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AJ80 – Happy Birthday

Happy Birthday Antony!

Collaborators: David Seal (MSU) and Zachary Grant (UMassD)
Thanks to the AFOSR for funding this work
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Motivation

Consider the hyperbolic partial differential equation

Ut + f (U)x = 0.

Method of lines approach: we semi-discretize the problem in space, to
obtain some ODE of the form

ut = F (u)

and we evolve this ODE in time using standard methods such as
Runge–Kutta or multi-step methods.

• If the solution is discontinuous, then linear L2 stability analysis is
not sufficient for convergence. In that case, we try to build spatial
discretizations which satisfy some nonlinear stability properties.

• Sometimes we want our scheme to satisfy non-L2 properties:
positivity, maximum-principle preserving, total variation
diminishing, or some non-oscillatory property.
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Motivation

Such methods include

• TVD or TVB limiters

• Positivity or maximum principle preserving

• ENO or WENO schemes

These nonlinearly stable spatial discretizations are designed to satisfy
a specific property when coupled with forward Euler, under some
time-step restriction.
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Motivation

Consider ODE system (typically from PDE)

ut = F (u),

where spatial discretization F (u) is carefully chosen1 so that the
solution from the forward Euler method

un+1 = un + ∆tF (un),

satisfies the monotonicity requirement

||un+1|| ≤ ||un||,

in some norm, semi-norm or convex functional || · ||, for a suitably
restricted timestep

∆t ≤ ∆tFE.

1e.g. TVD, TVB, ENO, WENO
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Motivation

• We spend a lot of effort to design spatial discretizations which
satisfy certain nonlinear, non-inner product stability properties2

when coupled with forward Euler.

• But then we want the properties to carry over when the spatial
discretization is coupled with higher order time-stepping methods
(for both accuracy and linear stability reasons)

2such as TVD or TVB limiters, positivity or maximum-principle preserving limiters or
methods, or ENO or WENO schemes
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The Main Idea

The trick is to decompose a higher order method into convex
combinations of forward Euler so that if the spatial discretization
F (u) satisfies the strong stability property

||un + ∆tF (un)|| ≤ ||un|| for ∆t ≤ ∆tFE

then the Runge–Kutta or multistep method will preserve this
property, so that

||un+1|| ≤ ||un|| for ∆t ≤ C∆tFE.

Decoupling the analysis

C is a property only of the time-integrator.
∆tFE is a property of the spatial discretization.
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The Main Idea

SSP methods give you a guarantee of provable nonlinear stability

• in arbitrary convex functionals,

• for arbitrary starting values

• for arbitrary nonlinear, non autonomous equations

provided only that forward Euler strong stability is satisfied.

This condition is clearly sufficient. It turns out it is also necessary.

Bounds and Barriers

This is a very strong property, so it should not be surprising that it is
associated with time-step bounds and order barriers.
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SSP Bounds and Barriers

• Explicit SSP Runge–Kutta methods have order p ≤ 4 and
Ceff ≤ 1.

• Explicit SSP multi-step methods do not have an order barrier,
but they have the same bound Ceff = 1.

• Any explicit general linear method have Ceff ≤ 1.

• Explicit multi-step multi-stage methods have p > 4 with better
Ceff.

• All implicit SSP Runge–Kutta methods ever found have Ceff ≤ 2.

• Implicit SSP Runge–Kutta methods have order p ≤ 6.

• Implicit SSP multi-step methods do not have an order barrier,
but we can prove Ceff ≤ 2.

• Implicit SSP multi-step multi-stage methods also have Ceff ≤ 2.

• We conjecture that Ceff ≤ 2 for any general linear method.
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Multi-derivative methods

If we want to consider multistage multi derivative methods, we need a
new condition that includes the derivative.
Once again, the conservation law

Ut + f (U)x = 0

is semi-discretized
ut = F (u)

and we assume that F satisfies the forward Euler condition:

‖Un + ∆tF (Un)‖ ≤ ‖Un‖ for ∆t ≤ ∆tFE (1)

and the second derivative condition:

‖Un + ∆t2Ḟ (Un)‖ ≤ ‖Un‖ for ∆t ≤ K∆tFE . (2)

November 20, 2014 10 / 22



Formulating an optimization problem for multi-derivative
methods

Given conditions (1) and (4) we can show that if the MDMS method
is written in the form

y = un + ∆tAF (y) + ∆t2ÂḞ (y) (3)

we can add the terms rAy and r̂ Ây to both sides to obtain:

(
I + rA + r̂ Â

)
y = un + rA

(
y +

∆t

r
F (y)

)
+ r̂ Â

(
y +

∆t2

r̂
Ḟ (y)

)
y = Run + P

(
y +

∆t

r
F (y)

)
+ Q

(
y +

∆t2

r̂
Ḟ (y)

)
where

R =
(
I + rA + r̂ Â

)−1

P = rRA Q = r̂RÂ
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Formulating an optimization problem for multi-derivative
methods

y = Run + P

(
y +

∆t

r
F (y)

)
+ Q

(
y +

∆t2

r̂
Ḟ (y)

)
Now, we can clearly see that if r =

√
r̂K then this method preserves

the strong stability condition ‖un+1‖ ≤ ‖un‖ under the time-step
restriction ∆t ≤ r∆tFE as long as

1 R + P + Q = I (which is satisfied because

R + rRA + r̂RÂ = (I + rA + r̂ Â)R = I )

2 Re ≥ 0, component wise, where e is a vector of ones.

3 P ≥ 0 component wise

4 Q ≥ 0 component wise
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Optimal third order MSMD methods

Many two-stage two-derivative third order methods exist.

For each K the optimal method
depends on resulting optimal C
depends on the value of K . We
found optimal methods for the
range 0.1 ≤ K ≤ 5. The
interesting thing is that these
optimal methods all have a
Taylor series method as the
first stage, with ∆t replaced by
a∆t, where

a =
1

r

(
K
√
K 2 + 2− K 2

)
.
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Optimal fourth order MSMD methods

The two-stage two-derivative fourth order method is unique:

U∗ = Un +
∆t

2
F (Un) +

∆t2

8
Ḟ (Un)

Un+1 = Un + ∆tF (Un) +
∆t2

6
(Ḟ (Un) + 2Ḟ (U∗)).

The first stage of the method is a
Taylor series method with ∆t

2
,

while the second stage can be
written as a linear combination of
a forward Euler and a vanishing
energy term (but not a Taylor
series term). The SSP coefficient
of this method is larger as K
increases. 0 1 2 3 4 5
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Comparison of optimal SSP two stage two derivative
methods

For 2-stage, 2-derivative
methods, the SSP
coefficients of the third and
fourth order methods have
similar looking curves, but
the SSP coefficient of the
third order methods (blue)
is much larger than that of
the fourth order method
(red).
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Optimal fourth order MSMD methods

If we increase the number
of stages to three, we can
construct whole families of
methods that obtain
fourth-order accuracy, and
are SSP with a larger
allowable time step.
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Optimal fifth order MSMD methods

Three stage fifth order
methods can be found, with
SSP coefficients that grow
with K .
These methods break the
explicit SSP Runge–Kutta
order barrier.
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Comparison of optimal SSP three stage two derivative
methods

For 3-stage, 2-derivative
methods, the SSP
coefficients of the fourth
and fifth order methods
have similar looking curves,
but the SSP coefficient of
the fourth order methods
(blue) is much larger than
that of the fifth order
method (red).
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How SSP MSMD methods perform in practice

We look at a linear advection equation ut = ux with a weighted
essentially non oscillatory (WENO) method in space and the
time-stepping method

y ∗ = yn +
2

3
∆tW

(
F n +

1

3
∆tḞ n

)
un+1 = un + ∆tW

(
5

8
F n +

3

8
F ∗ +

1

8
∆t(Ḟ n + Ḟ ∗)

)
which can also be written as:

y ∗ = yn +
2

3
∆tW

(
F n +

1

3
∆tḞ n

)
un+1 =

7

16
un +

9

16
y ∗ + ∆tW

(
1

4
F n +

3

8
F ∗ +

1

8
∆tḞ ∗

)
These recent results due to David Seal.
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How SSP MSMD methods perform in practice
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Conclusions

SSP Runge–Kutta methods give you a guarantee of provable
nonlinear stability in arbitrary convex functionals, for arbitrary starting
values for arbitrary nonlinear, non autonomous equations provided
only that forward Euler strong stability is satisfied.
SSP multistage multi derivative methods give you this same
guarantee, provided that the second derivative condition:

‖Un + ∆t2Ḟ (Un)‖ ≤ ‖Un‖ for ∆t ≤ K∆tFE .

is satisfied as well.
Future work:

• Methods with a forward Euler and Taylor series condition
(already in progress).

• Sixth order methods.

• More testing in practice.
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Conclusions

Thank You!
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