, at the same time, high accuracy
is ensured by using high-order polynomials within each sub-interval. Periodicity is enforced during global
assembly by wrapping around the first and last elements.

Three different extension procedures are discussed for the test problems. h-extension refers to the pro-
cedure when fixed low-order polynomials are used on successively finer meshes/elements (increasing number
of sub-time intervals). This typically produces algebraic convergence of the order of the polynomial degree.
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P-extension procedure converges exponentially for smooth solutions and these are obtained when the number
of sub-time intervals are held fixed while increasing the order of the polynomial. hP-extension combines both
these strategies and has the potential to produce exponential convergence even for non-smooth problems.
It achieves this by increasing the polynomial order while changing/refining the mesh/spacing between the
intervals.

III. Current Results

A. The Airfoil Problem

The aeroelastic system studied here is a nonlinear symmetric airfoil in low-speed flow, described by two
physical DOFs: pitch and plunge. The plunge DOF has linear stiffness but the pitch DOF includes a
third-order and fifth-order stiffness terms in addition to the linear component. Hence, the restoring force
associated with the torsional spring is expressed as Kα(α+k3α

3 +k5α
5), where Kα is the dimensional linear

stiffness and k3 and k5 are the dimensionless parameters governing the third- and fifth- order nonlinearities
respectively. The free parameter λ, is defined to be a nondimensional parameter proportional to flight
speed (“reduced velocity”), which when sufficiently large, leads to flutter or LCO responses of the system.
The airfoil dynamics are represented by a system of eight ODEs, obtained through linear modeling of the
aerodynamics.12 The final form of the 8-DOF system is given in .13 The details of the Hopf bifurcation can
be found in.1 A typical LCO branch is shown in Figure 1.
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Figure 1. An LCO branch showing sub-critical Hopf bifurcation

The computation of cyclic solutions requires the specification of initial conditions for the iterative process.
Time integrations of system response in pitch and plunge revealed a clock-wise rotation of the phase portrait
in these two parameters (pitch plotted on the abscissa). An initial approximation to the LCO dynamics was
imposed by assuming a circular trajectory in pitch and plunge, using the target cross-over value of plunge
(β2) to set the LCO amplitude.

The parameters governing the LCO (Equations 3 and 4) are a specified plunge value (β2) at a vanishing
angle of attack (β1). Plunge values are reported in non-dimensional form, using airfoil chord as a scale
factor. The torsional spring parameters k3 and k5 are specified to be -3 and 20 respectively, to produce a
sub-critical Hopf bifurcation.14
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Figure 2 (a) and (b) show comparisons of LCO branches in terms of specified values of β2 for selected
number of scaled time intervals per cycle (Nt) using finite difference method and time spectral method
respectively. Note that as β2 decreases, the LCO response weakens. The selection of Nt=100 leads to LCOs
well converged in time step over most of the range in β2 for the finite difference case. Whereas the time
spectral method captures the LCO branch over the entire range of β2 with just 40 scaled time intervals, to
plotting accuracy.

5.5 6 6.5 7 7.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Reduced Velocity, λ

S
p

ec
if

ie
d

 P
lu

n
g

e 
(c

h
o

rd
s)

N
t
 = 20

N
t
 = 40

N
t
 = 60

N
t
 = 80

N
t
 = 100

(a) Finite Difference
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(b) Time Spectral method

Figure 2. Comparison of LCO branches in terms of specified β2 for selected numbers of scaled time steps per
cycle (Nt) using Finite Difference and Time Spectral methods

A strong nonlinear response is observed beyond the subcritical Hopf bifurcation point computed at about
λ = 6.29. This is further illustrated in Figures 3 and 4. Figure 3 (a) shows the LCO (pitch vs. plunge), (b)
shows the initial and final solution of variation of pitch as a function of scaled time and (c) the initial and
final solution of plunge, computed at β2 = 0.3 and λ = 6.9351.

Similarly, the phase-plane plots for β2 = 0.15, a point close to the cyclic fold, are shown in Figure 4.
This point shows a weaker response and hence requires fewer time intervals for high accuracy. The pitch
and plunge also show a “sine”-like behavior which can be captured with fewer frequencies. Whereas for the
strong nonlinear response point, the pitch curve shows a marked asymmetry and a variation unlike a “sine”
function. These also transform into sharp-transients in the LCO plots, moving away from the “ellipse”-like
structure. These characteristics require larger number of time intervals or DOF to be captured to high
levels of accuracy. Spectral based techniques with their high-order polynomial formulation have the ability
to capture these features with fewer DOFs.

Figure 5 shows the log-log (T − Tc) error plot with refinement in Nt computed with the 3 different
computational techniques for the strong nonlinear response point, β2 = 0.3. Here Tc is the time period
computed with 200 time intervals per cycle with the time spectral method. The convergence of the cyclic/FD
method is verified to be second-order (algebraic convergence). Convergence of the cyclic/time spectral
method using odd number of Nt shows near exponential convergence. This algorithm shows machine precision
accuracy with just 70 DOFs. Cyclic/spectral element h-extension (increasing h, keeping P fixed, P=2)
also shows algebraic convergence. A P-extension (increasing P, keeping h fixed, Nt = 2), shows close to
exponential convergence.

Similarly, Figure 6 shows the log-log error plot for a weaker LCO point, β2 = 0.15. Convergence rates are
very similar to the strong response point, but the cyclic/time spectral method converges to machine precision
using only 40 DOFs. As explained earlier, this is attributable to the fact that the frequency content for this
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Figure 3. Phase-plane plots computed for β2 = 0.3 (initial and final iterate of pitch and plunge shown)
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(b) Time history of pitch
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Figure 4. Phase-plane plots computed for β2 = 0.15 (initial and final iterate of pitch and plunge shown)

case is lower, as shown in Figure 4. Also, for small number of DOF (Nt < 10), this case shows smaller error
compared to the β2 = 0.3 case.

1. Adaptive Cyclic/Spectral Elements and hP-extension

It was shown in the previous section that in regions of strong nonlinear response, high-order schemes are
required to achieve good levels of accuracy. For instance, in the airfoil case, it was shown that for β2 = 0.3,
there were regions of rapid-transients which required higher resolution to be captured compared to other
regions in the orbit. This is clearly seen in Figure 3 (a). In the Spectral Element method, with h-extension,
one would increase h uniformly, keeping P the same. When h is increased, resolution is increased everywhere
in the orbit, even in regions which are already well resolved. In the P-extension procedure, the polynomial
order is uniformly increased fixing h. Again the order of the polynomial is increased even in regions which
are well resolved. Both these methods could be prohibitive for large systems with isolated regions of sharp
transients. In this section, we investigate a case where the Cyclic/Spectral Element is modified to adaptively
refine only in regions of sharp-transients.

We again consider the airfoil problem at a strong nonlinear response point, β2 = 0.3 and divide its orbit
into 6 sub-time intervals. A polynomial of order P is chosen in each interval. We observe the convergence of
the error in computed time period T as P is uniformly increased. h is held fixed at 6 but the spacing between
the intervals will be allowed to change, thus refining in regions of high-transients. Figure 7 (b) shows the time
history of the converged pitch. The blue circles show equal spaced intervals. (Note the marked asymmetry
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Figure 5. Error in computed time period using the three different computational methods for β2 = 0.3
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Figure 6. Error in computed time period using the three different computational methods for β2 = 0.15
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of the pitch curve producing the sharp-transients as mentioned earlier.) The red curve in Figure 7 (a) shows
the convergence with equal spacing throughout (P-extension), while the blue curve shows the convergence as
the intervals are uniformly refined in regions of high “activity”(hP-extension). The adaptive Cyclic/Spectral
Element method also converges with far fewer DOF. In regions marked B, the difference between the two
approaches could be as much as two orders of magnitude. Hence with adaptive Cyclic/Spectral Elements,
we achieved even better convergence than what we achieved with the P-extension procedure earlier.
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Figure 7. Comparison between Cyclic/SE and adaptive Cyclic/SE for the Airfoil Problem at β2 = 0.3

B. The Panel Problem

High speed flow over a semi-infinite, pinned panel is considered. Panel dynamics are computed with the
nondimensional form of von Karman’s large-deflection plate equation. The local, instantaneous panel de-
flection, is denoted by w(x, t) and is nondimensionalized by h, the panel thickness. Two pinned boundary
conditions are enforced at the panel’s endpoints: w = 0 and ∂2w

∂x2 = 0. The airloads are modeled with
first-order piston theory allowing these loads to be related to local plate slope and velocity. The governing
equation reduces to:

µ

λ

∂4w

∂x4
− N̂

∂2w

∂x2
+

∂v

∂t
= − µ√

M2∞ − 1

[
∂w

∂x
+

(
M2
∞ − 2

M2∞ − 1

)
v

]
, (7)

N̂ ≡ 6µ

λ

(
h

L

)−2 (
1− ν2

) 1∫

0

(
∂w

∂x

)2

dx.

Panel velocity v = ∂w
∂t has been introduced. Equation 7 is spatially discretized using second-order accurate

central differences, and a consistent integration scheme is used to evaluate N̂ . The details of this formulation
can be found in.1,15,16,17

Panel states are collocated into a single array x point-by-point,

x = [v1, w1, v2, w2, ..., vNx , wNx ],
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leading to a state vector of dimension 2Nx. In a similar fashion, an array f is defined to yield the spatially
discrete system of equations dx

dt = f(x, λ), where the pressure parameter λ is selected to be a free variable.
Nx = 31 is chosen as the baseline mesh with 36 time intervals per cycle. High speed flow at M∞ = 10

and mass-ratio, µ = 0.1 is considered. The constraint equations are defined by the parameters β1 and β2,
which are chosen to be a specified panel deflection (β2) at a vanishing value of panel velocity (β1), at the
first grid point of the panel. Deflections are normalized by panel thickness, h = 0.001. The free variable λ
in this problem is the nondimensional dynamic pressure.

Due to the presence of a larger number of variables compared to the airfoil problem, the construction
of good initial conditions for the panel problem is far less straightforward. For a selected value of λ,
time integration is carried out and the data (X) is used to serve as initial condition. This point on the
bifurcation curve is selected to correspond to β2 = −9∗10−6(λ = 4288). Using this data as initial condition,
the entire bifurcation curve is generated by slowly incrementing β2, and using the previous solutions as
initial approximations in each calculation. This procedure has been carried out with the three different
methodologies with the 36 degrees of freedom and is shown in Figure 8. A similar study was done1 comparing
the Cyclic/FD solution with Dowell’s15 6-mode Galerkin representation of the panel equations. It was also
shown that the baseline solution was well converged both in space and time. Note from Figure 8 that all
three methodologies predict the curve perfectly, but for points on the strong nonlinear part of the curve, data
points do not overplot. The high-order Time Spectral method and P-extension Spectral Element method
are spot on but the second-order Finite Difference and h-extension Spectral Element digress a little.
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Figure 8. Peak LCO values of panel deflection at 3/4 chord position at different values of λ beyond the Hopf
bifurcation point : Prediction of the bifurcation curve using different methods

IV. Conclusions and Future Work

Two spectral based computational techniques were implemented in combination with the cyclic method
for the numerical prediction of LCOs. The time spectral method based on global basis functions captured
rapid-transients with few DOF, but could prove to be prohibitive for large systems with substantial harmonic
content since it produces full matrices. The spectral element method was used in a novel way with the cylic
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method for periodic systems in time. This method produces sparse matrices and uses high-order polynomials
to ensure high accuracy. An adaptive Cyclic/Spectral Element method was used to refine h in regions of
steep-transients where higher resolution might be required. This showed better than exponential convergence,
thus demonstrating potential for hP convergence.

A simple aeroelastic model of an airfoil with nonlinear structural coupling was studied in detail. Also a
more challenging problem, a 2D nonlinear panel in high speed flow was studied using the new techniques.

For the future, we want to improve the efficiency of the numerical formulations, especially the iterative
process which currently takes up most of the CPU time. Right now, the three methods use the full matrix
formulation only dependent on the dimensionality of the problem. Ideally, we want to take advantage of
the structure of the Jacobian matrix for the Newton iteration in each of the methods to estimate the true
computational time. This way we can compare the relative merits of the methods.

In this paper, we have manually refined the time intervals for the adaptive Cyclic/Spectral element
formulation. In the future, we would like to automate this process by taking account of the gradients and
also the distribution of nodal points in each interval.
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