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AERO-STRUCTURAL WING PLANFORM OPTIMIZATION

Kasidit Leoviriyakit ∗ and Antony Jameson †

Stanford University, Stanford, CA 94305-4035

During the last decade, aerodynamic shape optimization methods based on control

theory have been intensively developed. The methods have proved to be very effective

for improving wing section shapes for fixed wing-planforms. Building on this success,

extension of the control theory approach to variable planforms has yielded further im-

provement. This paper describes the formulation of optimization techniques based on

control theory for aerodynamic shape design in inviscid compressible flow modeled by

the Euler equations. The design methodology has been expanded to include wing plan-

form optimization. It extends the previous work on wing planform optimization based on

simple wing weight estimation. A more realistic model for the structural weight, which is

sensitive to both planform variations and wing loading, is included in the design cost func-

tion to provide a meaningful design. A practical method to combine the structural weight

into the design cost function is studied. An extension of a single to a multiple objective

cost function is also considered. Results of optimizing a wing-fuselage of a commercial

transport aircraft show a successful trade-off between the aerodynamic and structural

cost functions, leading to meaningful wing planform designs. The results also support

the necessity of including the structural weight in the cost function. Furthermore, by

varying the weighting constant in the cost function, an optimal set called “Pareto front”

can be captured, broadening the design range of optimal shapes.

Introduction

WHILE aerodynamic prediction methods based
on CFD are now well established, quite ac-

curate, and robust, the ultimate need in the design
process is to find the optimum shape which maximizes
the aerodynamic performance. One way to approach
this objective is to view it as a control problem, in
which the wing is treated as a device which controls the
flow to produce lift with minimum drag, while meet-
ing other requirements such as low structural weight,
sufficient fuel volume, and stability and control con-
straints. In this paper, we apply the theory of opti-
mal control of systems governed by partial differential
equations with boundary control, in this case through
changing the shape of the boundary. Using this theory,
we can find the Frechet derivative (infinitely dimen-
sional gradient) of the cost function with respect to
the shape by solving an adjoint problem, and then we
can make an improvement by making a modification
in a descent direction. For example, the cost function
might be the drag coefficient at a fixed lift, or the lift
to drag ratio. During the last decade, this method has
been intensively developed, and has proved to be very
effective for improving wing section shapes for fixed
wing planforms.1–8 Furthermore, this method is not
limited to only the wing sections but can be extended
to wing planforms.
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Wing planform modification can yield large im-
provement in wing performance but can also affect
wing weight and stability and control issues. It is well
known that the induced drag varies inversely with the
square of the span. Hence the induced drag can be re-
duced by increasing the span. Moreover, shock drag in
transonic flow might be reduced by increasing sweep-
back or increasing the chord to reduce the thickness
to chord ratio. However, a pure aerodynamic opti-
mization may lead to highly suspect results because
the decrease in drag might come at the expense of the
increase in wing weight. Therefore it is essential to ac-
count for the effect of planform change on wing weight.
Also, for practical design purposes, a fast and accurate
method to predict the wing weight and its gradient is
necessary.

Our previous work9 validates a design methodology
for wing planform optimization with simple estima-
tion of wing weight. We find that if the cost function
contains both aerodynamic and structural weight de-
pendencies, the trade-off between these two dependen-
cies will lead to a useful design. However, this raises
the question of how to properly integrate these de-
pendencies together. One practical way to solve the
relative importance of aerodynamic and structural de-
pendencies is to consider the overall design, such as
the maximum range of the aircraft.

In this work, we report improvements in the esti-
mation of wing weight, using a new structural weight
model that is sensitive to changes of both geometry
and aerodynamic load. Because of the coupling be-
tween this wing geometry and aerodynamic load, in
order to reduce computational time, we extend the
adjoint method to calculate the wing weight gradient
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with respect to planform variations.
We also consider an alternative approach of how to

combine the aerodynamic and structural cost functions
to cover a broader design range, based on the concept
of the “Pareto front”. This front represents a set that
is optimal in the sense that no improvement can be
achieved in one objective component that doesn’t lead
to degradation in at least one of the remaining com-
ponents. Accordingly it extends an optimal solution
from a single objective function to a multiple objec-
tive function, hence broadening the range of design
options.

Mathematical formulation

In this work the equations of steady flow

∂

∂xi

fi(w) = 0

where w is the solution vector, and fi(w) are the flux
vectors along the xi axis are applied in a fixed compu-
tational domain, with coordinates ξi, so that

R(w, S) =
∂

∂ξi
Fi(w) =

∂

∂ξi
Sijfj(w) = 0

where Sij are the coefficients of the Jacobian matrix
of the transformation. Then geometry changes are
represented by changes δSij in the metric coefficients.
Suppose one wishes to minimize the cost function of a
boundary integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (w, S) dBξ

where the integral of M(w, S) could be an aerody-
namic cost function, e.g. drag coefficient, and the
integral of N (w, S) could be a structural cost func-
tion, e.g. wing weight. Then one can augment the
cost function through Lagrange multiplier ψ as

I =

∫

B

M(w, S) dBξ+

∫

D

ψTR(w, S) dDξ+

∫

B

N (w, S) dBξ

A shape variation δS causes a variation

δI =

∫

B

δM dBξ +

∫

D

ψT ∂

∂ξi
δFi dDξ +

∫

B

δN dBξ,

The second term can be integrated by parts to give

∫

B

niψ
T δFidBξ −

∫

D

∂ψT

∂ξi
δFi dDξ .

Now, choosing ψ to satisfy the adjoint equation

(Sij

∂fj

∂w
)T ∂ψ

∂ξi
= 0 (1)

with appropriate boundary conditions

niψ
TSijfjw

= Mw + Nw, (2)

where
Mw = ∂M

∂w
, and

Nw = ∂N
∂w

,
the explicit dependence on δw is eliminated, allowing
the cost variations to be expressed in terms of δS and
the adjoint solution, and hence finally in terms of the
change δF in a function F(ξ) defining the shape.

Thus one obtains

δI =

∫

GδF dξ = 〈G, δF〉

where G is the infinite dimensional gradient (Frechet
derivative) at the cost of one flow and one adjoint so-
lution. Then one can make an improvement by setting

δF = −λG

In fact the gradient G is generally of a lower smooth-
ness class than the shape F . Hence it is important to
restore the smoothness. This may be effected by pass-
ing to a weighted Sobolev inner product of the form

〈u, v〉 =

∫

(uv + ε
∂u

∂ξ

∂v

∂ξ
) dξ

This is equivalent to replacing G by Ḡ, where in one
dimension

Ḡ −
∂

∂ξ
Ḡ
∂Ḡ

∂ξ
= G, Ḡ = zero at end points

and making a shape change δF = −λḠ.

Implementation

Planform design variables

In this work, we model the wing of interest using six
planform variables: root chord (c1), mid-span chord
(c2), tip chord (c3), span (b), sweepback(Λ), and wing
thickness ratio (t), as shown in figure 1. This choice of

t

b/2
C2

C3

C1

Fig. 1 Modeled wing governed by six planform
variables; root chord (c1), mid-span chord (c2), tip
chord (c3), span (b), and sweepback(Λ), wing thick-
ness ratio (t).

design parameters will lead to an optimum wing shape
that will not require an extensive structural analysis
and can be manufactured effectively.
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Cost function for planform design

In order to design a high performance transonic
wing, which will lead to a desired pressure distribu-
tion, and still maintain a realistic shape, the natural
choice is to set

I = α1CD + α2

1

2

∫

B

(p− pd)
2dS + α3CW (3)

with

CW ≡
Wwing

q∞Sref

(4)

where
CD = drag coefficient,
CW = normalized wing structural weight,
p = current surface pressure,
pd = desired pressure,
q∞ = dynamic pressure,
Sref = reference area,
Wwing = wing structural weight, and
α1, α2, α3 = weighting parameters for drag,

inverse design, and structural
weight respectively.

The constant α2 is introduced to provide the designer
some control over the pressure distribution.

Structural weight model

To estimate Wwing , a realistic model should account
for both planform geometry and wing loading, but it
should be simplified enough that we can express it as
an analytical function.

An analytical model to estimate the minimal mate-
rial to resist material and buckling failures has been
developed by Wakayama.10 When shear and buckling
effects are small, they may be neglected, resulting in a
simplified model developed by Kroo.11 In this paper,
we follow the analysis developed by Kroo.

The wing structure is modeled by a structure box,
whose major structural material is the box skin. The
skin thickness (ts) varies along the span and resists
the bending moment caused by the wing lift. Then,
the structural wing weight can be calculated based on
material of the skin.

Consider a box structure of a swept wing whose
quarter-chord swept is Λ and its cross-section A-A as
shown in figures 2. The skin thickness ts, structure
box chord cs, and overall thickness t vary along the
span. The maximum normal stress from the bending
moment at a section Z∗ is

σ =
M(z∗)

ttscs

The corresponding wing structural weight is

Wwing ∝

∫

structual span

M

t
dl

= 2
ρmatg

σcos(Λ)

∫ b
2

− b
2

M(z∗)

t(z∗)
dz∗

l

A

A
b/2

sc

*zz

a) swept wing planform

t

cs

ts

b) section A-A

Fig. 2 Structural model for a swept wing

= 4
ρmatg

σcos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗,

and

CW =
β

cos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗, (5)

where

β =
4ρmatg

σq∞Sref

,

ρmat is the material density, and g is the gravitational
constant.

The bending moment can be calculated by integrat-
ing pressure toward the wing tip.

M(z∗) = −

∫ b
2

z∗

p(x, z)(z − z∗)

cos(Λ)
dA

= −

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

cos(Λ)
dxdz

Thus

CW =
−β

cos(Λ)2

∫ b
2

0

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

t(z∗)
dxdzdz∗

(6)
To form the corresponding adjoint boundary con-

dition (2), CW must be expressed as
∫

B
dBξ in the

computational domain, or
∫ ∫

dxdz in a physical do-
main to match the boundary term of (2).

To switch the order of integral of (6), introduce a
Heaviside function

H(z − z∗) =

{

0, z < z∗

1, z > z∗
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Then (6) can be rewritten as

CW =
−β

cos(Λ)2
·

∫ b
2

0

∫ b
2

0

∮

wing

p(x, z)H(z − z∗)(z − z∗)

t(z∗)
dxdzdz∗

=
−β

cos(Λ)2

∫ b
2

0

∮

wing

p(x, z)K(z)dxdz, (7)

where

K(z) =

∫ b
2

0

H(z − z∗)(z − z∗)

t(z∗)
dz∗

=

∫ z

0

z − z∗

t(z∗)
dz∗

In the computational domain,

CW =
−β

cos(Λ)2

∮

B

p(ξ1, ξ3)K(ξ3)S22dξ1dξ3, (8)

and K(ξ3) is a one-to-one mapping of K(z).

Adjoint boundary condition for the structural

weight

For simplicity, it is assumed that the portion of the
boundary that undergoes shape modifications is re-
stricted to the coordinate ξ2 = 0. Then (2) may be
simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1 and dBξ = dξ1dξ3,

so that the only variation δF2 needs to be considered
at the wall boundary. Moreover, the condition that
there is no flow through the wall boundary at ξ2 = 0
is equivalent to

U2 = 0,

and
δU2 = 0

when the boundary shape is modified. Consequently,

δF2 = δp























0
S21

S22

S23

0























+ p























0
δS21

δS22

δS23

0























. (9)

The variation of CW is

δCW = −β

∮

B

δp
KS22

cos(Λ)2
+ pδ

(

KS22

cos(Λ)2

)

dξ1dξ3,

(10)
Since δF2 and δCW depend only on the pressure, it

allows a complete cancellation of dependency of the
boundary integral on δp, and the adjoint boundary
condition reduces to

ψ2S21 + ψ3S22 + ψ4S23 =
−β

cos(Λ)2
KS22 (11)

Adjustment of the adjoint boundary condition

for a design with fixed CL

A typical design problem is to find an optimum wing
shape, while maintaining constant lift. A practical way
to maintain the lift is to allow the angle of attack to
adjust at each design cycle. In such a case the variation
of the cost function needs to include a variation from
the change of angle of attack.

If
I = CW ,

then

δI = δ̃Cw +
∂CW

∂α
δα (12)

where δ̃ refers to variations independent of changes in
α. For fixed lift,

δCL = 0

= δ[CNcos(α) − CAsin(α)]

= δ̃CNcos(α) − δ̃CAsin(α)

+

[

∂CN

∂α
cos(α) −

∂CA

∂α
sin(α)

]

δα

+ [−CNsin(α) − CAcos(α)] δα, (13)

leaving

δα =
−δ̃CN cos(α) + δ̃CAsin(α)

−CD + ∂CN

∂α
cos(α) − ∂CA

∂α
sin(α)

=
−δ̃CN cos(α) + δ̃CAcos(α)

∂CL

∂α

(14)

Combining (12) and (14), and using

∂CW

∂α
∂CL

∂α

=
∂CW

∂CL

,

(12) becomes

δI = δ̃Cw +
∂CW

∂CL

(

−δ̃CN cos(α) + δ̃CAsin(α)
)

(15)

To calculate ∂CW

∂CL
, an outer iteration needs to be in-

corporated with the flow solver which changes α.
To express the corresponding adjoint boundary con-

dition, recall

CN =
−1

q∞Sref

∫

B

pS22dξ1dξ3 (16)

CA =
−1

q∞Sref

∫

B

pS21dξ1dξ3 (17)

Following the procedure outlined in the previous sec-
tion, equations (15), (16), and (17) can be combined
with the variation of the flow equations and equa-
tion (11) will be modified to

ψ2S21 + ψ3S22 + ψ4S23 =

−β

cos(Λ)2
KS22 − γsin(α)S21 + γcos(α)S22 (18)

where γ =
∂CW
∂CL

q∞Sref
.
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Gradient calculation for planform variables

Gradient information can be computed using a vari-
ety of approaches such as the finite-difference method,
the complex step method,12 and the automatic differ-
entiation.13 Unfortunately, their computational cost
is still proportional to the number of design variables
in the problem. In an optimum transonic wing design,
suppose one chooses mesh points on a wing surface as
the design variables, which is on the order of 1000 or
more; it is impractical to calculate the gradient us-
ing the methods mentioned earlier. In our planform
optimization, the design variables are points on the
wing surface plus the planform variables. To evaluate
the aerodynamic and structural gradients with respect
to the planform variables, since the number of plan-
form variables (six in this study) is far less than that
of the surface optimization, one could calculate the
gradient by the finite-difference method, the complex
step method or the automatic differentiation. How-
ever, the cost for the gradient calculation will be six
times higher. A more efficient approach is to follow
the adjoint formulation.

Consider the variation of the cost function (3)

δI =

∫

B

(δM + δN ) dBξ +

∫

D

ψT δR dDξ

This can be split as

δI = [Iw]I δw + δIII

with
δM = [Mw]Iδw + δMII

and
δN = [Nw]Iδw + δNII

where the subscripts I and II are used to distinguish
between the contributions associated with variation of
the flow solution δw and those associated with the met-
ric variations δS. Thus [Mw]I represents ∂M

∂w
with the

metrics fixed. Note that δR is intentionally kept un-
split for programming purposes. If one chooses ψ as
ψ∗, where ψ∗ satisfies

(Sij

∂fj

∂w
)T ∂ψ

∗

∂ξi
= 0,

then

δI(w, S) = δI(S)

=

∫

B

(δMII + δNII) dBξ +

∫

D

ψ∗T

δR dDξ

≈
∑

B

(δMII + δNII) ∆B +
∑

D

ψ∗T

∆R̄

≈
∑

B

(δMII + δNII) ∆B

+
∑

D

ψ∗T (

R̄|S+δS − R̄|S
)

,

where R̄|S and R̄|S+δS are volume weighted residuals
calculated at the original mesh and at the mesh per-
turbed in the design direction.

Provided that ψ∗ has already been calculated and R̄
can be easily calculated, the gradient of the planform
variables can be computed effectively by first perturb-
ing all the mesh points along the direction of interest.
For example, to calculate the gradient with respect to
the sweepback, move all the points on the wing surface
as if the wing were pushed backward and also move all
other associated points in the computational domain
to match the new location of points on the wing. Then
re-calculate the residual value and subtract the previ-
ous residual value from the new value to form ∆R̄.
Finally, to calculate the planform gradient, multiply
∆R̄ by the costate vector and add the contribution
from the boundary terms.

This way of calculating the planform gradient ex-
ploits the full benefit of knowing the value of adjoint
variables ψ∗ with no extra cost of flow or adjoint cal-
culations.

Choice of weighting constants

Maximizing range of the aircraft

The choice of α1 and α3 greatly affects the optimum
shape. If α3

α1

is high enough, the optimum shape will
have lower CD and higher CW than another optimum
shape with lower α3

α1

value.

Leoviriyakit and Jameson9 propose an intuitive
choice of α1 and α3 by equating a problem of maxi-
mizing range of an aircraft to a problem of minimizing
the cost function

I = CD +
α3

α1

CW .

If the simplified Breguet range equation can be ex-
pressed as

R =
V

C

L

D
log

W1

W2

where C is specific fuel consumption, D is drag, L is
lift, R is range, V is aircraft velocity, W1 is take off
weight, and W2 is landing weight, then choosing

α3

α1

=
CD

CW2
log

CW1

CW2

, (19)

corresponds to maximizing the range of the aircraft.

Pareto Front

In order to present the designer with a wider range
of choices, the problem of optimizing both drag and
weight can be treated as a multi-objective optimiza-
tion problem. In this sense one may also view the
problem as a “game”, where one player tries to min-
imize CD and the other tries to minimize CW . In
order to compare the performance of various trial de-
signs, designated by the symbol X in figure 3, they
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α 3 Pareto front
vs.

R Q

Drag

Weight

P
1α

Fig. 3 Cooperative game strategy with drag and
weight as players

may be ranked for both drag and weight. A design
is undominated if it is impossible either to reduce the
drag for the same weight or to reduce the weight for
the same drag. Any dominated point should be elimi-
nated, leaving a set of undominated points which form
the Pareto front. In figure 3, for example, the point Q
is dominated by the point P (same drag, less weight)
and also the point R (same weight, less drag). So the
point Q will be eliminated. The Pareto front can be fit
through the points P, R and other dominating points,
which may be generated by using an array of different
values of α1 and α3 in the cost function to compute
different optimum shapes. With the aid of the Pareto
front the designer will have freedom to pick the most
useful design.

Design cycle

The design cycle starts by first solving the flow field
until at least a 4 order of magnitude drop in the resid-
ual. The flow solution is then passed to the adjoint
solver. Second, the adjoint solver is run to calculate
the costate vector. Iteration continues until at least a
4 order of magnitude drop in the residual. The costate
vector is passed to the gradient module to evaluate the
overall gradient, which combines the aerodynamic and
structural parts. The steepest descent method is used
with a small step size to guarantee that the solution
will converge to the optimum point. The design cycle
is shown in figure 4.

Flow solver and adjoint solver

The flow solver and the adjoint solver chosen in this
work are codes developed by Jameson.3, 4, 14, 15 The
flow solver solves the three dimensional Euler equa-
tions, by employing the JST scheme, together with a
multi-step time stepping scheme. Rapid convergence
to a steady state is achieved via variable local time
steps, residual averaging, and a full approximation
multi-grid scheme. The adjoint solver solves the corre-
sponding adjoint equations using similar techniques to
those of the flow solver. In fact much of the software
is shared by the flow solver and adjoint solver.

−planform
−sections

Adjoint Solver

(Aerodynamic + Structural)
Gradient Calculation

Flow Solver

repeated until

Modification
Shape & Grid

Convergence

Design Cycle

Fig. 4 Design cycle

Results

Validation of aerodynamic and structural

gradients with respect to planform variables

To verify the accuracy of the aerodynamic and struc-
tural gradients with respect to planform variables cal-
culated by employing the adjoint method, we com-
pare the planform gradients using adjoint and finite-
difference methods. For the purpose of comparison,
calculations are done at a fixed angle of attack to
eliminate the effect of pitch variation on the gradient.
The case chosen is the Boeing 747 wing fuselage com-
bination at Mach 0.87, and wing angle of attack 2.3
degrees. The computational mesh is shown in figure 5.

The gradients with respect to the planform variables
are calculated using both the adjoint and the finite-
difference methods. A forward differencing technique
is used for the finite-difference method with a moder-
ate step size of 0.1% of planform variables to achieve
both small discretization error and small cancellation
error. The flow and adjoint solvers are run until both
solutions are fully converged.

To verify the result more generally, different geome-
tries are used in this comparison. Each new geometry
is generated sequentially by allowing section changes of
the current geometry. Figures 6 and 7 show the plan-
form gradient comparison where the cost functions are
CD and CW respectively. It can be seen that the re-
sults from both adjoint and finite difference methods
match each other very well, independent of the ge-
ometry. This result indicates that the adjoint method
provides an accurate planform gradient while reducing
the computational cost by a factor of six.

The effect of the step size for the mesh perturbations
used in the gradient calculation has been studied by
Leoviriyakit and Jameson.9 The results indicate that
the step size almost has no effect on the adjoint gra-
dient, showing an additional advantage of the adjoint
gradient over the finite difference gradient. Similar re-
sults have been indicated by Kim et. al.16
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Redesign of the Boeing 747 wing

We present a result to show that the optimization
can successfully trade planform parameters. We also
demonstrate how to apply strategy game theory to the
gradient based optimization.

Here, the case chosen is the Boeing 747 wing fuselage
combination at Mach 0.87 and a lift coefficient CL =
0.42. The computational mesh is shown in figure 5.

BOEING 747 WING-BODY                                                            
 GRID  192 X   32 X   32

  K   =    1

Fig. 5 Computational grid of the B747 wing fuse-
lage

In this test case, the Mach number is slightly higher
than the current normal cruising Mach number of
0.85. We allowed section changes together with vari-
ations of sweep angle, span length, chords, and sec-
tion thickness. Figure 8 shows an optimization with
fixed planform. Here the drag was reduced from 107.7
counts to 93.9 counts in seventeen design iterations
with relatively small changes in the section shape,
while the structural weight is maintained constant at
CW = 0.0455.

Figure 9 shows the effect of allowing changes in
sweepback, span length, chords at root, break, and tip
locations, and section thickness. In our previous work,
the section thickness was held constant. However, in
order to fully exploit the planform optimization, it is
important to allow thickness variations, since an in-
crease in thickness will allow an increase in span for
the same weight. At the same time the section opti-
mization can prevent an increase in shock drag. The
parameter α3 was chosen according to formula (19)
such that the cost function corresponds to maximiz-
ing the range of the aircraft. Here in nineteen design
iterations the drag was reduced from 107.7 counts to
87.2 counts. The further reduction in drag is the re-
sult of the increase in span from 191.5 ft to 205.7 ft,
which reduces the induced drag. The redesigned geom-

etry also has a lower sweep angle and a thicker wing
section in the inboard part of the wing, which both
reduce the structural weight. The optimized geome-
try is shown in figure 10. Overall, the re-design with
variation planform gives improvements in both aero-
dynamic performance and structural weight, compared
to the previous optimization with a fixed planform.

Figure 11 shows the effect of weighting parameters
(α1, α3) on the optimal design. Here, each point cor-
responds to an optimal shape for one specific (α1, α3).
The cost function now becomes a multiple objective
function, measured in terms of drag and wing weight.
By varying α1 and α3, we can capture the Pareto front.
Since all points on the Pareto front are acceptable so-
lutions, any further choice to select the final design
depends on the nature of the problem and several other
factors. Also notice that the optimum shape that cor-
responds to the optimal Breguet range is a particular
point on the Pareto front.

Conclusion

The feasibility of an aerodynamic design methodol-
ogy for planform optimization has been demonstrated.
To realize meaningful designs, a model for the struc-
tural weight is included in the design cost function. A
more realistic model for the structural weight, which
is sensitive to both planform variations and wing load-
ing, is included in the design cost function to provide
a meaningful design. The results of optimizing the
wing-fuselage of a commercial transonic transport air-
craft has highlighted the importance of the structural
weight model. It is the trade-off between the struc-
tural cost function and the aerodynamic cost function
that prevents an unrealistic result and leads to a useful
design. Hence a good structural model can be critical
in aerodynamic planform optimization.
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Fig. 6 Comparison between adjoint and finite-difference aerodynamic-gradients with respect to planform
variables. Test case: Boeing 747, wing-body configuration, M∞=.87, fixed α=2.3 degrees.
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Fig. 7 Comparison between adjoint and finite-difference structural-gradients with respect to planform
variables. Test case: Boeing 747, wing-body configuration, M∞=.87, fixed α=2.3 degrees.
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BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 2.214                                                     
CL:  0.420    CD: 0.00939    CM:-0.1324    CW: 0.0455                           
Design:  17    Residual:  0.5729E-01                                            
Grid: 193X 33X 33                                                               
Sweep: 42.0991   Span(ft):  191.45                                              
C1(ft):  48.11   C2:  30.57   C3:  10.78                                        
I:  0.00939                                                                     

Cl:  0.370    Cd: 0.04511    Cm:-0.1483    T(in):58.1913                        
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.604    Cd: 0.00248    Cm:-0.2240    T(in):23.7410                        
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.416    Cd:-0.02427    Cm:-0.1883    T(in):12.9059                        
Tip Section:  88.1% Semi-Span

Cp = -2.0

Fig. 8 Redesign of Boeing 747, using only section modification. Dash line represents shape and pressure
distribution of the initial configuration. Solid line represents those of the redesigned configuration.
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BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 1.930                                                     
CL:  0.420    CD: 0.00872    CM:-0.1091    CW: 0.0450                           
Design:  19    Residual:  0.5596E-01                                            
Grid: 193X 33X 33                                                               
Sweep: 38.8284   Span(ft):  205.69                                              
C1(ft):  48.56   C2:  30.75   C3:  10.75                                        
I:  0.02131                                                                     

Cl:  0.344    Cd: 0.04072    Cm:-0.1350    T(in):62.3967                        
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.560    Cd: 0.00033    Cm:-0.2142    T(in):23.8270                        
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.374    Cd:-0.02190    Cm:-0.1509    T(in):12.7825                        
Tip Section:  88.1% Semi-Span

Cp = -2.0

Fig. 9 Redesign of Boeing 747, using section and planform modifications. Dash line represents shape
and pressure distribution of the initial configuration. Solid line represents those of the redesigned config-
uration.
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Fig. 10 Superposition of the baseline and the optimized section-and-planform geometries of Boeing 747.
The redesigned geometry has a longer span and a lower sweep angle.
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Fig. 11 Pareto front of section and planform modifications
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