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The Time Spectral Algorithm is proposed for the fast and efficient computation of time-
periodic turbulent Navier-Stokes calculations past two- and three-dimensional bodies. The
efficiency of the approach derives from these attributes: 1)time discretization based on
a Fourier representation in time to take advantage of its periodic nature, 2)multigrid to
drive a fully implicit time stepping scheme. The accuracy and efficiency of this technique is
verified by Euler and Navier-Stokes calculations for a pitching airfoil and a pitching wing.
Results verify the small number of time intervals per pitching cycle required to capture
the flow physics. Spectral convergence is demonstrated for pitching motion characterised
by many frequencies.

I. INTRODUCTION

Computational Fluid Dynamics has been gaining widespread acceptance across disciplines due to con-
tinuous reduction in computational costs which stem from both improvements in computer hardware and
faster algorithms.

Time dependent calculations find a wide variety of applications including flutter analysis, analysis of flow
around helicopter blades in forward flight and rotor-stator combinations in turbomachinery. Typically, ex-
plicit time-stepping schemes require the use of very small time steps to obtain reasonable accuracy, whereas
implicit schemes allow much larger time steps but are prohibitively expensive for three-dimensional calcu-
lations. Unsteady flow calculations of realistic industrial applications continue to be very expensive. On
the other hand a state-of-the-art two-dimensional steady inviscid calculation1 of flow past an airfoil takes
very small number of multigrid cycles to converge to reasonable accuracy. Modifying and incorporating such
efficient algorithms to suite unsteady computations may be rewarding. Time dependent calculations call for
such break-throughs.

When time accurate solvers like the implicit second-order Backward Difference Formula(BDF) are used
to treat periodic flows, the governing equations are integrated in time until the periodic steady state is
reached. This may require integrations over 5 or more cycles for a typical pitching motion.

This paper proposes the Time Spectral Method to solve time-periodic unsteady problems, following the
direction suggested by Hall et.al.2 Compared to the dual time stepping BDF, applicable for arbitrary time
histories, this algorithm promises significant reduction in CPU requirements for time periodic flows. A
Fourier representation is used for time discretization, leading to spectral accuracy. Moreover periodicity
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is directly enforced and hence the solution does not have to evolve through transients to reach a periodic
steady-state. When the equations are transformed back to the physical domain, the time derivative appears
as a high-order central difference formula coupling all the time levels in the period. The solution is obtained
by marching towards a steady-state in an auxiliary pseudo-time variable, while a multigrid procedure is
used to accelerate the convergence of the whole process. The method has been applied to both two- and
three-dimensional unsteady flows past moving bodies. Preliminary applications are to pitching airfoils and
wings where there is ample ground for validating the algorithm with experimental and other established
numerical results.

II. MATHEMATICAL FORMULATION

This section describes the mathematical formulation of the governing equations and the proposed Time
Spectral method for time-periodic unsteady calculations.

A. Governing Equations

The Navier-Stokes equations in integral form are given by
∫

Ω

∂w

∂t
dV +

∮

∂Ω

~F · ~N ds = 0.

In semi-discrete form, the unsteady equations in Cartesian coordinates can be written as

V
∂w

∂t
+ R(w) = 0, R(w) =

∂

∂xi
fi(w), (1)

where w is the vector of conserved variables,

w =




ρ

ρu1

ρu2

ρu3

ρE




and R(w) is the residual vector of spatial discretization representing contributions from both the physical
inviscid and viscous fluxes and numerical dissipation fluxes. If the mesh is moving with velocity components
u1m, u2m and u3m at each mesh point, the fluxes fi are given by

fi = fci − fvi,

where the convective fluxes fci and viscous fluxes fvi are defined as

fci =




ρuir

ρuiru1 + pδi1

ρuiru2 + pδi2

ρuiru3 + pδi3

ρuirE + pui




, fvi =




0
τi1

τi2

τi3

~u · ~τi − qi




. (2)

Here uir = ui − uim and δ is the Kronecker delta.
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Turbulent flow is modeled by the Reynolds-Averaged Navier-Stokes(RANS) equations with a turbulence
model. ¯̄τ is the stress tensor and its components are given by,

τii = 2µui + λ(u1,x1 + u2,x2 + u3,x3),

τij = τji = µ(ui,xj + uj,xi).

Here λ = −2
3 µ(by assumption) and the heat flux vector q’s components are given by

qi = −κTi.

Ti are temperature gradients and

κ = γ(
µlam

Prlam
+

µturb

Prturb
), µ = µlam + µturb.

µlam and µturb are the laminar and turbulent kinematic viscosities, Prlam and Prturb are the laminar and
turbulent Prandtl numbers.
The equation of state provides the closure. For an ideal gas,

p = (γ − 1)ρ(E − uiui

2 ), H = E + p
ρ . (3)

B. Implicit Schemes based on the Backward Difference Formula(BDF)

In order to time accurately solve the unsteady governing equations, the Backward Difference Formula dis-
cretizes Eq.1 implicitly as

Dt(V n+1wn+1) + R(wn+1) = 0.

The operator Dt of kth order accuracy is of the form

Dt =
1

∆t

k∑
q=1

1
q
(∆−)q,

where
∆−wn+1 = wn+1 − wn.

For example, the second-order A-stable BDF scheme is

3wn+1V n+1 − 4wnV n + wn−1V n−1

2∆t
+ R(wn+1) = 0,

where ∆t is the physical time step. Since we have a rigidly-moving body-fitted mesh, V n+1 = V n = V n−1 =
V . Then,

V
3wn+1 − 4wn + wn−1

2∆t
+ R(wn+1) = 0.

1. Dual Time Stepping BDF scheme

Jameson3 proposed the multigrid dual time stepping BDF that consists of the coupled non-linear equations,
and solved them by inner iterations which advance in pseudo-time t∗ to steady-state. Hence the scheme
solves

∂w

∂t∗
+ R∗(w) = 0,
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where

R∗(w) = V
3wn+1 − 4wn + wn−1

2∆t
+ R(wn+1).

An explicit multistage Runge-Kutta time-marching scheme with variable local ∆t∗ along with multigrid
and residual averaging is implemented. If a large number of inner iterations is required at each physical time
step, then the method becomes very expensive and calls for a better algorithm for the inner iterations.

Second order accuracy is guaranteed with the BDF scheme if the inner iterations converge fully. Hsu et.
al.4 have suggested a hybrid scheme that can yield sufficient accuracy without having to converge fully.

C. Time-Spectral Methods

Time periodic unsteady flows are typical in turbomachinery applications. Taking advantage of the periodic
nature of the problem, a Fourier representation in time can make it possible to achieve spectral accuracy.
Also, if engineering accuracy can be obtained with small number of time intervals, then dramatic reductions
in computational time can be achieved.

Recall the semi-discrete form of the governing equations (1),

V
∂w

∂t
+ R(w) = 0.

The discrete fourier transform of w, for a time period T, is given by

ŵk =
1
N

N−1∑
n=0

wne−ik 2π
T n∆t

and its inverse transform,

wn =

N
2 −1∑

k=−N
2

ŵkeikn 2π
T ∆t, (4)

where the time period T is divided into N time intervals, ∆t = T/N .
Discretize the governing equations as a pseudo-spectral scheme,

V Dtw
n + R(wn) = 0. (5)

McMullen et.al.5,6solved the time accurate equations in Eq.(5) by transforming them into frequency domain
and introducing a pseudo-time t∗, like in the case of the dual time stepping scheme,

V
∂ŵk

∂t∗
+ V

2π

T
ikŵk + R̂k = 0.

Alternatively, the Time Spectral Algorithm proposes to solve the governing equations in the time-domain,
considerably gaining on the computational cost required to transform back and forth to the frequency domain.
The method is also easy to implement in an existing steady-state solver without having to deal with complex
arithmetic. From Eq.(4), the time discretization operator Dt can be written as

Dtw
n =

2π

T

N
2 −1∑

k=−N
2

ikŵkeik 2π
T n∆t.

This summation involving the fourier modes ŵk, can be rewritten in terms of the conservative variables w
in the time domain as,7

Dtw
n =

N−1∑

j=0

dj
nwj
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where

dj
n =

{
2π
T

1
2 (−1)n−jcot(π(n−j)

N ) : n 6= j

0 : n = j

This representation of the time derivative expresses the multiplication of a matrix with elements dj
n and the

vector wj . With a change of variables, let (n− j) = −m, the time derivative is further rewritten as

Dtw
n =

N
2 −1∑

m=−N
2 +1

dmwn+m,

where

dm =

{
2π
T

1
2 (−1)m+1cot(πm

N ) : m 6= 0
0 : m = 0

Note that d−m = −dm. Hence Dt takes the form of a central difference operator connecting all the time levels,
yielding an integrated space-time formulation which requires the simultaneous solution of the equations for
all time levels. A pseudo-time t∗ is introduced as in the dual-time stepping case, and the equations are time
marched to a periodic steady-state

V
∂wn

∂t∗
+ V Dtw

n + R(wn) = 0.

D. Stabilty

In this section, the stability of the time spectral method will be examined. For simplicity, consider a one-
dimensional space.

V
∂wn

∂t∗
+ V

N
2 −1∑

m=−N
2 +1

dmwn+m + A
∂wn

∂x
= 0,

where A is the Jacobian of the spatial flux operator.
A Von-Neuman analysis of these equations using a single spatial fourier mode and a single time fourier mode
gives

V
∂ŵ

∂t∗
+ V

N
2 −1∑
m=1

Pmŵ +
Q

∆x
ŵ = 0

where Pm = i2π
T 2dmsin(km∆t) is the spectral matrix corresponding to the physical time discretization, and

with central differences for the spatial discretization, Q = iAsin(w∆x).
Let λ̄ denote the maximum eigenvalue of Q, and λ̄r, λ̄i its real and imaginary parts. Then,

V
∂w̌

∂t∗
≤ −[

λ̄r

∆x
+ (

λ̄i

∆x
+ V

2π

T

N
2 −1∑
m=1

2|dm|)i]w̌

Note that the source term due to the time-spectral term affects only the imaginary part of the eigenvalue
associated with the time averaged solution.

III. Results

This section provides an examination of the accuracy and efficiency of the proposed Time Spectral
algorithm. Validation of the algorithm is provided by a comparison with experimental data and other
numerical results.
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A. Implementation

The method is implemented using a conservative cell-centered semi-discrete finite volume scheme. A full W-
cycle multigrid algorithm is used for accelerating convergence, in which a pseudo time step with a five-stage
Runge-Kutta scheme is performed at each level. Blended first and third order numerical fluxes are introduced
to suppress spurious modes and ensure stability. Eddy viscosity for the RANS equations is modeled using
an algebraic Baldwin-Lomax turbulence model, i.e. the turbulence is assumed to be steady.

The explicit nature of the time advancement scheme facilitates parallelization in space. Multiple blocks
are distributed on different processors and the parallel implementation on the three-dimensional unsteady
viscous code(FLO107) is done using the Message Passing Interface(MPI).8

Test Case M∞ αm, Rec, α0, kc pitching − axis

deg. (million) deg. (%chordroot)

AGARD CT6 0.796 0 12.56 1.01 .202 25
NLR LANN CT5 0.82 0.59 7.3 0.25 .102 62.1

Table 1. Characteristics of the test cases

B. Test Cases

Oscillatory pitching motion has been simulated for both two- and three-dimensional test cases. These
computational results are compared with experimental data whose characteristics are specified in Table 1.
The pitching motion of the airfoil/wing, a function of time, is of the form,

α(t) = αm + α0sin(ωt),

where, αm is the mean angle of attack, α0 is the maximum amplitude of pitching, and ω, the angular velocity
is given in terms of a non-dimensional parameter, the reduced frequency, kc. Reduced frequency is defined
as

kc = (ωlc)/(2V∞).

Here lc, the characteristic length is the root chord length. Reynolds number Rec is based on the root chord
and V∞ is the free-stream velocity.

1. Two-dimensional case

In this section we present simulations of the oscillatory pitching airfoil AGARD CT6 (NACA 64A010) case,
which has been widely studied.6,9,4 This experimental test was conducted by Davis.10

In order to validate the time spectral method, the Euler equations are solved on a 160x32 O-mesh,
automatically generated using a conformal mapping procedure. In addition, the RANS equations are solved
on a 256x64 externally generated C-mesh. The near-field mesh resolution of both these meshes are shown
in Fig.1. A grid convergence study has been done on this test case for both Euler and RANS calculations
with similar spatial discretization by McMullen et.al.6

Time accurate solutions are obtained with N=4,8,12... time intervals, i.e. the time period of oscillation
of the pitching airfoil is divided into N equal time intervals. This corresponds to representing (N/2) modes,
the steady state and (N/2)-1 harmonics. Coefficient of lift(Cl) as a function of angle of attack based on Euler
calculations is provided in Fig. 2(a). (The curve is generated using trigonometric interpolation.) A Navier-
Stokes calculation on the same test case with similar temporal resolution shows a much better approximation
to the experimental data as shown in Fig. 2(b). Furthermore, a temporal mode convergence is achieved as is
evidenced by the minor deviation of the lift-alpha loop with variation in temporal resolution. Hence we have
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NACA 64A010                                                                     
GRID  160 X   32

NACA CT6 AIRFOIL                                                                
GRID  256 X   64

Figure 1. Near-field O- and C-mesh resolution

shown that 4 time intervals, or 1 harmonic is sufficient to obtain engineering accuracy for this oscillatory
pitching airfoil.

Fig. 3(a) and 3(b) display the coefficient of moment (Cm) data as a function of angle of attack obtained
from Euler and RANS calculations. The Cm data differs significantly from the experimental results. This
is not surprising considering that previous investigators9 using similar spatial discretizations have shown
similar discrepancies between the experimental data and their time accurate computations.

Fig. 4 and Fig. 5 show the convergence histories of the Euler and RANS calculations for one of the time
instances. With a 5-level W-cycle multigrid, the Euler calculation converges six orders of magnitude(RMS
density residual) in 100 multigrid cycles and the RANS calculation converges five orders of magnitude in
about 700 multigrid cycles.

2. Three-Dimensional Case

In this section, we present three-dimensional unsteady results. This test case relates to a semi-span model
of a transport-type wing with a supercritical airfoil section, the LANN wing. Table (1) summarizes the
characteristics of the central transonic test case CT5 of the experimental program conducted by R.J.Zwaan
from NLR.11

Unsteady RANS calculations have been performed for flow over the oscillatory pitching LANN wing with
a 256x64x48 internally generated C-H viscous mesh, based on a conformal mapping procedure. It should be
noted that all computations have been carried out on the theoretical coordinates of the LANN wing, which

7 of 14

American Institute of Aeronautics and Astronautics Paper 2005-1220



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

Angle of Attack (deg.)

C
oe

ffi
ci

en
t o

f L
ift

 4 Time Intervals
 8 Time Intervals
12 Time Intervals
16 Time Intervals
24 Time Intervals
AGARD:702−Davis

(a) Euler Calculations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

alpha

C
l

4 time intervals
8 time intervals
12 time intervals
AGARD−702:Davis

(b) Navier-Stokes calculations

Figure 2. Comparison of Cl data with experimental results for the AGARD CT6 test case.

deviate from the measured coordinates. Fig. 6(a) and (b) display the pressure distribution at a 20% span
section at α = αmean and α = αmax respectively. Time spectral solutions with N=4,8 and 12 time intervals
are displayed. Also displayed are the results from another numerical test conducted by DLR WB-AE.12

They use a viscous-inviscid interaction(VII) method, which combines an inviscid(full potential method) and
a boundary-layer method by an appropriate coupling approach.

The experiment shows a strong λ-type shock system which has been captured by the numerical results.
The pressure peaks have been predicted well, but the location of the shock is not accurate. This could
be attributed to the algebraic Baldwin-Lomax turbulence model. Note that the time spectral solution has
converged in temporal resolution. Using 4 time intervals the flow physics has been captured to engineering
accuracy. Fig. 7 (a) and (b) display a similar pressure distribution at 65% span location.

Fig. 8 shows the convergence history of the RANS calculation on the LANN pitching wing. With a 4-level
W-cycle multigrid, the parallel code converges 5 orders of magnitude in 800 multigrid cycles.

C. Spectral Accuracy

In the previous sections, the time spectral method has been tested and verified with experimental and
numerical results for simple pitching cases which are characterised by an amplitude and a phase. In these
cases it has been shown that 4 time intervals are sufficient to successfully capture the unsteady phenomena.
In this section, we will explore a case with a more complicated pitching history, one characterised by many
frequencies.

We haven chosen a pitching cycle of the form

α(t) =
3

5− 4cos(t)
,

Fig. 9 shows the variation of angle of attack, α, as a function of time for one full period. The time
period is 2π. Euler calculations have been performed on the NACA64A010 160x32 O-mesh at free-stream
M∞ = 0.796 and pitched about 25% chord.
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Figure 3. Comparison of Cm data with experimental results for the AGARD CT6 test case.

Fig. 10(a) shows the variation of Coefficient of Lift(Cl) as a function of α computed with N=4,8,12,16,20 and
24 time intervals per pitching cycle. Note that at least 16 time intervals are required to obtain engineering
accuracy. 4 time intervals are not sufficient, but increasing N shows an improvement in the solution and
a convergence in the right direction. A similar trend is portrayed in Fig. 10(b) which displays the varia-
tion of coefficient of moment about the quarter chord, Cm, as a function of α. With higher-order spatial
discretization, one may obtain spectral convergence in time.

IV. Conclusions and Future Work

The numerical results and their validation confirm the accuracy and computational efficiency of the Time
Spectral Algorithm for unsteady periodic problems. The oscillatory pitching airfoil/wing case showed that
engineering accuracy can be obtained with just four time intervals per period or one harmonic. A good
prediction of the flow around a three-dimensional pitching wing has increased the range of problems that
can be tackled with this method. Since periodicity is enforced, computational effort towards resolving the
decay of initial transients in minimal. The need for only a small number time intervals to obtain sufficient
accuracy for the globally integrated quantities together with the fact that spectral accuracy can be achieved
with higher order spatial discretization, provides a promising route to more efficient computation of complex
periodic unsteady problems.

The current implementation has an explicit treatment of the time derivative term. This works fine for
small frequencies and small pitching amplitudes. An implicit treatment of the time derivative is under
investigation for high frequency applications. A local time-stepping scheme based on the modified stability
region, due to the time spectral source term, is also a topic of interest. The current unsteady implementation
is very memory intensive, since all the time instances are solved for at the same time and need to be allocated
simultaneously. Hence, an extension to a large number of time intervals for complex problems might be
prohibitive. Nevertheless, this approach can be used with a small number of intervals to provide an initial
guess for the standard BDF without having to evolve through transients, and hence provide a much faster
periodic solution.

Such an efficient method could bring about significant benefits in a wide variety of applications. These
include rotor-stator combinations in turbomachinery, helicopter rotors, aeroelastic problems, flapping wing
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NACA 64A010                                                                     
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Figure 4. Convergence History - CT6 - Euler

flight, flow control by synthetic jets. The time spectral algorithm has already been implemented successfully
for low RPM turbomachinery problems. This required a modification of the time spectral algorithm to
conform to sector periodicity.13 The algorithm has also been used for research in Vertical-Axis Wind-
Turbines14 to study the dynamic motion of a turbine blade spinning about an axis.
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Figure 6. Pressure Distribution At 20% Span : Verification with Experimental and a VII Numerical Method
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(b) η = 65%, α = αmax = 0.84 deg.

Figure 7. Pressure Distribution At 65% Span : Verification with Experimental and a VII Numerical Method
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Figure 8. Convergence History - LANN - RANS
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Figure 9. α as a function of time for one period. α = 3
5−4cos(t)
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Figure 10. Validation : Cl-α and Cm-α plots showing spectral convergence
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