
AIAA-2000-0689

AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING
COMPLEX VARIABLES

Joaquim R. R. A. Martins ∗ , Ilan M. Kroo † and Juan J. Alonso ‡

Department of Aeronautics and Astronautics
Stanford University, Stanford, CA

Abstract

The complex-step method for calculating sensitivi-
ties and its use in numerical algorithms is presented.
A general procedure for the implementation of this
method is described in detail and a script is devel-
oped that automates its implementation. The nu-
merical examples include the automatic conversion
of a structural finite element and a two-dimensional
computational fluid dynamics code. In both of
these examples, the complex-step method is com-
pared with other existing methods, namely finite-
differencing, automatic differentiation and an ana-
lytic method. The complex-step method is shown
to have implementation advantages over automatic
differentiation and computational advantages over
finite-differencing.

Introduction

Sensitivity analysis has been an important area of
engineering research, being particularly useful in de-
sign optimization. In choosing a method for com-
puting sensitivities, one is mainly concerned with
its accuracy and computational expense. In certain
cases it is also important that the method be easily
implemented.

One method that is very commonly used is finite-
differencing. Although it is not known for being par-
ticularly accurate or computationally efficient, this
method’s biggest advantage resides in the fact that
it is extremely easy to implement.

Analytic methods, on the other hand, are typically
much more accurate and efficient but they require

∗Graduate Student, AIAA Student Member
†Professor, AIAA Associate Fellow
‡Assistant Professor, AIAA Member

Copyright c©2000 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permis-
sion.

the derivation and development of a program that is
specific to each case.

Yet another technique, called Automatic Differ-
entiation for Fortran (ADIFOR),1 uses a script that
automatically differentiates an existing code by cre-
ating a new one that calculates the required sensitiv-
ities. This approach has the advantages of the first
two methods mentioned above: being both accurate
and relatively easy to implement.

The use of complex variables to develop estimates
of derivatives originated with the work of Lyness and
Moler2 and Lyness.3 Their papers introduced sev-
eral methods that made use of complex variables,
including a reliable method for calculating the nth

derivative of an analytic function. However, only
recently has some of this theory been rediscovered
by Squire and Trapp4 and used to obtain a very
simple expression for estimating the first derivative.
This estimate is suitable for use in modern numer-
ical computing and has shown to be very accurate,
extremely robust and surprisingly easy to imple-
ment, while retaining a reasonable computational
cost. The potential of this technique is now start-
ing to be recognized and it has been used in CFD
sensitivity analysis by Anderson5 and in a MDO en-
vironment by Newman.6

The objective of this paper is to shed new light
on the theory behind the complex-step derivative
approximation, demonstrate its advantages in com-
puting sensitivities and provide a script that can im-
plement it automatically. There will also be a com-
parison with other methods, with emphasis on finite-
differencing and ADIFOR, since these are also in the
class of methods that have a relatively straightfor-
ward implementation.

1

American Institute of Aeronautics and Astronautics

Theory

Analyticity

The use of complex variables in the evaluation of
function sensitivities is sometimes better understood
if one makes the following analogy by Saff and
Snider.7 Consider the set of rational numbers and
the fact that no rational number can solve x2 = 2.
If we want to extend the set of rational numbers so
that are able to solve this equation we can write:

w = x +
√

2y (1)

where x and y are rational numbers and a number
of this form can now solve x2 = 2.

Now suppose that we already have the set of real
numbers. With real numbers alone, we still cannot
solve x2 = −1. If we want to solve this equation,
we can adopt the same approach as before and ex-
tend the set of real numbers by defining a set of new
numbers,

z = x + iy (2)

where x and y are real and i =
√−1. This defines

the set of complex numbers which not only enables
us to solve x2 = −1, but in fact any polynomial of
degree n.

Now lets consider to our extension of the set of ra-
tional numbers represented by w. If a function f(w)
is differentiable, its derivative must be the same,
whether we differentiate it with respect to the ra-
tional part or the irrational one, i.e.,

∂f

∂w
=

∂f

∂x
=
√

2
∂f

∂y
(3)

The same is true for a function of a complex vari-
able that is differentiable in the complex plane and
similarly we can write,

∂f

∂y
= i

∂f

∂x
(4)

The real and imaginary parts of the function can be
separated and we can define,

f = u + iv. (5)

Comparing the real and imaginary parts of
Equation(4) we obtain the familiar Cauchy-Riemann
equations,

∂u

∂x
=

∂v

∂y
(6)

∂u

∂y
= −∂v

∂x
. (7)

A complex function that satisfies these equations is
said to be analytic, which is to say that it is differ-
entiable in the complex plane.

The main goal of this analogy between complex
numbers and an extension of rational numbers is to
remind ourselves that a complex number is really
just one number. It is not unusual to forget this and
think instead of a complex number as two numbers
just because we do not have a way of representing
it with a single axis or by a single term. This is
an important realization that will be useful in ex-
plaining some of the implementation issues that are
described later.

First Derivative Approximations

Finite-differencing formulas are a common method
for estimating derivatives. These formulas can be de-
rived by truncating a Taylor series which has been
expanded about a given point x. A common esti-
mate for the first derivative is the forward-difference
formula,

f ′(x) ≈ f(x + h)− f(x)
h

, (8)

where h is finite-difference interval. The truncation
error is O(h), and therefore it is a first-order approx-
imation. For a second-order estimate the we can use
the central-difference formula,

f ′(x) ≈ f(x + h)− f(x− h)
2h

. (9)

As with any divided-difference approximation, we
are faced in this case with the “step size dilemma”,
i.e. wanting to choose a small step size that min-
imizes truncation error while avoiding the use of a
step size so small that subtractive cancellation errors
become inevitable. Note that this approximation is
a discretization of the mathematical definition of the
first derivative.

We will now see that an equally simple first deriva-
tive estimate for real functions can be obtained using
complex calculus. If f is an analytic function, then
the Cauchy-Riemann equations apply, establishing
the exact relationship between the real and imagi-
nary parts of the function. We can use the defini-
tion of a derivative in the right hand side of the first
Cauchy-Riemann Equation(6) to obtain,

∂u

∂x
= lim

h→0

v(x + i(y + h))− v(x + iy)
h

. (10)

2

American Institute of Aeronautics and Astronautics

Since the functions that we are interested in are real
functions of a real variable, we restrict ourselves to
the real axis and then we know that y = 0, u(x) =
f(x) and v(x) = 0. Equation (10) can then be re-
written as,

∂f

∂x
= lim

h→0

Im [f (x + ih)]
h

. (11)

For a small discrete h, this can be approximated by,

∂f

∂x
≈ Im [f (x + ih)]

h
, (12)

which we will call the complex-step derivative ap-
proximation. This estimate is not subject to sub-
tractive cancellation error, since it does not involve
a difference operation. This constitutes a tremen-
dous advantage over the finite-difference approach
expressed in Equation (8).

The property that was used to derive this approx-
imation is a direct consequence of the analyticity of
the function and it is therefore necessary that the
function f be analytic in the complex plane. In a
later section we will discuss to what extent a generic
numerical algorithm can be considered to be an an-
alytic function.

In order to determine the error involved in this
approximation, we repeat the derivation by Squire
and Trapp4 which is based on a Taylor series expan-
sion. Rather than using a real step h, we use a pure
imaginary step, ih. If f is a real function in real
variables and it is also analytic, we can expand it in
a Taylor series about a real point x as follows,

f(x + ih) = f(x) + ihf ′(x)−

h2 f ′′(x)
2!

− ih3 f ′′′(x)
3!

+ . . . (13)

Taking the imaginary parts of both sides of Equa-
tion (13) and dividing the equation by h yields

f ′(x) =
Im [f(x + ih)]

h
+ h2 f ′′′(x)

3!
+ . . . (14)

Hence the approximations is a O(h2) estimate of the
derivative of f . The reason we achieve a second-
order approximation with just one function evalua-
tion has to do with the fact that the imaginary part
of the result is an odd function with respect to the
imaginary part of the independent variable.

Numerical Example

Because the complex-step approximation does not
involve a difference operation, we can choose ex-
tremely small steps sizes with no loss of accuracy
due to subtractive cancellation.

To illustrate this, consider the following analytic
function:

f(x) =
ex

√
sin3x + cos3x

(15)

The exact derivative at x = 1.5 was computed an-
alytically to 16 digits and then compared to the re-
sults given by the complex-step (12) and the forward
and central finite-difference formulas (8,9).

���������	��
�����

�����
�����
��
� ���
��� e

Figure 1: Normalized error in the sensitivity esti-
mates given by finite-difference and the complex-
step with the analytic result as the reference; ε =
|f ′−f ′ref |
|f ′ref | .

The forward-difference estimate initially con-
verges to the exact result at a linear rate since its
truncation error is O(h), and the central-difference
converges quadratically, as expected. However, as
the step is reduced to a value of about 10−8 for
the forward-difference and 10−5 for the central-
difference, subtractive cancellation errors become an
issue and the estimates become unreliable. When
the interval h is so small that no difference exists in
the output (for steps smaller than 10−16) the finite-
difference estimates eventually yields zero and then
ε = 1.

The complex-step estimate converges quadrati-
cally with decreasing step size, as predicted by the
truncation error estimate. The estimate is practi-
cally insensitive to small step sizes and below an h
of the order of 10−8 it achieves the accuracy of the
function evaluation.

Comparing the best accuracy of each of these ap-
proaches, we see that by using finite-difference we
only achieve a fraction of the accuracy that is ob-
tained by using the complex-step approximation.

3

American Institute of Aeronautics and Astronautics

As we can see the complex-step size can be made
extremely small. However, there is a lower limit
on the step size when using finite precision arith-
metic. The range of real numbers that can be han-
dled in numerical computing is dependent on the
particular compiler that is used. Usually, however,
when double-precision complex numbers are used,
the smallest non-zero number that can be repre-
sented is 10−308. If a number falls below this value,
underflow occurs and the number drops to zero.
Note that the estimate is still accurate down to a
step of the order of 10−307. Below this, underflow
occurs and the estimate results in NaN. Therefore,
the smallest possible h is the one below which un-
derflow occurs somewhere in the algorithm.

When it comes to comparing the relative accu-
racy of complex and real computations, analysis
shows that there is an increased error in basic arith-
metic operations when using complex numbers, more
specifically when dividing and multiplying.8

Higher Derivative Approximations

The derivative of order n of a given analytic function
can be calculated by Cauchy’s Integral Formula in
its general form:7

f (n)(z) =
n!
2πi

∫

Γ

f(ξ)
(ξ − z)n+1

dξ, (16)

where Γ is a simple closed positively oriented contour
that encloses z. This integral can be numerically
computed by means of a mid-point trapezoidal rule
approximation around a circle of radius r yielding,9

f (n)(z) ≈ n!
mr

m−1∑

j=0

f
(
z + rei 2πj

m

)

ei 2πjn
m

, (17)

where if m is the number of points used in the in-
tegration, we can approximate a derivative of order
n = 0, 1, . . . ,m− 1.

When comparing conventional finite-difference
methods and the complex integration expressed in
Equation (17), we observe that both use formulas of
the type

∑
aif(xi) where the coefficients have differ-

ent signs. However, there is a significant difference
between the two. In conventional methods the step h
has to be decreased in order to reduce the truncation
error of the approximation, making it susceptible to
subtractive cancellation. If we want to reduce the
truncation error of the complex integration method
all we need to do is to increase the number of func-
tion evaluations, i.e. m in Equation (17). This keeps

the subtractive cancellation error constant and it is
then possible to calculate a bound on the error in-
volved in the approximation.2

The complex-step first derivative approxima-
tion (12) can be derived from Equation (17). From
complex variable theory, for a real function of the
real variable that is analytic,

f(x + iy) = u + iv ⇒ f(x− iy) = u− iv. (18)

By setting m = 2 in Equation (17) and starting the
integration at the top of the circle (z + rei π

2) rather
than on the left side (z + r) we obtain the second-
order approximation that we arrived at previously.
This is the only approximation that can be obtained
from Equation (17) that does not involve subtraction
and it is only valid for functions whose imaginary
part is zero on the real axis.

Implementation

Intrinsic Complex Functions and Operators
in Fortran

In the derivation of the complex-step derivative ap-
proximation (12) for a function f we have assumed
that f was an analytic function, i.e. that the
Cauchy-Riemann equations apply. It is therefore im-
portant to examine to what extent this assumption
holds when the value of the function is calculated by
a numerical algorithm. In addition it is also useful
to explain how we can convert real functions and op-
erators such that they can take complex numbers as
arguments. Fortunately, in the case of Fortran, com-
plex numbers are a standard data type and many
intrinsic functions are already defined for them.

Any algorithm can be broken down into a se-
quence of basic operations. Two main types of oper-
ations are relevant when converting a real algorithm
to a complex one:

• Relational operators

• Arithmetic functions and operators.

Relational logic operators such as “greater than”
and “less than” are not defined for complex num-
bers in Fortran. These operators are usually used
in conjunction with if statements in order to redi-
rect the execution thread. The original algorithm
and its “complexified” version must obviously fol-
low the same execution thread. Therefore, defining
these operators to compare only the real parts of the
arguments is the correct approach.

4

American Institute of Aeronautics and Astronautics

Functions that choose one argument such as max
and min are based on relational operators. There-
fore, according to our previous discussion, we should
once more choose a number based on its real part
alone and let the imaginary part “tag along”.

Any algorithm that uses conditional statements is
likely to be a discontinuous function of its inputs.
Either the function value itself is discontinuous or
the discontinuity is in the first or higher derivatives.
When using a finite-difference method, the deriva-
tive estimate will be incorrect if the two function
evaluations are within h of the discontinuity loca-
tion. However, if the complex-step is used, the re-
sulting derivative estimate will be correct right up
to the discontinuity. At the discontinuity, a deriva-
tive does not exist by definition, but if the function
is defined a that point, the approximation will still
return a value that will depend on how the function
is defined at that point.

Arithmetic functions and operators include addi-
tion, multiplication, and trigonometric functions, to
name only a few, and most of these have a standard
complex definition that is analytic almost every-
where. Many of these definitions are implemented
in Fortran. Whether they are or not depends on
the compiler and libraries that are used. The user
should check the documentation of the particular
Fortran compiler being used in order to determine
which intrinsic functions need to be redefined. A
full description of Fortran’s standard intrinsic func-
tions and their complex definitions can be found in
Table 5.

Functions of the complex variable are merely ex-
tensions of their real counterparts. By requiring that
the extended function satisfy the Cauchy-Riemann
equations, i.e. analyticity, and that its properties
be the same as those of the real function, we can
obtain a unique complex function definition.7 Since
these complex functions are analytic, the complex-
step approximation is valid and will yield the correct
result.

Some of the functions, however, have singulari-
ties or branch cuts on which they are not analytic.
This does not pose a problem since, as previously
observed, the complex-step approximation will re-
turn a correct one-sided derivative. As for the case
of a function that is not defined at a given point,
the algorithm will not return a function value, so a
derivative cannot be obtained. However, the deriva-
tive estimate will be correct in the neighborhood of
the discontinuity.

The only standard complex function definition
that is non-analytic is the absolute value function

or modulus. When the argument of this function is
a complex value, the function returns a positive real
number, |z| =

√
x2 + y2. This function’s definition

was not derived by imposing analyticity and there-
fore it will not yield the correct derivative when us-
ing the complex-step estimate. In order to derive an
analytic definition of abs we start by satisfying the
Cauchy-Riemann equations. From the Equation (6),
since we know what the value of the derivative must
be, we can write,

∂u

∂x
=

∂v

∂y
=

{
−1 ⇐ x < 0
+1 ⇐ x > 0

. (19)

From Equation (7), since ∂v/∂x = 0 on the real axis,
we get that ∂u/∂y = 0 on the axis, so the real part
of the result must be independent of the imaginary
part of the variable. Therefore, the new sign of the
imaginary part depends only on the sign of the real
part of the complex number, and an analytic “abso-
lute value” function can be defined as:

abs(x + iy) =

{
−x− iy ⇐ x < 0
+x + iy ⇐ x > 0

. (20)

Note that this is not analytic at x = 0 since a deriva-
tive does not exist for the real absolute value. Once
again, the complex-step approximation will give the
correct value of the first derivative right up to the
discontinuity. Later the x > 0 condition will be
substituted by x ≥ 0 so that we not only obtain a
function value for x = 0, but also we are able to cal-
culate the correct right-hand-side derivative at that
point.

Automatic Implementation

In order to implement the complex-step method, one
must have access to the source code that computes
the value of f . The implementation procedure can
be summarized as follows:

• Substitute all real type variable declarations
with complex declarations. It is not strictly
necessary to declare all variables complex, but
it is much easier to do so.

• Define all functions and operators that are not
defined for complex arguments.

• A complex-step can then be added to the de-
sired x and ∂f

∂x can be estimated using Equa-
tion (12).

5

American Institute of Aeronautics and Astronautics

The method has been successfully implemented by
hand on a Fortran three-dimensional CFD code.5,6

This was done by writing a set of subroutines with
a different name from the intrinsic functions that
needed to be defined for complex arguments. Then
the code was processed line by line, and some of the
intrinsic function names where substituted with the
new function names. Also, in some if statements
the complex arguments in the comparisons must be
cast to real. This procedure requires an advanced
knowledge of the type of arguments, which is not
always a trivial matter.

Fortunately, in Fortran 90, intrinsic functions and
operators (including comparison operators) can be
overloaded. This means that if a particular func-
tion or operator does not take complex arguments,
one can extend it by writing another definition that
takes this type of arguments. This feature makes it
much easier to implement the complex-step method
since once we overload the functions and operators,
there is no need to change the function calls or condi-
tional statements. The compiler will automatically
determine the argument type and choose the correct
function or operation.

All the functions that need to be overloaded and
their new definitions are listed in Table 5. Adding
the extended function definitions is simple, since it
has been written as a Fortran 90 module that can
be used by any subroutine in a program.

In order to automate the implementation, a script
that processes Fortran source files automatically was
developed. The script declares the complex func-
tions module in every existing subroutine, substi-
tutes all the real type declarations by complex ones
and adds implicit complex statements when ap-
propriate. The script was written in Python10,11

and uses the Perl regular expressions module. The
latest versions of both the script and the Fortran 90
module, are available from the first author.12

The third step of the implementation, adding the
complex-step to the variable of interest and using the
complex-step approximation, is left to the user. An-
other task that must be done manually is the change
of file I/O statements, since the user might want to
have I/O files containing either full complex num-
bers or just their real parts.

Implementation in Other Programming Lan-
guages

C/C++: Neither C nor C++ perform complex
arithmetic by default, although there are com-
plex arithmetic libraries than one can use. In

C++, all operators and functions can be over-
loaded just as in Fortran 90, so automatic im-
plementation seems to be perfectly feasible.

Matlab: As in the case of Fortran, one must re-
define functions such as abs, max and min. All
differentiable functions are defined for complex
variables. Results for the simple example in the
previous section were computed using Matlab.
The standard transpose operation represented
by an apostrophe (’) poses a problem as it
takes the complex conjugate of the elements of
the matrix, so one should use the non-conjugate
transpose represented by “dot apostrophe” (.’)
instead.

Java: Complex arithmetic is not standardized at
the moment but there are plans for its imple-
mentation. Although function overloading is
possible, operator overloading is currently not
supported.

Python: When using the Numerical Python mod-
ule (NumPy), we have access to complex num-
ber arithmetic and implementation should be as
straightforward as in Fortran.

Results

The complex-step method was implemented auto-
matically in two different analysis codes in order to
calculate sensitivities. The first one is a structural
finite element solver and the second one is a two-
dimensional CFD code. The calculated sensitivities
can then be used to perform design optimization in
a multidisciplinary environment.

Structural Sensitivities

For purposes of comparison of the complex-step ap-
proximation with other sensitivity analysis methods,
we used a structural solver based on a finite element
code, fesmeh, developed by Holden.13 The sensitiv-
ities are calculated in order to perform design opti-
mization in a multidisciplinary environment and the
complex-step method was automatically.

In this example, a transonic transport wing is
modeled with multiple spars, shear webs, and ribs
located at various spanwise stations, together with
the skins of the upper and lower surfaces of the wing
box.

Two types of finite elements are used: truss and
triangular plane-stress plate elements. Both element
types have 3 translational degrees of freedom per

6

American Institute of Aeronautics and Astronautics

node, so the truss has a total of 6 degrees of freedom
while the plate has 9 degrees of freedom. Figure 2
shows an expanded view of the finite element model.

Figure 2: Structural finite element model of wing

In a first study, the sensitivity estimates given by
the complex-step and forward-finite-difference meth-
ods are compared for a varying step size. The sample
sensitivity chosen for this study was the derivative
of the stress in a spar cap with respect to its own
cross-sectional area. This kind of derivative is very
important in structural optimization, where stress
constraints are usually required.

Note that in this case, stress is a non-linear func-
tion of the cross-sectional area and, therefore, we
should be able to observe the rate convergence of
the estimates for decreasing step sizes.

Figure 3 shows a comparison of results – analo-
gous to that of Figure 1 – with a reference derivative
which is obtained by an analytic method. The ana-
lytic method used here is the direct method applied
to a discrete linear set of equations as described by
Adelman.14 This method is included here only to
provide a benchmark, since it has an implementa-
tion that is far more involved and code-specific than
the other ones.

As expected, the error of the finite-difference esti-
mate initially decreases at a linear rate. As the step
is reduced to a value of about 10−6, subtractive can-
cellation errors become increasingly significant and
the estimate error increases. For even smaller per-
turbations – of the order of 10−17 – no difference ex-
ists in the output and the finite-difference estimate
eventually goes to zero (ε = 1).

The complex-step estimate converges quadrati-
cally with decreasing step size, converging to the
code’s precision when h is of the order of 10−7. Note

���������	��
�����

�����
�����
��
� ���
��� e

Figure 3: Error of sensitivity estimates given by
finite-difference and complex-step with the analytic

method result as the reference; ε = |f ′−f ′ref |
|f ′ref | .

that the estimate is still accurate down to a step of
the order of 10−306. Below this, underflow starts to
occur, the estimate is corrupted, and eventually the
result becomes meaningless.

A second study compares the accuracy and com-
putational cost between the three methods men-
tioned above and an additional method: ADIFOR.1

This is a package that automatically processes a
given Fortran program, producing a new program
that in addition to the original computations also
calculates the desired sensitivities. A sample of the
sensitivity results is shown in Table 1, and a com-
putational comparison is made in Table 2. The cost
values are normalized with respect to the compu-
tation time and memory usage of the complex-step
method.

The computations were performed on a SGI Oc-
tane and correspond to the calculation of the sen-
sitivities of the stress in all of the 60 trusses with
respect to their cross-sectional areas, i.e., a total of
3600 sensitivities. The sample sensitivity is the same
one that was used to produce the results shown pre-
viously in Figure 3. When compiled using double
precision, the finite element solver has an accuracy
of about 13 digits, so the last 4 digits should be ig-
nored.

The finite-difference sensitivity estimate – shown
at the bottom of Tables 1 and 2 – is obtained us-
ing an optimal step (h = 10−7). Even then, the
estimate is shown to be only half as accurate as the
other ones. Although this method is extremely easy
to implement, finding a step that gives reasonably

7

American Institute of Aeronautics and Astronautics

Method Sample Sensitivity
Complex −39.049760045804646
ADIFOR −39.049760045809059
Analytic −39.049760045805281
FD −39.049724352820375

Table 1: Sensitivity estimate accuracy comparison

Method Time Memory
Complex 1.00 1.00
ADIFOR 2.33 8.09
Analytic 0.58 2.42
FD 0.88 0.72

Table 2: Relative computational cost comparison for
the calculation of the complete Jacobian

accurate estimates is usually a problem and, there-
fore, the total computation time in practice is much
higher than the one that is shown in these results.

The analytic method was accurate, as expected,
and by far the fastest. The computation using this
method required considerably more memory since a
host of new variables were introduced in the algo-
rithm. As mentioned before, its implementation is
much more involved than in the other cases and this
places this method in a class of its own.

ADIFOR produced very accurate estimates but it
was the costliest, with respect to both computation
time and memory usage. This has to do with the
fact that that ADIFOR produces a code which is
is much larger than the original one which contains
many more statements and variables. This fact con-
stitutes an implementation disadvantage as it be-
comes impractical to debug this new code. One has
to work with the original source and every time it
is changed (or when we want to compute different
derivatives) one must first run ADIFOR and then
compile the new version.

The complex-step method was also accurate to the
code’s precision, was reasonably fast, and used less
memory than any other method with the exception
of the finite-difference method. The results were ob-
tained using h = 10−100. In general, the memory
requirement will always be greater than in the case
of finite-differencing, but never more than twice as
much. As opposed to ADIFOR, the new “complexi-
fied” code is practically identical to the original one
and can therefore be worked on directly. With the
help of a few compiler flags one can even produce a
single code that can be chosen to be real or complex
at compilation.

Finally, note that the relative cost values given
in Table 2 may vary for different problems, since
they depend heavily on the ratio of the number of
outputs we want to differentiate to the number of
design variables we want to differentiate with respect
to. However, the costs associated with the complex-
step method will always be proportional to those of
the finite-difference method.

Aerodynamic Sensitivities

To further validate the complex-step method and
test the automatic implementation process on a
CFD code, we chose to “complexify” FLO82. This is
a two-dimensional, cell-centered, finite volume solver
for the complete Euler equations. It achieves fast
turnaround through the use of several techniques
for convergence acceleration, namely multigrid, im-
plicit residual smoothing, enthalpy damping, and lo-
cal time-stepping. The solution is updated explic-
itly at every multigrid iteration using a modified
Runge-Kutta algorithm which treats the convective
and dissipative portions of the residual separately
for optimum error damping properties. FLO82 has
multiple options for artificial dissipation schemes,
ranging from the baseline Jameson-Schmidt-Turkel
(JST) algorithm to advanced schemes such as CUSP,
ECUSP, and HCUSP.15 FLO82 was chosen as an ex-
ample for this work, since it contains the essential
numerical schemes present in more complicated pro-
grams such as FLO87 and FLO107 that solve three-
dimensional Euler and Navier-Stokes flows, and are
currently used in our design work.

Figure 4: RAE 2822 airfoil and grid geometry.

8

American Institute of Aeronautics and Astronautics

The implementation process, even in this rela-
tively large program, was carried out very quickly
with the use of the “complexifying” script. After
less than one hour, the new solver was calculating
the correct sensitivities.

The test case was chosen to be the RAE 2822 air-
foil shown in Figure 4 at a an angle-of-attack of 3
degrees with a freestream Mach number of 0.7. The
resultant pressure coefficient distribution is plotted
in Figure 5.

1.

20

0.
80

0.

40

0.
00

 -
0.

40
 -

0.
80

 -
1.

20
 -

1.
60

 -
2.

00

C
p

+++
++++++++++++++++++++++

+
+

++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+
+
+
++++

+

+

+

+

+

+

+

+

+

+

+

+
+
+
++
+++
++

+

+
+

++++++++++++++++++++++
+
+
+
+
+

Figure 5: Pressure coefficient distribution, Mach =
0.7, α = 3.0o.

As we have seen in the previous numerical ex-
amples, it is rather useful to study the variation
of the sensitivity estimates with step size. For this
study, we computed the derivative of drag coefficient
with respect to the free stream Mach number, i.e.
∂CD/∂M∞. The results are shown in Figure 6, and
the reference estimate used to calculate the error
was, in this case, the last estimate calculated by the
complex-step method, corresponding to h = 10−38.
The behavior of the estimates follows once more, the
same general pattern: both estimates converge ini-
tially, the forward-finite-difference estimate then re-
bounds to zero, and the complex-step estimate main-

tains the accuracy of the code until underflow takes
place. Again, note that the range of h for which the
finite-difference gives a reasonable estimate is very
small, and therefore a convergence study would be
necessary if we were to use this method in design
optimization. Even then, there would be no guar-
antee that the optimal step would remain the same
throughout the design process.

10
−30

10
−20

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Step Size, h

N
or

m
al

iz
ed

 E
rr

or
, ε

Complex−Step
Finite−difference

Figure 6: Normalized error of sensitivity estimates of
∂CD/∂M∞ The reference value is the last complex-

step estimate; ε = |f ′−f ′ref |
|f ′ref | .

In Table 3 we list the sensitivity matrix of the
lift, drag and moment coefficients with respect to
angle-of-attack and freestream Mach number. For
the complex-step, we used an arbitrary small step
size of 10−20, while for the finite-difference, the op-
timum step sizes were found to be 10−8 for α and
10−6 for M∞. The digits that are shown in italics
in the table are the ones that have not converged.

Since the solver is iterative, we also analyzed the
convergence of the sensitivity estimates and com-
pared it to the convergence of the algorithm. Fig-
ure 7 shows the evolution of the sensitivity residual
for both the finite-difference and the complex-step
estimates of ∂CD/∂M∞ during the process of a typi-
cal calculation lasting 150 iterations. The sensitivity
residual is defined as the absolute value of the dif-
ference between the current estimate of ∂CD/∂M∞
and its value at the previous iteration. To measure
the convergence of the algorithm, we used the aver-
age residual of the density equation. As expected,
the rate of convergence of the sensitivity estimate of
the finite-difference method tracks that of the flow
solver. The fact that the rate of convergence of the

9

American Institute of Aeronautics and Astronautics

Sensitivity Complex FD
∂CL/∂α 12.37054751691092 12.370726665267277
∂CD/∂α 0.8602380269441042 0.86024234610682058
∂CM/∂α −0.5026301652982372 −0.5026313670830616
∂CL/∂M∞ 3.2499722985150532 3.2499447577549727
∂CD/∂M∞ 0.43978671505102005 0.43978998888818932
∂CM/∂M∞ −0.99037388394690016 −0.9903747405504145

Table 3: Lift, drag and moment coefficient sensitivities with respect to angle-of-attack and Mach number.

complex-step estimate is the same as the one for the
other two is rather reassuring.

0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Number of Iterations

R
es

id
ua

l

Complex−Step
Finite−difference
Average density residual

Figure 7: Residual for the estimates of ∂CD/∂M∞
compared to the convergence of the code.

The last set of results presents the calculation of
the sensitivity of the drag coefficient with respect to
a series of airfoil shape parameters. The use of these
sensitivities is commonplace in aerodynamic shape
optimization problems. The shape parameters that
are used in this study are the amplitudes of a series
of Hicks-Henne “bump” functions that are centered
at various points along the upper surface of the air-
foil, from the leading edge to the 90% chord loca-
tion. Hicks-Henne “bump” function have been used
in previous work16 and have the desirable property
that, when applied to a smooth baseline geometry,
they produce a smooth surface. The plot in Figure 8
shows the sensitivities at 55 grid points distributed
along the top surface of the airfoil. The values of
the sensitivities are interpolated using cubic splines.
The complex-step size was set to h = 10−10 and
for the finite-difference step the optimal value was
found to be h = 10−9. The plot shows no discernible
difference bettween the two sets of results and the
maximum difference between the two was calculated

5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10

11

Design Points

D
ra

g
C

oe
ffi

ci
en

t S
en

si
tiv

ity

Complex−Step
Finite−difference

Figure 8: Comparison of the estimates for the shape
sensitivities of the drag coeffiecient, ∂CD/∂bi.

Method Time Memory
Complex 1.00 1.00
FD 0.31 0.55

Table 4: Relative computational cost comparison for
the calculation of the complete shape sensitivity vec-
tor.

to be 2.1× 10−4.
A comparison of the relative computational cost

of the two methods was also made for the aerody-
namic sensitivities, namely for the calculation of the
complete shape sensitivity vector. Table 4 lists these
costs, normalized with respect to the complex-step
results.

The complex-step exhibits, once more, a higher
cost than the finite-difference method. However, in
this case the difference is significantly higher than
the one observed for the structural solver. In spite
of this substantial difference, it is still usually ad-
vantageous to use the complex-step method, since
no additional computational effort is necessary in

10

American Institute of Aeronautics and Astronautics

order to find an adequate step.

Conclusions

The theory behind the application of the complex-
step method to real-world numerical algorithms was
introduced. The Cauchy-Riemann equations and
the fact that a complex number is really just one
number, were vital in the rationalization of the prac-
tical implementation of this method.

The implementation process of the complex-
step derivative approximation was successfully au-
tomated for two large solvers, including an iterative
one. The resulting derivative estimates were val-
idated by comparing them to results obtained by
other known methods.

The complex-step method, unlike the finite-
difference method, has the advantage of being step
size insensitive and for small enough steps, the ac-
curacy of the sensitivity estimates is only limited by
the numerical precision of the algorithm.

This method is now at least as easy to implement
as ADIFOR and once it is implemented it is much
easier to maintain the resulting code.

Acknowledgements

The authors would like to thank Professor James
Lyness for his invaluable help and support.

References

[1] Bischof, C., A. Carle, G. Corliss, A. Grienwank,
P. Hoveland, “ADIFOR: Generating Derivative
Codes from Fortran Programs”, Scientific Pro-
gramming, Vol. 1, No. 1, 1992, pp. 11-29.

[2] Lyness, J. N., and C. B. Moler,, “Numerical
differentiation of analytic functions”, SIAM J.
Numer. Anal., Vol. 4, 1967, pp. 202-210.

[3] Lyness, J. N., “Numerical algorithms based on
the theory of complex variables”, Proc. ACM
22nd Nat. Conf., Thompson Book Co., Wash-
ington DC, 1967, pp. 124-134.

[4] Squire, W., and G. Trapp, “Using Complex
Variables to Estimate Derivatives of Real Func-
tions”, SIAM Review, Vol. 10, No. 1, March
1998, pp. 100-112.

[5] Anderson, W. K., J. C. Newman, D. L. Whit-
field, E. J. Nielsen, “Sensitivity Analysis for

the Navier-Stokes Equations on Unstructured
Meshes Using Complex Variables”, AIAA Pa-
per No. 99-3294, Proceedings of the 17th Ap-
plied Aerodynamics Conference, 28 Jun. 1999.

[6] Newman, J. C. , W. K. Anderson, D. L. Whit-
field, “Multidisciplinary Sensitivity Derivatives
Using Complex Variables”, MSSU-COE-ERC-
98-08, Jul. 1998.

[7] Saff, E. B., A. D. Snider, Fundamentals of Com-
plex Analysis, Prentice Hall, New Jersey, 1976.

[8] Olver, F. W. J., “Error Analysis of Complex
Arithmetic”, Computational Aspects of Com-
plex Analysis, pp. 279-292, 1983.

[9] Lyness, J. N., and G. Sande, “ENTCAF and
ENTCRE Evaluation of Normalized Taylor Co-
efficients of an Analytic Function”, Com. ACM,
Vol. 14, No. 10, 1971, Washington DC, 1967,
pp. 124-134.

[10] Lutz, M., Programming Python, O’Reilly, New
York, Cambridge, 1996.

[11] http://www.python.org

[12] http://aero-comlab.stanford.edu/jmartins

[13] Holden, M. E., “Aeroelastic Optimization using
the Collocation Method”, PhD Thesis, Stan-
ford, May 1999.

[14] Adelman, H. M., R. T. Haftka, “Sensitiv-
ity Analysis of Discrete Structural Systems”,
AIAA Journal, Vol. 24, No. 5, May 1986.

[15] Jameson, A., W. Schmidt and E. Turkel, “Nu-
merical Solution of the Euler Equations by Fi-
nite Volume Methods Using Runge-Kutta Time
Stepping Schemes”, AIAA Paper No. 81-1259,
June, 1981.

[16] J. Reuther, J. J. Alonso and A. Jameson, “Con-
strained Multipoint Aerodynamic Shape Op-
timization Using an Adjoint Formulation and
Parallel Computers: Part I”, Journal of Air-
craft, 36(1):51-60, 1999.

11

American Institute of Aeronautics and Astronautics

Fortran
Function

Mathematical
Standard Definition Analytic Continuation

abs ✘ abs(z) =

{
−z ⇐ x < 0
+z ⇐ x ≥ 0

First derivative discontinuous at
x = 0.

exp ✔ ez = ex(cos y + i sin y)

sqrt ✔
√

z =
√
|z|

(
cos

(
Arg(z)

2

)
+ i sin

(
Arg(z)

2

))
Non-continuous on non-positive
real axis (x ≤ 0, y = 0).

sin ✔ sin(z) = eiz−e−iz

2i

cos ✔ cos(z) = eiz+e−iz

2

tan ✔ tan(z) = e−iz−eiz

e−iz+eiz Not defined when cos(z) = 0

log ✔ log(z) = log |z|+ i Arg(z)
Not defined for z = 0. Non-
continuous on non-positive real
axis (x ≤ 0, y = 0).

log10 ✔ log10(z) = log(z)
log(10)

Not defined for z = 0. Non-
continuous on non-positive real
axis (x ≤ 0, y = 0).

asin ✔ arcsin(z) = −i log[iz + (1− z2)
1
2]

acos ✔ arccos(z) = −i log[z + (z2 − 1)
1
2]

atan ✔ arctan(z) = i
2 log

(
1−iz
1+iz

)
Not defined when z = ±i.

atan2 ✔ arctan2(z1, z2) = arctan(z2/z1)

sinh ✔ sinh(z) = ez−e−z

2

cosh ✔ cosh(z) = ez+e−z

2

tanh ✔ tanh(z) = ez−e−z

ez+e−z

dim ✘ dim(z1, z2) =

{
z1 − z2 ⇐ x1 > x2

0 ⇐ x1 ≤ x2

Non-continuous derivatives when
x1 = x2.

sign ✘ sign(z1, z2) =

{
+|x1| ⇐ x2 ≥ 0
−|x1| ⇐ x2 < 0

Non-continuous derivatives when
x2 = 0.

max ✘ max(z1, z2) =

{
z1 ⇐ x1 ≥ x2

z2 ⇐ x1 < x2

Non-continuous derivatives when
x1 = x2.

min ✘ min(z1, z2) =

{
z1 ⇐ x1 ≤ x2

z2 ⇐ x1 > x2

Non-continuous derivatives when
x1 = x2.

Table 5: Fortran intrinsic functions and their complex definitions. ✔ means the presented definition is the
standard mathematical one, ✘ mean the definition is new, z = x+ iy. Note that in the case of abs, although
it has a standard definition for complex arguments, that definition is not analytic.

12

American Institute of Aeronautics and Astronautics

