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Abstract

Lecture 4 covers analysis of the equations of gas dynamics
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Lecture 4
Analysis of the equations of gas dynamics

1.1 Coordinate Transformations

In order to calculate solutions for flows in complex geometric domains, it is often useful to intro-
duce body–fitted coordinates through global, or, as in the case of isoparametric elements, local
transformations. With the body now coinciding with a coordinate surface, it is much easier to en-
force the boundary conditions accurately. Suppose that the mapping to computational coordinates
(ξ1, ξ2, ξ3) is defined by the transformation matrices

Kij =
∂xi
∂ξj

, K−1
ij =

∂ξi
∂xj

, J = det(K). (1.1)

The Navier-Stokes equations (?? -?? ) become

∂

∂t
(Jw) +

∂

∂ξi
Fi(w) = 0. (1.2)

Here the transformed fluxes are
Fi = Sijfj , (1.3)

where
S = JK−1. (1.4)

The elements of S are the cofactors of K, and in a finite volume discretization they are just the face
areas of the computational cells projected in the x1, x2, and x3 directions. Using the permutation
tensor εijk we can express the elements of S as

Sij =
1
2
εjpqεirs

∂xp
∂ξr

∂xq
∂ξs

. (1.5)

Then

∂

∂ξi
Sij =

1
2
εjpqεirs

(
∂2xp
∂ξr∂ξi

∂xq
∂ξs

+
∂xp
∂ξr

∂2xq
∂ξs∂ξi

)
= 0. (1.6)

Defining scaled contravariant velocity components as

Ui = Sijuj , (1.7)
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the flux formulas may be expanded as

Fi =


ρUi

ρUiu1 + Si1p
ρUiu2 + Si2p
ρUiu3 + Si3p

ρUiH

 . (1.8)

If we choose a coordinate system so that the boundary is at ξl = 0, the wall boundary condition
for inviscid flow is now

Ul = 0. (1.9)

1.2 Analysis of the equations of gas dynamics: the Jacobian ma-
trices

The Euler equations for the three-dimensional flow of an inviscid gas can be written in integral
form, using the summation convention, as

d

dt

∫
Σ
wdV +

∫
dΣ

f inidS = 0

where Σ is the domain, dΣ its boundary, −→n the normal to the boundary, and dV and dS are
the volume and area elements. Let xi, ui, ρ, p, E and H denote the Cartesian coordinates velocity,
density, pressure, energy and enthalpy. In differential form

∂w

∂t
+

∂

∂xi
f i(w) = 0 (1.10)

where the state and flux vectors are

w = ρ


1
u1

u2

u3

E

 , f i = ρui


1
u1

u2

u3

H

+ p


0
δi1
δi2
δi3
0


Also,

p = (γ − 1)ρ(E − u2

2
), H = E +

p

ρ
=

c2

γ − 1
+
u2

2

where u is the speed and c is the speed of sound

u2 = u2
i , c

2 =
γp

ρ

Let mi and e denote the momentum components and total energy,

mi = ρui, e = ρE =
p

γ − 1
+
m2
i

2ρ

Then w and f can be expressed as
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w =


ρ
m1

m2

m3

e

 , f i = ui


ρ
m1

m2

m3

e

+ p


0
δi1
δi2
δi3
ui

 (1.11)

In a finite volume scheme the flux needs to be calculated across the interface between each pair
of cells. Denoting the face normal and area by ni and S, the flux is FS where

f = nif i

This can be expressed in terms of the conservative variables w as

f = un


ρ
m1

m2

m3

e

+ p


0
n1

n2

n3

un

 (1.12)

where un is the normal velocity

un = niui =
nimi

ρ

Also

p = (γ − 1)(e− m2
i

ρ
)

In smooth regions of the flow the equations can also be written in quasilinear form as

∂w

∂t
+Ai

∂w

∂xi
= 0

where Ai are the Jacobian matrices

Ai =
∂f i
∂w

,

The composite Jacobian matrix at a face with normal vector −→n is

A = Aini =
∂f

∂w

All the entries in f i and f are homogenous of degree 1 in the conservative variables w . It follows
that f i and f satisfy the identities

f i = Aiw , f = Aw

This is the consequence of the fact that if a quantity q can be expressed in terms of the components
of a vector w as

q =
∏
j

w
αj

j ,where
∑
j

αj = α,

then
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∑
i

∂q

∂w i
w i =

∑
i

αi
∏
j

w
αj

j (1.13)

=
∑
i

αiq

= αq

In order to evaluate A note that ∂un
∂w and ∂p

∂w are row vectors

∂un
∂w

=
1
ρ

[−un, n1, n2, n3, 0]

and
∂p

∂w
= (γ − 1)

[
u2

2
,−u1,−u2,−u3, 1

]
Accordingly

∂f
∂w = ∂

∂w (unw)+


0
n1

n2

n3

un


[ ∂p∂w ]+


0
0
0
0
p


[∂un
∂w ]

(1.14)

Then the Jacobian matrix can be assembled as the sum of a diagonal matrix and two outer products
of rank 1,

A = unI + ρ


1
u1

u2

u3

H


[∂un
∂w ] +


0
n1

n2

n3

un


[ ∂p∂w ]

= unI +


1
u1

u2

u3

H


[−un, n1, n2, n3, 0] + (γ − 1)


0
n1

n2

n3

un


[u

2

2 ,−u1,−u2,−u3, 1]

Note that every entry in the Jacobian matrix can be expressed in terms of the velocity components
ui and the speed of sound c since

H =
c2

γ − 1
+
u2

2
It may also be directly verified that

f = Aw

because un is homogeneous of degree 0 with the consequence that ∂un
∂w is orthogonal to w .

∂un
∂w

w = 0

while p is homogenous of degree 1 so that

∂p

∂w
w = p
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Thus
Aw = unw +


1
n1

n2

n3

un


[
∂p
∂w

]
w = f

Also
∂f

∂w
= A+

∂A

∂w
w = A

because ∂A
∂w is homogeneous of degree 0, with the consequence that w is in the null space of ∂A

∂w .
The special structure of the Jacobian matrix enables the direct identification of its eigenvalues

and eigenvectors. Any vector in the 3 dimensional subspace orthogonal to the vectors ∂un
∂w and ∂p

∂w
is an eigenvector corresponding to the eigenvalue un, which is thus a triple eigenvalue. It is easy to
verify that the vectors

r0 =


1
u1

u2

u3
u2

2

 r1 =


0
0
n3

−u2

u2n3 − u3n2

 r2 =


0
−n3

0
n1

u3n1 − u1n3

 r3 =


0
n2

−n1

0
u1n2 − u2n1


are orthogonal to both ∂un

∂w and ∂p
∂w . However, r1, r2 and r3 are not independent since

3∑
k=1

nkrk = 0

Three independent eigenvectors can be obtained as

v1 = n1r0 + cr1, v2 = n2r0 + cr2, v3 = n3r0 + cr3

where c is the speed of sound.
In order to verify this note that the middle three elements of rk, k = 1, 2, 3 are equal to

−→
i k×−→n ,

where
−→
i k is the unit vector in the kth coordinate direction. Also the last element of vk is equal to−→

i k · (−→n k ×−→u ). If the vectors vk are not independent they must satisfy the relation of the form

−→v =
3∑

k=1

αk
−→v k = 0

for some non zero vector −→α . The first element of −→v is

3∑
k=1

αknk = −→α · −→n

For the next three elements of −→v to be zero

3∑
k=1

αk

(−→
i k ×−→n

)
= −→α ×−→n = 0
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which is only possible if −→α is parallel to −→n , so that −→α · −→n 6= 0.
In order to identify the remaining eigenvectors denote the column vectors in A as

a1 =


1
u1

u2

u3

H

 a2 =


0
n1

n2

n3

un


Then

ρ
∂un
∂w

a1 = 0, p
∂un
∂w

a2 = 1

∂p

∂w
a1 = c2,

∂p

∂w
a2 = 0

Now consider a vector of the form
r = a1 + αa2

Then

Ar = un(a1 + αa2) + αa1 + c2a2 (1.15)
= λ(a1 + αa2) = λr

if
un + α = λ, αun + c2 = λ

which is the case if
α2 = c2

Thus the vectors
v4 = a1 + ca2, v5 = a1 − ca2

are the eigenvectors corresponding to the eigenvalues un + c and un − c. Written in full

v4 =


1

u1 + n1c
u2 + n2c
u3 + n3c
H + unc

 v5 =


1

u1 − n1c
u2 − n2c
u3 − n3c
H − unc


1.3 Two dimensional flow

The equations of two dimensional flow have the simpler form

∂w

∂t
+
∂f 1(w)
∂x1

+
∂f 2(w)
∂x2

= 0

where the state and flux vectors are

w =


p
m1

m2

e

 , f 1 = u1w + p


0
1
0
u1

 , f 2 = u2w + p


0
0
1
u2


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Now the flux vector normal to an edge with normal components n1 and n2 is

f = n1f 1 + n2f 2

The corresponding Jacobian matrix is

A =
∂f

∂w
= n1

∂f 1

∂w
+ n2

∂f 2

∂w

= unI + ρ


1
u1

u2

H

 ∂un∂w
+


0
n1

n2

un

 ∂p

∂w

The eigenvalues of A are
un, un, un + c , un − c

with corresponding eigenvectors

v1 =


1
u1

u2
u2

2

 v2 =


0
−cn2

cn1

c(u2n1 − u1n2)

 v3 =


1

u1 + n1c
u2 + n2c
H + unc

 v4 =


1

u1 − n1c
u2 − n2c
H − unc


1.4 One dimensional flow

The equations of one dimensional flow are further simplified to

∂w

∂t
+

∂

∂x
f (w) = 0

where the state vector is

w =

 ρ
ρu
ρE

 =

 ρ
m
e


and the flux vector is

f =

 ρu
ρu2 + p
ρuH

 = uw +

 0
u
up


Now the Jacobian matrix is

A =
∂f

∂w
= uI + ρ

 1
u
H

 ∂u

∂w
+

 0
1
u

 ∂p

∂w
= uI +

 1
u
H

 [−u, 1, 0] + (γ − 1)

 0
1
u

 [
u2

2
,−u, 1]

The eigenvalues of A are
u, u+ c, u− c

with the corresponding eigenvectors

v1 =

 1
u
u2

2

 v2 =

 1
u+ c
H + uc

 v3 =

 1
u− c
H − uc


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1.5 Transformation to alternative sets of variables: primitive form

The quasi-linear equations of gas dynamics can be simplified in various ways by transformations to
alternative sets of variables.

Consider the equations of three dimensional flow

∂w

∂t
+Ai

∂w

∂xi
= 0

where
Ai =

∂f

∂w i

Under a transformation to new set of variables w̃

M̃
∂w̃

∂t
+AiM̃

∂w̃

∂xi
= 0

where
M̃ =

∂w

∂w̃

Multiplying by ∂w̃
∂w = M−1,

∂w̃

∂t
+ Ãi

∂w̃

∂xi
= 0

where
Ãi = M̃−1AiM̃,Ai = M̃ÃiM̃

−1

In the case of the primitive variables,

w̃ =


ρ
u1

u2

u3

p


we find that

M̃ =


1 0 0 0 0
u1 ρ 0 0 0
u2 0 ρ 0 0
u3 0 0 ρ 0
u2

2 u1 u2 u3
1

γ−1



M̃−1 =


1 0 0 0 0
−u1

ρ
1
ρ 0 0 0

−u2
ρ 0 1

ρ 0 0
−u3

ρ 0 0 1
ρ 0

(γ − 1)u
2

2 −(γ − 1)u1 −(γ − 1)u2 −(γ − 1)u2 γ − 1


and

A1 =


u1 p 0 0 0
0 u1 0 0 1

ρ

0 0 u1 0 0
0 0 0 u1 0
0 ρc2 0 0 u1


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A2 =


u2 0 p 0 0
0 u2 0 0 0
0 0 u2 0 1

ρ

0 0 0 u2 0
0 0 ρc2 0 u2



A3 =


u3 0 0 p 0
0 u3 0 0 0
0 0 u3 0 0
0 0 0 u3

1
ρ

0 0 0 ρc2 u3


1.6 Symmetric form

Consider the equations of one dimensional flow in primitive variables

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0

∂p

∂t
+ ρc2∂u

∂x
+ u

∂p

∂x
= 0

Then subtracting the first equation multiplied by c2 from the third equation, we find that

∂p

∂t
− c2∂ρ

∂t
+ u(

∂p

∂x
− c2 ∂ρ

∂x
) = 0

This is equivalent to a statement that the entropy

S = log(
p

ργ
) = log p− γ log ρ

is constant since
dS =

dp

p
− γ dρ

ρ
=

1
p

(dp− c2dρ)

If the entropy is constant, then
dp = c2dρ

With this substitution the first equation becomes,

1
c2

∂p

∂t
+
u

c2

∂p

∂x
+ ρ

∂u

∂x
= 0

and now the first two equations can be rescaled as

1
ρc

∂p

∂t
+
u

ρc

∂p

∂x
+ c

∂u

∂x
= 0

∂u

∂t
+

c

ρc

∂p

∂x
+ u

∂u

∂x
= 0
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Thus if we write the equations in terms of the differential variables

dw̄ =

 dp
ρc

du
dp− c2dρ


we obtain the symmetric form

∂w̄

∂t
+ Ā

∂w̄

∂x
= 0

where

Ā =

 u c 0
c u 0
0 0 u


These transformations can be generalized to the equations of three dimensional flow. A convenient
scaling is to set

dw̄ =


dp
c2

ρ
cdu1
ρ
cdu2
ρ
cdu3

dp
c2
− dρ

 (1.16)

This eliminates the density from the transformation matrices M̄ = dw
dw̄ and M̄−1 = dw̄

dw . The
equations now take the form

∂w̄

∂t
+ Āi

∂w̄

∂xi
= 0 (1.17)

where the transformed Jacobian matrices

Āi = M̄−1AiM̄ (1.18)

are simultaneously symmetrized as

Ā1 =


u1 c 0 0 0
c u1 0 0 0
0 0 u1 0 0
0 0 0 u1 0
0 0 0 0 u1

 (1.19)

Ā2 =


u2 0 c 0 0
0 u2 0 0 0
c 0 u2 0 0
0 0 0 u2 0
0 0 0 0 u2

 (1.20)

Ā3 =


u3 0 0 c 0
0 u3 0 0 0
0 0 u3 0 0
c 0 0 u3 0
0 0 0 0 u3

 (1.21)
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while

M̄ =
∂w

∂w̄
=


1 0 0 0 −1
u1 c 0 0 −u1

u2 0 c 0 −u2

u3 0 0 c −u3

H cu1 cu2 cu3 −u2

2

 (1.22)

and

M̄−1 =
∂w̄

∂w
=


γ̄ u

2

2 −γ̄u1 −γ̄u2 −γ̄u3 −γ̄
−u1

c
1
c 0 0 0

−u2
c 0 1

c 0 0
−u3

c 0 0 1
c 0

γ̄(u2 −H) −γ̄u1 −γ̄u2 −γ̄u3 γ̄

 (1.23)

where
γ̄ =

γ − 1
c2

(1.24)

The combined Jacobian matrix
A = niAi (1.25)

can now be decomposed as
A = niM̄ĀiM̄

−1 (1.26)

Corresponding to the fact that Ā is symmetric one can find a set of orthogonal eigenvectors,
which may be normalized to unit length. Then one can express

Ā = V̄ ΛV̄ −1

where the diagonal matrix Λ contains the eigenvalues un, u, un, un + c and un − c as its elements.
The matrix V̄ containing the corresponding eigenvectors as its columns is

V̄ =


1√
2
− 1√

2
0 0 0

n1√
2

n1√
2

0 −n3 n2
n2√

2
n2√

2
n3 0 −n1

n3√
2

n3√
2
−n2 n1 0

0 0 1 n2 n3

 (1.27)

and V̄ −1 = V̄ T . The Jacobian matrix can now be expressed as

A = MΛM−1 (1.28)

where
M = M̄V̄ ,M−1 = V̄ T M̄−1 (1.29)

This decomposition is often useful.
Since

c2 =
dp

dρ

it follows that in isentropic flow

2c dc =
γ

ρ
dρ− γp

ρ2
dρ =

γ

ρ
dρ− c2dρ =

γ − 1
ρ

dp
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Thus
dp

ρc
=

2
γ − 1

dc

so the equations can also be expressed in the same form, equations (1.17), (1.18), (1.19), (1.20) and
(1.21) for the variables

w̄ =


2c
γ−1

u1

u2

u3

S


with the transformation matrices

M̄ =
dw

dw̄
=


ρ
c 0 0 0 − p

c2
ρu1

c ρ 0 0 −pu1

c2
ρu2

c 0 ρ 0 −pu2

c2
ρu3

c 0 0 ρ −pu3

c2
ρH
c ρu1 ρu2 ρu3 −ρpc

u2

2


and

M̄−1 =
dw̄

dw
=


γ̄ u

2

2 −γ̄u1 −γ̄u2 −γ̄u3 γ̄
−u1

ρ
1
ρ 0 0 0

−u2
ρ 0 1

ρ 0 0
−u3

ρ 0 0 1
ρ 0

γ̄
p (u2 −H) − γ̄u1

p − γ̄u2

p − γ̄u3

p
γ̄
p


where

γ̄ =
γ − 1
ρc

1.7 Riemann invariants

In the case of one dimensional isentropic flow these equations reduce to

2
γ − 1

∂c

∂t
+

2u
γ − 1

∂c

∂x
+ c

∂u

∂x
= 0

∂u

∂t
+

2c
γ − 1

∂c

∂x
+ u

∂u

∂x
= 0

∂S

∂t
+ u

∂S

∂x
= 0

Now the first two equations can be added and subtracted to yield

∂R+

∂t
+ (u+ c)

∂R+

∂x
= 0

and
∂R−

∂t
+ (u− c)∂R

−

∂x
= 0
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where R+ and R− are the Riemann invariants

R+ = u+
2c

γ − 1
, R− = u− 2c

γ − 1

which remain constant as they are transported at the wave speeds u+ c and u− c. The Riemann
invariants prove to be useful in the formulation of far field boundary conditions designed to minimize
wave reflection.

1.8 Symmetric hyperbolic form

Equation (1.17) can be written in terms of the conservative variables as

∂w̄

∂w

∂w

∂t
+ Āi

∂w̄

∂w

∂w

∂xi
= 0

Here ∂w̄
∂w = M̄−1. Now multiplying by M̄T−1

the equation is reduced to the symmetric hyperbolic
form

Q
∂w

∂t
+ Âi

∂w

∂xi
= 0 (1.30)

where Q is symmetric and positive definite and the matrices Âi are symmetric

Q = (MMT )−1, Âi = M̄T−1
ĀiM̄

−1 (1.31)

This form could alternatively be derived by multiplying the conservative form (1.2) of the equations
by Q. Then

Q
∂f i
∂xi

= M̄T−1
M̄−1 ∂f

∂xi

= M̄T−1
M̄−1Ai

∂w

∂xi

= M̄T−1
M̄−1MĀiM̄

−1∂w

∂xi

= M̄T−1
AiM̄

−1∂w

∂xi

A symmetric hyperbolic form can actually be obtained for any choice of the dependent variables.
For example equation (1.17) could be written in terms of the primitive variables as

N
∂w̃

∂t
+ ĀiN

∂w̃

∂xi
= 0

where

N =
∂w̄

∂w̃
=


0 0 0 0 1

c2

0 ρ
c 0 0 0

0 0 ρ
c 0 0

0 0 0 ρ
c 0

−1 0 0 0 1
c2


Then multiplying by NT we obtain the symmetric hyperbolic form

NTN
∂w̃

∂t
+NT ĀiN

∂w̃

∂xi
= 0
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1.9 Entropy variables

A particular choice of variables which symmetrizes the equations can be derived from functions of
the entropy

S = log(
p

ργ
) = log p− γ log ρ (1.32)

The last equation of (1.17) is equivalent to the statement that

ρ
∂S

∂t
+ ρui

∂S

∂xi
= 0

which can be combined with the mass conservation equation multiplied by S

S
∂ρ

∂t
+ S

∂

∂xi
(ρui) = 0

to yield the entropy conservation law

∂(ρS)
∂t

+
∂(ρuiS)
∂xi

= 0 (1.33)

This is a special case of a generalized entropy function defined as follows. Given a system of
conservation laws

∂w

∂t
+

∂

∂xi
f i(w) = 0 (1.34)

Suppose that we can find a scalar function U(w) such that

∂U

∂w

∂f i
∂w

=
∂Gi
∂w

(1.35)

and U(w) is a convex function of w . Then U(w) is an entropy function with an entropy flux Gi(w)
since multiplying equation (1.34) by ∂U

∂w we obtain

∂U

∂w

∂w

∂t
+
∂U

∂w

∂f i
∂w

∂w

∂xi
= 0 (1.36)

and using (1.35) this equivalent to

∂U(w)
∂t

+
∂Gi
∂w

∂w

∂xi
= 0

which is in turn equivalent to the generalized entropy conservation law

∂U(w)
∂t

+
∂

∂xi
Gi = 0 (1.37)

Now introduce dependent variables

vT =
∂U

∂w
(1.38)

Then the equations are symmetrized. Define the scalar functions

Q(v) = vTw − U(w) (1.39)
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and
Ri(v) = vT f i −Gi(w) (1.40)

Then
∂Q

∂v
= wT + vT

∂w

∂v
− ∂U

∂w

∂w

∂v
= wT

and
∂Ri
∂v

= f Ti + vT
∂f i
∂w

∂w

∂v
− ∂Gi
∂w

∂w

∂v
= f Ti

Hence ∂w
∂v is symmetric.

∂w j

∂vk
=

∂2Q

∂vj∂vk
=
∂wk

∂vj

and ∂f i
∂v is symmetric

∂f ij
∂vk

=
∂2Ri
∂vj∂vk

=
∂f ik
∂vi

and correspondingly
∂f i
∂w

∂w

∂v
= Ai

∂w

∂v

is symmetric. Thus the conservation law (1.34) is converted to the symmetric form

∂w

∂v

∂v

∂t
+Ai

∂w

∂v

∂v

∂xi
= 0 (1.41)

Multiplying the conservation law (1.34) by ∂w
∂v from the left produces the alternative symmetric

form
∂v

∂w

∂w

∂t
+
∂v

∂w
Ai
∂w

∂xi
= 0 (1.42)

since
∂v

∂w
Ai =

∂v

∂w
(Ai

∂w

∂v
)
∂v

∂w

Moreover, multiplying (1.34) by vT recovers equation (1.36) and the corresponding entropy conser-
vation law (1.37).

Conversely, if U(w) satisfies the conservation law (1.37), then

∂U

∂w

∂w

∂t
= −∂Gi

∂w

∂w

∂xi

but
∂U

∂w

∂w

∂t
= −∂U

∂w

∂f i
∂w

∂w

∂xi

These can both hold for all ∂w
∂xi

only if

∂U

∂w

∂f i
∂w

=
∂Gi
∂w

so u(w) is an entropy function if it is a convex function of w .



CHAPTER 1. ANALYSIS OF THE EQUATIONS OF GAS DYNAMICS 18

The property of convexity enables U(w) to be treated as a generalized energy, since u becomes
unbounded if w becomes unbounded. It can be shown that −ρS is a convex function of w .
Accordingly it follows from the entropy equation (1.33) that we can take

U(w) =
ρS

γ − 1
=

γ

γ − 1
ρ log ρ− ρ

γ − 1
log p (1.43)

as a generalized entropy function where the scaling factor 1
γ−1 is introduced to simplify the resulting

expressions.
Using the formula

∂p

∂w
= (γ − 1)[

u2

2
,−u1,−u2,−u3, 1]

we find that

vT =
∂u

∂w
=
[
γ − S
γ − 1

ρ

p

u2

2
,
ρu1

p
,
ρu2

p
,
ρu3

p
,
−ρ
p

]
(1.44)

where
u2 = uiui

The reverse transformation is

wT = p

[
−v5, v2, v3, v4, (1−

1
2

(v2
2 + v2

3 + v2
4)v5

]
(1.45)

Now the scalar functions Q(v) and Ri(v) defined by equations (1.39) and (1.40) reduce to

Q(v) = ρ,Ri(v) = mi = ρui (1.46)

Accordingly

wT =
∂p

∂v
=

∂p

∂w

∂w

∂v

and
f Ti =

∂mi

∂v
=
∂mi

∂w

∂w

∂v

where
∂ρ

∂w
= [1 0 0 0 0]

and
∂mi

∂w
= [0 δi1 δi2 δi3 0]

Thus the first four rows of ∂w
∂v consist of wT , f T1 , f

T
2 and f T3 , and correspondingly since ∂w

∂v is
symmetric its first four columns are w , f 1, f 2 and f 3. The only remaining element is ∂w5

∂v5
. A direct

calculation reveals that
∂w5

∂v5
= ρE2 + (E +

u2

2
)p
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Thus

∂w

∂v
=


ρ ρu1 ρu2 ρu3 ρE
ρu1 ρu2

1 + p ρu2u1 ρu3u1 ρu1E + u1p
ρu2 ρu1u2 ρu2

2 + p ρu3u2 ρu2E + u2p
ρu3 ρu1u3 ρu2u3 ρu2

3 + p ρu3E + u3p

ρE ρu1E + u1p ρu2E + u2p ρu3E + u3p ρE2 + (E + u2

2 )p



=
1
ρ
wwT + p


0 0 0 0 0
0 1 0 0 u1

0 0 1 0 u2

0 0 0 1 u3

0 u1 u2 u3 E + u2

2




