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Explicit Euler and Navier-Stokes flow solvers based on multigrid schemes combined
with modified multistage methods have become very popular due to their efficiency and
ease of implementation. An appropriate choice of multistage coefficients allows for high
damping and propagative efficiencies in order to accelerate convergence to the steady-
state solution. However, most of these coefficients have been optimized either by trial
and error or by geometric methods. In this work, we propose to optimize the damping
and propagative efficiencies of modified multistage methods by expressing the problem
within the framework of constrained non-linear optimization. We study the optimization
of different objective functions with a variety of constraints and their effects on the
convergence rate of a two-dimensional Euler flow solver. We start with a simple scalar
one-dimensional model wave equation to demonstrate that the constrained optimization
results yield multistage coefficients that are comparable to those that have been used in
the past. We then extend the method to the case of the two-dimensional Euler equations
and we distinguish each optimization case not only by choosing a different objective
function, but also by specifying the conditions in a generic computational cell in terms
of three parameters: the local Mach number, the aspect ratio, and the flow angle. Using
this approach, it is possible to find the optimized coefficients for different combinations of
these three parameters and use suitable interpolations for each of the cells in the mesh.
Finally, we present observations regarding the relative importance of the propagative
and damping efficiency of explicit schemes and conclude that, although a certain level of
damping is required for stability purposes, the major contribution to convergence appears

to be the propagative efficiency of the scheme.

Nomenclature
Imaginary unit = v/—1
Cell indices in the two computational coordi-
nate directions
Last (highest) level for multistage scheme
Arbitrary level index for multistage scheme
Modified Runge-Kutta multistage coefficients
State variable for the scalar wave equation
State vector for conservative variables
Differential state vector for entropy variables
Discretized state vector (state at mesh points)
Flux vectors in the x and y directions
Cell surface
Projections of S in the x and y directions
x-component of velocity
y-component of velocity
Density
Static pressure
Total energy (internal plus kinetic)
Total enthalpy
Velocity magnitude
Speed of sound
Residual
Convective part of the residual
Dissipative part of the residual

*Ph.D. Candidate, ATAA Student Member
T Assistant Professor, AIAA Member

At  Time step
Ax Spatial increment in the z direction
Ay Spatial increment in the y direction
a Wave speed in the x direction
A Courant-Friedrichs-Lewy or CFL number
u Dissipation coefficient
2,7 Fourier residual operators
g Amplification factor
&,m  Error frequencies
A, B Flux Jacobians in conservative variables
Ae, B Flux Jacobians in entropy variables
I Objective function to optimize
14 Four by four identity matrix
M Mach number
¢ Flow angle
Agr Cell Aspect Ratio
P Preconditioning matrix
R Real part
& Imaginary part

Introduction

URING the last decade, explicit multigrid meth-

ods have carved their niche in the solution of
complex inviscid and viscous flows. In nearly isotropic
meshes, such as those used for the solution of the Euler
equations, explicit methods achieve rates of conver-
gence that approach the theoretical limit. Despite the
fact that these convergence rates degrade significantly
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in the solution of the Reynolds Averaged Navier-Stokes
equations (due to both the presence of viscous effects
and the existence of highly stretched meshes),'? the
cost of solution using these explicit multigrid meth-
ods rivals those of implicit solvers. Moreover, explicit
methods achieve much more scalable parallel imple-
mentations and therefore have been a popular choice
for the solution of large-scale, complex configuration
problems.

Multistage schemes for the numerical solution of or-
dinary differential equations are usually designed to
yield a high order of accuracy. Since the present ob-
jective is simply to obtain a steady state as rapidly as
possible, the order of accuracy is not important. This
allows the use of schemes selected purely for their prop-
erties of stability and damping. For this purpose it
pays to distinguish the hyperbolic and parabolic parts
stemming respectively from the convective and dissi-
pative terms, and to treat them differently.

A majority of the most efficient existing explicit
multigrid solvers are based on the use of a modi-
fied Runge-Kutta relaxation scheme which often treats
the convective and dissipative portions of the resid-
ual separately so that optimum convergence rates at
minimum computational cost can be achieved.>? A
number of 3-, 4-, and 5-stage Runge-Kutta schemes
have been developed in the past and have shown good
convergence properties. The choice of the coefficients
for these multistage schemes was based on the one-
dimensional scalar model equation and the current
state of the art coefficients have been found via trial
and error. In some cases, simplified geometric meth-
ods!'® were used or optimizations were performed for
classical Runge-Kutta multistage schemes only, but
not for the computationally advantageous modified
Runge-Kutta schemes.®

In this work, we propose to formalize the choice of
coefficients for these multistage schemes, by casting
the problem into a constrained optimization frame-
work. The optimum coefficients are those that maxi-
mize both the damping and the convergence rates of
the scheme subject to appropriate constraints. Using
the values of the multistage coefficients as design vari-
ables, a non-linear constrained optimizer can be used
in such a way that the convergence rates are optimized.
It must be noted that the choice of cost function and
constraints that maximize the convergence rate of a
scheme is never straightforward. In fact, it has been
noted in the past that for explicit multigrid schemes, it
is important to select coefficients that efficiently damp
the high-frequency modes in each grid level. However,
little attention has been paid to the more important
issue of propagative efficiency.

We first start by defining the governing equations
of the problem to which we will apply our optimiza-
tion procedure and the associated modified Runge-
Kutta multistage scheme. We then present the one-

dimensional scalar model convection-diffusion equa-
tion and the results of the application of the con-
strained optimization procedure to the choice of multi-
stage coeflicients for different objective functions. Fi-
nally, we discuss similar results for the Euler equations
and outline the procedure that could be used to carry
out a coefficient optimization similar to the one pre-
sented here.

Governing Equations

Let us start by considering the case of the Euler
equations for the two-dimensional flow of an inviscid
ideal gas. The finite volume form can be written as

d
—/ Wds +/ (FpdSy + F,dS,) = 0. (1)
dt Js as

Using conservative variables

pU
pE

the Euler fluxes in the x and y directions are

U pv
2
_ pu” +p _ PV
Fx— puv aFy— p02+p ) (3)
puld pvH
where
¢
p = (7—1),0(E—2) (4)
2 2
D C q
H = E+== — 5
+ i +5 (5)
q2 _ u2 —‘rUQ (6)
02 _ ’Yp (7)

If we discretize the spatial derivatives in eq. 1 and
add artificial dissipation terms, we can write the semi-
discrete form as

dW; 1 _
at +Rjr = 0

Rjr= R(Wj,k) = Qjr+Djp. (8)

The remainder of this paper will be concerned with
the stability, damping, and propagative efficiency of
numerical schemes used to drive this equation to a
steady-state.

Explicit Multistage Method
Modified Runge-Kutta Equations

Let W™ be the value of W after n time steps. Drop-
ping the subscripts j, k the general m-stage modified
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scheme” can be written as

W(nJrl,O) - wn
WD~ O _ o AtRO)
W(n+l,l) W(O) _ alAtR(l—l) (9)
W(n—i—l,m) W(O) _ AtR(m_l)
WTL+1 I/V(n—i-l,m)7
with
RO — QW4 pW
QY = Qmwm)
DO = Dw)
Q(l) — Q(W(n+1,l))
DO = ﬁlD(W(n-i-l,l))_’_(l_ﬂl)D(W(n-&-l,l—l))‘

Note how this method distinguishes between the con-
vective and dissipative terms by using two sets of
coefficients a; and (3;. Such non-standard multistage
schemes have much larger stability regions than con-
ventional Runge-Kutta schemes. Moreover, by forcing
some of the (3; to be zero, we can avoid the computa-
tion of dissipative terms on the corresponding stages
and thus reduce computational costs.® Note that if we
set all B; to 1 we simply find the classical Runge-Kutta
equations.

5-stage Martinelli-Jameson coefficients

One very popular modified Runge-Kutta scheme
known for its high propagative and damping efficien-
cies and large stability domain is a 5-stage scheme
proposed by Martinelli and Jameson with the following
coeflicients

o = 1/4 B =1

as = 1/6 B2 = 0

a3 = 3/8 Pz = 14/25 (10)
oy = 1/2 B4 = 0

as = 1 fs 11/25.

We will refer to the above coefficients as the 5-stage
MJ coefficients. For these coefficients, we can note that
every other J; is equal to zero, this means that we save
on computational costs by computing the dissipative
fluxes every other stage only. We can also note that
consistency requirements impose that as = beta; = 1.

We will use the MJ coefficients as our principal ref-
erence in order to assess the efficiency of an optimized
set of coefficients. Thus for the purpose of this paper
we will concentrate only on 5-stage schemes that have

B2 = B4 =0.

Scalar one-dimensional model wave
equation
General formulation

Let us consider the one-dimensional model problem
wy + awy + AT Wapey = 0. (11)

In the absence of 3" order dissipation and for a = 1,
eq. 11 describes the propagation of a disturbance at
unit speed without distortion. The viscous term rep-
resents the artificial dissipation added in order to sta-
bilize central differencing numerical methods. Using
central differencing our residual has the form

A
AtR; = §(wj+1—wj71) (12)

+ )\[L (’(Uj+2 - 4wj+1 + 6’U.)j - 4’11}3',1 + ’U.)jfg) y
with the CFL number defined as

_aAt At

= Ar Az (13)

Now, if we consider a Fourier mode &% = e™* with
x; = jAz and set £ = pAx, we have
di
Atdi;’ = 21, (14)
with
z = —MNisin€& — 4 \u(1 — cos€)?. (15)

A single step of the multistage scheme yields
D" = g(2)w", (16)

where g(z) is called the amplification factor. For an
m-stage scheme, g is computed iteratively. For clas-
sical Runge-Kutta schemes ¢ is a complex polynomial
function of z but for modified Runge-Kutta schemes
g is the sum of a polynomial function of $(z) and a
polynomial function of $(z)

Stability Domain for the MJ coefficients

We can use the stability domain of a given set of
multistage coefficients as a visual tool in order to un-
derstand some of the mechanisms of damping and
propagation. Fig. 1 shows the stability domain of the
MJ coefficients, the locus of the residual operator z(§)
as defined in eq. 15, and the amplification factor |g|
for three different sets of A and u. On the left, the sta-
bility domain is represented by contours lines of the
amplification factor with contour levels going from the
outside to the inside from 1 to 0 with increments of
0.1. The locus of z(€) is represented on the same fig-
ure for —m < £ < 7 as the oval-shaped curve extending
in the direction of the imaginary axis. On the right we
can see how the locus of z(£) translates into the am-

g (%)’ and since the locus of z(§) is

symmetric, we will only consider 0 < % <1.

plification factor
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On fig. 1-a we have the locus of z(§) for A = 2.8
and p = é This value of u = pp is typically used
in CFD computations and we will use it as a refer-
ence value. It is important to keep p small in order
to avoid introducing too much dissipation, otherwise
we would produce a numerical solution that would not
represent accurately the physical solution. Fig. 1-b
shows the amplification factor |g| corresponding to the
locus of z shown on fig. 1-a. We can clearly see that
high-frequency errors are damped more efficiently than
low-frequency errors. This is a key feature of such
multistage schemes. We are indeed interested in damp-
ing high-frequency errors efficiently because multi-
grid techniques transfer low-frequency errors from fine
meshes to coarser meshes on which they become high-
frequency errors themselves.%'2  Therefore we will
concentrate on improving the damping properties of
multistage schemes on the interval g <&

Although it is well-known that convergence depends
on both propagation and damping, there is no simple
analytical way to compare their respective contribu-
tions to convergence. We will consider the amplifica-
tion factor |g| as a measure of damping efficiency and
the CFL number )\ as a measure of propagative effi-
ciency. To analyze propagative efficiency in a more
complete way, one can include the effects of residual
smoothing as it can dramatically increase A. One can
also use a more precise measure of propagative effi-
ciency by analyzing the group velocity ¢4 () of a wave
packet rather than A only. For the sake of simplicity,
we have chosen to leave the impact of residual smooth-
ing and group velocity to further studies.

On figs. 1-c and 1-d we can see that if X is increased,
the locus of z extends in the directions of both axes.
These figures clearly show that for A = 3.93, the locus
of z is extended to its stability limit. On the other
hand, figs. 1-c and 1-d show that if p is increased to
2110, the locus of z extends in the direction of the real
axis only. In order to avoid too much loss in accuracy,
the value p = 2ug = 1—16 is usually the maximum used
in CFD computations.

Optimization Framework

The optimization framework is based on a tradi-
tional non-linear programming setup with an objective
function to minimize (or maximize) and a set of linear
and/or non-linear constraints. We want to maximize
convergence speed and all we know is that it is a func-
tion of propagation and damping. But since there ex-
ists no clear analytical expression linking convergence
speed to propagation and damping, we will define sev-
eral sets of objective functions and constraints. We
will use as variables the CFL number A, the dissipa-
tion coefficient p, and the multistage coefficients o
and ﬁl.

The constraints below will be common to all of our

objective functions:

A>0 (17)

S suso (18)
0<o,5 <1 (19)
lgl <1 (20)

as =6 =1 (21)
B2 =P =0. (22)

Note that the inequality in eq. 20 will be strict ex-
cept for £ = 0. Our 8 variables are aj, as, asz, ay,
B3, Bs, A, and p. Our optimization results for the
scalar one-dimensional wave equation were obtained
using MATLARB’s gradient-based optimization func-
tion fmincon for constrained minimization. One of
the limitations of gradient-based methods is that they
are only guaranteed to find local optima and it is never
clear whether we have a global optimum or not. The
advantage of such methods on the other hand is that
they are very fast compared to methods that have the
potential to find global optima such as genetic algo-
rithms. The comparison of our results obtained using
both fmincon and a genetic algorithm will be part of
future work.

Test cases

We will study 7 cases using different objective func-
tions, the constraints in eqs. 17-22, and in some cases
additional constraints that will be described later. In
each case we will have 2 sub-cases, one where p will be
considered as a variable and another one where we will
impose the constraint g = po. Therefore, in reality we
will have 14 cases. Tab. 1 summarizes the results of
these optimizations. We will assign a number to each
case followed by the letter V or F designating whether
 was variable or fixed. The values for a1, as, as, ay,
03, B5, A, and p in the table correspond to the results
produced by fmincon.

We used Jameson and Martinelli’s two-dimensional
multigrid viscous flow solver FLO103% %10 to test the
optimized coefficients for two Mach numbers: M = 0.5
and M = 0.8. The test case was a NACA(0012 at
an angle of attack of 2.25° using 5 levels of multigrid
on a 160x32 C-mesh. One of the features of FLO103
is that it computes high-order dissipation fluxes on
fine meshes and low-order dissipation fluxes on coarse
meshes. Since our optimizations are based on the one-
dimensional scalar model equation using high-order
dissipation terms, we modified FLO103 so that it com-
putes high-order dissipation fluxes on all meshes. This
enables us to have a more correct validation of our
optimization approach. If we were to use FLO103
in its original form, then, in order to be rigorous we
would need two sets of optimized coefficients: one set
obtained with a one-dimensional scalar model using
37 order dissipation, and another set with a one-
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dimensional scalar model using 1%¢ order dissipation.
This is currently being studied.

When running FLO103 on Euler test cases, some-
times we had to use a lower A\ than that given by
fmincon in order to achieve convergence. The A
used for the actual computation and the correspond-
ing residuals after 150 multigrid cycles are denoted
by Ao.5, Resgs, Ao.g and Resgsg for the two Mach
numbers mentioned above. The first line in tab. 1 rep-
resents our reference case using the MJ coefficients. A
remarkable result is that the fastest convergence us-
ing the MJ coefficients is obtained with A = 3.93. It
turns out that this value corresponds to the theoreti-
cal maximum predicted by the one-dimensional model
problem. This is in itself a very strong justification of
the fact that such a simplified model is well adapted
to the study of actual flow solvers.

Case 1: Minimization of amplification factor for all
frequencies

In this approach we minimize I = foﬂ lg (£)| d¢ with
no additional constraints. Fig. 2 shows the case with
variable p and fig. 3 shows the case with fixed . Com-
pared to the MJ case on figs. 1-¢c and -d we can see that
although the amplification factor is greatly reduced, it
is done at the expense of the propagation efficiency: A
is much smaller now. Both cases 1V and 1F achieve
convergence but both are slower than the MJ case.

Comparing 1V to 1F, we can see that 1V achieves
better damping than 1F but at the same time it has
a smaller A too. Part of the better damping of 1V
is certainly due to its larger u. It turns out that 1F
has faster convergence than 1V and this is a first indi-
cation that propagation has a more important role in
contributing to convergence than damping.

Case 2: Minimization of amplification factor for high
frequencies only

Since we use multigrid in our solution procedure,
let us concentrate on the high-frequency domain only
and minimize I = [ |g (€)| d¢ with no additional con-
straints. Fig. 4 shozws the case with variable p and
fig. 5 shows the case with fixed p. Compared to case
1 we can see that we have further reduced damping,
especially in case 2V where |g| in the high-frequency
domain is in the order of 0.01. Nevertheless, the resid-
uals of 2V and 2F are larger than the residuals of 1V
and 1F respectively. This loss in convergence rate is
due to the fact that the X of 2V and 2F are smaller than
those of 1V and 1F respectively. This means that the
loss in A is not compensated by the improvements in
damping and that reaffirms our first indication about
the role of propagation.

Case 3: Maximization of the CEFL number \

Now that propagation seems to have a more impor-
tant role than damping, let us maximize A with no
additional constraints. Figs. 6 and 7 show that we can

barely push A beyond 3.93, which was the maximum
value for the MJ case. In case 3V, it is interesting to
note that because of the fact that the extra increase in
A might push the locus of z out of the stability domain,
the optimizer decreases p to keep the locus inside the
domain and achieve a slightly higher A than in case 3F.
For both cases 3V and 3F, the very slight gain in CFL
is achieved at a catastrophic cost for the stability do-
main. The stability domain extends very little in the
direction of the negative real axis and its limits come
in contact with the locus of z in the region of high fre-
quencies now. FLO103 could not achieve convergence
for these theoretical values of maximum A anymore.
In order to achieve a stable convergence for such re-
stricted domains of stability, we had to reduce A to
about 1.5. At such a loss of A, the maximization of A
simply defeats its purpose. This can also be double-
checked by taking a look at the values of the residuals
at the end of each calculation.

Cases 4 and 5: Mazimization of the CFL number \
with additional constraints

It has now become obvious that the optimization
of damping alone or the optimization of propagation
alone does not lead to better convergence. It be-
comes more and more apparent that propagation plays
a more important role in convergence than damp-
ing. Thus we continue maximizing propagation while
adding some safeguards to achieve proper damping for
high frequencies. For cases 4 and 5, we maximize A
but we impose an additional constraint on |g| in the
domain of high frequencies. In fact, what we try to do
is a blend of cases 2 and 3.

For case 4 we impose |g| < 0.25 for 0.5 < % < 1.
As we can see on figs. 8 and 9, the stability domains
in these cases start to approach the general shape of
the MJ scheme with good extensions in both direc-
tions. The optimized solutions result in rather high
A. For case 4V the practical A had to be reduced to
produce the best results in FLO103, and for the first
time, we have convergence rates that approach the MJ
case. For case 4F, we did not have to use a reduced
A and we obtained good convergence performance. So
far it seems that fixing A has been a better strategy
than using it as a variable.

For case 5 we impose |g] < 0.8 for 0.5 < % < 1.
Now that we are being less stringent on the damping
constraint, we produce a very high A\, but as we can
see in the results of tab. 1 and figs. 10 and 11, we are
again faced with problems similar to those in case 3 as
we need to use reduced A in FLO103 calculations. Fur-
thermore, case 5V did not produce good convergence
even with reduced A, probably because of a very small
1. Again this case confirms that using p as a variable
might not be worth the degree of freedom it offers.
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Case 6: Minimization of a hybrid function of the
amplification factor |g| and the CFL number A

From the results above it appears that convergence
is a strong function of propagation and a weak func-
tion of damping. Therefore case 6 optimizes the hybrid

[ lg()ldg
objective function I = K —2——— where K is simply

a constant chosen large enough in order to avoid nu-
merical difficulties for large values of n. K will be
typically chosen of the order of 4. We tested many
values of n and it appears that for any value above
5, there are only slight differences in the optimization
results. In fact, we found that by using very large val-
ues of n we could push the maximum A a little further
than the limit value of 3.93 of the MJ scheme without
catastrophic negative effects on the stability domain.
The following results were obtained with the very large
value of n = 25. This produces an objective function
where a slight increase in A impacts the minimization
procedure much more heavily than a decrease in ampli-
fication factor. Fig. 12 and 13 show that the stability
domains of case 6 are very similar to the MJ case, ex-
cept that they are less extended in the direction of the
negative real axis. Once again, fixed p performs better
than variable u. As in case 3V, the optimizer seems
to use the degree of freedom offered by a reduction in
w in order to ease the extension of the locus of z in
the direction of the imaginary axis and achieve a high
A. Finally, it is interesting to note that case 6F has a
slightly higher convergence rate than the MJ case.

Case 7: Minimization of the amplification factor |g|
with additional constraint on the CFL number \

Now that it is apparent that we should try to achieve
the highest A without totally sacrificing on damping,
we simply set as large a lower limit on A\ as possible
while trying to minimize f; lg (€)| d€. We tested sev-
eral values for that lower limit and the largest value
that the optimizer could find a solution for was for
constraint A > 3.99.

As in the previous case, fixed p performed better
than variable p. In case 7V, the optimizer again used
a reduction in the value of p in order to achieve a large
value of A\. The performance of case 7V is very good,
but it is even more interesting to note that case 7F
performs better than all the cases studied so far and
of course even slightly better than the MJ case as can
be seen in tab.l. Fig. 14 is very similar to the figures
of case 6, while fig. 15 is very similar to the MJ case
with very slightly larger extensions in both directions.

First conclusions

At this point we can affirm that although the MJ co-
efficients were developed by trial and error, they were
nearly perfect and grasped the important mechanisms
involved in both damping and propagation. This study
showed that the contribution of propagation to conver-

gence is far superior than that of damping, provided
that we do not perform at the limits of stability in the
high-frequency domain.

We also showed that despite its simplicity, the one-
dimensional equation model provides an efficient tool
for the analysis of multistage schemes even when used
for the Euler equations. Finally we showed that it is
not necessarily a wise choice to consider the dissipation
coefficient p as a variable in multistage optimizations.

The next section extends the analysis of the one-
dimensional scalar model wave equation to the system
of the two-dimensional Euler equations in a similar
fashion.

Two-dimensional Euler equations
General formulation

The finite difference form of eq. 1 can be written as

oW oW oW
OSSN ; s o 2
o A% B, 0, (23)

where A and B are the flux Jacobians of F, and F,
with respect to W.

For the discretized equations, using central differ-
encing, we have

ow 1
<Aax>]’,k T Az (ij+%,k - Ffj,%wk) ) (24)

and for the scheme with 3" order matrix dissipation

we have
W W
F, L A (ﬁl’k J”“)

i+1, 2

1
) Al (AWH%,I@ —2AWj 1kt AW'*%J“) » (29)
and

Fy

i—

[N

2
B (AW L = 2AW, 1+ AW ) (26)
2 jt+35.k ji—3.k '—%,k .

Wik +Wi_1k
e

If we denote by T and T~', the matrices of the left
and the right eigenvectors of A, we have A = TAT !
where A is the diagonal matrix of the eigenvalues of
A. We then define |A| such that |A| = T'|A| T~ where
|A| is the diagonal matrix of the absolute values of the
eigenvalues of A.

If we use scalar dissipation rather than matrix dis-
sipation, then |A| and | B| must be replaced by p(A)I4
and p(B)I4 where p(A) and p(B) are the spectral radii
of A and B and I, is the 4 by 4 identity matrix.

Now, if we consider a Fourier mode W = ePreiry
and set £ = pAx and n = rAy, we have

oW R 2
(Aé)ac> T Ar (zAsm§ +4p]A] (1 — cosé) ) ,
3,

(27)
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and similarly

oW Lo 2
(B) B = Ay (zBsmn—&—4u|B\ (1 —cosn) ) .
2

(28)
Instead of having a scalar z, we have a Z matrix such
that

aw
t = W, (29)
and
AN R
Z(gm) =~ [iAsing + 4u|A| (1 — cos¢)’]
At 2
Ay [zBsmn—i—4u\B| (1—cosn) ] . (30)

Here the eigenvalues of Z play the role of the scalar z
of the one-dimensional case. Since they are functions
of both ¢ and 7, each of them will have a locus that
will cover a surface on the stability domain instead of
producing just a single curve.

Evaluation of the eigenvalues of 7

In order to properly and efficiently compute the
eigenvalues of Z, the best strategy is to use the Ja-
cobians A, and B, for entropy variables rather than
the commonly used conservative variables. We can ex-
press the entropy variables in differential form as

dp
pc

du
AW, = dv . (31)
dw
dp — c2dp

The flux Jacobians A, and B, in entropy variables are
simply

(32)

oo o
o oo
e oo o

(33)

o o

CoST o oo o
SERI
< ococo

0 0

With such simple expressions for the Jacobians, it is
easy to verify that the eigenvalues of A, and B, (thus
of A and B) are (u,u,u+c,u—c) and (v,v,v+¢,v—c)
respectively. As for the spectral radii, if we assume
that v and v are positive, we have

u+c (34)
v+ec. (35)
One very important factor in the evaluation of the

eigenvalues of Z is the proper definition of the two-
dimensional CFL number A\. Many flow solvers use

a conservative definition of the time step limit from
which A is derived as follows.

ut+c v—+c

)\At(AanAy). (36)
Using the above definition to eliminate At from eq. 30
would allow to produce loci of the eigenvalues of Z
that remain in the stability domain even for A that are
unusually large compared to the one-dimensional case
and that do not correspond to what can be actually
used in a flow solver.

A proper definition of A for stability analysis should
rather be based on the largest eigenvalue of the matrix

1 1
ATl (37)

The proper definition of A then becomes

2 2
\— At (uAervA:quchx + Ay ) (39)

AxAy

It now becomes apparent that the eigenvalues of Z will
be uniquely defined as functions of £ and 7 for a given
computational cell where we know the Mach number
M = Y the flow angle ¢ = arctan (2), and the
aspect ratio Agr = ﬁ—;. This means that it is possi-
ble to produce a different set of optimized multistage

coeflicients for each computational cell.

Conclusions

In this paper we have presented a new and sys-
tematic optimization framework for the calculation
of multistage coefficients for modified Runge-Kutta
schemes. In addition, we have developed a number
of model equations that can be used in conjunction
with a nonlinear constrained optimizer to produce the
desired results. We showed that the influence of prop-
agation largely dominates that of damping. Many
researchers such as Tai'® and Lynn® had sought to op-
timize multistage coefficients for classical Runge-Kutta
schemes only by focusing on the damping efficiency.
Tai’s one-dimensional geometric method forces the lo-
cus of z to pass through the zeros of the stability
domain while Lynn’s two-dimensional method mini-
mizes the maximum amplification factor on a portion
of the high frequency domain. The coefficients they
have produced are therefore not appropriate for the
advantageous case of modified Runge-Kutta schemes
in addition to producing tight CFL restrictions. More-
over, in most previous multistage optimization work,
dissipative terms were often chosen to be very large,
thus producing results that are not necessarily well-
suited for practical use in flow solvers. This study
proved in a systematic way that the MJ coeflicients
were extremely close to the the optimal solutions found
in case 7F and opened the way for future work in the
cases of preconditioned Euler and Navier-Stokes equa-
tions.
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Future work
Adaptive Multistaging

An interesting idea for the future is to produce an
array of optimized coefficients for a large number of
different combinations of M, ¢, and Agr. It would
then be possible to feed that array into a flow solver
that would use it to interpolate a different set of opti-
mized coefficients for every cell rather than using the
same coefficients throughout the whole computational
domain.

In order to illustrate the differences between the
one-dimensional model and the two-dimensional Fuler
case, figs. 16 to 21 show the stability domain and loci of
the eigenvalues of Z for a scheme using scalar dissipa-
tion. These figures compare the stability domain of the
MJ coefficients on the left with that of the optimized
coefficients on the right. The optimized coeflicients
were obtained using the non-linear gradient-based op-
timizer package SNOPT.®!! As in the last case of
the one-dimensional model, we added a constraint on
the lower bound of A. In this case we chose to mini-
mize I = f; f; lg (&,m)| dédn subject to the constraint
that A > 3.9. Six combinations of M, ¢, and Ag
are presented where we can see how these parameters
influence the clustering of the eigenvalues of Z in dif-
ferent regions of the stability domain. In all cases, the
envelope of the loci of the eigenvalues of Z is the same
as the locus of z from the one-dimensional model.

For an aspect ratio of 1, figs. 16 to 18 show that the
eigenvalues of Z populate the entire surface inside that
envelope for M = 0.5, but when we reduce M to 0.1,
some regions of the stability domain are depopulated.
Changing the flow angle has only a small influence on
this feature. The optimized solutions seem to produce
stability domains that adapt themselves to the way
the eigenvalues are clustered in different regions of the
stability domain.

Figs. 19 to 21 show that by increasing A g, we signifi-
cantly reduce the surface covered by the eigenvalues to
one main oval-shaped branch constituting the envelope
and several additional smaller branches that extend
differently as a function of M and ¢. Once again, it
seems that the optimizer takes the locations of these
branches into account as each stability domain has a
different shape.

Preconditioning

The adaptive multistaging approach described
above can be extended to the case of the precondi-
tioned Euler or Navier-Stokes equations. Although the
MJ coefficients happened to be practically optimal for
Euler computations, it is not clear what coefficients
would be optimal in the case of the preconditioned
Euler equations. In this case we simply have

ow oW 0w
1" e -7
PG Ay T B =0, (39)

or

— +P|A— +B—
8t+ 8x+ dy

where P is the preconditioning matrix. Therefore we
simply need to replace Z by PZ and we will have

ow (aw aw>20’ (40)

At% = PZW. (41)

We can clearly see that in this case our amplification
factors are a function of the eigenvalues of PZ in-
stead of Z. The optimized coefficients will be different
for each type of preconditioner. In the future we will
consider different types of preconditioners such as the
Block-Jacobi preconditioner,! the low-Mach Turkel
preconditioner,'* and combinations of low-Mach and
Block-Jacobi.?
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Fig. 1 Stability domain for the MJ coefficients and the influence of A and p on the amplification factor.
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Case o1 o2 3 oy B3 Bs A ‘7”0 Ao.5 Reso.s Ao.8 Reso.s
MJ | 0.2500 | 0.1667 | 0.3750 | 0.5000 | 0.5600 | 0.4400 | 3.9300 | 1.0000 || 3.9300 | 0.727E-12 || 3.9300 | 0.116E-09
1V | 0.5602 | 0.2778 | 0.7612 | 0.8888 | 0.7719 | 0.0000 | 1.6977 | 1.7189 || 1.6977 | 0.135E-04 || 1.6977 | 0.210E-03
1F 0.6267 | 0.2320 | 0.7739 | 0.7688 | 0.4901 | 0.0000 | 1.9651 | 1.0000 || 1.9651 | 0.106E-07 || 1.9651 | 0.118E-05
2V | 0.3323 | 0.3161 | 0.6032 | 0.8409 | 0.6483 | 0.0000 | 1.5555 | 1.8087 || 1.5555 | 0.928E-04 || 1.5555 | 0.281E-02
2F 0.6537 | 0.2359 | 0.7751 | 0.7109 | 0.0000 | 0.0000 | 1.8178 | 1.0000 || 1.8178 | 0.117E-07 || 1.8178 | 0.220E-05
3V | 0.2421 | 0.1662 | 0.3746 | 0.4995 | 0.4046 | 0.0000 | 4.0066 | 0.8057 || 1.4000 | 0.398E-06 || 1.4500 | 0.116E-04
3F 0.2339 | 0.1679 | 0.3701 | 0.4995 | 0.4754 | 0.0000 | 4.0053 | 1.0000 || 1.4900 | 0.482E-07 || 1.5600 | 0.690E-05
4V | 0.1953 | 0.1779 | 0.3394 | 0.4998 | 0.7793 | 0.7676 | 3.6648 | 1.2317 || 3.2200 | 0.333E-11 || 3.2600 | 0.625E-09
4F 0.1952 | 0.1833 | 0.3401 | 0.4998 | 0.7777 | 0.7928 | 3.6171 | 1.0000 || 3.6171 | 0.201E-11 || 3.6171 | 0.514E-09
5V | 0.2391 | 0.1668 | 0.3728 | 0.4995 | 0.8403 | 0.0000 | 3.9522 | 0.5000 || 1.3500 | 0.104E-05 || 1.3800 | 0.128E-03
5F 0.2358 | 0.1658 | 0.3743 | 0.4995 | 0.6083 | 0.1129 | 3.9457 | 1.0000 || 3.4100 | 0.146E-10 || 3.3900 | 0.179E-08
6V | 0.2251 | 0.1677 | 0.3675 | 0.4996 | 0.7343 | 0.6171 | 3.9816 | 0.8137 || 3.9816 | 0.264E-11 || 3.9816 | 0.386E-09
6F 0.2216 | 0.1676 | 0.3678 | 0.4996 | 0.7042 | 0.5340 | 3.9751 | 1.0000 || 3.9751 | 0.680E-12 || 3.9751 | 0.914E-10
7V | 0.2308 | 0.1678 | 0.3679 | 0.4996 | 0.6993 | 0.5375 | 3.9900 | 0.7078 || 3.9900 | 0.368E-10 || 3.9900 | 0.939E-09
F 0.2312 | 0.1679 | 0.3678 | 0.4996 | 0.5413 | 0.3222 | 3.9900 | 1.0000 || 3.9900 | 0.478E-12 || 3.9900 | 0.870E-10
Table 1 Results for optimizations and test cases

15 or 17

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3705




-8 -6 -4 -2 0 -8 -6 -4 -2 0

Fig. 18 A =39, M =0.1,p=F,and Ag=1

16 or 17

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3705



=4

and Agr

s
39

Fig. 19 \=3.9, M = 0.5, ¢

16

Fig. 20 A=39, M =0.9, ¢ =0, and Ar

16

and Ar =

us
6

3.9, M =13, ¢

A=

Fig. 21

17 or 17

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3705



