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Abstract

Lecture 4 covers analysis of the equations of gas dynamics
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Chapter 1

Analysis of the equations of gas
dynamics



LECTURE 4
ANALYSIS OF THE EQUATIONS OF GAS DYNAMICS

1.1 Coordinate Transformations

In order to calculate solutions for flows in complex geometric domains, it is often useful to intro-
duce body-fitted coordinates through global, or, as in the case of isoparametric elements, local
transformations. With the body now coinciding with a coordinate surface, it is much easier to en-
force the boundary conditions accurately. Suppose that the mapping to computational coordinates
(&1,&2,&3) is defined by the transformation matrices

Oz Kl 3

K = ) = , J =det(K). 1.1
J 853 1] al’j e ( ) ( )
The Navier-Stokes equations (?? -??7 ) become
0 0
— —F; =0. 1.2
57 (1) + 5 Filw) =0 (12)
Here the transformed fluxes are
F, = Si; [, (1.3)
where
S=JK (1.4)

The elements of .S are the cofactors of K, and in a finite volume discretization they are just the face
areas of the computational cells projected in the x1, z2, and x3 directions. Using the permutation
tensor €;j; we can express the elements of S as

1 Oz, Ox
S’L] = ie‘quéirsaigf aé_j (15)
Then
Og _ 1 0wy Oxy | Omp 0%z
ag@ v 2 e agragz 855 agr 868861
= 0. (1.6)
Defining scaled contravariant velocity components as
Ui = Siju]', (17)
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the flux formulas may be expanded as

pUi
pUsui + Sip
F;, = pUiug + Siop . (1.8)
pUiug + Sizp
pUiH

If we choose a coordinate system so that the boundary is at £ = 0, the wall boundary condition
for inviscid flow is now

U, =0. (1.9)

1.2 Analysis of the equations of gas dynamics: the Jacobian ma-
trices

The Euler equations for the three-dimensional flow of an inviscid gas can be written in integral
form, using the summation convention, as

d
— de—i—/ finidS =0
dt Js s

where ¥ is the domain, d¥ its boundary, 7 the normal to the boundary, and dV and dS are
the volume and area elements. Let x;,u;, p,p, £ and H denote the Cartesian coordinates velocity,
density, pressure, energy and enthalpy. In differential form

ow 0
74 2 r =0 1.10
where the state and flux vectors are
1 1 0
U1 Uy i1
w=p|u |, Fi=pui| u | +p| o2
u3 u3 i3
E H 0
Also,
u? P 2 u?
=(v=—1p(FE——), H=F+ == —
p=(v—1)p( 5 ) i I

where u is the speed and c is the speed of sound

2 2 2 _ P

u- = U,L'7 - p
Let m; and e denote the momentum components and total energy,
2
m=
mi = pui,e = pB = 4+ 0%
y—1 2

Then w and f can be expressed as
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P p 0

m1 m1 di1
w=|ma |, fi=u| ma | +0D 02 (1.11)

ms3 ms3 033

e e u;

In a finite volume scheme the flux needs to be calculated across the interface between each pair
of cells. Denoting the face normal and area by n; and S, the flux is F'S where

F=nif;
This can be expressed in terms of the conservative variables w as
p 0
ma niy
f=un| ma | +p| n2 (1.12)
ms3 ns
e Up,
where u,, is the normal velocity
n;m;
Up = NyU; =

Also
2

m:
p=0—-1)(e-—)
p
In smooth regions of the flow the equations can also be written in quasilinear form as

ow ow

—+Ai— =0
8t ! 8%1
where A; are the Jacobian matrices
of.:
Ai = fz?
ow
The composite Jacobian matrix at a face with normal vector 7 is
0
ow

All the entries in f, and f are homogenous of degree 1 in the conservative variables w. It follows
that f, and f satisfy the identities
fi=Aw,f = Aw

This is the consequence of the fact that if a quantity ¢ can be expressed in terms of the components
of a vector w as

_ a; h J—
q= w,;", where a; = Q,
J J

then
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0q a;
2w = 2]l
7 7 J
- Saa
i
= aq
In order to evaluate A note that %‘—15 and g—g are row vectors
ou, 1
— = — |[—up,n1,n2,n3,0
8’(1) p [ mny 17 27 37 ]
Op u? |
dw = ( - 1) _?7 uy, UQ,_U3,1—

0 0 r 0 1 Oun
Bo= dotwurs [ 0] (1 707 (3]
n1
no 0
ns 0
[ Un p

(1.13)

(1.14)

Then the Jacobian matrix can be assembled as the sum of a diagonal matrix and two outer products

of rank 1,
A =ud+ p [ 17 [Z2]+ [ 07 [22
u1 ny
U2 n2
u3 n3
H Up,
= upl + 1 [—Un,n1,n2,n3,00 + (v —1) 0 [§7
u1 ny
U2 n2
u3 n3
H Un

—uy,

—U2, —Uus, 1]

Note that every entry in the Jacobian matrix can be expressed in terms of the velocity components
u; and the speed of sound c since

It may also be directly verified that

f=Aw

because u, is homogeneous of degree 0 with the consequence that %Lu? is orthogonal to w.

Oun

=0
8'ww

while p is homogenous of degree 1 so that
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Thus
Aw = u,w + 1 [%}’w:f

Also oF oA
ow AT o4
0A

because . is homogeneous of degree 0, with the consequence that w is in the null space of %.
The special structure of the Jacobian matrix enables the direct identification of its eigenvalues

and eigenvectors. Any vector in the 3 dimensional subspace orthogonal to the vectors %LJ and 3—5

is an eigenvector corresponding to the eigenvalue u,,, which is thus a triple eigenvalue. It is easy to

verify that the vectors

1 0 0 0

ul 0 —ns n2
ro= | u2 ry = n3 o = 0 ry = —n

us3 — U9 ny 0

%2 Ung — ugzng uzng —uing Uing — u2my

are orthogonal to both %Lu’; and 3—5]. However, rq, ro and r3 are not independent since

3
E nere = 0
k=1

Three independent eigenvectors can be obtained as
V1 = nirg + €ri, Vg = Narg + €ra,v3 = nN3rg + crs

where c is the speed of sound. -

In order to verify this note that the middle three elements of r, k = 1,2, 3 are equal to i j, X 7,
where i j, is the unit vector in the k** coordinate direction. Also the last element of vy is equal to
ik (M x ). If the vectors v, are not independent they must satisfy the relation of the form

— — .
for some non zero vector . The first element of v is

3
_
E QRN — o -

k=1

sl

For the next three elements of ¥ to be zero

3

- — - =
Zak tpXxn)=axn=0
k=1
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which is only possible if @ is parallel to 7, so that @ - 7 # 0.
In order to identify the remaining eigenvectors denote the column vectors in A as

1 0

Ul ni

a] = u9 ag = no
us ns

Then

Now consider a vector of the form
r = a1 + aas

Then
Ar = up(a) + aag) + aay + Aay (1.15)
= Aa1 + aag) = Ar
if
un—i-a:)\,ozun—l—cQ:)\

which is the case if

Thus the vectors
V4 = a1 + cag, V5 = a1 — Ca2

are the eigenvectors corresponding to the eigenvalues u, 4+ ¢ and u, — c. Written in full

1 1
u1 + nic Ul — nic
Vg = U9 + noc Vs = Ug — N2C
ug + nsc U3 — n3c
H + uye H —uy,c

1.3 Two dimensional flow

The equations of two dimensional flow have the simpler form

37’11)_’_ of 1 (w) 1 If 5(w)

=0
(915 8:1/‘1 83:2
where the state and flux vectors are
P 0 0
. mq . 1 o O

e Ul u
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Now the flux vector normal to an edge with normal components n; and ns is

F=nf1+nafy
The corresponding Jacobian matrix is

L0 ofy of

ny—— +n27

ow ow ow
1 0
uy | Oup ny | Op
—u, I —n -2
tntEp uz | Ow * ny | Ow
H Uy,

The eigenvalues of A are
Up, Up, Up+C ,Up —C

with corresponding eigenvectors

1 0 1 1

ul —Cny ul + nic Uy — nic
vl = v = v3 = V4 =

u22 cny U + nac Uy — N2C

Lo c(ugny — uing) H +uye H —uye

1.4 One dimensional flow

The equations of one dimensional flow are further simplified to

ow 0
E+%f(’w)—0

where the state vector is

P P
w=| pu | =|m
pE e
and the flux vector is
U 0
f=1|p+p | =uvw+ | u
puH up
Now the Jacobian matrix is
1 0 1
0 0 0 2
A:—f:ul—kp u | 21 | P oury | [—u, 1,0+ (y—1)| 1 [u—, u, 1]
ow H ow ow I 2

The eigenvalues of A are

with the corresponding eigenvectors

1 1 1
v = U Vg = U+ c V3 = UuU—c
“72 H +uc H — uc
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1.5 Transformation to alternative sets of variables: primitive form

The quasi-linear equations of gas dynamics can be simplified in various ways by transformations to
alternative sets of variables.
Consider the equations of three dimensional flow

ow ow

where of
A, =

! 8wz

Under a transformation to new set of variables w

~ Jw ~ Jw
M—4+AM— =
8t + 8.731 0
where 5
~ w
M —
ow
Multiplying by g—g =M1,
ow - Ow
— + A =0
ot o0x;

where

P
U1
w = u9
Uu3
b
we find that -~ _
1 0 0 O 0
up p 0 0 0
uz 0 0 p 0
2
|5 w up ug ﬁ |
i 1 0 0 0 0 |
u 1
) —71 5 0 0 0
ML= U2 0 1 0 0
P p .
% 0 0 > 0
2
L (v -D% —(v—Dur —(y—=Duz —(y—Dug ~v-1 |
and
U] p 0O 0 O
0 uw 0 0 %
A = 0 0 w 0 O
0 0 0 w O
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[ug 0O p 0 O
0 wp 0 0 O
A= 0 0 wuy O %
0 0 0 wu O
L0 0 p2 0 wy |
[ug3 O O p 0 7
0 w3 0 0 O
Ag = 0 0 us 0 0
0 0 0 w3 %
L 0 0 0 pc? us |

1.6 Symmetric form

Consider the equations of one dimensional flow in primitive variables

Op Ip 3u_
ot s TPar Y
ou ou 1op
ot oxr  poxr
50U Op

8t+p8+8x 0

Then subtracting the first equation multiplied by ¢? from the third equation, we find that

Ip 2810
ot ot T o

This is equivalent to a statement that the entropy

ap 2@)

ox c(‘)x =0

—loo( 2y = _
S = log(-5) =logp —ylogp

is constant since

1
d§ ="~ = (dp~ dp)

If the entropy is constant, then
dp = Pdp
With this substitution the first equation becomes,
10p  wdp ou

Zort @on Pos T
and now the first two equations can be rescaled as
1 8p u Op ou
pedt " peas t o 0
ou ¢ Op ou _0

ot T ocor Vo
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Thus if we write the equations in terms of the differential variables

dp
pc
dw = du
dp — c2dp
we obtain the symmetric form
ow n AE)'&J _0
ot or
where
- u c 0
A=1] ¢ u 0
0 0 u

These transformations can be generalized to the equations of three dimensional flow. A convenient
scaling is to set

dp
02
gdul
dw = gdUQ (1.16)
gd’LL3
& —dp
This eliminates the density from the transformation matrices M = g—g and M~! = Z—g. The
equations now take the form
ow - Ow
— 4+ A4;,— =0 1.17
875 + ’Ga:i ( )
where the transformed Jacobian matrices
Ay =Mt AM (1.18)
are simultaneously symmetrized as
[uy ¢ 0 0 0
B c up 0 0 O
A1 = 0 0 Ul 0 0 (1.19)
0 0 0 w; O
L 0O 0 0 0 wu |
[ u9 0 C 0 0 i
B 0 uwp 0 0 O
Ao=| ¢ 0 wg 0 O (1.20)
0 0 0 w O
L 0O 0 0 0 wug |
[u3 0 0 ¢ 0]
B 0 w3 0 0 O
Ag = 0 0 us 0 0 (1.21)
c 0 0 wg3 O
L 0 0 0 0 us |
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while
1 0 0 0 -1
B aw Ul C 0 0 —UuUl
M = el B 0 ¢ 0 —u (1.22)
w uz 0 0 c —usg
H cui cus cus —“72
and )
ok _’Zul —Jug —yuz —%
_ -4 = 0 0 0
_ 0
1_ow _ _iy 0 1 0 0 (1.23)
ow u; N 1
-2 0 0 = 0
Y —H) —jur —Fus —Juz 7
where )
_ Y —
= 1.24
T="a (1.24)
The combined Jacobian matrix
can now be decomposed as
A=nMAM™! (1.26)

Corresponding to the fact that A is symmetric one can find a set of orthogonal eigenvectors,
which may be normalized to unit length. Then one can express

A=VAV!

where the diagonal matrix A contains the eigenvalues wu,, u, u,, u, + ¢ and u, — c as its elements.
The matrix V' containing the corresponding eigenvectors as its columns is

? -5 0 0 0]

V= % % ns 0 —n1 (1.27)
% % —ng Ny 0
L O 0 1 79 ng |

and V! = VT, The Jacobian matrix can now be expressed as

A= MAM? (1.28)
where
M=MV,M*t=vTM! (1.29)
This decomposition is often useful.
Since
o dp
2 =x
dp

it follows that in isentropic flow

-1
2c dc = ldp — @dp = ldp —Pdp = Ldp
P p p p
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Thus
@ 2

pc y—1

so the equations can also be expressed in the same form, equations (1.17), (1.18), (1.19), (1.20) and
(1.21) for the variables

dce

v—1
U1
w = u2
us
S
with the transformation matrices
% 0 0 0 —c%
pul pui
~ P 0 0 =2
w puU pu.
KR
E pur puz puz —pBt
and ) ) }
V5 —Jur —Huz —yuz 3
—u 1 0 0 0
L i 0 1 0 0
T dw P p 1
% 0 0 > 0
Y(r2 _ _jua _Jup _qus Y
L (u H) P p p p J
where
oy -1
’y prd

1.7 Riemann invariants

In the case of one dimensional isentropic flow these equations reduce to

vy—10t ~v—10zx or
ou 2¢ Oc ou

a + - 1 % + u% =0
8—3 + ua—S =0
ot or
Now the first two equations can be added and subtracted to yield
OR™ OR™
and OR™ OR™
o T, =0
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where Rt and R~ are the Riemann invariants

2 2
c R —u- c

v—1 v—1

Rt =u+

which remain constant as they are transported at the wave speeds v + ¢ and u — ¢. The Riemann
invariants prove to be useful in the formulation of far field boundary conditions designed to minimize
wave reflection.

1.8 Symmetric hyperbolic form

Equation (1.17) can be written in terms of the conservative variables as
owow - Jwodw
a5 T Aiz—5—=0
ow Ot ow Ox;
Here g—g = M~'. Now multiplying by M 7" the equation is reduced to the symmetric hyperbolic
form

ow ; Ow
— +A4—=0 1.30
@ ot + ' Ox; ( )
where @) is symmetric and positive definite and the matrices A; are symmetric
Q= MM A =M A0 (1.31)

This form could alternatively be derived by multiplying the conservative form (1.2) of the equations
by @. Then

of i o1 1 Of
e VA
N vEA Vsl ek
833‘i
B VR 90y o Rk
al'i
Ve e i
Gxi

A symmetric hyperbolic form can actually be obtained for any choice of the dependent variables.
For example equation (1.17) could be written in terms of the primitive variables as

ow - 0w
N+ A4N—=0
815 + A 8.%,
where
0 00 0 %
_ 0 200 0
0 c
N=52=10 020 0
v 0 00 2 0
-1 0 0 0 %

Then multiplying by N7 we obtain the symmetric hyperbolic form
w - __Ow
N'N-— + NTAN— =
8t + 81‘1 0
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1.9 Entropy variables

A particular choice of variables which symmetrizes the equations can be derived from functions of
the entropy

S = log(ﬂ) =logp —vlogp (1.32)
Py
The last equation of (1.17) is equivalent to the statement that
p 8t p Z(?xi N

which can be combined with the mass conservation equation multiplied by S

ap 0 B
Sa + Saxi (pu;) =0

to yield the entropy conservation law

0(pS) | 9(puiS)
at a.’El

=0 (1.33)

This is a special case of a generalized entropy function defined as follows. Given a system of
conservation laws

ow 0
[— —_— . pr— 1- 4
T fi(w) =0 (131
Suppose that we can find a scalar function U(w) such that
ou of,  0G;
Bwow  ow (1.33)

and U(w) is a convex function of w. Then U(w) is an entropy function with an entropy flux G;(w)
since multiplying equation (1.34) by g—g we obtain

U dw | U f, dw

i == = 1.36
dw Ot ow 0w Iz, (1.36)
and using (1.35) this equivalent to
oU(w) 0G; 0w
ot ow Ox;
which is in turn equivalent to the generalized entropy conservation law
oU (w) 0
G;=0 1.37
o om (1.37)
Now introduce dependent variables
ou
T
= 1.38
v = (1.38)

Then the equations are symmetrized. Define the scalar functions

Q) =vTw — U(w) (1.39)
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and
Rz(’U) = ’UTfZ- — Gl(w) (1.40)
Then e, ow U D
o o7, 7OW OYOW T
v Wt ov ow Ov v
and
OR; T% Jw O0G; dw T

T _— _— = B
Fi+v Ow Ov ow Ov !

v

Hence %—f}’ is symmetric.

8’(1)]' 82Q 8wk

81}k N 81}j8?}k - 8vj

of; s :
and ! is symmetric

ofi;  O°R; _ Of

avk N avjavk (%i

and correspondingly

ow dv ' ow

is symmetric. Thus the conservation law (1.34) is converted to the symmetric form

Oow Jv ow Ov
%aﬁ‘ i%aixi—o (1.41)

Multiplying the conservation law (1.34) by %—1‘}’ from the left produces the alternative symmetric
form

ov Ow ov  Ow
aiwﬁ—'—aiw 1671‘1 =0 (1.42)

since 9 9 9 9
v v w v
90 = 5050 ) 9w

Moreover, multiplying (1.34) by v recovers equation (1.36) and the corresponding entropy conser-

vation law (1.37).
Conversely, if U(w) satisfies the conservation law (1.37), then

oU ow 0G; Ow

ow Ot  Ow O

but
oU dw _ OU Of; 0w

dw ot dw dw
These can both hold for all 27“’ only if

i

oU Of, 3G,
owow  Ow

so u(w) is an entropy function if it is a convex function of w.
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The property of convexity enables U(w) to be treated as a generalized energy, since u becomes
unbounded if w becomes unbounded. It can be shown that —pS is a convex function of w.
Accordingly it follows from the entropy equation (1.33) that we can take

p
v—1

pS gl

= :71 —
U(w) So1 T olesr

logp (1.43)

as a generalized entropy function where the scaling factor ﬁ is introduced to simplify the resulting

expressions.
Using the formula

6 2
872 == (’Y - 1)[%7 —Uui, —u2, —Uus, 1]
we find that )
o = U _ [V—Spu’fmljpw,ws,—ﬂ} (1.44)
ow y=1p2 p p p p
where
u? = uuy
The reverse transformation is
1
w!l = p [1;5,1;2, v3, Vg, (1 — 5(1}% + v§ + vz)vg)] (1.45)

Now the scalar functions Q(v) and R;(v) defined by equations (1.39) and (1.40) reduce to

Q(v) = p, Ri(v) = mi = pu; (1.46)
Accordingly
wT — 9P _ Op 0w
v OJw Ov
and
fT _ 8mz _ amlﬁﬂ
’ v dw v
where 9
P
—=1[10000
e | ]
and 9
e
= =[0 81 iz 0
5w [0 041 di2 d43 O]
Thus the first four rows of %—’1‘)’ consist of w’, fflr, f2T and f%p, and correspondingly since %—1‘)’ is

symmetric its first four columns are w, f{, f, and f3. The only remaining element is %—11‘]’55. A direct

calculation reveals that 5 )
=oF E+ —
905 =" +(E+ )
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Thus
p pu pus pus3 pE
S pur  pui+p puizun puzuy purE + uip
o pu2 puU puy +p puzu puzE + ugp
pus puiug pugus puz + p puskE + usp
pE  puiE+uip pusE +ugp puzE +uzp pE® + (E+ % )p
0O 0 0 O 0
0O 1 0 O Ul
L7
=-ww" +p| 0 0 1 0 Us
0 0 0 1 U3
0 u wus wuz E+ u?

2



