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This paper describes the formulation of optimization techniques based on control theory

for wing section and planform design in viscous compressible flow modeled by the Reynolds

Averaged Navier-Stokes equations. Because the two disciplines that are relevant to this

problem are aerodynamics and structures, an extension of a single to a multiple objective

cost function is considered. A realistic model for the structural weight, which is sensitive

to both planform variations and wing loading, is implemented. Results of optimizing a

wing-fuselage of a commercial transport aircraft show a successful trade-off between the

aerodynamic and structural cost functions, leading to meaningful wing planform designs.

Results also indicate that large improvements in lift-to-drag ratio can be achieved without

any penalty on the structural weight by stretching the span along with decreasing the sweep

angle, thickening the wing-sections, and modifying the airfoil sections. Furthermore, by

varying the weighting constants in the cost function, the “Pareto front” can be captured,

broadening the design range of optimal shapes.

I. Introduction

T
raditionally the process of wing design has been carried out by trial and error, relying on the intuition
and experience of the designer. With currently available equipment and efficient numerical algorithm

the turn-around for numerical simulations is becoming so rapid that it is feasible to use computational fluid
dynamics (CFD) to examine an extremely large number of variations. However, it is not likely that repeated
trials in an interactive design and analysis procedure can lead to a truly optimum design. In order to take
full advantage of examining a very large design space the numerical simulations need to be combined with
automatic search and optimization procedures. This can lead to automatic design methods which will fully
realize the potential improvements in multidisciplinary optimization.

Gradient information can be computed using a variety of approaches such as the finite-difference method,
the complex step method,1 and automatic differentiation.2 Unfortunately, their computational cost is still
proportional to the number of design variables in the problem. An alternative is to treat the design problem
as a control problem. This approach has dramatic computational cost advantages over the other methods.
The foundations of control theory for systems governed by partial differential equations were laid by J.L.
Lions.3

The control-theory approach is often called the adjoint method, since the necessary gradients are obtained
via the solution of the adjoint equations of the governing equations. The adjoint method is extremely efficient
since the computational expense incurred in the calculation of the complete gradient is effectively independent
of the number of design variables. The only cost involved is the calculation of one flow solution and one
adjoint solution whose complexity is similar to that of the flow solution. Control theory was applied to
shape design for elliptic equations by Pironneau4 and it was first used in transonic flow by Jameson.5, 6, 7

Since then this method has become a popular choice for design problems involving fluid flow.8, 9, 10, 11 During
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the last decade, the methods have been intensively developed and have been proved to be very effective for
improving wing section shapes for fixed wing-planforms.12, 13

In general the section shape changes needed for the transonic wing design are quite small. However, in
order to obtain a true optimum design larger scale changes such as changes in the wing planform (sweepback,
span, chord, section thickness, and taper) should be considered. Because these changes directly affect the
structural weight, a meaningful result can only be obtained by considering a cost function that accounts for
both the aerodynamic and structural characteristics.

Our previous works14, 15 validated a design methodology for wing section and planform optimization
with simple estimation of wing weight, in both inviscid and viscous flow. We also extended our study16

to validate a design methodology in inviscid flow with a more realistic structural-weight-model that was
sensitive to changes of both geometry and aerodynamic load. In addition we also developed a large-scale
adjoint method to calculate the planform gradients.

We found that if the cost function contained both aerodynamic and structural weight dependencies, the
trade-off between these two dependencies would lead to a useful design. However, this raised the question of
how to properly integrate these dependencies together. One practical way to solve the relative importance
of aerodynamic and structural dependencies was to consider the overall performance, such as the maximum
range of the aircraft.

We also found that while inviscid calculations were proven useful for the design of transonic wings at the
cruise condition, the required changes in the section shape were comparable in magnitude to the displacement
thickness of the boundary layer. Thus viscous design was more realistic, and alleviated shocks that would
otherwise form in the viscous solution over the final inviscid design. Accurate resolution of viscous effects
such as separation and shock/boundary layer interaction was also essential for optimal design encompassing
off-design conditions.

In this work, we report improvements in a design for wing planform optimization based on compressible
viscous flow calculation and a realistic structural weight model. We also consider an alternative approach
to combine the aerodynamic and structural cost functions to cover a broader design range, based on the
concept of the “Pareto front”. Optimized results of a transonic long-range transport aircraft show that large
improvements in lift-to-drag ratio can be achieved while meeting criteria of other disciplines by stretching
span to reduce vortex drag, decreasing sweep and thickening wing section to reduce structural weight, and
modifying airfoil sections to minimize the shock drag. This trend has been further investigated for general
long-range transport aircraft and results are presented in reference.17

II. Mathematical formulation

A. Design using the Navier-Stokes equations

The application of control theory to aerodynamic design problems is illustrated in this section for the case of
three-dimensional wing design using the compressible Navier-Stokes equations as the mathematical model.
It proves convenient to denote the Cartesian coordinates and velocity components by x1, x2, x3 and u1, u2,
u3, and to use the convention that summation over i = 1 to 3 is implied by a repeated index i. Then, the
three-dimensional Navier-Stokes equations may be written as

∂w

∂t
+
∂fi

∂xi

=
∂fvi

∂xi

in D, (1)
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
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{

E −
1

2
uiui

}

, (3)

and
ρH = ρE + p (4)

where γ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ λδij
∂uk

∂xk

, (5)

where µ and λ are the first and second coefficients of viscosity. The coefficient of thermal conductivity and
the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (6)

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R is the gas constant.
Using a transformation to a fixed computational domain, the Navier-Stokes equations can be written in

the transformed coordinates as
∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (7)

where the inviscid terms have the form
∂Fi

∂ξi
=

∂

∂ξi
(Sijfj) ,

the viscous terms have the form
∂Fvi

∂ξi
=

∂

∂ξi

(

Sijfvj

)

,

and Sij = JK−1
ij represent the projection of the ξi cell face along the xj axis.

The geometry changes are represented by changes δSij in the metric coefficients. Suppose we choose to
minimize the cost function of a boundary integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (w, S) dBξ

where M(w, S) could be an aerodynamic cost function, e.g. drag coefficient, and N (w, S) could be a
structural cost function, e.g. structure weight. A shape change produces a variation in the flow solution δw
and the metrics δS which in turn produce a variation in the cost function

δI =

∫

B

δM(w, S) dBξ +

∫

B

δN (w, S) dBξ,

with

δM = [Mw]I δw + δMII ,

δN = [Nw]I δw + δNII ,

where we continue to use the subscripts I and II to distinguish between the contributions associated with
the variation of the flow solution δw and those associated with the metric variations δS. Thus [Mw]I and
[Nw]I represent ∂M

∂w
and ∂N

∂w
with the metrics fixed, while δMII and δNII represent the contribution of the

metric variations δS to δM and δN .
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In the steady state, the constraint equation (7) specifies the variation of the state vector δw by

∂

∂ξi
δ (Fi − Fvi) = 0.

Here δFi and δFvi can also be split into contributions associated with δw and δS using the notation

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII .

Multiplying by a costate vector ψ, which will play an analogous role to the Lagrange multiplier, and inte-
grating over the domain produces

∫

D

ψT ∂

∂ξi
δ (Fi − Fvi) dDξ = 0.

If ψ is differentiable this may be integrated by parts to give

∫

B

niψ
T δ (Fi − Fvi) dBξ −

∫

D

∂ψT

∂ξi
δ (Fi − Fvi) dDξ = 0. (8)

Since the left hand expression equals zero, it may be subtracted from the variation in the cost function to
give

δI =

∫

B

[

δM + δN − niψ
T δ (Fi − Fvi)

]

dBξ

+

∫

D

[

∂ψT

∂ξi
δ (Fi − Fvi)

]

dDξ . (9)

Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI no longer
depends explicitly on the variation of the state vector δw. The gradient of the cost function can then be
evaluated directly from the metric variations without having to recompute the variation δw resulting from
the perturbation of each design variable.

The variation δw may be eliminated from (9) by equating all field terms with subscript “I” to produce
a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I = 0 in D. (10)

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary terms
in equation (9) to produce

niψ
T [Fiw − Fviw]I = [Mw]I + [Nw]I on B. (11)

The remaining terms from equation (9) then yield a simplified expression for the variation of the cost function
which defines the gradient

δI =

∫

B

{

δMII + δNII − niψ
T [δFi − δFvi] II

}

dBξ

+

∫

D

{

∂ψT

∂ξi
[δFi − δFvi] II

}

dDξ , (12)

Choosing ψ to satisfy the adjoint equation with appropriate boundary conditions depending on the cost
function, the explicit dependence on δw is eliminated allowing the cost variations to be expressed in terms
of δS and the adjoint solution, and hence finally in terms of the change δS in a function S(ξ) defining the
shape.

Thus one obtains

δI =

∫

GδS dξ = 〈G, δS〉

where G is the infinite dimensional gradient (Frechet derivative) at the cost of one flow and one adjoint
solution. Then one can make an improvement by setting
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δS = −λG

In fact the gradient G is generally of a lower smoothness class than the shape S. Hence it is important
to restore the smoothness. This may be affected by passing to a Sobolev inner product of the form

〈u, v〉 =

∫

(uv + ε
∂u

∂ξ

∂v

∂ξ
) dξ

This is equivalent to replacing G by Ḡ, where in one dimension

Ḡ −
∂

∂ξ
ε
∂Ḡ

∂ξ
= G, Ḡ = zero at end points

and making a shape change δS = −λḠ.

B. Adjoint equations and boundary condition

Due to the additional level of derivatives in the stress and heat flux terms, it is proctical to derive the
contributions form the inviscid and viscous terms separately.

In order to derive the adjoint equation in detail, equation (8) can be expanded as

∫

B

ψT (δS2jfj + S2jδfj) dBξ

−

∫

D

∂ψT

∂ξi
(δSijfj + Sijδfj) dDξ

−

∫

B

ψT
(

δS2jfvj + S2jδfvj

)

dBξ

+

∫

D

∂ψT

∂ξi

(

δSijfvj + Sijδfvj

)

dDξ . (13)

It is convenient to assume that the shape modification is restricted to the coordinate surface ξ2 = 0 so that
n1 = n3 = 0, and n2 = 1. Furthermore, it is assumed that the boundary contributions at the far field may
either be neglected or else eliminated by a proper choice of boundary conditions as previously shown for the
inviscid case.18, 19

1. Derivation of the Inviscid Adjoint Terms

In equation (13) the inviscid flux variation can be expanded by setting

Sijδfj = Sij

∂fj

∂w
δw.

Taking the transpose of equation (13), it can be seen that in order to eliminate the explicit dependence on
δw in the absence of viscous effect, ψ should be chosen to satisfy the inviscid adjoint equation

CT
i

∂ψ

∂ξi
= 0 in D, (14)

where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij

∂fj

∂w
.

In order to design a shape which will lead to a desired pressure distribution, natural choice is to set

I =
1

2

∫

B

(p− pd)
2
dS
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where pd is the desired surface pressure, and the integral is evaluated over the actual surface area. In the
computational domain this is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3,

where the quantity
|S2| =

√

S2jS2j

denotes the face area corresponding to a unit element of face area in the computational domain. Now, to
cancel the dependence of the boundary integral on δp, the adjoint boundary condition reduces to

ψjnj = p− pd (15)

where nj are the components of the surface normal

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition on the co-state variables corresponding to the momen-
tum components. Note that it imposes no restriction on the tangential component of ψ at the boundary.

2. Derivation of the Viscous Adjoint Equations

The viscous terms are derived below under the assumption that the viscosity and heat conduction coefficients
µ and k are essentially independent of the flow, and that their variations may be neglected. This simplification
has been successfully used for may aerodynamic problems of interest. However, if the flow variations could
result in significant changes in the turbulent viscosity, it may be necessary to account for its variation in the
calculation.

The derivation of the viscous adjoint terms can be simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p),

because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat flux can be expressed as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R

= γµ
Pr(γ−1) . The relationship between the conservative and primitive variations is defined by

the expressions
δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃

and M−1 = ∂w̃
∂w

. These matrices are provided in
transposed form for future convenience

MT =

















1 u1 u2 u3
uiui

2

0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1

















M−1T
=

















1 −u1

ρ
−u2

ρ
−u3

ρ

(γ−1)uiui

2

0 1
ρ

0 0 −(γ − 1)u1

0 0 1
ρ

0 −(γ − 1)u2

0 0 0 1
ρ

−(γ − 1)u3

0 0 0 0 γ − 1

















.
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The conservative and primitive adjoint operators L and L̃ corresponding to the variations δw and δw̃ are
then related by

∫

D

δwTLψ dDξ =

∫

D

δw̃T L̃ψ dDξ ,

with
L̃ = MTL,

so that after determining the primitive adjoint operator by direct evaluation of the viscous portion of equa-

tion (13), the conservative operator may be obtained by the transformationL = M−1T
L̃. Since the continuity

equation contains no viscous terms, it makes no contribution to the viscous adjoint system. Therefore, the
derivation proceeds by first examining the adjoint operators arising from the momentum equations and then
the energy equation. The details may be found in.20

In order to make use of the summation convention, it is convenient to set ψj+1 = φj for j = 1, 2, 3 and
ψ5 = θ. Collecting together the contributions from the momentum and energy equations, the viscous adjoint
operator in primitive variables can be finally expressed as

(L̃ψ)1 = − p
ρ2

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

(L̃ψ)i+1 = ∂
∂ξl

{

Slj

[

µ
(

∂φi

∂xj
+

∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

+ ∂
∂ξl

{

Slj

[

µ
(

ui
∂θ
∂xj

+ uj
∂θ
∂xi

)

λδijuk
∂θ

∂xk

]}

− σijSlj
∂θ
∂ξl

for i = 1, 2, 3

(L̃ψ)5 = 1
ρ

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T
L̃.

Finally, the resulting adjoint equations for the Navier-Stokes equations are as follows:

CT
i

∂ψ

∂ξi
−M−1T

L̃ψ = 0 in D. (16)

The first and the second terms come from the convective and diffusive terms of the Navier-Stokes equations
respectively. The adjoint equation, a linear set of equations, is solved by marching the costate variables in
time after a time-like derivative has been added.

3. Viscous Adjoint Boundary Conditions

The boundary term that arises from the momentum equations including both the δw and δS components
equation (13) takes the form

∫

B

φkδ (S2j (δkjp+ σkj)) dBξ.

Replacing the metric term with the corresponding local face area S2 and unit normal nj defined by

|S2| =
√

S2jS2j , nj =
S2j

|S2|

then leads to
∫

B

φkδ (|S2|nj (δkjp+ σkj)) dBξ.

Defining the components of the total surface stress as

τk = nj (δkjp+ σkj)

and the physical surface element
dS = |S2| dBξ,
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the integral may then be split into two components

∫

B

φkτk |δS2| dBξ +

∫

B

φkδτkdS, (17)

where only the second term contains variations in the flow variables and must consequently cancel the δw
terms arising in the cost function. The first term will appear in the expression for the gradient.

A general expression for the cost function that allows cancellation with terms containing δτk has the form

I =

∫

B

I(τ)dS, (18)

corresponding to a variation

δI =

∫

B

∂I

∂τk
δτkdS,

for which cancellation is achieved by the adjoint boundary condition

φk =
∂I

∂τk
.

Natural choices for I arise from force optimization and as measures of the deviation of the surface stresses
from desired target values.

The force in a direction with cosines qi has the form

Cq =

∫

B

qiτidS.

If we take this as the cost function (18), this quantity gives

I = qiτi.

Cancellation with the flow variation terms in equation (17) therefore mandates the adjoint boundary condi-
tion

φk = qk.

Note that this choice of boundary condition also eliminates the first term in equation (17) so that it need
not be included in the gradient calculation.

In the inverse design case, where the cost function is intended to measure the deviation of the surface
stresses from some desired target values, a suitable definition is

I(τ) =
1

2
alk (τl − τdl) (τk − τdk) ,

where τd is the desired surface stress, including the contribution of the pressure, and the coefficients alk

define a weighting matrix. For cancellation

φkδτk = alk (τl − τdl) δτk.

This is satisfied by the boundary condition

φk = alk (τl − τdl) . (19)

Assuming arbitrary variations in δτk, this condition is also necessary.
In order to control the surface pressure and normal stress one can measure the difference

nj {σkj + δkj (p− pd)} ,

where pd is the desired pressure. The normal component is then

τn = nknjσkj + p− pd,
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so that the measure becomes

I(τ) =
1

2
τ2
n

=
1

2
nlnmnknj {σlm + δlm (p− pd)}

∗ {σkj + δkj (p− pd)} .

This corresponds to setting
alk = nlnk

in equation (19). Defining the viscous normal stress as

τvn = nknjσkj ,

the measure can be expanded as

I(τ) =
1

2
nlnmnknjσlmσkj

+
1

2
(nknjσkj + nlnmσlm) (p− pd)

+
1

2
(p− pd)

2

=
1

2
τ2
vn + τvn (p− pd) +

1

2
(p− pd)

2
.

For cancellation of the boundary terms

φk (njδσkj + nkδp) =
{

nlnmσlm + n2
l (p− pd)

}

nk

∗ (njδσkj + nkδp)

leading to the boundary condition
φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well approximated by the equations

φk = nk (p− pd) , (20)

which should be compared with the single scalar equation derived for the inviscid boundary condition (15).
In the case of an inviscid flow, choosing

I(τ) =
1

2
(p− pd)

2

requires
φknkδp = (p− pd)n

2
kδp = (p− pd) δp

which is satisfied by equation (20), but which represents an over-specification of the boundary condition
since only the single condition (15) needs be specified to ensure cancellation.

The form of the boundary terms arising from the energy equation depends on the choice of temperature
boundary condition at the wall. For the adiabatic case, the boundary contribution is

∫

B

kδT
∂θ

∂n
dBξ,

while for the constant temperature case the boundary term is

∫

B

kθ

{

S2j
2

J

∂

∂ξ2
δT + δ

(

S2j
2

J

)

∂T

∂ξ2

}

dBξ .

one possibility is to introduce a contribution into the cost function which depends on T or ∂T
∂n

so that the
appropriate cancellation would occur. Since there is little physical intuition to guide the choice of such a
cost function for aerodynamic design, a more natural solution is to set

θ = 0
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in the constant temperature case or
∂θ

∂n
= 0

in the adiabatic case. Note that in the constant temperature case, this choice of θ on the boundary would
also eliminate the boundary metric variation terms in

∫

B

θδ (S2jQj) dBξ.

III. Implementation

A. Planform design variables

In this work, we model the wing of interest using six planform variables: root chord (c1), mid-span chord
(c2), tip chord (c3), span (b), sweepback(Λ), and wing thickness ratio (t), as shown in figure 1. This choice of

t

b/2C2

C3

C1

Figure 1. Modeled wing governed by six planform variables; root chord (c1), mid-span chord (c2), tip chord
(c3), span (b), and sweepback(Λ), wing thickness ratio (t).

design parameters will lead to an optimum wing shape that will not require an extensive structural analysis
and can be manufactured effectively.

B. Cost function for planform design

In order to design a high performance transonic wing, which will lead to a desired pressure distribution, and
still maintain a realistic shape, the natural choice is to set

I = α1CD + α2
1

2

∫

B

(p− pd)
2dS + α3CW (21)

where CW ≡ W
q∞Sref

is a dimensionless measure of the wing weight, which can be estimated either from

statistical formulas, or from a simple analysis of a representative structure, allowing for failure modes such
as panel buckling. The coefficient α2 is introduced to provide the designer some control over the pressure
distribution, while the relative importance of drag and weight are represented by the coefficients α1 and α3.
The choice of these weighting constants is discussed in detainl in section F.

C. Structural weight model

To estimate Wwing , a realistic model should account for both planform geometry and wing loading, but it
should be simplified enough that we can express it as an analytical function.

An analytical model to estimate the minimal material to resist material and buckling failures has been
developed by Wakayama.21 When shear and buckling effects are small, they may be neglected, resulting in
a simplified model developed by Kroo.22 In this paper, we follow the analysis developed by Kroo.
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The wing structure is modeled by a structure box, whose major structural material is the box skin. The
skin thickness (ts) varies along the span and resists the bending moment caused by the wing lift. Then, the
structural wing weight can be calculated based on material of the skin.

l

A

A
b/2

sc

*zz

(a) swept wing planform

t

cs

ts

(b) section A-A

Figure 2. Structural model for a swept wing

Consider a box structure of a swept wing whose quarter-chord swept is Λ and its cross-section A-A as
shown in figures 2. The skin thickness ts, structure box chord cs, and overall thickness t vary along the span.
The maximum normal stress from the bending moment at a section z∗ is

σ =
M(z∗)

ttscs

The corresponding wing structural weight is

Wwing ∝

∫

structual span

M

t
dl

= 2
ρmatg

σcos(Λ)

∫ b
2

− b
2

M(z∗)

t(z∗)
dz∗

= 4
ρmatg

σcos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗,

and

CW =
β

cos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗, (22)

where

β =
4ρmatg

σq∞Sref

,

ρmat is the material density, and g is the gravitational constant.
The bending moment can be calculated by integrating pressure toward the wing tip.

M(z∗) = −

∫ b
2

z∗

p(x, z)(z − z∗)

cos(Λ)
dA

= −

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

cos(Λ)
dxdz

Thus

CW =
−β

cos(Λ)2

∫ b
2

0

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

t(z∗)
dxdzdz∗ (23)

To form the corresponding adjoint boundary condition, CW must be expressed as
∫

B
dBξ in the computa-

tional domain, or
∫ ∫

dxdz in a physical domain to match the boundary term arise from the flow equations.
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To switch the order of integral of (23), introduce a Heaviside function

H(z − z∗) =

{

0, z < z∗

1, z > z∗

Then (23) can be rewritten as

CW =
−β

cos(Λ)2
·

∫ b
2

0

∫ b
2

0

∮

wing

p(x, z)H(z − z∗)(z − z∗)

t(z∗)
dxdzdz∗

=
−β

cos(Λ)2

∫ b
2

0

∮

wing

p(x, z)K(z)dxdz, (24)

where

K(z) =

∫ b
2

0

H(z − z∗)(z − z∗)

t(z∗)
dz∗

=

∫ z

0

z − z∗

t(z∗)
dz∗

In the computational domain,

CW =
−β

cos(Λ)2

∮

B

p(ξ1, ξ3)K(ξ3)S22dξ1dξ3, (25)

and K(ξ3) is a one-to-one mapping of K(z).

D. Adjoint boundary condition for the structural weight

For simplicity, it is assumed that the portion of the boundary that undergoes shape modifications is restricted
to the coordinate ξ2 = 0. Then equation (13) may be simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1 and dBξ = dξ1dξ3,

so that the only variation δF2 needs to be considered at the wall boundary. Moreover, the condition that
there is no flow through the wall boundary at ξ2 = 0 is equivalent to

U2 = 0,

and
δU2 = 0

when the boundary shape is modified. Consequently,

δF2 = δp



























0

S21

S22

S23

0



























+ p



























0

δS21

δS22

δS23

0



























. (26)

The variation of CW is

δCW = −β

∮

B

δp
KS22

cos(Λ)2
+ pδ

(

KS22

cos(Λ)2

)

dξ1dξ3, (27)

Since δF2 and δCW depend only on the pressure, it allows a complete cancellation of dependency of the
boundary integral on δp, and the adjoint boundary condition reduces to

ψ2S21 + ψ3S22 + ψ4S23 =
−β

cos(Λ)2
KS22 (28)
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E. Gradient calculation for planform variables

The gradient with respect to planform variation can be computed by integrating point-gradients projected
in the planform movement direction. If one chooses ψ as ψ∗, where ψ∗ satisfies the adjoint equation (16)
then

δI(w, S) = δI(S)

=

∫

B

(δMII + δNII) dBξ +

∫

D

ψ∗
T

δR dDξ

≈
∑

B

(δMII + δNII) ∆B +
∑

D

ψ∗
T

∆R̄

≈
∑

B

(δMII + δNII) ∆B

+
∑

D

ψ∗
T (

R̄|S+δS − R̄|S
)

,

where R̄|S and R̄|S+δS are volume weighted residuals calculated at the original mesh and at the mesh
perturbed in the design direction.

Provided that ψ∗ has already been calculated and R̄ can be easily calculated, the gradient of the planform
variables can be computed effectively by first perturbing all the mesh points along the direction of interest.
For example, to calculate the gradient with respect to the sweepback, move all the points on the wing surface
as if the wing were pushed backward and also move all other associated points in the computational domain
to match the new location of points on the wing. Then re-calculate the residual value and subtract the
previous residual value from the new value to form ∆R̄. Finally, to calculate the planform gradient, multiply
∆R̄ by the costate vector and add the contribution from the boundary terms.

This way of calculating the planform gradient exploits the full benefit of knowing the value of adjoint
variables ψ∗ with no extra cost of flow or adjoint calculations.

F. Choice of weighting constants

1. Maximizing range of the aircraft

The choice of α1 and α3 greatly affects the optimum shape. If α3

α1

is high enough, the optimum shape will
have lower CD and higher CW than another optimum shape with lower α3

α1

value.

Leoviriyakit and Jameson14 propose an intuitive choice of α1 and α3 by equating a problem of maximizing
range of an aircraft to a problem of minimizing the cost function

I = CD +
α3

α1
CW .

If the simplified Breguet range equation can be expressed as

R =
V

C

L

D
log

W1

W2

where C is specific fuel consumption, D is drag, L is lift, R is range, V is aircraft velocity, W1 is take off
weight, and W2 is landing weight, then choosing

α3

α1
=

CD

CW2
log

CW1

CW2

, (29)

corresponds to maximizing the range of the aircraft.
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2. Pareto Front

α 3 Pareto front
vs.

R Q

Drag

Weight

P
1α

Figure 3. Cooperative game
strategy with drag and weight as
players

In order to present the designer with a wider range of choices, the problem
of optimizing both drag and weight can be treated as a multi-objective
optimization problem. In this sense one may also view the problem as
a “game”, where one player tries to minimize CD and the other tries
to minimize CW . In order to compare the performance of various trial
designs, designated by the symbol X in figure 3, they may be ranked for
both drag and weight. A design is undominated if it is impossible either
to reduce the drag for the same weight or to reduce the weight for the
same drag. Any dominated point should be eliminated, leaving a set of
undominated points which form the Pareto front. In figure 3, for example,
the point Q is dominated by the point P (same drag, less weight) and also
the point R (same weight, less drag). So the point Q will be eliminated.
The Pareto front can be fit through the points P, R and other dominating
points, which may be generated by using an array of different values of α1

and α3 in the cost function to compute different optimum shapes. With
the aid of the Pareto front the designer will have freedom to pick the most useful design.

IV. Design cycle and parallel computation

Environment
Single processor computing

Flow Solver

Parallel computing
Environment

Notation:

−Aerodynamics
Gradient Calculation

−Structure

Shape & Grid
Modification

Adjoint Solver

Design Cycle
repeated until
convergence

Figure 4. Design cycle

In general, the computational cost of viscous design is at
least one order of magnitude greater that the cost of inviscid
design. Three main reasons for this are the increase of the
number of grid points by a factor of two or more to resolve the
boundary layer, the additional cost of computing the viscous
terms and turbulent model, and a slower convergence due to
highly stretched cells inside the boundary layers.

To make the design method feasible in practice, parallel
computing is implemented to parts of the design cycle that
dominate the computation time. Both flow and adjoint calcu-
lation have been implemented in a parallel setting using the
message passing interface (MPI).

The design cycle starts by first solving the flow field until
at least a 3 order of magnitude drop in the residual is achieved.
The flow solution is then passed to the adjoint solver. Second,
the adjoint solver is run to calculate the costate vector. Itera-
tion continues until at least a 2 order of magnitude drop in the
residual.a The costate vector is passed to the gradient mod-
ule to evaluate the aerodynamic gradient. Then, the structural
gradient is calculated and added to the aerodynamic gradient
to form the overall gradient. The steepest descent method is used with a small step size to guarantee that
the solution will converge to the optimum point. The design cycle is shown in figure 4.

V. Flow solver and adjoint solver

The flow solver and the adjoint solver chosen in this work are codes developed by Jameson et al.24, 13, 25, 26

The flow solver solves the three dimensional Navier-Stokes equations by employing the JST scheme, together
with a multistage explicit time stepping scheme. Rapid convergence to a steady state is achieved via variable
local time steps, residual averaging, and a full approximation multi-grid scheme. The adjoint solver solves
the corresponding adjoint equations using similar techniques to those of the flow solver. In fact much of the
software is shared by the flow and adjoint solvers.

aStudies23 have shown that, for the design purpose, only a 3 order of magnitude drop in the residual of the flow calculation
and only a 2 order of magnitude drop in the residual of the adjoint calculation are sufficient.
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VI. Results

A. Validation of aerodynamic and structural gradients with respect to planform variables

B747 WING-BODY                                                                  
 GRID  256 X   64 X   48

  K   =    1

Figure 5. Computational Grid of
the B747 Wing Fuselage. Mesh
size 256x64x48.

To verify the accuracy of the aerodynamic and structural gradients with
respect to planform variables calculated by the adjoint method, we com-
pare the adjoint gradients with those from the finite-difference methods.
For the purpose of comparison, calculations are performed at a fixed angle
of attack to eliminate the effect of pitch variation on the gradient. The
case chosen is the Boeing 747 wing-fuselage combination at Mach 0.86,
and wing angle of attack 2 degrees. The computational mesh is shown in
figure 5.

The gradients with respect to the planform variables are calculated
using both the adjoint and the finite-difference methods. A forward differ-
encing technique is used for the finite-difference method with a moderate
step size of 0.1% of planform variables to achieve accurate gradient with
both small discretization and cancellation errors. The flow and adjoint
solvers are run until both solutions converge five order of magnitude.

Figure 6 over-plots gradients from two methods for both drag and
structural weight. The plots show that the gradients agree quite well.
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Figure 6. Comparison between adjoint and finite-difference gradient with respect to planform variables.

B. Redesign of Boeing 747 wing

We present results to show that the optimization with a trade-off between drag and structural weight results
in a practical design. In these calculations the flow was modeled by the Reynolds Averaged Navier-Stokes
equation, with a Baldwin Lomax turbulence model. This turbulence model was considered sufficient because
the design point was at cruise condition with attached flow. The case chosen was the Boeing 747 wing
fuselage combination at normal cruising Mach 0.85 and a lift coefficient CL = 0.45.

As a reference point, we first modified only the wing sections to eliminate the shock drag, while planform
of the baseline B747 was kept unchanged. Figure 7 shows the redesigned calculation. Here the drag was
reduced from 137 counts to 127 counts (7.3% reduction) and the weight was slightly reduced from 498 counts
to 494 counts (0.8%) in 30 design iterations with relatively small changes in the section shape.

Next, we allowed section changes together with variations of sweepback, span, root chord, mid-span chord,
and tip chord. However, due to high computational cost of the Navier-Stroke optimization, the planform was
initially designed by the inviscid method.16 The sections of this wing were then optimized with a viscous
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method while keeping planform constant, shown in figure 8. The inviscid-planform had a starting drag and
weight of 129 and 472 counts respectively, which were already less than those of the baseline B747 (CD

137 counts and CW 498 counts), indicating that the inviscid-planform was a good starting point for the
viscous optimization. To investigate contribution from shock drag, we performed section modification at
fixed planform. In 30 design cycles, the drag was reduced to 120 counts, while the structural weight was
constant.

Now, we implement both section and planform optimization in viscous design, using the starting wing of
figure 8 as a starting point. Figure 9 shows the effect of allowing changes in sweepback, span, root chord,
mid-span chord, and tip chord. The parameter α3/α1 was chosen according to formula (29) such that the
cost function corresponded to maximizing the range of the aircraft. In 30 design iterations the drag was
reduced to 117 counts (14.5% reduction from the baseline B747), while the dimensionless structure weight
was decreased to 464 counts (6.1% reduction), which corresponded to a reduction of 5,500 lbs. The planform
changes are shown in figure 10. This viscous redesigned wing has less drag and structural weight than that
of the optimized fixed planform.

Both results from the inviscid and viscous planform optimization suggest a similar trend to yield large
drag reduction, while maintaining low structural weight:

• Increase wing span to reduce vortex drag,

• Reduce sweep but increase section-thickness to reduce structural weight,

• Use section optimization to minimize shock drag.

Although the suggested trend tends to increase the wing area, which increases the skin friction drag,
the pressure drag drops at a faster rate, dominating the trade-off. Overall, the combined results yields
improvements in both drag and weight.

C. Pareto front

The problem of optimizing both drag and weight can be treated as a multi-objective function optimization
as in this paper. A different choice of α1 and α3 will result in a different optimum shape. The optimum
shapes should not dominate each other, and therefore lie on the Pareto front. The Pareto front can be very
useful to the designer because it represents a set which is optimal in the sense that no improvement can
be achieved in one objective component that does not lead to degradation in at least one of the remaining
components.

Figure 11 shows the effect of the weighting parameters (α1, α3) on the optimal design. As before the
design variables are sweepback, span, chords, section thickness, and mesh points on the wing surface. In
figure 11 each point corresponds to an optimal shape for one specific choice of (α1, α3). By varying α1 and
α3, we capture a Pareto front that bounds all the solutions. All points on this front are acceptable solutions,
and choosing the final design along this front depends on the nature of the problem and several other factors.
The optimum shape that corresponds to the maximum Breguet range is also marked in the figure.

VII. Conclusion

This paper develops and validates an aerodynamic design methodology based on the Navier-Stokes equa-
tions for planform optimization. A model for the structural weight is included in the design cost function.
The results of optimizing a wing-fuselage of a commercial transonic transport aircraft has highlighted the
importance of the structural weight model and the the viscous effects on the design process.

The trade-off between the structural cost function and the aerodynamic cost function prevents an unre-
alistic result and leads to a useful design. The inclusion of viscous effects increases the level of realism of
the design. Methods of combining drag and wing weight also provide the designer a better opportunity to
choose the final optimum shape.

Results indicate that the shape changes in the section needed to improve the transonic wing design are
quite small. However, in order to obtain a true optimum design larger scale changes such as changes in the
wing planform (sweepback, span, chord, and taper) should be considered. Because these directly affect the
structure weight, a meaningful result can only be obtained by considering a cost function that takes account
of both the aerodynamic characteristics and the weight.
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When maximizing the range of the aircraft, both the inviscid and viscous optimization follow the same
trend; increasing span to reduce the vortex drag, decreasing sweep and thickening wing-sections to reduce
structural weight, and modifying airfoil sections to minimize the shock drag. In addition this trend suggests
a way to reduce the computational cost by redesign in two steps; first optimize by the inviscid optimizer
which is less expensive, then use the viscous optimizer to finalize the geometry.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.533                                                     
CL:  0.449    CD: 0.01270    CM:-0.1408    CW: 0.0494                           
Design:  30    Residual:  0.5305E+00                                            
Grid: 257X 65X 49                                                               
Sweep: 42.1141   Span(ft):  212.43                                              
c1(ft):  48.17   c2:  29.11   c3:  10.79                                        
I:  0.01270                                                                     

Cl:  0.373    Cd: 0.05530    Cm:-0.1449   T(in):66.1586                         
Root Section:  13.6% Semi-Span

Cp = -2.0

Cl:  0.647    Cd: 0.00557    Cm:-0.2398   T(in):23.8498                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.431    Cd:-0.02153    Cm:-0.1873   T(in):12.1865                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 7. Wing-section optimization of Boeing 747 at fixed baseline-planform. Dash and solid lines represent
pressure distributions of the baseline Boeing 747 and redesigned configuration respectively.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.120                                                     
CL:  0.449    CD: 0.01208    CM:-0.1053    CW: 0.0472                           
Design:  30    Residual:  0.3769E+00                                            
Grid: 257X 65X 49                                                               
Sweep: 38.0560   Span(ft):  228.81                                              
c1(ft):  48.06   c2:  29.49   c3:  10.79                                        
I:  0.01208                                                                     

Cl:  0.344    Cd: 0.05929    Cm:-0.1259   T(in):75.4251                         
Root Section:  12.9% Semi-Span

Cp = -2.0

Cl:  0.594    Cd: 0.00192    Cm:-0.2274   T(in):25.2428                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.405    Cd:-0.01615    Cm:-0.1954   T(in):12.0092                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 8. Wing-section optimization of Boeing 747 at fixed inviscid-optimized planform. The optimized
planform from reference16 is used as a starting point and no modification is made to the planform. The
wing-sections are redesigned to alleviate the shock drag. Dash and solid lines represent pressure distributions
of the starting and redesigned configurations respectively.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.287                                                     
CL:  0.448    CD: 0.01167    CM:-0.0768    CW: 0.0464                           
Design:  30    Residual:  0.3655E+00                                            
Grid: 257X 65X 49                                                               
Sweep: 36.6144   Span(ft):  231.72                                              
c1(ft):  47.17   c2:  28.30   c3:  10.86                                        
I:  0.01863                                                                     

Cl:  0.347    Cd: 0.06011    Cm:-0.1224   T(in):74.0556                         
Root Section:  12.7% Semi-Span

Cp = -2.0

Cl:  0.582    Cd: 0.00213    Cm:-0.2154   T(in):25.3014                         
Mid Section:  50.5% Semi-Span

Cp = -2.0

Cl:  0.390    Cd:-0.01648    Cm:-0.1736   T(in):12.0445                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 9. Complete optimization of Boeing 747. Both wing-section and planform are optimized to maximize
the Braguet range, using inviscid-optimized planform as a starting points.
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Figure 10. Superposition of the baseline B747 (green/light) and the optimized secton-and-planform geometry
(blue/dark). The optimized-planform from inviscid calculation is also superimposed (magenta).
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