Advanced Computational Fluid Dynamics AA215A Lecture 4

Antony Jameson

Winter Quarter, 2012, Stanford, CA

Abstract

Lecture 4 covers analysis of the equations of gas dynamics

Contents

1 Analysis of the equations of gas dynamics 2
1.1 Coordinate Transformations 3
1.2 Analysis of the equations of gas dynamics: the Jacobian matrices 4
1.3 Two dimensional flow 8
1.4 One dimensional flow 9
1.5 Transformation to alternative sets of variables: primitive form 10
1.6 Symmetric form 11
1.7 Riemann invariants 14
1.8 Symmetric hyperbolic form 15
1.9 Entropy variables 16

Chapter 1
Analysis of the equations of gas dynamics

Lecture 4

Analysis of the equations of gas dynamics

1.1 Coordinate Transformations

In order to calculate solutions for flows in complex geometric domains, it is often useful to introduce body-fitted coordinates through global, or, as in the case of isoparametric elements, local transformations. With the body now coinciding with a coordinate surface, it is much easier to enforce the boundary conditions accurately. Suppose that the mapping to computational coordinates $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ is defined by the transformation matrices

$$
\begin{equation*}
K_{i j}=\frac{\partial x_{i}}{\partial \xi_{j}}, \quad K_{i j}^{-1}=\frac{\partial \xi_{i}}{\partial x_{j}}, \quad J=\operatorname{det}(K) \tag{1.1}
\end{equation*}
$$

The Navier-Stokes equations (?? -??) become

$$
\begin{equation*}
\frac{\partial}{\partial t}(J w)+\frac{\partial}{\partial \xi_{i}} F_{i}(w)=0 \tag{1.2}
\end{equation*}
$$

Here the transformed fluxes are

$$
\begin{equation*}
F_{i}=S_{i j} f_{j} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
S=J K^{-1} \tag{1.4}
\end{equation*}
$$

The elements of S are the cofactors of K, and in a finite volume discretization they are just the face areas of the computational cells projected in the x_{1}, x_{2}, and x_{3} directions. Using the permutation tensor $\epsilon_{i j k}$ we can express the elements of S as

$$
\begin{equation*}
S_{i j}=\frac{1}{2} \epsilon_{j p q} \epsilon_{i r s} \frac{\partial x_{p}}{\partial \xi_{r}} \frac{\partial x_{q}}{\partial \xi_{s}} \tag{1.5}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\partial}{\partial \xi_{i}} S_{i j} & =\frac{1}{2} \epsilon_{j p q} \epsilon_{i r s}\left(\frac{\partial^{2} x_{p}}{\partial \xi_{r} \partial \xi_{i}} \frac{\partial x_{q}}{\partial \xi_{s}}+\frac{\partial x_{p}}{\partial \xi_{r}} \frac{\partial^{2} x_{q}}{\partial \xi_{s} \partial \xi_{i}}\right) \\
& =0 \tag{1.6}
\end{align*}
$$

Defining scaled contravariant velocity components as

$$
\begin{equation*}
U_{i}=S_{i j} u_{j} \tag{1.7}
\end{equation*}
$$

the flux formulas may be expanded as

$$
F_{i}=\left\{\begin{array}{c}
\rho U_{i} \tag{1.8}\\
\rho U_{i} u_{1}+S_{i 1} p \\
\rho U_{i} u_{2}+S_{i 2} p \\
\rho U_{i} u_{3}+S_{i 3} p \\
\rho U_{i} H
\end{array}\right\} .
$$

If we choose a coordinate system so that the boundary is at $\xi_{l}=0$, the wall boundary condition for inviscid flow is now

$$
\begin{equation*}
U_{l}=0 . \tag{1.9}
\end{equation*}
$$

1.2 Analysis of the equations of gas dynamics: the Jacobian matrices

The Euler equations for the three-dimensional flow of an inviscid gas can be written in integral form, using the summation convention, as

$$
\frac{d}{d t} \int_{\Sigma} \boldsymbol{w} d V+\int_{d \Sigma} \boldsymbol{f}_{i} n_{i} d S=0
$$

where Σ is the domain, $d \Sigma$ its boundary, \vec{n} the normal to the boundary, and $d V$ and $d S$ are the volume and area elements. Let x_{i}, u_{i}, ρ, p, E and H denote the Cartesian coordinates velocity, density, pressure, energy and enthalpy. In differential form

$$
\begin{equation*}
\frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial}{\partial x_{i}} \boldsymbol{f}_{i}(\boldsymbol{w})=0 \tag{1.10}
\end{equation*}
$$

where the state and flux vectors are

$$
\boldsymbol{w}=\rho\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
E
\end{array}\right], \quad \boldsymbol{f}_{i}=\rho u_{i}\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
H
\end{array}\right]+p\left[\begin{array}{c}
0 \\
\delta_{i 1} \\
\delta_{i 2} \\
\delta_{i 3} \\
0
\end{array}\right]
$$

Also,

$$
p=(\gamma-1) \rho\left(E-\frac{u^{2}}{2}\right), \quad H=E+\frac{p}{\rho}=\frac{c^{2}}{\gamma-1}+\frac{u^{2}}{2}
$$

where u is the speed and c is the speed of sound

$$
u^{2}=u_{i}^{2}, c^{2}=\frac{\gamma p}{\rho}
$$

Let m_{i} and e denote the momentum components and total energy,

$$
m_{i}=\rho u_{i}, e=\rho E=\frac{p}{\gamma-1}+\frac{m_{i}^{2}}{2 \rho}
$$

Then \boldsymbol{w} and f can be expressed as

$$
\boldsymbol{w}=\left[\begin{array}{c}
\rho \tag{1.11}\\
m_{1} \\
m_{2} \\
m_{3} \\
e
\end{array}\right], \quad \boldsymbol{f}_{i}=u_{i}\left[\begin{array}{c}
\rho \\
m_{1} \\
m_{2} \\
m_{3} \\
e
\end{array}\right]+p\left[\begin{array}{c}
0 \\
\delta_{i 1} \\
\delta_{i 2} \\
\delta_{i 3} \\
u_{i}
\end{array}\right]
$$

In a finite volume scheme the flux needs to be calculated across the interface between each pair of cells. Denoting the face normal and area by n_{i} and S, the flux is $F S$ where

$$
\boldsymbol{f}=n_{i} \boldsymbol{f}_{i}
$$

This can be expressed in terms of the conservative variables \boldsymbol{w} as

$$
\boldsymbol{f}=u_{n}\left[\begin{array}{c}
\rho \tag{1.12}\\
m_{1} \\
m_{2} \\
m_{3} \\
e
\end{array}\right]+p\left[\begin{array}{c}
0 \\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]
$$

where u_{n} is the normal velocity

$$
u_{n}=n_{i} u_{i}=\frac{n_{i} m_{i}}{\rho}
$$

Also

$$
p=(\gamma-1)\left(e-\frac{m_{i}^{2}}{\rho}\right)
$$

In smooth regions of the flow the equations can also be written in quasilinear form as

$$
\frac{\partial \boldsymbol{w}}{\partial t}+A_{i} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0
$$

where A_{i} are the Jacobian matrices

$$
A_{i}=\frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}},
$$

The composite Jacobian matrix at a face with normal vector \vec{n} is

$$
A=A_{i} n_{i}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{w}}
$$

All the entries in \boldsymbol{f}_{i} and \boldsymbol{f} are homogenous of degree 1 in the conservative variables \boldsymbol{w}. It follows that \boldsymbol{f}_{i} and \boldsymbol{f} satisfy the identities

$$
\boldsymbol{f}_{i}=A_{i} \boldsymbol{w}, \boldsymbol{f}=A \boldsymbol{w}
$$

This is the consequence of the fact that if a quantity q can be expressed in terms of the components of a vector \boldsymbol{w} as

$$
q=\prod_{j} \boldsymbol{w}_{j}^{\alpha_{j}}, \text { where } \sum_{j} \alpha_{j}=\alpha,
$$

then

$$
\begin{align*}
\sum_{i} \frac{\partial q}{\partial \boldsymbol{w}_{i}} \boldsymbol{w}_{i} & =\sum_{i} \alpha_{i} \prod_{j} \boldsymbol{w}_{j}^{\alpha_{j}} \tag{1.13}\\
& =\sum_{i} \alpha_{i} q \\
& =\alpha q
\end{align*}
$$

In order to evaluate A note that $\frac{\partial u_{n}}{\partial w}$ and $\frac{\partial p}{\partial w}$ are row vectors

$$
\frac{\partial u_{n}}{\partial \boldsymbol{w}}=\frac{1}{\rho}\left[-u_{n}, n_{1}, n_{2}, n_{3}, 0\right]
$$

and

$$
\frac{\partial p}{\partial \boldsymbol{w}}=(\gamma-1)\left[\frac{u^{2}}{2},-u_{1},-u_{2},-u_{3}, 1\right]
$$

Accordingly

$$
\frac{\partial f}{\partial \boldsymbol{w}}=\frac{\partial}{\partial \boldsymbol{w}}\left(u_{n} \boldsymbol{w}\right)+\left[\begin{array}{c}
0 \tag{1.14}\\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]\left[\frac{\partial p}{\partial \boldsymbol{w}}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
p
\end{array}\right]\left[\frac{\partial u_{n}}{\partial \boldsymbol{w}}\right]
$$

Then the Jacobian matrix can be assembled as the sum of a diagonal matrix and two outer products of rank 1 ,

$$
\begin{aligned}
A & =u_{n} I+\rho\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
H
\end{array}\right]\left[\frac{\partial u_{n}}{\partial w}\right]+\left[\begin{array}{c}
0 \\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]\left[\begin{array}{l}
\left.\frac{\partial p}{\partial w}\right] \\
\\
\end{array}=u_{n} I+\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
H
\end{array}\right]\left[-u_{n}, n_{1}, n_{2}, n_{3}, 0\right]+(\gamma-1)\left[\begin{array}{c}
0 \\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]\left[\frac{u^{2}}{2},-u_{1},-u_{2},-u_{3}, 1\right]\right.
\end{aligned}
$$

Note that every entry in the Jacobian matrix can be expressed in terms of the velocity components u_{i} and the speed of sound c since

$$
H=\frac{c^{2}}{\gamma-1}+\frac{u^{2}}{2}
$$

It may also be directly verified that

$$
f=A \boldsymbol{w}
$$

because u_{n} is homogeneous of degree 0 with the consequence that $\frac{\partial u_{n}}{\partial \boldsymbol{w}}$ is orthogonal to \boldsymbol{w}.

$$
\frac{\partial u_{n}}{\partial \boldsymbol{w}} \boldsymbol{w}=0
$$

while p is homogenous of degree 1 so that

$$
\frac{\partial p}{\partial \boldsymbol{w}} \boldsymbol{w}=p
$$

Thus

$$
A \boldsymbol{w}=u_{n} \boldsymbol{w}+\left[\begin{array}{c}
1 \\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]\left[\frac{\partial p}{\partial \boldsymbol{w}}\right] \boldsymbol{w}=\boldsymbol{f}
$$

Also

$$
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{w}}=A+\frac{\partial A}{\partial \boldsymbol{w}} \boldsymbol{w}=A
$$

because $\frac{\partial A}{\partial \boldsymbol{w}}$ is homogeneous of degree 0 , with the consequence that \boldsymbol{w} is in the null space of $\frac{\partial A}{\partial \boldsymbol{w}}$.
The special structure of the Jacobian matrix enables the direct identification of its eigenvalues and eigenvectors. Any vector in the 3 dimensional subspace orthogonal to the vectors $\frac{\partial u_{n}}{\partial \boldsymbol{w}}$ and $\frac{\partial p}{\partial \boldsymbol{w}}$ is an eigenvector corresponding to the eigenvalue u_{n}, which is thus a triple eigenvalue. It is easy to verify that the vectors

$$
r_{0}=\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
\frac{u^{2}}{2}
\end{array}\right] \quad r_{1}=\left[\begin{array}{c}
0 \\
0 \\
n_{3} \\
-u_{2} \\
u_{2} n_{3}-u_{3} n_{2}
\end{array}\right] \quad r_{2}=\left[\begin{array}{c}
0 \\
-n_{3} \\
0 \\
n_{1} \\
u_{3} n_{1}-u_{1} n_{3}
\end{array}\right] \quad r_{3}=\left[\begin{array}{c}
0 \\
n_{2} \\
-n_{1} \\
0 \\
u_{1} n_{2}-u_{2} n_{1}
\end{array}\right]
$$

are orthogonal to both $\frac{\partial u_{n}}{\partial \boldsymbol{w}}$ and $\frac{\partial p}{\partial \boldsymbol{w}}$. However, r_{1}, r_{2} and r_{3} are not independent since

$$
\sum_{k=1}^{3} n_{k} r_{k}=0
$$

Three independent eigenvectors can be obtained as

$$
v_{1}=n_{1} r_{0}+c r_{1}, v_{2}=n_{2} r_{0}+c r_{2}, v_{3}=n_{3} r_{0}+c r_{3}
$$

where c is the speed of sound.
In order to verify this note that the middle three elements of $r_{k}, k=1,2,3$ are equal to $\vec{i}_{k} \times \vec{n}$, $\underset{\rightarrow}{\text { where }} \vec{i}_{k}$ is the unit vector in the $k^{t h}$ coordinate direction. Also the last element of v_{k} is equal to $\vec{i}_{k} \cdot\left(\vec{n}_{k} \times \vec{u}\right)$. If the vectors v_{k} are not independent they must satisfy the relation of the form

$$
\vec{v}=\sum_{k=1}^{3} \alpha_{k} \vec{v}_{k}=0
$$

for some non zero vector $\vec{\alpha}$. The first element of \vec{v} is

$$
\sum_{k=1}^{3} \alpha_{k} n_{k}=\vec{\alpha} \cdot \vec{n}
$$

For the next three elements of \vec{v} to be zero

$$
\sum_{k=1}^{3} \alpha_{k}\left(\vec{i}_{k} \times \vec{n}\right)=\vec{\alpha} \times \vec{n}=0
$$

which is only possible if $\vec{\alpha}$ is parallel to \vec{n}, so that $\vec{\alpha} \cdot \vec{n} \neq 0$.
In order to identify the remaining eigenvectors denote the column vectors in A as

$$
a_{1}=\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
H
\end{array}\right] \quad a_{2}=\left[\begin{array}{c}
0 \\
n_{1} \\
n_{2} \\
n_{3} \\
u_{n}
\end{array}\right]
$$

Then

$$
\begin{aligned}
\rho \frac{\partial u_{n}}{\partial \boldsymbol{w}} a_{1} & =0, p \frac{\partial u_{n}}{\partial \boldsymbol{w}} a_{2}
\end{aligned}=1 .
$$

Now consider a vector of the form

$$
r=a_{1}+\alpha a_{2}
$$

Then

$$
\begin{align*}
A r & =u_{n}\left(a_{1}+\alpha a_{2}\right)+\alpha a_{1}+c^{2} a_{2} \tag{1.15}\\
& =\lambda\left(a_{1}+\alpha a_{2}\right)=\lambda r
\end{align*}
$$

if

$$
u_{n}+\alpha=\lambda, \alpha u_{n}+c^{2}=\lambda
$$

which is the case if

$$
\alpha^{2}=c^{2}
$$

Thus the vectors

$$
v_{4}=a_{1}+c a_{2}, v_{5}=a_{1}-c a_{2}
$$

are the eigenvectors corresponding to the eigenvalues $u_{n}+c$ and $u_{n}-c$. Written in full

$$
v_{4}=\left[\begin{array}{c}
1 \\
u_{1}+n_{1} c \\
u_{2}+n_{2} c \\
u_{3}+n_{3} c \\
H+u_{n} c
\end{array}\right] \quad v_{5}=\left[\begin{array}{c}
1 \\
u_{1}-n_{1} c \\
u_{2}-n_{2} c \\
u_{3}-n_{3} c \\
H-u_{n} c
\end{array}\right]
$$

1.3 Two dimensional flow

The equations of two dimensional flow have the simpler form

$$
\frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial \boldsymbol{f}_{1}(\boldsymbol{w})}{\partial x_{1}}+\frac{\partial \boldsymbol{f}_{2}(\boldsymbol{w})}{\partial x_{2}}=0
$$

where the state and flux vectors are

$$
\boldsymbol{w}=\left[\begin{array}{c}
p \\
m_{1} \\
m_{2} \\
e
\end{array}\right], \boldsymbol{f}_{1}=u_{1} \boldsymbol{w}+p\left[\begin{array}{c}
0 \\
1 \\
0 \\
u_{1}
\end{array}\right], \boldsymbol{f}_{2}=u_{2} \boldsymbol{w}+p\left[\begin{array}{c}
0 \\
0 \\
1 \\
u_{2}
\end{array}\right]
$$

Now the flux vector normal to an edge with normal components n_{1} and n_{2} is

$$
\boldsymbol{f}=n_{1} \boldsymbol{f}_{1}+n_{2} \boldsymbol{f}_{2}
$$

The corresponding Jacobian matrix is

$$
\begin{aligned}
A & =\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{w}}=n_{1} \frac{\partial \boldsymbol{f}_{1}}{\partial \boldsymbol{w}}+n_{2} \frac{\partial \boldsymbol{f}_{2}}{\partial \boldsymbol{w}} \\
& =u_{n} I+\rho\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
H
\end{array}\right] \frac{\partial u_{n}}{\partial \boldsymbol{w}}+\left[\begin{array}{c}
0 \\
n_{1} \\
n_{2} \\
u_{n}
\end{array}\right] \frac{\partial p}{\partial \boldsymbol{w}}
\end{aligned}
$$

The eigenvalues of A are

$$
u_{n}, \quad u_{n}, \quad u_{n}+c, u_{n}-c
$$

with corresponding eigenvectors

$$
v_{1}=\left[\begin{array}{c}
1 \\
u_{1} \\
u_{2} \\
\frac{u^{2}}{2}
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
0 \\
-c n_{2} \\
c n_{1} \\
c\left(u_{2} n_{1}-u_{1} n_{2}\right)
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
1 \\
u_{1}+n_{1} c \\
u_{2}+n_{2} c \\
H+u_{n} c
\end{array}\right] \quad v_{4}=\left[\begin{array}{c}
1 \\
u_{1}-n_{1} c \\
u_{2}-n_{2} c \\
H-u_{n} c
\end{array}\right]
$$

1.4 One dimensional flow

The equations of one dimensional flow are further simplified to

$$
\frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial}{\partial x} \boldsymbol{f}(\boldsymbol{w})=0
$$

where the state vector is

$$
\boldsymbol{w}=\left[\begin{array}{c}
\rho \\
\rho u \\
\rho E
\end{array}\right]=\left[\begin{array}{c}
\rho \\
m \\
e
\end{array}\right]
$$

and the flux vector is

$$
\boldsymbol{f}=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u H
\end{array}\right]=u \boldsymbol{w}+\left[\begin{array}{c}
0 \\
u \\
u p
\end{array}\right]
$$

Now the Jacobian matrix is

$$
A=\frac{\partial f}{\partial \boldsymbol{w}}=u I+\rho\left[\begin{array}{c}
1 \\
u \\
H
\end{array}\right] \frac{\partial u}{\partial \boldsymbol{w}}+\left[\begin{array}{l}
0 \\
1 \\
u
\end{array}\right] \frac{\partial p}{\partial \boldsymbol{w}}=u I+\left[\begin{array}{c}
1 \\
u \\
H
\end{array}\right][-u, 1,0]+(\gamma-1)\left[\begin{array}{l}
0 \\
1 \\
u
\end{array}\right]\left[\frac{u^{2}}{2},-u, 1\right]
$$

The eigenvalues of A are

$$
u, u+c, u-c
$$

with the corresponding eigenvectors

$$
v_{1}=\left[\begin{array}{c}
1 \\
u \\
\frac{u^{2}}{2}
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 \\
u+c \\
H+u c
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
1 \\
u-c \\
H-u c
\end{array}\right]
$$

1.5 Transformation to alternative sets of variables: primitive form

The quasi-linear equations of gas dynamics can be simplified in various ways by transformations to alternative sets of variables.

Consider the equations of three dimensional flow

$$
\frac{\partial \boldsymbol{w}}{\partial t}+A_{i} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0
$$

where

$$
A_{i}=\frac{\partial f}{\partial \boldsymbol{w}_{i}}
$$

Under a transformation to new set of variables $\tilde{\boldsymbol{w}}$

$$
\tilde{M} \frac{\partial \tilde{\boldsymbol{w}}}{\partial t}+A_{i} \tilde{M} \frac{\partial \tilde{\boldsymbol{w}}}{\partial x_{i}}=0
$$

where

$$
\tilde{M}=\frac{\partial \boldsymbol{w}}{\partial \tilde{\boldsymbol{w}}}
$$

Multiplying by $\frac{\partial \tilde{\boldsymbol{w}}}{\partial \boldsymbol{w}}=M^{-1}$,

$$
\frac{\partial \tilde{\boldsymbol{w}}}{\partial t}+\tilde{A}_{i} \frac{\partial \tilde{\boldsymbol{w}}}{\partial x_{i}}=0
$$

where

$$
\tilde{A}_{i}=\tilde{M}^{-1} A_{i} \tilde{M}, A_{i}=\tilde{M} \tilde{A}_{i} \tilde{M}^{-1}
$$

In the case of the primitive variables,

$$
\tilde{\boldsymbol{w}}=\left[\begin{array}{c}
\rho \\
u_{1} \\
u_{2} \\
u_{3} \\
p
\end{array}\right]
$$

we find that

$$
\begin{gathered}
\tilde{M}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
u_{1} & \rho & 0 & 0 & 0 \\
u_{2} & 0 & \rho & 0 & 0 \\
u_{3} & 0 & 0 & \rho & 0 \\
\frac{u^{2}}{2} & u_{1} & u_{2} & u_{3} & \frac{1}{\gamma-1}
\end{array}\right] \\
\tilde{M}^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-\frac{u_{1}}{\rho} & \frac{1}{\rho} & 0 & 0 & 0 \\
-\frac{u_{2}}{\rho} & 0 & \frac{1}{\rho} & 0 & 0 \\
-\frac{u_{3}}{\rho} & 0 & 0 & \frac{1}{\rho} & 0 \\
(\gamma-1) \frac{u^{2}}{2} & -(\gamma-1) u_{1} & -(\gamma-1) u_{2} & -(\gamma-1) u_{2} & \gamma-1
\end{array}\right]
\end{gathered}
$$

and

$$
A_{1}=\left[\begin{array}{ccccc}
u_{1} & p & 0 & 0 & 0 \\
0 & u_{1} & 0 & 0 & \frac{1}{\rho} \\
0 & 0 & u_{1} & 0 & 0 \\
0 & 0 & 0 & u_{1} & 0 \\
0 & \rho c^{2} & 0 & 0 & u_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& A_{2}=\left[\begin{array}{ccccc}
u_{2} & 0 & p & 0 & 0 \\
0 & u_{2} & 0 & 0 & 0 \\
0 & 0 & u_{2} & 0 & \frac{1}{\rho} \\
0 & 0 & 0 & u_{2} & 0 \\
0 & 0 & \rho c^{2} & 0 & u_{2}
\end{array}\right] \\
& A_{3}
\end{aligned}=\left[\begin{array}{ccccc}
u_{3} & 0 & 0 & p & 0 \\
0 & u_{3} & 0 & 0 & 0 \\
0 & 0 & u_{3} & 0 & 0 \\
0 & 0 & 0 & u_{3} & \frac{1}{\rho} \\
0 & 0 & 0 & \rho c^{2} & u_{3}
\end{array}\right],
$$

1.6 Symmetric form

Consider the equations of one dimensional flow in primitive variables

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0 \\
\frac{\partial p}{\partial t}+\rho c^{2} \frac{\partial u}{\partial x}+u \frac{\partial p}{\partial x}=0
\end{gathered}
$$

Then subtracting the first equation multiplied by c^{2} from the third equation, we find that

$$
\frac{\partial p}{\partial t}-c^{2} \frac{\partial \rho}{\partial t}+u\left(\frac{\partial p}{\partial x}-c^{2} \frac{\partial \rho}{\partial x}\right)=0
$$

This is equivalent to a statement that the entropy

$$
S=\log \left(\frac{p}{\rho^{\gamma}}\right)=\log p-\gamma \log \rho
$$

is constant since

$$
d S=\frac{d p}{p}-\gamma \frac{d \rho}{\rho}=\frac{1}{p}\left(d p-c^{2} d \rho\right)
$$

If the entropy is constant, then

$$
d p=c^{2} d \rho
$$

With this substitution the first equation becomes,

$$
\frac{1}{c^{2}} \frac{\partial p}{\partial t}+\frac{u}{c^{2}} \frac{\partial p}{\partial x}+\rho \frac{\partial u}{\partial x}=0
$$

and now the first two equations can be rescaled as

$$
\begin{gathered}
\frac{1}{\rho c} \frac{\partial p}{\partial t}+\frac{u}{\rho c} \frac{\partial p}{\partial x}+c \frac{\partial u}{\partial x}=0 \\
\frac{\partial u}{\partial t}+\frac{c}{\rho c} \frac{\partial p}{\partial x}+u \frac{\partial u}{\partial x}=0
\end{gathered}
$$

Thus if we write the equations in terms of the differential variables

$$
d \overline{\boldsymbol{w}}=\left[\begin{array}{c}
\frac{d p}{\rho c} \\
d u \\
d p-c^{2} d \rho
\end{array}\right]
$$

we obtain the symmetric form

$$
\frac{\partial \overline{\boldsymbol{w}}}{\partial t}+\bar{A} \frac{\partial \overline{\boldsymbol{w}}}{\partial x}=0
$$

where

$$
\bar{A}=\left[\begin{array}{lll}
u & c & 0 \\
c & u & 0 \\
0 & 0 & u
\end{array}\right]
$$

These transformations can be generalized to the equations of three dimensional flow. A convenient scaling is to set

$$
d \overline{\boldsymbol{w}}=\left[\begin{array}{c}
\frac{d p}{c^{2}} \tag{1.16}\\
\frac{\rho}{c} d u_{1} \\
\frac{\rho}{c} d u_{2} \\
\frac{\rho}{c} d u_{3} \\
\frac{d p}{c^{2}}-d \rho
\end{array}\right]
$$

This eliminates the density from the transformation matrices $\bar{M}=\frac{d \boldsymbol{w}}{d \overline{\boldsymbol{w}}}$ and $\bar{M}^{-1}=\frac{d \overline{\boldsymbol{w}}}{d \boldsymbol{w}}$. The equations now take the form

$$
\begin{equation*}
\frac{\partial \overline{\boldsymbol{w}}}{\partial t}+\bar{A}_{i} \frac{\partial \overline{\boldsymbol{w}}}{\partial x_{i}}=0 \tag{1.17}
\end{equation*}
$$

where the transformed Jacobian matrices

$$
\begin{equation*}
\bar{A}_{i}=\bar{M}^{-1} A_{i} \bar{M} \tag{1.18}
\end{equation*}
$$

are simultaneously symmetrized as

$$
\begin{align*}
& \bar{A}_{1}=\left[\begin{array}{ccccc}
u_{1} & c & 0 & 0 & 0 \\
c & u_{1} & 0 & 0 & 0 \\
0 & 0 & u_{1} & 0 & 0 \\
0 & 0 & 0 & u_{1} & 0 \\
0 & 0 & 0 & 0 & u_{1}
\end{array}\right] \tag{1.19}\\
& \bar{A}_{2}=\left[\begin{array}{ccccc}
u_{2} & 0 & c & 0 & 0 \\
0 & u_{2} & 0 & 0 & 0 \\
c & 0 & u_{2} & 0 & 0 \\
0 & 0 & 0 & u_{2} & 0 \\
0 & 0 & 0 & 0 & u_{2}
\end{array}\right] \tag{1.20}\\
& \bar{A}_{3}=\left[\begin{array}{ccccc}
u_{3} & 0 & 0 & c & 0 \\
0 & u_{3} & 0 & 0 & 0 \\
0 & 0 & u_{3} & 0 & 0 \\
c & 0 & 0 & u_{3} & 0 \\
0 & 0 & 0 & 0 & u_{3}
\end{array}\right] \tag{1.21}
\end{align*}
$$

while

$$
\bar{M}=\frac{\partial \boldsymbol{w}}{\partial \overline{\boldsymbol{w}}}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \tag{1.22}\\
u_{1} & c & 0 & 0 & -u_{1} \\
u_{2} & 0 & c & 0 & -u_{2} \\
u_{3} & 0 & 0 & c & -u_{3} \\
H & c u_{1} & c u_{2} & c u_{3} & -\frac{u^{2}}{2}
\end{array}\right]
$$

and

$$
\bar{M}^{-1}=\frac{\partial \overline{\boldsymbol{w}}}{\partial \boldsymbol{w}}=\left[\begin{array}{ccccc}
\bar{\gamma} \frac{u^{2}}{2} & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & -\bar{\gamma} \tag{1.23}\\
-\frac{u_{1}}{c} & \frac{1}{c} & 0 & 0 & 0 \\
-\frac{u_{c}}{c} & 0 & \frac{1}{c} & 0 & 0 \\
-\frac{u_{3}}{c} & 0 & 0 & \frac{1}{c} & 0 \\
\bar{\gamma}\left(u^{2}-H\right) & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma}
\end{array}\right]
$$

where

$$
\begin{equation*}
\bar{\gamma}=\frac{\gamma-1}{c^{2}} \tag{1.24}
\end{equation*}
$$

The combined Jacobian matrix

$$
\begin{equation*}
A=n_{i} A_{i} \tag{1.25}
\end{equation*}
$$

can now be decomposed as

$$
\begin{equation*}
A=n_{i} \bar{M} \bar{A}_{i} \bar{M}^{-1} \tag{1.26}
\end{equation*}
$$

Corresponding to the fact that \bar{A} is symmetric one can find a set of orthogonal eigenvectors, which may be normalized to unit length. Then one can express

$$
\bar{A}=\bar{V} \Lambda \bar{V}^{-1}
$$

where the diagonal matrix Λ contains the eigenvalues $u_{n}, u, u_{n}, u_{n}+c$ and $u_{n}-c$ as its elements. The matrix \bar{V} containing the corresponding eigenvectors as its columns is

$$
\bar{V}=\left[\begin{array}{ccccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \tag{1.27}\\
\frac{n 1}{\sqrt{2}} & \frac{n 1}{\sqrt{2}} & 0 & -n_{3} & n_{2} \\
\frac{n 2}{\sqrt{2}} & \frac{n_{2}}{\sqrt{2}} & n_{3} & 0 & -n_{1} \\
\frac{n 3}{\sqrt{2}} & \frac{n 3}{\sqrt{2}} & -n_{2} & n_{1} & 0 \\
0 & 0 & 1 & n_{2} & n_{3}
\end{array}\right]
$$

and $\bar{V}^{-1}=\bar{V}^{T}$. The Jacobian matrix can now be expressed as

$$
\begin{equation*}
A=M \Lambda M^{-1} \tag{1.28}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\bar{M} \bar{V}, M^{-1}=\bar{V}^{T} \bar{M}^{-1} \tag{1.29}
\end{equation*}
$$

This decomposition is often useful.
Since

$$
c^{2}=\frac{d p}{d \rho}
$$

it follows that in isentropic flow

$$
2 c d c=\frac{\gamma}{\rho} d \rho-\frac{\gamma p}{\rho^{2}} d \rho=\frac{\gamma}{\rho} d \rho-c^{2} d \rho=\frac{\gamma-1}{\rho} d p
$$

Thus

$$
\frac{d p}{\rho c}=\frac{2}{\gamma-1} d c
$$

so the equations can also be expressed in the same form, equations $(1.17),(1.18),(1.19),(1.20)$ and (1.21) for the variables

$$
\overline{\boldsymbol{w}}=\left[\begin{array}{c}
\frac{2 c}{\gamma-1} \\
u_{1} \\
u_{2} \\
u_{3} \\
S
\end{array}\right]
$$

with the transformation matrices

$$
\bar{M}=\frac{d \boldsymbol{w}}{d \overline{\boldsymbol{w}}}=\left[\begin{array}{ccccc}
\frac{\rho}{c} & 0 & 0 & 0 & -\frac{p}{c^{2}} \\
\frac{\rho u_{1}}{c} & \rho & 0 & 0 & -\frac{p u_{1}}{c^{2}} \\
\frac{\rho u_{2}}{c} & 0 & \rho & 0 & -\frac{p u_{2}}{c^{2}} \\
\frac{\rho u_{3}}{c} & 0 & 0 & \rho & -\frac{p u_{3}}{c^{2}} \\
\frac{\rho H}{c} & \rho u_{1} & \rho u_{2} & \rho u_{3} & -\rho \frac{p}{c} \frac{u^{2}}{2}
\end{array}\right]
$$

and

$$
\bar{M}^{-1}=\frac{d \overline{\boldsymbol{w}}}{d \boldsymbol{w}}=\left[\begin{array}{ccccc}
\bar{\gamma} \frac{u^{2}}{2} & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} \\
-\frac{u_{1}}{\rho} & \frac{1}{\rho} & 0 & 0 & 0 \\
-\frac{u_{2}}{\rho} & 0 & \frac{1}{\rho} & 0 & 0 \\
-\frac{u_{3}}{\rho} & 0 & 0 & \frac{1}{\rho} & 0 \\
\overline{\frac{\gamma}{p}}\left(u^{2}-H\right) & -\frac{\bar{\gamma} u_{1}}{p} & -\frac{\bar{\gamma} u_{2}}{p} & -\frac{\bar{\gamma} u_{3}}{p} & \frac{\bar{\gamma}}{p}
\end{array}\right]
$$

where

$$
\bar{\gamma}=\frac{\gamma-1}{\rho c}
$$

1.7 Riemann invariants

In the case of one dimensional isentropic flow these equations reduce to

$$
\begin{gathered}
\frac{2}{\gamma-1} \frac{\partial c}{\partial t}+\frac{2 u}{\gamma-1} \frac{\partial c}{\partial x}+c \frac{\partial u}{\partial x}=0 \\
\frac{\partial u}{\partial t}+\frac{2 c}{\gamma-1} \frac{\partial c}{\partial x}+u \frac{\partial u}{\partial x}=0 \\
\frac{\partial S}{\partial t}+u \frac{\partial S}{\partial x}=0
\end{gathered}
$$

Now the first two equations can be added and subtracted to yield

$$
\frac{\partial R^{+}}{\partial t}+(u+c) \frac{\partial R^{+}}{\partial x}=0
$$

and

$$
\frac{\partial R^{-}}{\partial t}+(u-c) \frac{\partial R^{-}}{\partial x}=0
$$

where R^{+}and R^{-}are the Riemann invariants

$$
R^{+}=u+\frac{2 c}{\gamma-1}, R^{-}=u-\frac{2 c}{\gamma-1}
$$

which remain constant as they are transported at the wave speeds $u+c$ and $u-c$. The Riemann invariants prove to be useful in the formulation of far field boundary conditions designed to minimize wave reflection.

1.8 Symmetric hyperbolic form

Equation (1.17) can be written in terms of the conservative variables as

$$
\frac{\partial \overline{\boldsymbol{w}}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial t}+\bar{A}_{i} \frac{\partial \overline{\boldsymbol{w}}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0
$$

Here $\frac{\partial \bar{w}}{\partial \boldsymbol{w}}=\bar{M}^{-1}$. Now multiplying by $\bar{M}^{T^{-1}}$ the equation is reduced to the symmetric hyperbolic form

$$
\begin{equation*}
Q \frac{\partial \boldsymbol{w}}{\partial t}+\hat{A}_{i} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0 \tag{1.30}
\end{equation*}
$$

where Q is symmetric and positive definite and the matrices \hat{A}_{i} are symmetric

$$
\begin{equation*}
Q=\left(M M^{T}\right)^{-1}, \hat{A}_{i}=\bar{M}^{T^{-1}} \bar{A}_{i} \bar{M}^{-1} \tag{1.31}
\end{equation*}
$$

This form could alternatively be derived by multiplying the conservative form (1.2) of the equations by Q. Then

$$
\begin{aligned}
Q \frac{\partial \boldsymbol{f}_{i}}{\partial x_{i}} & =\bar{M}^{T^{-1}} \bar{M}^{-1} \frac{\partial \boldsymbol{f}}{\partial x_{i}} \\
& =\bar{M}^{T^{-1}} \bar{M}^{-1} A_{i} \frac{\partial \boldsymbol{w}}{\partial x_{i}} \\
& =\bar{M}^{T^{-1}} \bar{M}^{-1} M \bar{A}_{i} \bar{M}^{-1} \frac{\partial \boldsymbol{w}}{\partial x_{i}} \\
& =\bar{M}^{T^{-1}} A_{i} \bar{M}^{-1} \frac{\partial \boldsymbol{w}}{\partial x_{i}}
\end{aligned}
$$

A symmetric hyperbolic form can actually be obtained for any choice of the dependent variables. For example equation (1.17) could be written in terms of the primitive variables as

$$
N \frac{\partial \tilde{\boldsymbol{w}}}{\partial t}+\bar{A}_{i} N \frac{\partial \tilde{\boldsymbol{w}}}{\partial x_{i}}=0
$$

where

$$
N=\frac{\partial \overline{\boldsymbol{w}}}{\partial \tilde{\boldsymbol{w}}}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \frac{1}{c^{2}} \\
0 & \frac{\rho}{c} & 0 & 0 & 0 \\
0 & 0 & \frac{\rho}{c} & 0 & 0 \\
0 & 0 & 0 & \frac{\rho}{c} & 0 \\
-1 & 0 & 0 & 0 & \frac{1}{c^{2}}
\end{array}\right]
$$

Then multiplying by N^{T} we obtain the symmetric hyperbolic form

$$
N^{T} N \frac{\partial \tilde{\boldsymbol{w}}}{\partial t}+N^{T} \bar{A}_{i} N \frac{\partial \tilde{\boldsymbol{w}}}{\partial x_{i}}=0
$$

1.9 Entropy variables

A particular choice of variables which symmetrizes the equations can be derived from functions of the entropy

$$
\begin{equation*}
S=\log \left(\frac{p}{\rho \gamma}\right)=\log p-\gamma \log \rho \tag{1.32}
\end{equation*}
$$

The last equation of (1.17) is equivalent to the statement that

$$
\rho \frac{\partial S}{\partial t}+\rho u_{i} \frac{\partial S}{\partial x_{i}}=0
$$

which can be combined with the mass conservation equation multiplied by S

$$
S \frac{\partial \rho}{\partial t}+S \frac{\partial}{\partial x_{i}}\left(\rho u_{i}\right)=0
$$

to yield the entropy conservation law

$$
\begin{equation*}
\frac{\partial(\rho S)}{\partial t}+\frac{\partial\left(\rho u_{i} S\right)}{\partial x_{i}}=0 \tag{1.33}
\end{equation*}
$$

This is a special case of a generalized entropy function defined as follows. Given a system of conservation laws

$$
\begin{equation*}
\frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial}{\partial x_{i}} \boldsymbol{f}_{i}(\boldsymbol{w})=0 \tag{1.34}
\end{equation*}
$$

Suppose that we can find a scalar function $U(\boldsymbol{w})$ such that

$$
\begin{equation*}
\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}}=\frac{\partial G_{i}}{\partial \boldsymbol{w}} \tag{1.35}
\end{equation*}
$$

and $U(\boldsymbol{w})$ is a convex function of \boldsymbol{w}. Then $U(\boldsymbol{w})$ is an entropy function with an entropy flux $G_{i}(\boldsymbol{w})$ since multiplying equation (1.34) by $\frac{\partial U}{\partial w}$ we obtain

$$
\begin{equation*}
\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0 \tag{1.36}
\end{equation*}
$$

and using (1.35) this equivalent to

$$
\frac{\partial U(\boldsymbol{w})}{\partial t}+\frac{\partial G_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0
$$

which is in turn equivalent to the generalized entropy conservation law

$$
\begin{equation*}
\frac{\partial U(\boldsymbol{w})}{\partial t}+\frac{\partial}{\partial x_{i}} G_{i}=0 \tag{1.37}
\end{equation*}
$$

Now introduce dependent variables

$$
\begin{equation*}
v^{T}=\frac{\partial U}{\partial \boldsymbol{w}} \tag{1.38}
\end{equation*}
$$

Then the equations are symmetrized. Define the scalar functions

$$
\begin{equation*}
Q(v)=v^{T} \boldsymbol{w}-U(\boldsymbol{w}) \tag{1.39}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i}(v)=v^{T} \boldsymbol{f}_{i}-G_{i}(\boldsymbol{w}) \tag{1.40}
\end{equation*}
$$

Then

$$
\frac{\partial Q}{\partial v}=\boldsymbol{w}^{T}+v^{T} \frac{\partial \boldsymbol{w}}{\partial v}-\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}=\boldsymbol{w}^{T}
$$

and

$$
\frac{\partial R_{i}}{\partial v}=\boldsymbol{f}_{i}^{T}+v^{T} \frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}-\frac{\partial G_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}=\boldsymbol{f}_{i}^{T}
$$

Hence $\frac{\partial w}{\partial v}$ is symmetric.

$$
\frac{\partial \boldsymbol{w}_{j}}{\partial v_{k}}=\frac{\partial^{2} Q}{\partial v_{j} \partial v_{k}}=\frac{\partial \boldsymbol{w}_{k}}{\partial v_{j}}
$$

and $\frac{\partial f_{i}}{\partial v}$ is symmetric

$$
\frac{\partial \boldsymbol{f}_{i j}}{\partial v_{k}}=\frac{\partial^{2} R_{i}}{\partial v_{j} \partial v_{k}}=\frac{\partial \boldsymbol{f}_{i k}}{\partial v_{i}}
$$

and correspondingly

$$
\frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}=A_{i} \frac{\partial \boldsymbol{w}}{\partial v}
$$

is symmetric. Thus the conservation law (1.34) is converted to the symmetric form

$$
\begin{equation*}
\frac{\partial \boldsymbol{w}}{\partial v} \frac{\partial v}{\partial t}+A_{i} \frac{\partial \boldsymbol{w}}{\partial v} \frac{\partial v}{\partial x_{i}}=0 \tag{1.41}
\end{equation*}
$$

Multiplying the conservation law (1.34) by $\frac{\partial w}{\partial v}$ from the left produces the alternative symmetric form

$$
\begin{equation*}
\frac{\partial v}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial t}+\frac{\partial v}{\partial \boldsymbol{w}} A_{i} \frac{\partial \boldsymbol{w}}{\partial x_{i}}=0 \tag{1.42}
\end{equation*}
$$

since

$$
\frac{\partial v}{\partial \boldsymbol{w}} A_{i}=\frac{\partial v}{\partial \boldsymbol{w}}\left(A_{i} \frac{\partial \boldsymbol{w}}{\partial v}\right) \frac{\partial v}{\partial \boldsymbol{w}}
$$

Moreover, multiplying (1.34) by v^{T} recovers equation (1.36) and the corresponding entropy conservation law (1.37).

Conversely, if $U(\boldsymbol{w})$ satisfies the conservation law (1.37), then

$$
\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial t}=-\frac{\partial G_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial x_{i}}
$$

but

$$
\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial t}=-\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial x_{i}}
$$

These can both hold for all $\frac{\partial w}{\partial x_{i}}$ only if

$$
\frac{\partial U}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{w}}=\frac{\partial G_{i}}{\partial \boldsymbol{w}}
$$

so $u(\boldsymbol{w})$ is an entropy function if it is a convex function of \boldsymbol{w}.

The property of convexity enables $U(\boldsymbol{w})$ to be treated as a generalized energy, since u becomes unbounded if \boldsymbol{w} becomes unbounded. It can be shown that $-\rho S$ is a convex function of \boldsymbol{w}. Accordingly it follows from the entropy equation (1.33) that we can take

$$
\begin{equation*}
U(\boldsymbol{w})=\frac{\rho S}{\gamma-1}=\frac{\gamma}{\gamma-1} \rho \log \rho-\frac{\rho}{\gamma-1} \log p \tag{1.43}
\end{equation*}
$$

as a generalized entropy function where the scaling factor $\frac{1}{\gamma-1}$ is introduced to simplify the resulting expressions.

Using the formula

$$
\frac{\partial p}{\partial \boldsymbol{w}}=(\gamma-1)\left[\frac{u^{2}}{2},-u_{1},-u_{2},-u_{3}, 1\right]
$$

we find that

$$
\begin{equation*}
v^{T}=\frac{\partial u}{\partial \boldsymbol{w}}=\left[\frac{\gamma-S}{\gamma-1} \frac{\rho}{p} \frac{u^{2}}{2}, \frac{\rho u_{1}}{p}, \frac{\rho u_{2}}{p}, \frac{\rho u_{3}}{p}, \frac{-\rho}{p}\right] \tag{1.44}
\end{equation*}
$$

where

$$
u^{2}=u_{i} u_{i}
$$

The reverse transformation is

$$
\begin{equation*}
\boldsymbol{w}^{T}=p\left[-v_{5}, v_{2}, v_{3}, v_{4},\left(1-\frac{1}{2}\left(v_{2}^{2}+v_{3}^{2}+v_{4}^{2}\right) v_{5}\right]\right. \tag{1.45}
\end{equation*}
$$

Now the scalar functions $Q(v)$ and $R_{i}(v)$ defined by equations (1.39) and (1.40) reduce to

$$
\begin{equation*}
Q(v)=\rho, R_{i}(v)=m_{i}=\rho u_{i} \tag{1.46}
\end{equation*}
$$

Accordingly

$$
\boldsymbol{w}^{T}=\frac{\partial p}{\partial v}=\frac{\partial p}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}
$$

and

$$
\boldsymbol{f}_{i}^{T}=\frac{\partial m_{i}}{\partial v}=\frac{\partial m_{i}}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial v}
$$

where

$$
\frac{\partial \rho}{\partial \boldsymbol{w}}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\frac{\partial m_{i}}{\partial \boldsymbol{w}}=\left[\begin{array}{llll}
0 & \delta_{i 1} & \delta_{i 2} & \delta_{i 3}
\end{array}\right]
$$

Thus the first four rows of $\frac{\partial \boldsymbol{w}}{\partial v}$ consist of $\boldsymbol{w}^{T}, \boldsymbol{f}_{1}^{T}, \boldsymbol{f}_{2}^{T}$ and \boldsymbol{f}_{3}^{T}, and correspondingly since $\frac{\partial \boldsymbol{w}}{\partial v}$ is symmetric its first four columns are $\boldsymbol{w}, \boldsymbol{f}_{1}, \boldsymbol{f}_{2}$ and \boldsymbol{f}_{3}. The only remaining element is $\frac{\partial \boldsymbol{w}_{5}}{\partial v_{5}}$. A direct calculation reveals that

$$
\frac{\partial \boldsymbol{w}_{5}}{\partial v_{5}}=\rho E^{2}+\left(E+\frac{u^{2}}{2}\right) p
$$

Thus

$$
\begin{aligned}
\frac{\partial \boldsymbol{w}}{\partial v} & =\left[\begin{array}{ccccc}
\rho & \rho u_{1} & \rho u_{2} & \rho u_{3} & \rho E \\
\rho u_{1} & \rho u_{1}^{2}+p & \rho u_{2} u_{1} & \rho u_{3} u_{1} & \rho u_{1} E+u_{1} p \\
\rho u_{2} & \rho u_{1} u_{2} & \rho u_{2}^{2}+p & \rho u_{3} u_{2} & \rho u_{2} E+u_{2} p \\
\rho u_{3} & \rho u_{1} u_{3} & \rho u_{2} u_{3} & \rho u_{3}^{2}+p & \rho u_{3} E+u_{3} p \\
\rho E & \rho u_{1} E+u_{1} p & \rho u_{2} E+u_{2} p & \rho u_{3} E+u_{3} p & \rho E^{2}+\left(E+\frac{u^{2}}{2}\right) p
\end{array}\right] \\
& =\frac{1}{\rho} \boldsymbol{w} \boldsymbol{w}^{T}+p\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & u_{1} \\
0 & 0 & 1 & 0 & u_{2} \\
0 & 0 & 0 & 1 & u_{3} \\
0 & u_{1} & u_{2} & u_{3} & E+\frac{u^{2}}{2}
\end{array}\right]
\end{aligned}
$$

