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Abstract

This dissertation focuses on the problem of wing planform optimization for transonic

aircraft based on flow simulation using Computational Fluid Dynamics(CFD) com-

bined with an adjoint-gradient based numerical optimization procedure. The adjoint

method, traditionally used for wing section design has been extended to cover plan-

form variations and to compute the sensitivities of the structural weight of both the

wing section and planform variations. The two relevant disciplines accounted for

are the aerodynamics and structural weight. A simplified structural weight model

is used for the optimization. Results of a variety of long range transports indicate

that significant improvement in both aerodynamics and structures can be achieved

simultaneously. The proof-of-concept optimal results indicate large improvements for

both drag and structural weight. The work is an “enabling step” towards a realistic

automated wing designed by a computer.
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Chapter 1

Introduction

1.1 Wing design

The wing is the most important component of an airplane. The wing affects not

only its own performance, but also the performance of the entire airplane. From an

aerodynamic perspective, the main source of the airplane drag is associated with the

wing. As illustrated in figure 1.1, two-thirds of the total drag is related to the wing.

Therefore a large emphasis should be placed on the aerodynamic wing-design.

Figure 1.1: Typical drag breakdown by primary airplane components of transport
aircraft at cruise conditions [46].
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CHAPTER 1. INTRODUCTION 2

A standard approach used in the past to design a wing involves two main steps.

The first step was to establish the general wing shape, airfoil types, approximate

thickness ratio, design lift coefficient, and design Mach number from a design opti-

mization study. The second step was to design a minimum weight wing while achiev-

ing as much of the two-dimensional airfoil performance as possible, minimizing any

parasite or induced drag penalties, and satisfying all of the other general design cri-

teria such as good drag characteristics, sufficient fuel volume, and minimum weight.

References [70, 55, 61, 37] provide excellent descriptions for this standard approach.

For modern wing design, the procedure still follows the standard approach, but in-

volving the use of computational fluid dynamics (CFD) codes to systematically study

variations of shape, airfoil type, thickness, twist, etc. CFD solves the compressible

Euler and Navier-Stokes equations and is mainly used to provide better understand-

ing of the flow over the wing, but not to drive the wing design process. The wing

refinement is done based on the intuition and experience of the designer.

Recently, CFD has been receiving attention as a design optimization tool. Nu-

merical optimization has been combined with CFD. While there exist numerous well-

developed optimization techniques, such as those described in reference [11], most

techniques are not practical to the CFD-based optimization problems due to the dif-

ferent nature of the problems. The standard optimization problems generally assume

that the function evaluation of the “figure of merit” (or the “cost function”) can be

evaluated easily and at low computational cost. The standard gradient-based op-

timization further expect similar simplicity of the “sensitivity information” (or the

“gradient”) evaluation. Moreover, they are mainly developed for problems of a small-

to-moderate number of design parameters compared to the number of cost functions

and constraints. The CFD-based optimization problems, on the other hand, require

solving a non-linear system of partial differential equations to calculate the cost func-

tion and usually involve a large number of design parameters, especially for a design

in transonic flow. Transonic flow is very sensitive to small shape perturbations. In

order to achieve “shock-free” wing-sections, it generally requires a large number of

parameters ∼ O(103) to represent the wing surface. In an extreme case, the wing can

be treated as a “free”surface. Therefore, the optimization algorithms that require a
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large number of function evaluations are not well suited to the wing design problem.

Early attempts to combine CFD with numerical optimization made use of finite-

difference calculations to obtain sensitivity information. This technique can be used

to obtain the derivatives of all the flow quantities with existing flow solvers. One

problem with this approach is the computational time required. To obtain the design

sensitivities for a system involving n design parameters using one sided difference

requires a well-converged solution of n + 1 flow analysis problems. This becomes

prohibitive when n becomes large.

A practical method for CFD-based optimization emerged in 1988 when an adjoint

method was first applied to the governing equations of transonic flow by Jameson [20].

The method applied control theory techniques to a system of partial differential equa-

tion and reduced the cost of gradient calculations to only two flow analyses, regardless

of the number of design parameters n. This breakthrough enabled many more de-

sign variables than was previously practical for gradient-based aerodynamic shape

optimization problem.

During the last decade, adjoint methods have been extensively developed and

proven to be very effective for improving wing section shapes for fixed wing-planform.

The framework has been well developed by Jameson[30, 26, 62]. He applied the

adjoint method to redesign airfoils and wing sections in transonic flow. By using

surface mesh points as the design parameter, the adjoint method to calculate the

gradient information, and an iterative method to improve the shape in each iteration,

he was able to achieve a shock-free-wing.

1.2 Planform optimization

1.2.1 Motivation to integrate shock-free wing section design

with planform design

The capability to produce shock-free airfoils for a given wing planform, such as the

method described in section 1.1, is very crucial. When integrating shock-free wing

sections with planform design, it can enable planform configurations which would
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previously have been restricted by strong compressibility drag.

Conventionally, wings of transonic aircraft require a large sweep or a small thickness-

to-chord ratio of the wing section to lower the local Mach number and prevent strong

shock wave formation. By implementing the shock-free concept, it is possible to

weaken the compressibility drag without requiring as large a sweep or as small a

thickness-to-chord ratio as conventionally designed. The sweep reduction and thick-

ness increment will reduce the wing structural weight, as will later be discussed in

section 1.2.2. The benefit on weight saving can be used to increase the span to reduce

the induced drag. Because the induced drag is the largest component of drag, as

illustrated in figure 1.1, the wing planform optimization has the potential to yield

large drag savings without any penalty on the structural weight. Therefore, in this

dissertation, we exploit the shock-free-wing technology in the combination with plan-

form design to “cheat” the conventional intelligence of the planform design. With the

right implementation, it may revolutionize wing design.

As a historical note, although the shock-free-wing method has only been newly

developed during the last decade and has yet to be implemented to the real-world

airplane, the idea of exploiting the shock-free airfoil to improve wing design is not

new. A classic example occurred when Whitcomb [75, 76] introduced his famous su-

percritical airfoil. Since the airfoil produced the same amount of lift at lower negative

pressure peak, compared to those of the conventional airfoil, the shock formation can

be delayed. The transonic wings that were designed with the supercritical airfoil gen-

erally have less sweep and are structurally lighter compared to those designed with

conventional airfoils.

1.2.2 Planform characteristics

Planform optimization can be considered as large scale design, compared to a section

shape design. It affects both aerodynamic and structural characteristics of the wing.

To formulate the optimization problem properly, it is important to understand how

planform parameters affect drag and wing wight. A detailed discussion can also be

found in reference [37].
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First we define the planform parameters. There are many definitions for wing

planform, depending on the design process. In some literature, the term “planform”

is used interchangeably with “wing shape”. In this dissertation, we use the term

“planform” to collectively represent span, chord distribution, thickness-to-chord ratio,

aspect ratio, and sweepback[55]. Next we discuss how these parameters affect the

wing.

Span effects

Span generally affects drag and weight in the following ways:

• When the span is increased, it reduces the induced drag, regardless of wing area

changes. If the increased span enlarges the wing area, the skin friction drag will

be increased.

• The wing weight will be increase when we increase the span, both by the longer

span and the increased bending load.

In general, the induced drag varies quadratically with the inverse of span, as

illustrated here. Consider the induced drag coefficient

CDi
=

C2
L

πeAR

The induced drag can be written as

Di = CDi
q∞Sref

=
Lift2

πeb2

where b is span length and e is span efficiency.

Because the induced drag is the largest portion of airplane drag as shown in

figure 1.5, when we make the span longer (keeping the area constant), we can reduce

the airplane drag dramatically but we also make the wing heavier. This relationship

reveals the trade-off between drag and wing weight. This discussion also implies that

pure aerodynamic optimization without span constraints will lead to an excessive



CHAPTER 1. INTRODUCTION 6

span. On the other hand, if a maximum span length is imposed as a constraint,

we can clearly see that this constraint will always be active and there is no need

for the optimization. By including the trade-off between drag and wing weight, this

problem can be avoided. Therefore we propose an optimization that employs a trade-

off between drag and wing weight to minimize a weighted sum of drag and weight.

Sweep effects

Increasing sweep angle influences drag and weight as follows:

• It reduces compressibility drag by reducing the local Mach number.

• It increases the wing weight by increasing the structural span and tip loading.

When we sweep the wing more backward, the spanload tends to shift outboard

as shown in figure 1.2. This increases the bending load and thus wing weight.

Higher sweep angle

span

lift

Figure 1.2: Effect of sweep on wing loading

Thickness effects

Thickness is generally described in terms of thickness-to-chord ratio t/c. The effect

of t/c changes is as follows:

• Larger t/c increases the drag slightly by increasing the velocities, the adversity

of the pressure gradients, and the compressibility drag.
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Figure 1.3: Effect of thickness variation on a simplified wing structure.

• Larger t/c also reduces the wing weight.

Figure 1.3 (a) shows a cross-section of a simplified wing structure that carries a

wing bending load. The height of this beam is limited by the thickness of the wing

(t). For a fully-stressed structure, the upper and low skin thickness ts satisfies the

relation

M = σallowtscst

where M is bending load, cs is structural chord, and σallow is the allowable stress. If

we increase the wing thickness by a factor of r while keeping the structural chord cs

constant, the new skin thickness t′s of the thicker wing will be reduced by

t′s =
1

r
ts

to support the same bending moment at the fully stressed condition. The material

cross-sectional area of the thicker wing is reduced by a factor of r from the original

area. Therefore, from this simple analysis, the wing will be lighter when we increase

the wing thickness.

Chord effects

Increasing the chord length at fixed wing thickness certainly reduces the thickness

to chord ratio. However if the thickness to chord ratio is fixed, increasing the chord
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Figure 1.4: Effect of chord variation on a simplified wing structure.

leads to the following:

• It increases the drag by increasing the area. A simple analysis of skin friction [37]

indicates that skin friction drag varies linearly with wetted area. Increasing

chord length makes the wing area larger, giving higher drag.

• However, it reduces the wing weight.

In figure 1.4 we increase the chord length and the wing thickness by a factor r,

keeping the ratio t/c constant. We can perform a simple analysis, similar to the one

done earlier, for the effects of chord on the thickness of beam section. This results in

a new skin thickness:

t′s =
1

r2
ts

and the new material cross-sectional area gets smaller

Areanew = 2t′srcs (1.1)

=
2tscs
r

(1.2)

=
Areaold

r
. (1.3)

For a real wing structure, the analysis is certainly more complicated. However, a

good wing structure will follow this trend. The effects of sweep, span, thickness, and

chord variation indicate that drag and wing weight are driven in opposite directions.

In other words, this shows trade-offs between them. There trends shows that it may

be possible to optimize the weighted sum of drag and wing weight.
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1.2.3 Early work on planform optimization

There is extensive work on planform optimization, ranging from an analytical ap-

proach to high-fidelity numerical optimization. A classic analytical approach includes

Prandtl’s elliptical planform [59, 60], which minimized the induced drag. McGeer [51]

extensively studied planform characteristics for low speed subsonic wings that led to

the minimum induced drag for different constraints, using Fourier series and algebraic

expressions to govern flow and structure models. McGeer also extended his method

to high-speed subsonic planform design where empirical expressions were used to es-

timate compressibility drag [52]. The analytical approach works quite well when the

governing equations can be solved analytically and the number of constraints is small.

When the number of constraints becomes large, various methods to combine a

numerical optimization with governing equations have been proposed. Hutchison [15]

proposed a method for high-speed civil transport wing design, using algebraic equa-

tions to estimate aircraft weight, supersonic drag, friction drag, and drag due to

lift. Wakayama’s [73, 74] optimizes drag and weight of commercial aircraft wings by

combining numerical optimization with simplified flow and structural models. This

method handles numerous constraints quite well and became a major optimization

tool when Boeing designed the unconventional Blended Wing Body [72, 43].

For transonic flow, there is very limited work that truly employs the full Euler

or Navier-Stokes as the flow model to optimize the planform [57, 67]. The main

reason is the computational cost which becomes prohibitively expensive for sensitivity

calculation as we discussed earlier in section 1.2.1.

It is not until the introduction of the control theory approach to design in the

transonic flow by Jameson [20] that Euler and Navier-Stokes based-optimizations be-

came practical [31]. The control theory approach is usually called an adjoint method

because it requires us to solve the adjoint equation. Since then the adjoint method

has been widely used to optimize airfoils and wings. This breakthrough enables the

gradient-based aerodynamic shape optimization to handle many more design variables

than was previously practical. This feature is important for shock-free design because

transonic flow is very sensitive to small shape changes. To handle subtle geometry

changes for shock weakening, it generally requires a large number of parameters for
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the control geometry. During the 1990s and 2000s, the adjoint method has been a

very active research topic. Numerous researchers have been focusing on the use of ad-

joint methods in many different areas [1, 10, 35, 49, 53, 63, 66]. However, none clearly

exploits the benefit of this shock-free capability to redesign the wing planform. In

this dissertation, we extend the adjoint method to cover planform design, and blend

in shock-free design to develop a design methodology that has the potential to yield

large improvements in aerodynamics without penalizing the structural weight.

1.2.4 Wing planform optimization with simplified structural

weight

From the earlier discussion, the two relevant disciplines are aerodynamics and struc-

tural weight. Therefore we minimize a combination of drag and wing weight. This

optimization not only makes the design more realistic, but we can also eliminate some

constraints such as a thickness constraint that is required for pure aerodynamic shape

optimization, without which the thickness-to-chord ratio would keep reducing to an

extent that would make it impossible to fit a sufficient structure box or have enough

volume to store the fuel inside the wing. Thus we mainly target the minimization of

I = α1CD + α2CW (1.4)

Here α1 and α2 are properly chosen weighting constants, and CW = weight

q∞Sref
is

a non-dimensional weight coefficient. This choice of cost function emphasizes the

trade-off between aerodynamics and structures. For design of a long range transport

aircraft, equation (1.4) actually centers around the idea of improving the range of the

aircraft.

Consider the well known Breguet range equation which provides a good first esti-

mate of the range of the airplane

R =
V

C

L

D
ln
We +Wf

We

(1.5)

where V is the speed, C is the specific fuel consumption of the engine, L/D is the
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lift to drag ratio, We is the landing weight, and Wf is the weight of the fuel burnt.

During the last few decades, the means to improve the efficiency of an airplane has

centered around reducing the fuel consumption C of the engine, increasing V L/D,

and reducing the airplane weight. The last two methods together imply that the

constants α1 and α2 in the equation (1.4) can be estimated from the range equation

(1.5).

Notice that the range equation also stresses the importance of transonic flight for a

long range aircraft. Since airplanes should fly at the condition that maximizes V L/D

and the typical drag variation is similar to that in figure 1.5, this means that the

Mcr Mdd

DC

D0C

o oM

� �!
"#

$ $% %

&'

0 1.0

a
b

c

d

Figure 1.5: Typical variation of airplane drag with Mach number. Mcr and Mdd

represent the critical and drag divergence Mach numbers respectively.

cruising speed should be increased until the onset of drag rise due to the formation of

strong shock waves (point b in figure 1.5). Consequently, the best cruise speed is the

transonic regime and for any wing design method/tool to be useful, the tool must be

able to handle a design that involves the transonic flow.

1.3 Scope and contribution

In this dissertation, we develop a framework of planform design that makes use of the

shock-free methodology extensively developed during the last decade. The key idea

centers around the capability to weaken the shock and tune the trade-off between drag

and structural weight of the design variables to improve the overall design without
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leading to any unrealistic result. Because different design parameters affect drag and

weight to a different degree, we exploit this hierarchy to gain improvements in drag

without a corresponding weight penalty or producing an unrealistic shape.

To accomplish this we employ the wing planform as well as the wing sections as

the design parameters and focus on the aerodynamic optimization with a simplified

structural weight. During this development we aim to answer whether it is possible

to take advantage of the shock-free feature.

Because we are more interested in exploring the benefit of the shock-free wing

and to demonstrate how to implement the adjoint method for the weight, a quick

implementation is to use an analytical expression to model the structure weight. This

low-fidelity structural model serves the proof-of-concept purpose. It also establishes a

guideline for higher-fidelity development. Therefore this work is the “enabling step”

towards a realistic automated wing designed by a computer.

We follow the framework of aerodynamic shape optimization initially developed

for wing section design by Jameson and extend the method to include planform

design. To fully exploit the key advantage of the adjoint method on computational

cost saving of sensitivity calculation, we extend the adjoint method to handle methods

for planform sensitivity.

Along this line of development, we have contributed the following:

• Development of aerodynamic sensitivities to planform changes using the ad-

joint method. This may be considered as large scale optimization, compared to

section optimization.

• Alternative gradient calculation that is less error-prone.

• Adjoint sensitivity of a simplified weight model for both section and planform

design.

With the use of an adjoint method for both section and planform design, the

computational cost is very low. It is so low that it allows the design to be done on

a laptop computer. Actually, most inviscid results demonstrated in chapter 4 were

done on the author’s laptop (Athlon 3.2 GHz) in less than half an hour.
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Finally, it is important discuss criteria that are outside the scope of this disserta-

tion. At this “enabling step”, we focus on exploring the benefit of the shock-free wing

and to demonstrate how to enable the implementation of the adjoint method, beyond

just aerodynamics. As a result, we have limited our study to aerodynamic design

with a simplified weight model. Moreover, we use a relatively simple cost function

which minimizes drag and weight. No explicit constraints, other than fixed lift, were

imposed in this study.

In real airplane design, of course, there are many other criteria: multiple design

points, fuel distributions, stability-and-control effects, aero-elastics, etc. A survey by

Lynch[46] indicates some of the general design criteria that must be met in the design

of any efficient transonic wing. These requirements include:

1. Good drag characteristics (parasite, induced, compressibility) over a range of

lift coefficients, i.e. CLdesign
± 0.1 at Mcruise.

2. No excess penalties for installation of nacelle-pylons, fairing, etc.

3. Buffet boundary high enough (1.3g margin required) to permit cruising at design

lift coefficients.

4. No pitch-up tendencies near stall and buffet boundary.

5. Control surface effectiveness must be maintained.

6. No unsatisfactory off-design performance.

7. Sufficient fuel volume for design range.

8. Structurally efficient (to minimize weight)

9. Must provide sufficient space to house main landing gear.

10. Must be compatible with selected high-lift system.

11. Must be consistent with airplane design for relaxed static stability.

12. Must be manufacturable at a reasonable cost.
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Of course, it would be next to impossible to take into account all of these criteria

to perform an optimization. Nevertheless, the design methodology presented in this

work provides the basis for an extension to form a more complete wing design tool.

1.4 Outline

The rest of this dissertation starts with the description of flow and structure mod-

els. Chapter 2 describes the mathematical formulation of this dissertation, including

formulation of the adjoint equation for a variety of cost functions. Chapter 3 applies

the basic idea of the adjoint method to planform design. A technique to determine

planform gradient that is independent of the number of planform variables is also de-

scribed in the same chapter. It also contains gradient comparisons between the finite

difference and adjoint methods for validation purpose. Chapter 4 shows results for

both inviscid and viscous designs for compressible flow. Case studies to improve air-

plane performance are also shown, and reveal an important trend to improve many

existing wings for long range transport aircraft. Finally, chapter 5 concludes this

dissertation.



Chapter 2

Mathematical formulation

2.1 The adjoint approach to wing design

The adjoint method has been proposed for shape design since 1974[58] but it did not

have much impact on aerodynamic design until its application to transonic flow[20].

The major impact arose from its capability to effectively handle a design problem that

involves a large number of design variables and is governed by a complex mathematical

model, such as fluid flow.

Let us consider a wing design problem:

Minimizing I(w, S) (2.1)

w.r.t S (2.2)

subjected to R(w, S) = 0 (2.3)

where w is the flow variable, S is the vector of wing design parameters, and R(w, S) =

0 is the flow equation.

For instance, for a drag minimization problem we can take I = CD which is

an integral of flow w (pressure and shear force) over the wing S (represented by

parameters such as airfoils and planform). We modify S (the airfoils and planform)

to reduce the drag. The pressure and shear force are obtained from the flow equation

R = 0 using CFD. (Later in chapter 3, we will set the cost function I as a combination

15
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of drag, structural weight, and inverse design.)

A change in S results in a change

δI =

[

∂I

∂w

]T

δw +

[

∂I

∂S

]T

δS, (2.4)

and δw is determined from the equation

δR =

[

∂R

∂w

]

δw +

[

∂R

∂S

]

δS = 0. (2.5)

The finite difference approach attempts to solve δw from equation (2.5) and sub-

stitute it into equation (2.4) to calculate δI . However, as we discussed in section 1.1,

when the dimension of S is large, this approach becomes impractical.

For an adjoint approach, we try to avoid solving for δw. This is done by intro-

ducing a Lagrange multiplier ψ, and subtracting the variation δR from the variation

δI without changing the result. Thus, equation (2.4) can be replaced by

δI =

[

∂I

∂w

]T

δw +

[

∂I

∂S

]T

δS − ψT

([

∂R

∂w

]

δw +

[

∂R

∂S

]

δS

)

=

{

[

∂I

∂w

]T

− ψT

[

∂R

∂w

]

}

δw +

{

[

∂I

∂S

]T

− ψT

[

∂R

∂S

]

}

δS (2.6)

Choosing ψ to satisfy the adjoint equation,

[

∂R

∂w

]T

ψ =

[

∂I

∂w

]

, (2.7)

the first term is eliminated, and we find that

δI = GT δS, (2.8)

where

GT =

[

∂I

∂S

]T

− ψT

[

∂R

∂S

]

.

The advantage is that equation (2.8) is independent of δw, with the result that the
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gradient of I with respect to an arbitrary number of design variables can be deter-

mined without the need for additional flow-field evaluations.

Once the gradient vector G has been established, it may now be used to determine

a direction of improvement. The simplest procedure is to make a step in the negative

gradient direction (steepest descent method) by setting

δS = −λG

where λ is positive and small enough that the first variation is an accurate estimate

of δI. The variation of the cost function then becomes

δI = −λGTG
≤ 0

More sophisticated search procedures may be used such as quasi-Newton methods,

which attempt to estimate the second derivative ∂2I
∂Si∂Sj

of the cost function from

changes in the gradient ∂I
∂S

in successive optimization steps. These methods also

generally introduce line searches to find the minimum in the search direction which is

defined at each step. Reference [11] provides a good description for those techniques.

However, not all the techniques are practical for our wing design problem. Line

searches, for example, would require extra flow calculations, which we try to avoid.

2.2 Flow equation

In section 2.1, the flow variables and the geometry are related by the governing

equation R(w, S) = 0. This section discusses the details of these governing equations.

For a computational method to be useful in the design process, it must be based

on a mathematical model that represents significant features of the flow such as shock

waves, vortices, and boundary layers. Throughout this dissertation, both the Euler

and Navier-Strokes equations are used to model the flow. We will use the Navier-

Strokes (NS) equations to derive the governing adjoint equations. The Euler equation
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can be simply done by dropping the viscous terms of the NS equations.

It proves convenient to denote the Cartesian coordinates and velocity components

by x1, x2, x3 and u1, u2, u3, and to use the convention that summation over i =

1 to 3 is implied by a repeated index i. Then, the three-dimensional Navier-Stokes

equations may be written as

∂w

∂t
+
∂fi

∂xi

=
∂fvi

∂xi

in D, (2.9)

where the state vector w, inviscid flux vector f and viscous flux vector fv are described

respectively by

w =



































ρ

ρu1

ρu2

ρu3

ρE



































, fi =



































ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH



































, fvi =



































0

σijδj1

σijδj2

σijδj3

ujσij + k ∂T
∂xi



































, (2.10)

where δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{

E − 1

2
uiui

}

, (2.11)

and

ρH = ρE + p (2.12)

where γ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ λδij
∂uk

∂xk

, (2.13)

where µ and λ are the first and second coefficients of viscosity. The coefficient of

thermal conductivity and the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (2.14)
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Figure 2.1: Physical and computational domains

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R

is the gas constant.

Using a transformation to a fixed computational domain as shown in figure 2.1,

the Navier-Stokes equations can be written in the transformed coordinates as

∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (2.15)

where the inviscid terms have the form

∂Fi

∂ξi
=

∂

∂ξi
(Sijfj) ,

the viscous terms have the form

∂Fvi

∂ξi
=

∂

∂ξi

(

Sijfvj

)

,

and Sij = JK−1
ij are the coefficients of the Jacobian matrix of the transformation,

which represent the projection of the ξi cell face along the xj axis.
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2.3 Structural weight model

Wing weight is directly given by the wing structure, which is sized by aerodynamic

load, allowable deflection, and failure criteria such as buckling. Different methods

to estimate wing weight have been proposed, ranging from empirical expression to

complex Finite Element Analysis. At the detailed design level, once the wing structure

has been laid out, structure engineers use finite element analysis to size the interior

structure to satisfy various criteria. Then the material weight of each component is

added up to calculate the structural weight.

When the detailed structure layout is not known, which is usually the case for

conceptual and preliminary design levels, it is very difficult to predict the structural

weight correctly. There is much active research [4, 45, 50] focusing on the optimum

structural design for a given wing. Most works extensively use finite element analysis

and couple high-fidelity flow solutions to capture the aero-elastic effects.

Although the use of high-fidelity methods to estimate the wing weight certainly

gives more accurate weight prediction, the focus of this dissertation is mainly on

demonstrating the new benefit of using shock-free technology to gain a large improve-

ment in aerodynamic performance without a penalty on structural weight, regardless

of the fidelity of the structural model. The quickest approach is to select a struc-

ture model that can be expressed analytically. However, in order to demonstrate

the adjoint method approach to structural-weight sensitivity, this model should be

sensitive to the aerodynamic loads as well. For future implementation with a high

fidelity weight model, the approach will need to be augmented by the addition of

structural-adjoint equations.

An analytical model to estimate the minimal material to resist material and buck-

ling failures has been developed by Wakayama [73]. When shear and buckling ef-

fects are small, they may be neglected, resulting in a simplified model developed by

Kroo [38] and McGeer[51]. In this dissertation, we follow the analysis developed by

Kroo and McGeer, which combines analytical expression with empirical expression.

The wing structure is modeled by a box beam [56], whose major structural material

is the upper and lower box skin. The skin thickness (ts) varies along the span and
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Figure 2.2: Structural model for a swept wing

resists the bending moment caused by the wing lift. Then, the structural wing weight

Wwing can be calculated on the basis of the skin material.

Consider the box structure of a swept wing whose quarter-chord swept is Λ and its

cross-section A-A as shown in figures 2.2. The skin thickness ts, structure box chord

cs, and overall thickness t vary along the span, such that the local stress is equal

to the maximum allowable stress everywhere. The maximum normal stress from the

bending moment at a section z∗ is

σ =
M(z∗)

t tscs

The corresponding structural weight of this box beam is is

Wwingbox
= ρmatg

∫

structual span

2tscsdl

= 2
ρmatg

σcos(Λ)

∫ b
2

− b
2

M(z∗)

t(z∗)
dz∗

= 4
ρmatg

σcos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗,
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and

CWb
=

Wwingbox

q∞Sref

=
β

cos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗, (2.16)

where

β =
4ρmatg

σq∞Sref

,

ρmat is the material density, and g is the acceleration due to gravity.

The bending moment can be calculated by integrating pressure toward the wing

tip. Ignoring the end effects due to the rotated axis of the box beam,

M(z∗) = −
∫ b

2

z∗

p(x, z)(z − z∗)

cos(Λ)
dA

= −
∫ b

2

z∗

∮

wing

p(x, z)(z − z∗)

cos(Λ)
dxdz

Thus

CWb
=

−β
cos(Λ)2

∫ b
2

0

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

t(z∗)
dxdzdz∗ (2.17)

For the subsequent derivation of the corresponding adjoint boundary condition

in section B.6, CWb
must be expressed as

∫

B dBξ in the computational domain, or
∫ ∫

dxdz in a physical domain to match the boundary term of equation (2.25).

To switch the order of integral of equation (2.17), introduce a Heaviside function

H(z − z∗) =

{

0, z < z∗

1, z > z∗
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Then equation (2.17) can be rewritten as

CWb
=

−β
cos(Λ)2

·
∫ b

2

0

∫ b
2

0

∮

wing

p(x, z)H(z − z∗)(z − z∗)

t(z∗)
dxdzdz∗

=
−β

cos(Λ)2

∫ b
2

0

∮

wing

p(x, z)K(z)dxdz, (2.18)

where

K(z) =

∫ b
2

0

H(z − z∗)(z − z∗)

t(z∗)
dz∗

=

∫ z

0

z − z∗

t(z∗)
dz∗

In the computational domain,

CWb
=

−β
cos(Λ)2

∮

B

p(ξ1, ξ3)K(ξ3)S22dξ1dξ3, (2.19)

and K(ξ3) is a one-to-one mapping of K(z).

Finally, to account for the weight of other wing material such as ribs, spars, webs,

stiffeners, leading and trailing edges, slats, flaps, main gear doors, primer and sealant,

we multiply CWb
of equation (2.19) by a correction factor Kcorr,b.

Moreover, statistical correlation over the range of aircraft type indicates a rela-

tionship between Wwing/S and Wwingbox
/S as a linear function, shown in figure 2.3.

A good reference can be found in reference[37]. Therefore we add another term to

account for area-dependent wing weight

CWs
=

1

Sref

∮

B

|S22|dξ1dξ3, |S22| =
√

S2iS2i, (2.20)
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Figure 2.3: Statistical correlation of the total wing weight and the box weight based
on wing loading over the range of aircraft type.

along with a correction factor Kcorr,s. Thus

CW = Kcorr,bCWb
+Kcorr,sCWs

(2.21)

2.4 Design using the Euler and Navier-Strokes equa-

tions

Suppose we choose to minimize the cost function of a boundary integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (w, S) dBξ

where M(w, S) could be an aerodynamic cost function, e.g. drag coefficient, and

N (w, S) could be a structural cost function, e.g. structure weight. A shape change

produces a variation in the flow solution δw and the metrics δS, which in turn produce

a variation in the cost function

δI =

∫

B

δM(w, S) dBξ +

∫

B

δN (w, S)dBξ,
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with

δM = [Mw]I δw + δMII , and

δN = [Nw]I δw + δNII .

Here we continue to use the subscripts I and II to distinguish between the contribu-

tions associated with the variation of the flow solution δw and those associated with

the metric variations δS respectively. Thus [Mw]I and [Nw]I represent ∂M
∂w

and ∂N
∂w

with the metrics fixed, while δMII and δNII represent the contribution of the metric

variations δS to δM and δN .

In the steady state, the constraint equation (2.15) specifies the variation of the

state vector δw by
∂

∂ξi
δ (Fi − Fvi) = 0.

Here δFi and δFvi can also be split into contributions associated with δw and δS

using the notation

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII .

Multiplying by a co-state vector ψ, which will play an analogous role to the Lagrange

multiplier, and integrating over the domain produces

∫

D

ψT ∂

∂ξi
δ (Fi − Fvi) dDξ = 0.

If ψ is differentiable this may be integrated by parts to give

∫

B

niψ
T δ (Fi − Fvi) dBξ −

∫

D

∂ψT

∂ξi
δ (Fi − Fvi) dDξ = 0. (2.22)

Since the left hand expression is equal to zero, it can be subtracted from the variation
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in the cost function to give

δI =

∫

B

[

δM + δN − niψ
T δ (Fi − Fvi)

]

dBξ

+

∫

D

[

∂ψT

∂ξi
δ (Fi − Fvi)

]

dDξ. (2.23)

Now, since ψ is an arbitrary differentiable function, it can be chosen in such a way that

δI no longer depends explicitly on the variation of the state vector δw. The gradient

of the cost function can then be evaluated directly from the metric variations without

having to recompute the variation δw resulting from the perturbation of each design

variable.

The variation δw may be eliminated from (2.23) by equating all field terms with

subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I = 0 in D. (2.24)

The corresponding adjoint boundary condition is produced by equating the subscript

“I” boundary terms in equation (2.23) to produce

niψ
T [Fiw − Fviw]I = [Mw]I + [Nw]I on B. (2.25)

The remaining terms from equation (2.23) then yield a simplified expression for the

variation of the cost function which defines the gradient

δI =

∫

B

{

δMII + δNII − niψ
T [δFi − δFvi] II

}

dBξ

+

∫

D

{

∂ψT

∂ξi
[δFi − δFvi] II

}

dDξ, (2.26)

By choosing ψ to satisfy the adjoint equation with appropriate boundary condi-

tions depending on the cost function, the explicit dependence on δw is eliminated.

This allows the cost variations to be expressed in terms of δS and the adjoint solution.
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Thus we obtain

δI =

∫

GδS dξ = 〈G, δS〉

where G is the infinite dimensional gradient (Frechet derivative) at the cost of one

flow and one adjoint solution. Then one can make an improvement by setting

δS = −λG

Although G can be obtained directly from equation (2.26), the explicit form of

equation (2.26) is usually cumbersome to represent. A more compact form can be

obtained by integrating the last term of equation (2.26) by parts

δI =

∫

B

{

δMII + δNII − niψ
T [δFi − δFvi] II

}

dBξ

+

∫

B

niψ
T [δFi − δFvi] II dBξ −

∫

D

ψT ∂

∂ξi
δ [Fi − Fvi]II dDξ (2.27)

The middle terms cancel and equation (2.27) reduces to

δI =

∫

B

{δMII + δNII} dBξ −
∫

D

ψT δRIIdDξ (2.28)

Mathematically equations (2.26) and (2.28) are equivalent. However from a program-

ming viewpoint, equation (2.28) is much more compact and easier to program.

2.5 Adjoint equation and boundary conditions

In this section we select an inverse design problem in the inviscid flow to illustrate how

to develop the adjoint equation and the corresponding boundary conditions. Then

we summarize the adjoint equation and boundary conditions for various optimization

problem, including minimization of drag and structural weight. The full derivation

of adjoint formulation is quite complicated. The detailed derivations can be found in

appendix B.
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2.5.1 Inviscid inverse design: Illustration

For the inverse design problem, we search for the wing shape that matches a desired

pressure distribution pd. The cost function is expressed as

I =
1

2

∫

B

(p− pd)
2 dS (2.29)

For simplicity, we will assume that the wing surface is mapped from a physical

domain to a computational coordinate surface ξ2 = 0, as shown in figure 2.1, which

is the area surrounded by points A,B,C,D,E, and F . On this ξ2 = 0 surface,

n1 = n3 = 0, n2 = 1, dBξ = dξ1dξ3.

Following the notation Sij to represent the projection of the computational ξi cell

face along the physical xj axis, a wing area vector can be written as

S2 =















S21

S22

S23















In this computational domain, the cost function (2.29) is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3, (2.30)

where the quantity

|S2| =
√

S2jS2j

denotes the face area corresponding to a unit element of face area in the computational

domain.

To derive the adjoint equation and boundary condition of this inverse design

problem, consider the variation of the cost function (2.30)

δI =

∫ ∫

Bw

(p− pd)|S2|δp dξ1dξ3 +
1

2

∫ ∫

Bw

(p− pd)
2 δ |S2| dξ1dξ3. (2.31)
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Also recall the inviscid portion of equation(2.22)

∫

B

niψ
T δFidBξ −

∫

D

∂ψT

∂ξi
δFidDξ = 0. (2.32)

We assume that the boundary contributions at the far field may either be neglected

or else eliminated by a proper choice of boundary conditions. Moreover because the

wing is restricted to the ξ2 = 0 surface, the only non-zero ni is n2. Therefore we

consider only the variation δF2 for the boundary integral of equation (2.32). Recall

the explicit form of F2

F2 =



































ρU2

ρU2u1 + pS21

ρU2u2 + pS22

ρU2u3 + pS23

ρU2H



































.

Because of the flow tangency boundary condition, we set U2 = 0 and the variation of

the inviscid flux at the wing boundary is reduced to

δF2 = δp



























































0

S21

S22

S23

0



























































+ p



























































0

δS21

δS22

δS23

0



























































. (2.33)

Therefore, equation (2.32) can be simplified and then subtracted from equation (2.31)
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to give

δI =

∫ ∫

Bw

(p− pd)|S2|δp dξ1dξ3 +
1

2

∫ ∫

Bw

(p− pd)
2 δ |S2| dξ1dξ3

−
∫ ∫

Bw

(ψ2S21 + ψ3S22 + ψ4S23) δp dξ1dξ3

−
∫ ∫

Bw

p (ψ2δS21 + ψ3δS22 + ψ4δS23) dξ1dξ3

+

∫

D

∂ψT

∂ξi
Sij

∂fj

∂w
δw dDξ +

∫

D

∂ψT

∂ξi
δSijfj dDξ. (2.34)

To eliminate the flow dependencies δp and δw from the variation of the cost

function (2.34), we can choose ψ to satisfy

[

Sij

∂fj

∂w

]T
∂ψ

∂ξi
= 0 in D, (2.35)

and

ψ2
S21

|S2|
+ ψ3

S22

|S2|
+ ψ4

S23

|S2|
= p− pd on Bw,

which is equivalent to

ψj+1nj = p− pd, (2.36)

where nj are the components of the surface normal given by:

nj =
S2j

|S2|

Equation (2.35) is called the ”adjoint equation”, which is linear in terms of ψ. Be-

cause it is derived from the flow equation, which are the partial differential equations,

the adjoint equation requires an adjoint boundary condition (2.36).

Once the adjoint variables ψ satisfy the adjoint equation and boundary condition,



CHAPTER 2. MATHEMATICAL FORMULATION 31

the variation of the cost function (2.34) is reduced to

δI =
1

2

∫ ∫

Bw

(p− pd)
2 δ |S2| dξ1dξ3

−
∫ ∫

Bw

p (ψ2δS21 + ψ3δS22 + ψ4δS23) dξ1dξ3

+

∫

D

∂ψT

∂ξi
δSijfj dDξ. (2.37)

This form is quite complicated and could be error-prone. We can make it more

compact as proposed in section 2.4 by integrating the last term by parts to give

δI =
1

2

∫ ∫

Bw

(p− pd)
2 δ |S2| dξ1dξ3 −

∫

D

ψT ∂

∂ξi
δSijfj dDξ. (2.38)

To calculate the gradient of a design parameter F , we perturb the shape with respect

to the parameter F to produce δS on Bw and δSij on D then use equation (2.38) or

(2.37) to calculate δI. Then the gradient is

G =
δI
δF (2.39)

We repeat the same process for each different design parameter. However the advan-

tage of equations (2.38) and (2.37) is that they are independent of flow variations

δp and δw. Therefore, we are not required to re-solve the flow equation. This gives

us a large advantage for gradient calculation, especially when the number of design

variables is large as we have in full wing optimization.

2.5.2 Practical design cost functions

Following the same procedure, the adjoint equation for the design using the Navier-

Stokes equations can be written as

{

Sij

δfj

δw

}T
∂ψ

∂ξi
−M−1T

L̃ψ = 0 in D, (2.40)
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where
(L̃ψ)1 = − p

ρ2
∂

∂ξl

(

Sljκ
∂θ
∂xj

)

(L̃ψ)i+1 = ∂
∂ξl

{

Slj

[

µ
(

∂φi

∂xj
+

∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

+ ∂
∂ξl

{

Slj

[

µ
(

ui
∂θ
∂xj

+ uj
∂θ
∂xi

)

+ λδijuk
∂θ
∂xk

]}

− σijSlj
∂θ
∂ξl

for i = 1, 2, 3

(L̃ψ)5 = 1
ρ

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

,

and L, L̃, andM are transformations which relate the conservative variables to the

primitive variables. Their explicit form can be found in appendix B.

The form of the adjoint boundary conditions depends on the cost function. Table

2.1 summarizes some of the commonly used cost functions.

Table 2.1: Adjoint boundary conditions for various cost functions

Minimizing Cost function I Adjoint B.C.

Drag CD =
∫

B qiτidS φk = qk

Weight CW =
−β Kcorr,b

cos(Λ)2

∮

B p(ξ1, ξ3)K(ξ3)S22dξ1dξ3 ψj+1nj =
−β Kcorr,b

cos(Λ)2
Kn2

+ Kcorr,s

Sref

∮

B
|S22|dξ1dξ3

Inverse 1
2

∫

B (p− pd)
2 dS ψj+1nj = p− pd

2.5.3 Combined cost function

Notice that the adjoint equation is linear in ψ and the cost function term only appears

at the boundary condition. Therefore when we optimize a combined cost function

such as a weighted sumation of drag and weight, we only modify the adjoint boundary
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condition. For example, if we choose to minimize

I = α1CD + α2CW

The adjoint equation still retains the form of equation (2.40) and the adjoint boundary

condition becomes

φk = α1qk + α2
−β

cos(Λ)2
Kδ2k

2.6 Optimization technique

General optimization procedures typically involve two steps; calculation of the gradi-

ent and line searches along the direction of steepest descent or an improved direction

based on an estimation of the Hessian. This method works quite well as long as the

cost function can be evaluated easily. This is not the case for the design using the

Euler or Navier-Strokes equations. Here we try to minimize the number of evaluations

of the cost function.

The adjoint method is a strategy to reduce the cost of the gradient calculation.

In order to avoid line searches, we use a continuous descent process with gradient

smoothing as presented below.

2.6.1 Continuous descent

The basic idea is to treat the search process as a time dependent process in pseudo

time
dS

dt
= −G

where S is the vector of design variables, as illustrated in the sketch for two design

variables in figure 2.4

A sequence of small steps corresponds to a forward Euler discretization in pseudo

time

Sn+1 = Sn − ∆Gn

The continuous descent process can be analyzed as follows [30]. Suppose that the
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Continuous path

Steepest descent path

Figure 2.4: Continuous descent for two design variables

optimum is at S∗. Near the optimum the cost I can be represented as

I(S) = I(S∗) +
1

2
(S − S∗)TA(S − S∗) + . . .

where there is no linear term because the gradient G(S∗) is zero, and A is the Hessian.

Also the gradient near the optimum is

G(S) = A(S − S∗) + . . .

Thus the continuous process becomes

d

dt
(S − S∗) = −A(S − S∗)

Since A is positive definite at a minimum, it can be expected that

A = RMRT

where M is a diagonal matrix of the eigenvalues µk and R is a unitary transformation

RTR = RRT = I

Then setting

v = RT (S − S∗)

we find that
dv

dt
= Mv
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Now the maximum allowable time step is ∆t = 2
µmax

while the rate of decay is

dominated by the slowest mode e−µmint.

In order to improve the rate of convergence we can precondition the descent process

as
dS

dt
= −PG

An ideal preconditioner is the inverse Hessian A−1. However this is prohibitively

expensive to calculate. Moreover when it is estimated iteratively from changes in the

gradient at each step, as in the well-known quasi Newton methods, we have both to

perform exact line searches and to calculate the gradient very accurately.

2.6.2 Gradient smoothing

In fact, the gradient G obtained from section 2.4 is generally of a lower smoothness

class than the shape S. Hence it is important to restore the smoothness. This may

be affected by passing this gradient G to a Sobolev inner product of the form

〈u, v〉 =

∫

(uv + ε
∂u

∂ξ

∂v

∂ξ
) dξ

This is equivalent to replacing G by Ḡ, where in one dimension

Ḡ − ∂

∂ξ
ε
∂Ḡ
∂ξ

= G, Ḡ = zero at end points

and making a shape change δS = −λḠ. Then for small positive λ

δI = −λ〈Ḡ, Ḡ〉
≤ 0

guaranteeing an improvement.

This gradient smoothing proves to be an effective preconditioner, based on the

understanding that the gradient is in a lower smoothness class than the initial geom-

etry. It is shown by Jameson and Vassberg[34] that for problems in the calculus of
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variations, it can yield convergence in a number of steps independent of the number

of design variables. Moreover the continuous descent process has the advantage that

it does not require accurate gradients to achieve an improvement at each step. The

descent direction only needs to be within 90 degrees of the true gradient. Thus it is

not necessary to solve the flow or the adjoint equations to full convergence at each

step. This effectively reduces the optimization to a “one-shot” process.

The efficiency of gradient smoothing stems from the fact that when the mesh

points are used as the design variables, they can not be moved independently without

violating the requirement of maintaining a smooth shape. Conventional optimization

methods, on the other hand, assume that the design variables are completely inde-

pendent. It appears that gradient smoothing may be a superior method for shape

and trajectory optimization problems where smoothness is critical. It should also be

noted that this method is based entirely on driving the gradient to zero, and does not

directly measure the cost function. It is of course possible that the gradient could

reach zero at a local minimum. In two-dimensional optimization studies of airfoils in

inviscid transonic flow this never seems to occur, since the drag is almost invariably

reduced to zero, corresponding to a shock free shape. In this case the optimum shape

is entirely non-unique, and the final optimized shape will depend on the initial shape.

In three-dimensional design the possibility of reaching a local minimum which is not

the global optimum cannot be ruled out. If this situation is suspected, it may be

prudent to start optimizations from alternative initial configurations. As in the two-

dimensional case there may also be flat regions of the design space where significantly

different shapes have equal performance.

2.7 Discretization of the flow equations

Both the flow and the adjoint equations are discretized using a semi-discrete cell-

centered finite volume scheme. The convective fluxes across cell interfaces are rep-

resented by simple arithmetic averages of the fluxes computed using values from the

cells on either side of the face, augmented by artificial diffusive terms to prevent

numerical oscillations in the vicinity of shock waves.
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The numerical convective flux across the interface between cells A and B in a three

dimensional mesh has the form

hAB =
1

2
SABj

(

fAj
+ fBj

)

− dAB,

where SABj
is the component of the face area in the jth Cartesian coordinate direction,

(

fAj

)

and
(

fBj

)

denote the flux fj as defined by equation (2.10) and dAB is the

diffusive term. To include the viscous terms of the Navier-Stokes equations into the

spatial discretization scheme it is necessary to approximate the velocity derivatives
∂ui

∂xj
which constitute the stress tensor σij. These derivatives may be evaluated by

applying Gauss’ formula to a control volume V with boundary S.

Throughout this dissertation we use a multistage explicit scheme, belonging to

the general class of Runge-Kutta schemes [7]. Rapid convergence to a steady state

is achieved via variable local time steps, residual averaging, and a full approximation

multi-grid scheme.

The detailed description of the discretization including convergence acceleration

techniques such as multi-grid, local time stepping, and residual averaging can be

found in appendix A.

2.8 Discretization of the adjoint equations

The adjoint differential equations for the Navier-Stokes formulation have been given

by equation (2.40). To find the solution of the adjoint equations, we introduce a

time-like derivative term, which will vanish at the steady state solution of equation

(2.40). Thus, the adjoint equations (2.40) can be written as

∂ψ

∂t
− CT

i

∂ψ

∂ξi
+M−1T

L̃ψ = 0 in D. (2.41)

The main differences between the flow equations and the time-like adjoint equations

(2.41) are that the adjoint equations are linear equations and they are not in strong

conservation form. However, they correspond closely to the linearized flow equations



CHAPTER 2. MATHEMATICAL FORMULATION 38

with the wave propagating in reverse directions. Thus similar discretization tech-

niques that have been applied earlier to the flow equations can be applied to the

adjoint equations. Also similar artificial diffusive terms are introduced in the dis-

cretization of the adjoint equation, but with the opposite sign because of the reversal

of the the wave directions. The detailed description for the adjoint discretization can

also be found in appendix B.

2.9 Flow and adjoint solvers

The baseline flow and adjoint solver used in the discretization are ”syn88” and

”syn107”. These codes were developed by Jameson et.al.[31, 26, 23, 24]. The flow

solver solves the three dimensional Euler(syn88) and Navier-Stokes (syn107) equa-

tions, by employing the JST scheme[33], together with a multi-step time stepping

scheme. Rapid convergence to a steady state is achieved via variable local time steps,

residual averaging, and a full approximation multi-grid scheme. The adjoint solver

solves the corresponding adjoint equations using similar techniques to those of the

flow solver. In fact, much of the software is shared by the flow solver and adjoint

solver.



Chapter 3

Implementation

3.1 Design variables

As we discussed in chapter 1, both wing sections (airfoils) and wing planform have

a large impact on the drag and weight of the wing. In this dissertation, we employ

both wing sections and wing planform as wing design parameters.

3.1.1 Section design variables

()
*+ ,- ./.0 1/12 3/34/4 56

78 9/9:/:;/;</<
=> ?@
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Mesh movement direction along the mesh line

Figure 3.1: Section design variables and mesh movement direction

In computational fluid dynamics, a wing is generally represented by boundary

39
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mesh points. Therefore, the simplest way to select section design variables is to use

the surface mesh points on the wing as the design variables. This choice of design

variables has an advantage that it does not require surface fitting, such as the spline

or polynomial function, which is important when the computational grid is provided

without detailed information of how the grid is generated. This type of geometry is

call ”CAD free” geometry.

Once the gradient information of each point is provided, e.g. by the solution of an

adjoint method, we can move the surface points to improve the design. For a small

mesh perturbation, which is normally the case for the wing design, it is not necessary

to regenerate the mesh. Instead we can perturb it smoothly along the mesh lines

emanating from the surface, as shown in figure 3.1. This can avoid cross-over of the

perturbed grid.

3.1.2 Planform design variables

From the trade study, the parameters that lead up to a basic design which satisfies

the general design criteria include[46]:

• wing shape • area

• span • sweep

• aspect ratio • taper ratio

• airfoil types • airfoil thickness

Because some of these parameters do not define the wing geometry uniquely, we

employ another set of design parameters that still represent these parameters but

can be extracted from surface mesh points. In this dissertation we model the wing

of interest using six planform variables: root chord (c1), mid-span chord (c2), tip

chord (c3), span (b), leading-edge sweep(Λ), and wing thickness ratio (t), as shown in

figure 3.2. This choice of design parameters will lead to an optimum wing shape that

will not require an extensive structural analysis and can be easily manufactured.

In the industry standard, it may require upto three hundred parameters to com-

pletely describe the wing planform. Although we demonstrate our design methodology

using the simplified planform, our design method is still applicable to the industry
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Figure 3.2: Planform design variables

standard because the adjoint method is independent of the number of design vari-

ables. Thus our method can be easily extend to cover many parameters without a

large increase in computational cost.

3.2 Cost function for planform design

As proposed in section 1.2.4, in this work we minimize the weighted sum of drag and

a simplified wing weight

I = α1CD + α3CW

using the Navier-Stokes equations (NS). However, as we will shown in chapter 4, the

computational cost of the design using the NS is one order higher than the design

using the Euler equations. The problem comes from the slower rate of convergence

due to the limited time step that is required for a highly stress cell to resolve the

boundary layer. Moreover the number of computational cells required for the NS

calculation are four to five times higher that that of the Euler calculation. One way

to reduce the computation cost of the design is to start the optimization using the

Euler equation to obtain an intermediate shape. Then we perform the Navier-Stokes
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design on this redesigned shape.

However, without the viscosity, the optimization tool can not prevent steep adverse

pressure gradient, which will lead to flow separation if the viscosity is present. We

add an inverse design term to address this problem. Therefore we optimize

I = α1CD + α2
1

2

∫

B

(p− pd)
2dS + α3CW (3.1)

where pd is the target pressure which can be set by smoothing the existing pressure,

and α1, α2, and α3 are weighting constants. The relative importance of drag and

weight are represented by the coefficients α1 and α3. The choice of these weighting

constants is discussed in detail in section 3.6.

3.3 Wing weight estimation

From our discussion in section 2.3, the expression of wing weight contains terms that

correspond to bending-load-carrying material and two correction factors; Kcorr,b and

Kcorr,s. To estimate these correction factors, we can rewrite the expression (2.21) as

Wwing

S
= α1

Wb

S
+ α2 (3.2)

where Wwing is the total weight of the wing, Wb is the weight of the wing box, and S is

a gross wing area. When there is information from more than two aircraft, we can use

the “least-square” curve-fitting strategy to calculate α1 and α2. For this dissertation,

due to the restricted access to proprietary aircraft weight information, only two sets

of data are available; the Boeing 747 and McDonnell Douglas MD-11. However, this

is enough estimate the correction factors. The relevant data is shown in table 3.1. In

this table, Wlc is load-carrying structure. It consists of spar caps, inter-spar coverings,

spanwise stiffeners, spar webs, spar stiffeners, and inter-spar ribs. The term Wb is

our computed bending-carrying material, which is calculated by using CFD. We first

compute CWb
of equation (2.19) and then multiply this non-dimensional weight by

the free-stream dynamic pressure at 33,000 feet and the corresponding reference area.
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Table 3.1: Structural weight data [3]

Aircraft S Wb Wlc Wwing

(ft2) (lbs) (lbs) (lbs)

B747 5,023 44,705 50,395 88,202

MD11 3,293 33,292 35,157 62,985

Table 3.2: Flight conditions for wing weight estimation

Aircraft Sref Mach CL Nult

(ft2)

B747 5,825 .85 .45 3.75

MD11 3,648 .83 .50 3.75

The flight conditions are shown in table 3.2.

By comparing our computed Wb with the real weight Wlc in table 3.1, we can

see that our box-weight estimation is quite close to the load-carrying structure. As

expected, we underestimate the box weight because the wing is not fully stressed and

our calculation does not account for the weight of spar webs and ribs.

To compute α1 and α2, we solve a system of two equations and two unknowns.

These equations have the form of equation (3.2) but with different values of
Wwing

S
and

Wb

S
. This gives

α1 = 1.30 and α2 = 6.03 (lb/ft2).

Compared to reference [37] which gives an estimation of α2 = 4.22, our estimation is
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reasonable. However, the total wing weight estimation will be inexact because of the

limitation of aircraft number. Finally, Kcorr,b and Kcorr,s can be computed by

Kcorr,b = α1 and Kcorr,s =
α2

q∞

3.4 Planform gradient calculation

The gradient with respect to planform variation can be computed by integrating

point-gradients projected in the planform movement direction. Recall the compact

form of the gradient calculation (2.28)

δI =

∫

B

{δMII + δNII} dBξ −
∫

D

ψT δRIIdDξ

where the adjoint variables ψ satisfy the adjoint equation (B.10). The discrete form

of this equation is

δI(w, S) = δI(S)

=

∫

B

(δMII + δNII) dBξ −
∫

D

ψT δR dDξ

≈
∑

B

(δMII + δNII) ∆B −
∑

D

ψT ∆R̄

≈
∑

B

(δMII + δNII) ∆B −
∑

D

ψT
(

R̄|S+δS − R̄|S
)

,

where R̄|S and R̄|S+δS are volume weighted residuals calculated at the original mesh

and at the mesh perturbed in the design direction.

Provided that ψ has already been calculated and R̄ can be easily calculated, the

gradient of the planform variables can be computed effectively by first perturbing

all the mesh points along the direction of interest. For example, to calculate the

gradient with respect to the sweepback, move all the points on the wing surface as

if the wing were pushed backward and also move all other associated points in the
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computational domain to match the new location of points on the wing. Then re-

calculate the residual value and subtract the previous residual value from the new

value to form ∆R̄. Finally, to calculate the planform gradient, multiply ∆R̄ by the

co-state vector and add the contribution from the boundary terms.

This way of calculating the planform gradient exploits the full benefit of knowing

the value of adjoint variables ψ with no extra cost of flow or adjoint calculations.

3.5 Gradient validation

3.5.1 Inviscid planform gradients

To verify the accuracy of the gradients calculated by the method described in sec-

tion 3.4, we compare these gradients with the gradients computed by the finite-

difference method.

For the purpose of this comparison, we fixed angle of attack to eliminate the effect

of pitch variation on the gradient. We chose the wing-fuselage of the Boeing 747 at

Mach 0.87, and wing angle of attack 2.3 degrees. We performed a design optimization

by allowing section changes. At each design iteration, we calculated both the adjoint

and finite difference gradients. Figure 3.3 shows one of these computational meshes.

For the finite difference calculation, we used a forward differencing technique with

a moderate step size of 0.1% of planform variables to achieve both small discretization

error and small cancellation error.

Figures 3.4 and 3.5 show the planform gradient comparison where the cost func-

tions are CD and CW respectively. It can be seen that the results from both adjoint

and finite difference methods match each other within the 15% error range. This

error, especially for the weight sensitivity of sweep changes, arises from the neglected

terms at the far-field boundary which we generally assume to be small [36]. More

accurate error can be obtained by accounting those terms or enlarging the far field

of the computational domain. However, as we will show in the next chapter, these

gradients are practical enough to achieve improvements in the design. Nevertheless,

this result indicates that the adjoint method provides a moderately accurate planform
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BOEING 747 WING-BODY                                                            
 GRID  192 X   32 X   32

  K   =    1

Figure 3.3: Computational grid of the B747 wing fuselage for the Euler calculation

gradient while reducing the computational cost by a factor of the number of design

parameters.

3.5.2 Viscous planform gradients

In this section, we performed a similar comparison for the planform viscous gradient.

We chose the same Boeing 747 wing-fuselage, but used a four times finer grid to

resolve the boundary layer. The size is 256x64x48.

Figure 3.6 plots gradients from the adjoint and finite difference methods for both

drag and structural weight. The comparision indicates that the adjoint and finite

difference gradients match within the range of %20 error. Compared to the accuray

of the inviscid gradient in the previous section, an additional error comes from the

accuracy of flow and adjoint solutions. The highly stretch computational cells of the

Navier-Stokes design restrict the convergence of the flow solutions to the level that is

worse than those of the inviscid solutions. However, this proofs to be good enough

for the design purpose.
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Figure 3.4: Inviscid gradient comparison: drag sensitivities.
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Figure 3.5: Inviscid gradient comparison: wing weight sensitivities.
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Figure 3.6: Viscous gradient comparison.
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3.6 Choice of weighting constants

3.6.1 Maximizing the range of the aircraft

The choice of α1 and α3 greatly affects the optimum shape. We can interpret α1 and

α3 as how much emphases we give to drag and wing weight. If α1

α3
is high, we focus

more on minimizing the drag than the weight and we tend to get an optimum shape

that has low CD but high CW .

An intuitive choice of α1 and α3 can be made by considering the problem of

maximizing range of an aircraft. Consider the simplified range equation (1.5)

R =
V

C

L

D
ln
We +Wf

We

where We is the gross weight of the airplane without fuel and Wf is weight of fuel

burnt.

If we take

W1 = We +Wf = fixed

W2 = We

then the variation of the weight can be expressed as

δW2 = δWe.

With fixed V
C

, W1, and L, the variation of R can be stated as

δR =
V

C

(

δ

(

L

D

)

ln
W1

W2
+
L

D
δ

(

ln
W1

W2

))

=
V

C

(

−δD
D

L

D
ln
W1

W2
− L

D

δW2

W2

)

= −V
C

L

D
ln
W1

W2

(

δD

D
+

1

lnW1

W2

δW2

W2

)
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and

δR

R
= −

(

δCD

CD

+
1

lnW1

W2

δW2

W2

)

= −





δCD

CD

+
1

ln
CW1

CW2

δCW2

CW2



 .

If we minimize the cost function defined as

I = CD + αCW ,

where α is the weighting multiplication, then choosing

α =
CD

CW2
ln

CW1

CW2

, (3.3)

corresponds to maximizing the range of the aircraft.

3.6.2 Pareto front

In order to present the designer with a wider range of choices, the problem of optimiz-

ing both drag and weight can be treated as a multi-objective optimization problem [8].

In this sense one may also view the problem as a “game”, where one player tries to

minimize CD and the other tries to minimize CW . In order to compare the perfor-

mance of various trial designs, designated by the symbol X in figure 3.7, they may be

ranked for both drag and weight. A design is un-dominated if it is impossible either

to reduce the drag for the same weight or to reduce the weight for the same drag. Any

dominated point should be eliminated, leaving a set of un-dominated points which

form the Pareto front. In figure 3.7, for example, the point Q is dominated by the

point P (same drag, less weight) and also the point R (same weight, less drag). So

the point Q will be eliminated. The Pareto front can be fit through the points P, R

and other dominating points, which may be generated by using an array of different

values of α1 and α3 in the cost function to compute different optimum shapes. With
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Figure 3.7: Cooperative game strategy with drag and weight as players

the aid of the Pareto front the designer will have freedom to pick the most useful

design.

3.7 Design cycle

The design cycle starts by first solving the flow field until at least a 2 order of mag-

nitude drop in the residual. The flow solution is then passed to the adjoint solver.

Second, the adjoint solver is run to calculate the costate vector. Iteration continues

until at least a 2 order of magnitude drop in the residual. The costate vector is

passed to the gradient module to evaluate the aerodynamic gradient. For the point-

wise gradients of each surface mesh points, the we calculate the Sobolev gradients

and use this Sobolev gradients to update the shape. Then, the structural gradient is

calculated and added to the aerodynamic gradient to form the overall gradient. The

steepest descent method is used with a small step size to guarantee that the solution

will converge to the optimum point. The design cycle is shown in figure 3.8.
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Figure 3.8: Design cycle
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Wing planform optimization

results

In this chapter, we present results of the wing planform optimization to show the ad-

vantage of integrating shock-free section design with wing planform optimization. The

design methodology is defined in chapter 3. We also demonstrate that using trade-

offs between aerodynamics and a simplified wing weight model allows us to eliminate

the maximum thickness constraints that were required for a pure aerodynamic wing

optimization.

The proposed design strategy employs both the Euler and Navier-Stokes opti-

mizations. While the Navier-Stokes equations provide more insight to the flow phe-

nomenon and wing design, the computational cost of the viscous design is an order

of magnitude greater than the inviscid design. This is due to several reasons. The

number of mesh points must be increased by a factor of four (or more) to resolve the

boundary layer. There is also the additional cost of computing the viscous terms and

turbulence model. Finally, the Navier-Stokes calculations converge much more slowly

than the Euler calculations due to the highly stretch cells used in most models.

Thus, it is more practical and economical to employ the inviscid design tool in

flow phenomena where viscous effects are not dominant, e.g. a wing at low angle

of attack and high Reynolds number, such as an airplane at cruise condition. This

leads us to suggest a time-saving strategy which initiates the viscous design with the

54
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a result from the inviscid design.

4.1 Inviscid redesign of the Boeing 747 wing

We first applied our inviscid design tool to the wing of the Boeing 747. The com-

putational grid was created for the wing fuselage combination as shown in figure 3.3

to provide effects of fuselage disturbance on the wing. On this 192x32x32 grid, the

wing sections were represented by 2037 surface mesh points and six planform vari-

ables (leading edge sweep, span, chords at three span stations, and wing thickness)

are extracted from these mesh points. The redesigns were done at the cruise con-

dition Mach 0.85 and fixed lift coefficient CL = 0.45. Because a planform variation

can lead to a variation of wing area, and to avoid any confusion, throughout this

dissertation we calculate all the force coefficients such as CL, CD, and CW based on

a fixed reference area. Thus a constant CL implies a constant total lift.

For a reference, we first simulated flow over the baseline wing. The result is shown

in figure 4.2. The pressure contours show strong shock waves over the wing, indicated

by a region of dense contour lines. These shocks can be eliminated by modifying the

wing sections, resulting in a reduction of CD from 112 counts to 103 counts ∗ while

CW remains constant, as shown in figure 4.3. The capability to redesign for shock

free wings has been demonstrated by Jameson[20, 30, 26, 62] during the last decade.

We now extend the redesign to use section changes together with variations of

sweep angle, span length, chords, and section thickness simultaneously. The ratio
α3
α1

was chosen according to formula (3.3) such that the cost function corresponds to

maximizing the range of the aircraft. Moreover, we eliminated the maximum thickness

constraints that were imposed on the previous design.

In twenty-two design iterations the drag coefficient † was reduced from 112 counts

to 92.2 counts at the same time the weight CW was also reduced from 546 counts

to 533 counts. The further reduction in drag is the result of the increase in span

from 212 ft to 235 ft, which reduces the induced drag. The redesigned geometry also

∗1 counts = 0.0001
†CL, CD , and CW are calculated based on the fixed reference area.



CHAPTER 4. RESULTS 56

Figure 4.1: C-H grid of the Boeing 747 wing-fuselage.
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has a lower sweep angle and a thicker wing section, which both reduce the structural

weight, thus compensating for the weight increase due to the increase in span. There

was only a slight growth in the chords. This may seem doubtful because without

the viscosity there is no strong mechanism to prevent an excessive growth in the

chord length. However, if we consider the history of the cost function, there was

very slow improvement as the design iterations continued. For a practical purpose,

the optimization would cut-off the design iterations when it obtains no significant

improvement. This ambiguity does not arise in viscous optimization.

The redesigned geometry is shown in figures 4.4 and 4.5. Overall, the redesign

with planform variations gives improvements in both aerodynamic performance and

structural weight, compared to the previous

Notice that the only constraints applied here were fixed CL. There were no con-

straints on the planform parameters or minimum section-thickness. The design itera-

tions were stopped when there were no appreciable improvements of the cost function,

as shown in figure 4.6. This corresponds to the gradient being reduced to such a small

value that no significant improvement could be achieved by movement in the nega-

tive gradient direction. The redesigned planform still has finite span and its sweep

angle is less than 90 degrees. Moreover, the wing sections do not have zero thickness.

This result has shown a successful trade-off between the aerodynamics and structures,

preventing unrealistic design results.

This inviscid redesigned result in this section can be useful if shock and vortex

drag are the main focus of the optimization. The result can also be used as a starting

point for viscous optimization.

4.2 General comments for inviscid design

While the inviscid design methods have proven useful for the design of transonic wings

at the cruise condition, the required changes in the section shape are comparable in

magnitude to the displacement thickness of the boundary layer. The user should also

recognize that some flow physics have been neglected and it is important to know the

limitations of the design tool.
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BOEING 747 WING-BODY                                                            
Mach: 0.850    Alpha: 2.676                                                     
CL:  0.450    CD: 0.01117    CM:-0.1321    CW: 0.0546                           
Design:   0    Residual:  0.1005E+01                                            
Grid: 193X 33X 33                                                               
LE Sweep: 42.11  Span(ft):  212.43                                              
C1(ft):  48.16   C2:  28.28   C3:  10.79                                        
I:  0.01936                                                                     

Cl:  0.398    Cd: 0.04640    Cm:-0.1545    T(in):58.0070                        
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.643    Cd: 0.00595    Cm:-0.2217    T(in):23.8124                        
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.434    Cd:-0.02784    Cm:-0.1538    T(in):13.0150                        
Tip Section:  88.1% Semi-Span

Cp = -2.0

Figure 4.2: Pressure distribution over the baseline Boeing 747 at cruise M .85, using
the Euler calculation.
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BOEING 747 WING-BODY                                                            
Mach: 0.850    Alpha: 2.634                                                     
CL:  0.450    CD: 0.01033    CM:-0.1352    CW: 0.0546                           
Design:   5    Residual:  0.1726E-01                                            
Grid: 193X 33X 33                                                               
LE Sweep:42.10   Span(ft):  212.43                                              
C1(ft):  48.13   C2:  28.27   C3:  10.78                                        
I:  0.01852                                                                     

Cl:  0.397    Cd: 0.04616    Cm:-0.1535    T(in):57.9653                        
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.643    Cd: 0.00474    Cm:-0.2261    T(in):23.8738                        
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.456    Cd:-0.02705    Cm:-0.1805    T(in):12.9982                        
Tip Section:  88.1% Semi-Span

Cp = -2.0

Figure 4.3: Inviscid redesigned wing sections of the Boeing 747 with fixed planform.
Dashed and solid lines represent pressure distributions of the baseline Boeing 747 and
redesigned configuration respectively.
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BOEING 747 WING-BODY                                                            
Mach: 0.850    Alpha: 1.799                                                     
CL:  0.450    CD: 0.00922    CM:-0.0934    CW: 0.0533                           
Design:  22    Residual:  0.1398E-01                                            
Grid: 193X 33X 33                                                               
LE Swwwp:36.07   Span(ft):  235.45                                              
C1(ft):  48.65   C2:  29.47   C3:  10.92                                        
I:  0.01721                                                                     

Cl:  0.349    Cd: 0.03647    Cm:-0.1297    T(in):62.0272                        
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.552    Cd: 0.00106    Cm:-0.2146    T(in):24.9553                        
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.392    Cd:-0.01796    Cm:-0.1871    T(in):12.8786                        
Tip Section:  88.1% Semi-Span

Cp = -2.0

Figure 4.4: Inviscid redesign of both sections and planform of the Boeing 747. Dashed
and solid lines represent pressure distributions of the baseline and redesigned config-
urations respectively.
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.5: Geometry changes of the B747 wing using the Euler optimization; baseline
(green/light) and redesigned section-and-planform (blue/dark).
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Figure 4.6: History plot of the Boeing 747 planform optimization cost function.

Three concerns missing from the previous case study are discussed here:

• Viscous (skin friction) drag

• Flow separation

• Excessive increment of chords

The redesign result of the Boeing 747 shows large improvement in drag, mostly

due to the elimination of shocks and reduction of vortex drag. However, because

the design tool was based on the Euler calculation, the skin friction drag has been

neglected. It is well known that the skin friction drag is proportional to the wetted

area. Thus the redesigned Boeing 747 wing will have higher skin friction drag. In

sections 4.3, we will show that the reduction in vortex drag generally outweighs the

increase in skin friction drag. Moreover when the viscosity effect is included, the

trend of the planform improvements is similar to that for the inviscid calculations.

The second concern deals with flow separation. Although the inviscid calculation

can not predict flow separation, the pressure distribution can indicate the risk of the
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separation. Near the trailing edge, the flow must decelerate to recover the free stream

pressure. In this region of adverse pressure gradient, it is advisable to avoid a design

result that has steeper gradients compared to those of the baseline. So, provided that

the issue of premature separation is recognized, the inviscid tool can be useful for the

wing design problem, especially when fast turn around is an important factor.

The last concern can be recalled in the discussion from section 1.2.2. Without the

presence of viscosity, wing area can grow excessively. While the area-dependent term

in the weight formula (2.21) may help, the equilibrium point usually has too much

area. This did not happen in our inviscid design, mainly because the chord growth

rate was very small and the optimizer stopped the design process when no significant

improvement is gained. However, if such a case occurs, an additional constraint on

maximum chord must be imposed. This could be necessary to allow the wing to fit

on the fixed fuselage fairing. However, as we will show in the section 4.1, this did not

happen because the slow rate and limitation of mesh movement.

Another great advantage of a design using inviscid calculation is its fast turn-

around. A entire design process can be completed within an hour. With the con-

tinuing improvement in computer performance, inviscid planform optimization does

not require a workstation level of computer. The results shown in section 4.1 were

performed on author’s laptop in about half an hour. With this advantage, we find

another benefit of exploring the design space with inviscid optimization. For example,

to validate the results of the Boeing 747 planform design we could perform a series

of optimization at fixed different spans, but allowing variations of sweep, thickness,

and chords.

The next sections describe a design strategy using the Reynolds Averaged Navier-

Stokes (RANS) equations. Viscous design provides increased realism, and alleviates

shocks that would otherwise form in the viscous solution over the final inviscid design

because of the failure to account for the boundary layer displacement effect. Accurate

resolution of viscous effects such as separation and shock/boundary layer interaction

is also essential for optimal design encompassing off-design conditions.
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4.3 Viscous redesign of the Boeing 747 wing

The design in this section accounts for viscous effects on the design. In these calcula-

tions the flow was modeled by the Reynolds Averaged Navier-Stokes equation, with

a Baldwin Lomax turbulence model. This turbulence model was considered sufficient

because the design point was at cruise condition with attached flow. We investigate

the same geometry as in section 4.1, which is the Boeing 747 wing fuselage combina-

tion at normal cruising Mach 0.85 and a lift coefficient CL = 0.45. On this 256x64x48

grid, the wing sections were represented by 4224 surface mesh points and six planform

variables. Similarly to in the inviscid case, all coefficients are calculated with a fixed

reference area based on the initial configuration. Thus an increase in skin friction due

to an increase in wetted area will appear as an increase in the friction drag coefficient.

As a reference point, we first modified only the wing sections to eliminate the

shock drag, while planform of the baseline B747 was kept unchanged. Figure 4.7

shows the redesigned calculation. Here in 30 design iterations the drag was reduced

from 137 counts to 127 counts (7.3% reduction) and the weight remained roughly

constant.

We implement both section and planform optimization in viscous design, using

the inviscid-redesigned wing shown in figure 4.4 as a starting point. Figure 4.8 shows

the effect of allowing changes in sweepback, span, root chord, mid-span chord, and

tip chord. The parameter α3/α1 was again chosen to maximize the range of the

aircraft. In 30 design iterations the drag was reduced to 117 counts (14.5% reduction

from the baseline B747), while the dimensionless structure weight was decreased to

516 counts (6.1% reduction), which corresponds to a reduction of 4,800 lbs. The

planform changes are shown in figure 4.9. This viscous redesigned wing has less drag

and structural weight than the fixed planform viscous redesigned wing.

When we compare this planform with the redesign by inviscid optimization in

section 4.1 as shown in figure 4.10, we can see that the effect of viscosity is to shrink

the area of the inviscidly redesigned planform. This trend is to be expected because

skin friction drag varies roughly linearly with the area. By reducing the area, we can

reduce the skin friction drag. Another benefit of using the viscous optimization is
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that we can prevent separation. Notice that the steep inverse pressure gradient in

figure 4.4 is now removed.

The results from the both inviscid and viscous planform optimizations yield large

drag reduction without structural weight penalty in a meaningful way. They show

the following basic trends:

• Increase wing span to reduce vortex drag,

• Reduce sweep but increase section-thickness to reduce structural weight,

• Use section optimization to minimize shock drag.

Although the suggested strategy tends to increase the wing area, which increases

the skin friction drag, the pressure drag drops at a faster rate, dominating the trade-

off. Overall, the combined results yields improvements in both drag and weight.

4.4 Pareto front

The problem of optimizing both drag and weight can be treated as a multi-objective

function optimization. A different choice of α1 and α3 will result in a different opti-

mum shape. The optimum shapes should not dominate each other, and therefore lie

on the Pareto front. The Pareto front can be very useful to the designer because it

represents a set which is optimal in the sense that no improvement can be achieved

in one objective component that does not lead to degradation in at least one of the

remaining components.

Figure 4.11 shows the effect of the weighting parameters (α1, α3) on the optimal

design. As before, the design variables are sweepback, span, chords, section thickness,

and mesh points on the wing surface. In figure 4.11, each point corresponds to an

optimal shape for one specific choice of (α1, α3). By varying α1 and α3, we capture

a Pareto front that bounds all the solutions. All points on this front are acceptable

solutions, and choosing the final design along this front depends on the nature of

the problem and several other factors. The optimum shape that corresponds to the

maximum Breguet range is also marked in the figure. In this test case, the Mach
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number is the current normal cruising Mach number of 0.85. We allowed section

changes together with variations of sweep angle, span length, chords, and section

thickness. Figure 4.7 shows the baseline wing. Figure 4.8 shows the redesigned

wing. The parameter α3

α1
was chosen according to formula (3.3) such that the cost

function corresponds to maximizing the range of the aircraft. Here, in 30 design

iterations the drag was reduced from 137 counts to 117 counts and the structural

weight was reduced from 546 counts (88,202 lbs) to 516 counts (83,356 lbs). The

large reduction in drag is the result of the increase in span from 212.4 ft to 231.7

ft, which reduces the induced drag. The redesigned geometry also has a lower sweep

angle and a thicker wing section in the inboard part of the wing, which both reduce

the structural weight. Moreover the section modification prevents the formation of

shock. The baseline and redesigned planforms are shown in figure 4.10, together

with the planform which resulted from inviscid optimization. Overall, the redesign

with variation planform gives improvements in both aerodynamic performance and

structural weight, compared to the previous optimization with a fixed planform.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.533                                                     
CL:  0.449    CD: 0.01270    CM:-0.1408    CW: 0.0546                           
Design:  30    Residual:  0.5305E+00                                            
Grid: 257X 65X 49                                                               
LE Sweep:42.11   Span(ft):  212.43                                              
c1(ft):  48.17   c2:  29.11   c3:  10.79                                        
I:  0.02089                                                                     

Cl:  0.373    Cd: 0.05530    Cm:-0.1449   T(in):66.1586                         
Root Section:  13.6% Semi-Span

Cp = -2.0

Cl:  0.647    Cd: 0.00557    Cm:-0.2398   T(in):23.8498                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.431    Cd:-0.02153    Cm:-0.1873   T(in):12.1865                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 4.7: Wing-section optimization of Boeing 747 at fixed baseline-planform.
Dashed and solid lines represent pressure distributions of the baseline Boeing 747
and redesigned configuration respectively.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.287                                                     
CL:  0.448    CD: 0.01167    CM:-0.0768    CW: 0.0516                           
Design:  30    Residual:  0.3655E+00                                            
Grid: 257X 65X 49                                                               
LE Sweep: 36.61  Span(ft):  231.72                                              
c1(ft):  47.17   c2:  28.30   c3:  10.86                                        
I:  0.01941                                                                     

Cl:  0.347    Cd: 0.06011    Cm:-0.1224   T(in):74.0556                         
Root Section:  12.7% Semi-Span

Cp = -2.0

Cl:  0.582    Cd: 0.00213    Cm:-0.2154   T(in):25.3014                         
Mid Section:  50.5% Semi-Span

Cp = -2.0

Cl:  0.390    Cd:-0.01648    Cm:-0.1736   T(in):12.0445                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 4.8: Complete optimization of Boeing 747. Both wing-section and planform
are optimized to maximize the Breguet range, using inviscid-redesigned planform as
a starting points.
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.9: Geometry changes of the B747 wing using the Navier-Stokes optimization;
baseline (green/light) and redesigned section-and-planform (blue/dark).
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Figure 4.10: Comparison of Euler-redesigned (red) and NS-redesigned planforms
(blue). The Euler-redesigned planform has larger area.
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Figure 4.11: Pareto front of section and planform modifications. The ratios of α3

α1
are

marked for each optimal point.
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4.5 Viscous redesign of the McDonnell Douglas

MD-11 wing

In order to validate the trends suggested by the previous test case, we select another

airplane in the long-range transportation category. Here the case chosen is the MD11

wing fuselage combination at cruising Mach number 0.83 and a lift coefficient CL =

0.50.

The baseline and redesigned wings are shown in figures 4.12(a) and 4.12(b) re-

spectively. The geometry changes are shown in figure 4.13. Again, the parameter
α3

α1
was chosen to maximizing the range of the aircraft. In 30 design iterations the

drag was reduced from 180 counts to 164 counts, while the wing weight was slightly

reduced from 654 counts (62,985 lbs) to 651 (62,696 lbs). Span increases from 174.4 ft

to 184.2 ft, sweep slightly reduced from 37.9 to 36.9 degrees, and the section thickness

increases. The increase of span reduces vortex drag while the decrease of sweep and

the increase of section depth reduce the structural weight. These results are very

similar to those obtained for the Boeing 747.

4.6 Viscous redesign of BAe MDO DATUM wing

To further validate this planform-and-section trend, we select the BAe MDO DATUM

wing. At its cruising Mach number .85, this wing has low sweep angle and high

thickness-to-chord ratio sections.

This test case presents a technical challenge to the optimization because the BAe

and B747 are designed to operate at the same flight condition and their planforms

are sized closely in the same range. However the original sweep of BAe is already

smaller than the optimum sweep of B747 and its wing span is already longer than the

optimum span of B747.

Figures 4.14(a), 4.14(b), and 4.15 show the original wing, optimized wing, and

their planforms respectively. Despite the low-sweep, long-span, and thick-wing-sections
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MD-11 WING/BODY + 4.5FT WINGTIP EXT                                             
Mach: 0.830    Alpha: 2.325                                                     
CL:  0.501    CD: 0.01798    CM:-1.8527    CW: 0.0654                           
Design:   0    Residual:  0.1802E-04                                            
Grid: 257X 65X 49                                                               
LE Sweep:37.87   Span(ft):  174.37                                              
c1(ft):  38.48   c2:  24.01   c3:   8.90                                        
I:  0.02779                                                                     

Cl:  0.442    Cd: 0.08541    Cm:-0.1329   T(in):53.2052                         
Root Section:  14.5% Semi-Span

Cp = -2.0

Cl:  0.672    Cd: 0.00543    Cm:-0.2431   T(in):22.5928                         
Mid Section:  51.1% Semi-Span

Cp = -2.0

Cl:  0.450    Cd:-0.02810    Cm:-0.1900   T(in): 8.6270                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

(a) Baseline

MD-11 WING/BODY + 4.5FT WINGTIP EXT                                             
Mach: 0.830    Alpha: 2.119                                                     
CL:  0.500    CD: 0.01638    CM:-1.8638    CW: 0.0651                           
Design:  30    Residual:  0.1514E-04                                            
Grid: 257X 65X 49                                                               
LE Sweep: 36.79  Span(ft):  184.23                                              
c1(ft):  39.06   c2:  24.49   c3:   9.39                                        
I:  0.02614                                                                     

Cl:  0.408    Cd: 0.08390    Cm:-0.1141   T(in):58.6158                         
Root Section:  14.0% Semi-Span

Cp = -2.0

Cl:  0.613    Cd: 0.00013    Cm:-0.2304   T(in):24.2333                         
Mid Section:  50.9% Semi-Span

Cp = -2.0

Cl:  0.409    Cd:-0.02083    Cm:-0.1920   T(in): 9.3007                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

(b) Redesign

Figure 4.12: Pressure distribution of the McDonnell Douglas MD 11 wing.
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.13: Geometry changes of the MD11 wing using the Navier-Stokes optimiza-
tion; baseline (green/light) and redesigned section-and-planform (blue/dark). The
redesigned wing has longer span, less sweep, and thicker wing sections.
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BAE MDO DATUM WING-BODY                                                         
Mach: 0.850    Alpha: 0.115                                                     
CL:  0.453    CD: 0.01639    CM:-0.3121    CW: 0.0574                           
Design:   0    Residual:  0.2236E-04                                            
Grid: 257X 65X 49                                                               
LE Sweep: 35.50  Span(ft):  252.97                                              
c1(ft):  54.30   c2:  32.26   c3:  11.93                                        
I:  0.02500                                                                     

Cl:  0.342    Cd: 0.05873    Cm:-0.1799   T(in):81.5015                         
Root Section:  12.6% Semi-Span

Cp = -2.0

Cl:  0.515    Cd: 0.00281    Cm:-0.2800   T(in):32.5177                         
Mid Section:  50.7% Semi-Span

Cp = -2.0

Cl:  0.439    Cd:-0.01497    Cm:-0.1976   T(in):15.0142                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

(a) Baseline

BAE MDO DATUM WING-BODY                                                         
Mach: 0.850    Alpha: 0.583                                                     
CL:  0.452    CD: 0.01447    CM:-0.3046    CW: 0.0570                           
Design:  30    Residual:  0.7512E-04                                            
Grid: 257X 65X 49                                                               
LE Sweep: 34.92  Span(ft):  260.55                                              
c1(ft):  54.36   c2:  32.50   c3:  11.91                                        
I:  0.02302                                                                     

Cl:  0.332    Cd: 0.05689    Cm:-0.1584   T(in):83.4629                         
Root Section:  12.4% Semi-Span

Cp = -2.0

Cl:  0.498    Cd:-0.00221    Cm:-0.2606   T(in):32.7338                         
Mid Section:  50.7% Semi-Span

Cp = -2.0

Cl:  0.396    Cd:-0.01396    Cm:-0.1738   T(in):15.0741                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

(b) Redesign

Figure 4.14: Pressure distribution of the BAe MDO Datum wing.

of the original wing, the optimal wing has less sweep, longer span, and thicker wing

sections. But the changes in the planform are not large. With these changes, the

optimum wing shows improvement in both drag and weight. The drag is reduced

from 164 counts to 145 counts, and the weight is reduced from 574 counts (87,473

lbs) to 570 counts (86,863lbs). This redesigned BAe wing strongly agrees with the

trend suggested from the B747 and MD11 cases.

4.7 Discussion

It can be seen from the results in this chapter that both inviscid and viscous optimizers

can improve the performance of the wing by reducing drag without any penalty on

the structure weight. The changes that were made to accomplish this were done by

the optimizer in a meaningful sense. The weight reduction was the consequence result
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(a) Isometric (b) front view

(c) side view (d) top view

Figure 4.15: Geometry changes of the BAe MDO Datum wing using the Navier-
Stokes optimization; baseline (green/light) and redesigned section-and-planform
(blue/dark). The redesigned wing has longer span, slightly less sweep, and thicker
wing sections.
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of sweep reduction and thicker wing section. The drag reduction was the result of

weakened shock wave and weaker induced drag. These planform changes move in

the same direction, however at different magnitude. In the case of the Boeing 747,

we see large changes. These changes get smaller for the BAe wing. The Boeing 747

wing was designed during the 1970s, while the BAe wing was designed during the

1990s. The improvement in the airfoil technology definitely makes the wing better.

Therefore, the improvement we can achieve should be less for a newer wing. Our

optimizer confirms this expectation.



Chapter 5

Conclusion

This dissertation focuses on the problem of wing planform optimization for transonic

aircraft based on the solution of Computational Fluid Dynamics (CFD) combined

with an adjoint-gradient based numerical optimization procedure. It exploits the

shock-free-wing technology, extensively developed during the past decade for wing

section design, to “cheat” the conventional wisdom of the planform design. The inte-

gration of the shock-free concept and planform optimization enables a range of plan-

form configurations previously prohibited by the strong compressibility drag. This

extended freedom can lead to a large reduction in both structural weight and the

induced drag.

In order to incorporate this idea, we employ the wing planform as well as the

wing sections as the design parameters. Because the two relevant disciplines are

aerodynamics and weight, we focus on the aerodynamic optimization with a simplified

structural weight model, treating a wing as fully-stressed and rigid. This choice of cost

function not only increases the reality of the design but also prevents unrealistic results

by exposing the trade-off between the aerodynamics and structures. To formulate our

design tool, we extend the aerodynamic shape optimization tool that was initially

developed for wing section design to include the planform optimization. The original

tool was developed by combining CFD with gradient-based numerical optimization,

and applied the adjoint formulation to calculate gradients of a large number of design

parameters at very low computational cost, allowing the wing be treated as a “free”

77
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surface to achieve a shock-free shape. Then we extend the adjoint method to cover

the planform variations and to compute the sensitivities of the structural weight of

both the wing section and planform variations.

Results of a variety of long range transports at fixed-altitude cruise conditions

indicate that significant improvement in both aerodynamics and structures can be

achieved simultaneously. They also reveal a similar trend from these improvements;

by utilizing the shock-free concept, the compressibility drag can be weakened and thus

the wing does not require as large a sweep or as small a thickness-to-chord ratio as one

that is conventionally designed. The sweep reduction and thickness increment help

reduce structural weight, which can be traded for a longer span. The increase of span

reduces the induced drag, which is a large portion of drag at the cruise condition, and

therefore results in large drag reduction without a penalty on the structural weight.

Finally, inclusion of the structural weight and area-dependent viscosity prevents any

unrealistic result.

This wing planform optimization is the “first step” in the right direction beyond

the pure aerodynamic shape optimization using the adjoint method for fixed planform.

The proof-of-concept optimal results indicate large improvements for both drag and

structural weight. The next step may require the incorporation of a higher-fidelity

structural model, which can capture aero-elastic interaction and structure failure, and

the implementations of constraints to satisfy performance, stability-and-control, and

manufacturing requirements within the design envelope. It is important to note that

additional constraints will certainly affect the results presented here. Yet, the design

methodology presented in this work provides the basis for an extension to form a

more complete wing design tool.



Appendix A

Discretization of the flow equations

The discretization of the spatial operators is accomplished by using a cell-centered

finite volume scheme. The flow domain is divided into a large number of small

subdomains, and the integral form of the conservation laws

∂

∂t

∫

D

wdV +

∫

B

F · dS = 0

is applied to each subdomain. Here F is the flux appearing in equation (2.15) and

dS is the directed surface element of the boundary B of the domain D. The use of

the integral form has the advantage that no assumption of the differentiability of the

solution is implied, with the result that it remains a valid statement for a subdomain

containing a shock wave. In general the subdomains could be arbitrary, but in this

work we use the hexahedral cells of a body-conforming curvilinear mesh.

To include the viscous terms of the Navier-Stokes equations into the spatial dis-

cretization scheme it is necessary to approximate the velocity derivatives ∂ui

∂xj
which

constitute the stress tensor σij. These derivatives may be evaluated by applying

Gauss’ formula to a control volume V with boundary S:

∫

V

∂ui

∂xj

dV =

∫

S

uinjdS ,
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where nj is the outward normal. For a hexahedral cell this gives

∂ui

∂xj

=
1

V

∑

faces

ui nj S , (A.1)

where ui is an estimate of the average of ui over the face, nj is the jth component of

the normal, and S is the face area.

Discretization of this type reduce to central differences on a regular Cartesian

grid, and in order to eliminate possible odd-even decoupling modes allowed by the

discretization of the convective terms, some form of artificial dissipation must be

added. Moreover, when shock waves are present, it is necessary to upwind the dis-

cretization to provide a non-oscillatory capture of discontinuities. The effects of

numerical diffusion, which may be introduced either explicitly to avoid decoupling or

implicitly by means of upwind formulas, could adversely impact the overall accuracy

of the solution. Thus, extreme care in devising an appropriate numerical diffusion,

or upwind method is required. The next section gives some details on the baseline

formulation currently implemented in our solvers.

A.1 Upwinding and numerical viscosity

Over the last twenty years, Jameson et.al. have developed a large class of shock

capturing schemes including High Resolution Switched, Symmetric Limited Positive

(SLIP) and Upstream Limited Positive (USLIP) schemes [22, 23, 68]. SLIP and US-

LIP schemes were implemented and tested using several forms of flux-splitting includ-

ing scalar, characteristic, and Convective Upstream Split Pressure (CUSP) schemes.

Careful comparisons with analytical results for laminar boundary layers [69] clearly

indicate that the limiting process plays a greater role than the flux-splitting in deter-

mining the quality of viscous results. However, new trade-offs between the different

forms of flux-splitting arise whenever crisp resolution of shocks becomes important.

Roe has shown that characteristic splitting can yield an optimal discrete shock res-

olution with only one interior point [65]. More recently, Jameson [24] has shown that
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a discrete shock structure with a single interior point can, in general, be supported

by artificial diffusion which both:

1. produces an upwind flux if the flow is determined to be supersonic through the

interface between the left and the intermediate state,

2. satisfies a generalized eigenvalue problem for the exit from the shock.

These two conditions can be satisfied by both the characteristic and CUSP schemes

whereas scalar diffusion fails to satisfy the first condition.

At this time CUSP based schemes, which combine perfect one-point shock cap-

turing of stationary shocks with high resolution of boundary layers, are considered to

be the best compromise.

For simplicity we consider only the general one dimensional conservation law for

a system of equations which can be expressed as

∂w

∂t
+

∂

∂x
f(w) = 0. (A.2)

Here the state and the flux vectors are

w =









ρ

ρu

ρE









, f =









ρu

ρu2 + p

ρuH









,

where ρ is the density, u is the velocity, E is the total energy, p is the pressure, and

H is the stagnation enthalpy. If γ is the ratio of specific heats and c is the speed of

sound then

p = (γ − 1)ρ

(

E − u2

2

)

c2 =
γp

ρ

H = E +
p

ρ
=

c2

γ − 1
+
u2

2
.

In a steady flow H is constant. This remains true for the discrete scheme only if the



APPENDIX A. DISCRETIZATION OF THE FLOW EQUATIONS 82

numerical diffusion is constructed so that it is compatible with this condition.

It is well known that when the flow is smooth it can be represented by the quasi-

linear form
∂w

∂t
+ A(w)

∂w

∂x
= 0,

where A(w) = ∂f

∂w
, and the eigenvalues u, u+c and u−c of the Jacobian matrix A are

the wave speeds for the three characteristics. Depending on the initial data, there may

not be a smooth solution of the conservation law (A.2). Nonlinear wave interactions

along converging characteristics may lead to the formation and propagation of shock

waves, while contact discontinuities may also appear.

The conservation law (A.2) is approximated over the interval (0, L) on a mesh

with an interval ∆x by the semi-discrete scheme

∆x
dwj

dt
+ hj+ 1

2
− hj− 1

2
= 0, (A.3)

where wj denotes the value of the discrete solution in cell j, and hj+ 1
2

is the numerical

flux between cells j and j + 1.

The numerical flux can be taken as

hj+ 1
2

=
1

2
(fj+1 + fj) − dj+ 1

2
, (A.4)

where fj denotes the flux vector f(wj) evaluated for the state wj, and dj+ 1
2

is a diffu-

sive flux which is introduced to enable the scheme to resolve discontinuities without

producing oscillations in the discrete solution.

A rather general form for the diffusive flux is

dj+ 1
2

=
1

2
αj+ 1

2
Bj+ 1

2
(wj+1 − wj),

where the matrix Bj+ 1
2

controls the numerical diffusion and determines the properties

of the scheme, and the scaling factor αj+ 1
2

is included for convenience. Notice that

since wj+1−wj approximates ∆x∂w
∂x

, the diffusive flux introduces an error proportional

to the mesh width. Hence all of these schemes will be first order accurate unless
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compensating anti-diffusive terms are introduced.

With this notation, scalar diffusion is produced by setting

Bj+ 1
2

= I, (A.5)

while the characteristic upwind scheme is produced by setting

Bj+ 1
2

=
∣

∣

∣
Aj+ 1

2

∣

∣

∣
= T |Λ|T−1. (A.6)

In equation (A.6), Aj+ 1
2
(wj+1, wj) is an estimate of the Jacobian matrix ∂f

∂w
obtained

by Roe linearization, with the property that the equation

fj+1 − fj = Aj+ 1
2
(wj+1 − wj)

is satisfied exactly, and T is a similarity transformation such that

Aj+ 1
2

= TΛT−1. (A.7)

Thus, the columns of T are the eigenvectors of Aj+ 1
2
, and Λ is a diagonal matrix

containing its eigenvalues. The symbol
∣

∣

∣
Aj+ 1

2

∣

∣

∣
is used to represent the matrix obtained

by replacing the eigenvalues by their absolute values.

An intermediate class of schemes which can be formulated by defining the first

order diffusive flux as a combination of differences of the state and flux vectors are

given by

dj+ 1
2

=
1

2
α∗

j+ 1
2

c (wj+1 − wj) +
1

2
βj+ 1

2
(fj+1 − fj) (A.8)

where the factor c is included so that α∗ is dimensionless. Schemes of this class are

fully upwind in supersonic flow if one takes αj+ 1
2

= 0 and βj+ 1
2

= sign(M) when the

absolute value of the local Mach number satisfies |M | > 1. In order to support a

stationary discrete shock structure with a single interior point, α∗ and β cannot be

chosen independently. It turns out that once α∗ is chosen, β is uniquely determined

by the equilibrium at the exit of the shock, leading to a one parameter family of
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schemes satisfying the relation

α∗ = (1 + β)(1 −M)

when M > 0 [24].

A.2 CUSP formulation

Very accurate schemes of this class can be based on a decomposition of the flux vector

f obtained by setting

f = uw + fp, (A.9)

where

fp =









0

p

up









. (A.10)

Then

fj+1 − fj = ū (wj+1 − wj) + w̄ (uj+1 − uj) + fpj+1
− fpj

, (A.11)

where ū and w̄ are the arithmetic averages

ū =
1

2
(uj+1 + uj) , w̄ =

1

2
(wj+1 + wj) .

If the convective terms are separated by splitting the flux according to equations

(A.9), (A.10) and (A.11), then the total effective coefficient of convective diffusion is

αc = α∗c+ βū.

The choice αc = ū leads to low diffusion near a stagnation point, and also leads to

a smooth continuation of convective diffusion across the sonic line since α∗ = 0 and

β = 1 when |M | > 1. The scheme must also be formulated so that the cases of u > 0

and u < 0 are treated symmetrically. Using the notation M = u
c
, λ± = u ± c, this
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leads to the diffusion coefficients

α = |M | (A.12)

β =















+ max
(

0, u+λ−

u−λ−

)

if 0 ≤M ≤ 1

−max
(

0, u+λ+

u−λ+ )
)

if − 1 ≤ M ≤ 0

sign(M) if |M | ≥ 1.

(A.13)

Near a stagnation point α may be modified to α = 1
2

(

α0 + |M |2

α0

)

if |M | is smaller

than a threshold α0. The expression for β in subsonic flow can also be expressed as

β =

{

max (0, 2M − 1) if 0 ≤M ≤ 1

min (0, 2M + 1) if − 1 ≤M ≤ 0

Equation (A.13) remains valid when the CUSP scheme is modified as described below

to allow solutions with constant stagnation enthalpy. The coefficients α(M) and β(M)

are displayed in figure A.1 for the case when α0 = 0. The cutoff of β when |M | < 1
2
,

α

1-1

1 1

-1

M M-1 1

(M) (M)β

Figure A.1: Diffusion coefficients.

together with α approaching zero as |M | approaches zero, is also appropriate for the

capture of contact discontinuities.

An important property of this scheme can be illustrated by introducing a Roe



APPENDIX A. DISCRETIZATION OF THE FLOW EQUATIONS 86

linearization and by rewriting the diffusive flux as

dj+ 1
2

=
1

2

(

α∗cI + βAj+ 1
2

)

(wj+1 − wj).

Introducing the characteristic decomposition (A.7), the diffusive flux can now be

represented as

dj+ 1
2

= RMR−1(wj+1 − wj).

The matrix M is diagonal with eigenvalues µ1c, µ2c, µ3c given by

µ1 = α− βM + βM = α = |M |

µ2 =















|M | if |M | < 1
2

α + β if 1
2
≤ M ≤ 1

|M + 1| if |M | ≥ 1

µ3 =















|M | if |M | < 1
2

α− β if 1
2
≤M ≤ 1

|M − 1| if |M | ≥ 1

These values are displayed in figure A.2.

2

µ1

µ3

µ

1 M-1

Figure A.2: Eigenvalues of diffusion matrix
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In the region |M | ≤ 1
2
, µ1 = µ2 = µ3 = |M |, while in the region |M | < 1

µ2 < |M + 1| , µ3 < |M − 1|. Thus the scheme has lower diffusion than the standard

characteristic upwind scheme. Strict positivity is not enforced, but at a shock

∆f = A∆w = S∆w

where S is the shock speed. Thus ∆w must be an eigenvector corresponding to one of

the eigenvalues u± c, and positivity is enforced for the corresponding characteristic

variable.

In steady flow the stagnation enthalpy H is constant, corresponding to the fact

that the energy and mass equations are consistent when the constant factor H is

removed from the energy equation. Discrete and semi-discrete schemes do not neces-

sarily satisfy this property. In the case of a semi-discrete scheme expressed in viscosity

form - equations (A.3) and (A.4) - a solution with constant H is admitted if the vis-

cosity for the energy equation reduces to the viscosity for the continuity equation

with ρ replaced by ρH.

In order to extend the CUSP formulation to allow for isenthalpic solutions, we

introduce the linearization

fR − fL = Ah(whR
− whL

),

where wh is a modified state vector with ρH replacing ρE. The matrix Ah may

be calculated in the same way as the standard Roe linearization. In particular, by

introducing the vector

v =









√
ρ

√
ρu

√
ρH









,

all quantities in both f and wh are products of the form vjvk which have the property

that a finite difference ∆(vjvk) between left and right states can be expressed as

∆(vjvk) = v̄j∆vk + v̄k∆vj
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where v̄j is the arithmetic mean 1
2
(vjR + vjL). Therefore,

∆w = B∆v, ∆f = C∆v = CB−1∆w,

where B and C can be expressed in terms of appropriate mean values of the quantities

vj. Thus, by defining

u =

√
ρRuR +

√
ρLuL√

ρR +
√
ρL

, H =

√
ρRHR +

√
ρLHL√

ρR +
√
ρL

,

and

c =

√

(γ − 1)(H − u2

2
),

it follows that

Ah =









0 1 0

−γ+1
γ

u2

2
γ+1

γ
u γ−1

γ

−uH H u









.

The eigenvalues of Ah are u, λ+ and λ− where

λ± =
γ + 1

2γ
u±

√

(
γ + 1

2γ
u)2 +

c2 − u2

γ
. (A.14)

Note that λ+ and λ− have the same sign as u + c and u − c, and change sign at

the sonic line u = ±c. The corresponding left and right eigenvectors of Ah can be

computed, and are given in [24].

Using the modified linearization the CUSP scheme can be reformulated as follows

to admit isenthalpic steady solutions. The diffusive flux is expressed as

dj+ 1
2

=
1

2
α∗c∆wh +

1

2
β∆f,

where ∆ denotes the difference from j + 1 to j. The split is redefined as

f = uwh + fp,
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where

fp =









0

p

0









and the diffusive flux can be expressed as

dj+ 1
2

=
1

2
αc∆wh +

1

2
βw̄h∆u+

1

2
β∆fp.

As before, α and β are defined by equations (A.12) and (A.13), using the modified

eigenvalues λ± defined in equation (A.14). This splitting corresponds to the Liou-

Steffen splitting [44, 71], denoted as H-CUSP formulation.

A.3 Implementation of limiters

In the case of a scalar conservation law, high resolution schemes which guarantee

the preservation of the positivity or monotonicity of the solution can be constructed

by limiting the action of higher order or anti-diffusive terms, which might otherwise

cause extrema to grow. Typically, these schemes compare the slope of the solution

at nearby mesh intervals. The fluxes appearing in the CUSP scheme have different

slopes approaching from either side of the sonic line, and use of limiters which depends

on comparisons of the slopes of these fluxes can lead to a loss of smoothness in the

solution at the entrance to supersonic zones in the flow. This problem can be avoided

in the implementation of the CUSP schemes by forming the diffusive flux from left

and right states at the cell interface. These are interpolated or extrapolated from

nearby data, subject to limiters to preserve monotonicity. In a similar manner to the

reconstruction of the solution in Van Leer’s MUSCL scheme [40], we use the following

construction.

Define the limiter

R(u, v) = 1 −
∣

∣

∣

∣

u− v

|u| + |v|

∣

∣

∣

∣

q

, (A.15)

where q is a positive power which is set equal to two in the present study. Clearly
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R(u, v) = 0 when u and v have opposite sign. Also define the limited average

L(u, v) =
1

2
R(u, v)(u+ v). (A.16)

Let w(k) denote the kth element of the state vector w. Now define left and right states

for each dependent variable separately as

w
(k)
L = w

(k)
j +

1

2
L(∆w

(k)

j+ 3
2

,∆w
(k)

j− 1
2

)

w
(k)
R = w

(k)
j+1 −

1

2
L(∆w

(k)

j+ 3
2

,∆w
(k)

j− 1
2

),

where

∆wj+ 1
2

= wj+1 − wj.

Then

w
(k)
R − w

(k)
L = ∆w

(k)

j+ 1
2

− L(∆w
(k)

j+ 3
2

,∆w
(k)

j− 1
2

)

which in the case of a scalar equation reduces to the SLIP formulation [23].

For the CUSP schemes the pressures pL and pR for the left and right states are

determined from wL and wR. Then the diffusive flux is calculated by substituting wL

for wj and wR for wj+1 to give

dj+ 1
2

=
1

2
α∗c(wR − wL) +

1

2
β(f(wR) − f(wL)).

The alternative reconstruction:

w
(k)
L = w

(k)
j +R(∆w

(k)

j+ 3
2

,∆w
(k)

j− 1
2

)∆w
(k)

j− 1
2

w
(k)
R = w

(k)
j −R(∆w

(k)

j+ 3
2

,∆w
(k)

j− 1
2

)∆w
(k)

j+ 3
2

has been found to yield essentially identical results for calculations of steady flows.
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A.4 Time stepping scheme

When the space discretization procedure is implemented separately from the dis-

cretization in time, it leads to a set of coupled ordinary differential equations which

can be written in the form
dw

dt
+ R(w) = 0, (A.17)

where w is the vector of the flow variables at the mesh locations, and R(w) is the

vector of the residuals, consisting of the flux balances defined by the spatial discretiza-

tion together with the added dissipative terms. If the objective is simply to reach the

steady state and details of the transient solution are immaterial, the time-stepping

scheme may be designed solely to maximize the rate of convergence.

Throughout this dissertation we use a multistage explicit scheme, belonging to

the general class of Runge-Kutta schemes [7]. Schemes of this type have proved very

effective for a wide variety of problems, and they have the advantage that they can be

applied equally easily on both structured and unstructured meshes [33, 17, 18, 64, 29].

If one reduces the linear scalar model problem corresponding to (A.17) to an

ordinary differential equation by substituting a Fourier mode ŵ = eipxj , the resulting

Fourier symbol has an imaginary part proportional to the wave speed, and a negative

real part proportional to the diffusion. Thus, the time stepping scheme should have a

stability region which contains a substantial interval of the negative real axis, as well

as an interval along the imaginary axis. To achieve this we treat the convective and

dissipative terms in a distinct fashion. Thus, the residual is split as

R(w) = Q(w) +D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the time

level n∆t by a superscript n. Then the multistage time stepping scheme is formulated
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as

w(n+1,0) = wn

. . .

w(n+1,k) = wn − αk∆t
(

Q(k−1) +D(k−1)
)

. . .

wn+1 = w(n+1,m),

where the superscript k denotes the k-th stage, αm = 1, and

Q(0) = Q (wn) , D(0) = D (wn)

. . .

Q(k) = Q
(

w(n+1,k)
)

D(k) = βkD
(

w(n+1,k)
)

+ (1 − βk)D
(k−1).

The coefficients αk are chosen to maximize the stability interval along the imaginary

axis, and the coefficients βk are chosen to increase the stability interval along the

negative real axis.

The coefficients of a five-stage scheme [47] which has been found to be particularly

effective are tabulated below.

α1 = 1
4

β1 = 1

α2 = 1
6

β2 = 0

α3 = 3
8

β3 = 0.56

α4 = 1
2

β4 = 0

α5 = 1 β5 = 0.44

. (A.18)
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A.5 Convergence acceleration

A.5.1 Multigrid method

Radical improvements in the rate of convergence to a steady-state solution can be

realized by the multigrid time-stepping technique. The concept of acceleration by

the introduction of multiple grids was first proposed by Fedorenko [9]. There is

by now a fairly well-developed theory of multigrid methods for elliptic equations

based on treating the updating scheme as a smoothing operator on each grid [5, 12].

This theory, however, does not hold for hyperbolic systems. Nevertheless, it seems

that it ought to be possible to accelerate the evolution of a hyperbolic system to a

steady state by using large time steps on coarse grids so that disturbances can be

more rapidly expelled through the outer boundary. Various multigrid time-stepping

schemes designed to take advantage of this effect have been proposed [54, 16, 13, 19,

6, 2, 14, 32, 39].

The multigrid scheme used in this work has been originally developed by Jame-

son [16] for the Euler equation and then extended to the Navier-Stokes equation by

Martinelli and Jameson [48]. This method uses a sequence of coarser meshes gener-

ated by eliminating alternate points in each coordinate direction. In order to give a

precise description of the multigrid scheme, subscripts may be used to indicate the

grid level. Several transfer operations need to be defined. First the solution vector

on grid k must be initialized as

w
(0)
k = Tk,k−1wk−1,

where wk−1 is the current value on grid k− 1, and Tk,k−1 is a transfer operator. Next

it is necessary to transfer a residual forcing function such that the solution on grid

k is driven by the residuals calculated on grid k − 1. This can be accomplished by

setting

Pk = Qk,k−1Rk−1 (wk−1) −Rk

[

w
(0)
k

]

,

where Qk,k−1 is another transfer operator. Then Rk(wk) is replaced by Rk(wk) + Pk



APPENDIX A. DISCRETIZATION OF THE FLOW EQUATIONS 94

in the time- stepping scheme. Thus, the multistage scheme is reformulated as

w
(1)
k = w

(0)
k − α1∆tk

[

R
(0)
k + Pk

]

· · · · · ·
w

(q+1)
k = w

(0)
k − αq+1∆tk

[

R
(q)
k + Pk

]

.

The resulting w
(m)
k then provides the initial data for grid k+ 1. Finally, the accumu-

lated correction on grid k has to be transferred back to grid k− 1 with the aid of an

interpolation operator Ik−1,k. With properly optimized coefficients, multistage time-

stepping schemes can be very efficient drivers of the multigrid process. A W -cycle

of the type illustrated in figure A.3 proves to be a particularly effective strategy for

E
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E
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4 Level Cycle
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Figure A.3: Multigrid W -cycle for managing the grid calculation. E, evaluate the
change in the flow for one step; C, collect the solution; T , transfer the data without
updating the solution.
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managing the work split between the meshes. In a three-dimensional case the number

of cells is reduced by a factor of eight on each coarser grid. Upon examination of the

figure, it can therefore be seen that the work measured in units corresponding to a

step on the fine grid is on the order of

1 + 2/8 + 4/64 + · · · < 4/3,

and consequently the very large effective time step of the complete cycle costs only

slightly more than a single time step in the fine grid.

A.5.2 Local time stepping

Once the time step limit for the scheme is estimated, the minimum time step can

be used for computations in the flow field. However this choice may not be effective

since typical computational meshes used for aerodynamic problems are stretched away

from solid surfaces. This problem is particularly severe in grids designed to resolve

the viscous phenomena in the boundary layer.

On the other hand, if the final steady state flow field in the limit of large time

is the only desired result, then one can choose to advance every computational cell

at its own stability limit. This choice frequently leads to faster convergence of both

explicit and implicit schemes and has been used for the solution of the steady Euler

and Navier-Stokes equations to accelerate the convergence.

A.5.3 Implicit residual smoothing

The rate of convergence of a multistage scheme can also be enhanced by implicit

residual smoothing. The general idea behind this technique is to increase the time

step limit by replacing the residual at one cell in the flow field by a weighted average

of the residuals at the neighboring cells. The average is calculated implicitly and can

be expressed in the three-dimensional case:

(1 − εiδxx) (1 − εjδyy) (1 − εkδzz) R̄i,j,k = Ri,j,k, (A.19)
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where εi, εj, and εk control the level of smoothing, and R̄i,j,k is the updated value of the

residual that is obtained by solving the equation implicitly in each coordinate direction

using a tridiagonal solver. A complete discussion of the stability character and overall

benefit of this acceleration method is provided by Jameson and Baker [19, 28].



Appendix B

Adjoint equations and

discretization

This appendix describes the formulation of the adjoint equations based on control

theory for aerodynamic shape design in viscous compressible flow modeled by the

Reynolds-Averaged Navier-Stokes(RANS) equations. The extension to aerodynamic

shape design with a simplified structural weight is also presented.

The detailed derivation of the adjoint equations and adjoint boundary conditions

as developed by Jameson, Martinelli, and Pierce [31] is presented, together with the

extension to inclusion analytical structural weight model by Leoviriyakit [41, 42].

B.1 Design using the Navier-Stokes equations

Recall the general formulation for the design using the Euler and Navier-Stokes equa-

tion described in section 2.4. Here we minimize the cost function of a boundary

integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (w, S) dBξ (B.1)

97
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where M(w, S) is an aerodynamic cost function, and N (w, S) is a structure weight.

Also, the flow variables w and geometry S satisfy flow equation

∂

∂ξi
(Fi − Fvi) = 0. (B.2)

which can be regarded as the constraint equation. To eliminate the dependency of flow

variations δw from the sensitivity of the cost function δI, we introduce the Lagrange

multiplier ψ and integrate over the domain

∫

D

ψT ∂

∂ξi
δ (Fi − Fvi) dDξ = 0. (B.3)

Assuming ψ is differentiable, equation (B.3) can be integrated by parts to give

∫

B

niψ
T δ (Fi − Fvi) dBξ −

∫

D

∂ψT

∂ξi
δ (Fi − Fvi) dDξ = 0. (B.4)

Using the property that equation (B.4) is equal to zero, it can be subtracted from the

variation form of the cost function B.1 without altering the value to give

δI =

∫

B

[

δM + δN − niψ
T δ (Fi − Fvi)

]

dBξ

+

∫

D

[

∂ψT

∂ξi
δ (Fi − Fvi)

]

dDξ. (B.5)

Since ψ is an arbitrary differentiable function, it can be chosen in such a way that

δI no longer depends explicitly on the variation of the state vector δw. The co-state

variable ψ then satisfy the adjoint equation

∂ψT

∂ξi
[Fiw − Fviw]I = 0 in D. (B.6)

The co-state variable that has this property must also satisfy the adjoint boundary

condition

niψ
T [Fiw − Fviw]I = [Mw]I + [Nw]I on B.
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The explicit for of the adjoint equation and boundary condition will be shown as

follow.

B.2 Adjoint boundary conditions

Due to the additional level of derivatives in the stress and heat flux terms, it is more

practical to derive the contributions from the inviscid and viscous terms separately,

following the work of Jameson[31].

In order to derive the adjoint equation in detail, equation (B.4) can be expanded

as
∫

B

ψT (δS2jfj + S2jδfj) dBξ

−
∫

D

∂ψT

∂ξi
(δSijfj + Sijδfj) dDξ

−
∫

B

ψT
(

δS2jfvj + S2jδfvj

)

dBξ

+

∫

D

∂ψT

∂ξi

(

δSijfvj + Sijδfvj

)

dDξ = 0 (B.7)

It is convenient to assume that the shape modification is restricted to the coordinate

surface ξ2 = 0 so that n1 = n3 = 0, and n2 = 1. Furthermore, it is assumed that

the boundary contributions at the far field may either be neglected or else eliminated

by a proper choice of boundary conditions as previously shown for the inviscid case

[21, 25].

B.3 Derivation of the Inviscid Adjoint Terms

In equation (B.7) the inviscid flux variation can be expanded by setting

Sijδfj = Sij

∂fj

∂w
δw.

Taking the transpose of equation (B.7), it can be seen that in order to eliminate the

explicit dependence on δw in the absence of viscosity effect, ψ should be chosen to
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satisfy the inviscid adjoint equation

CT
i

∂ψ

∂ξi
= 0 in D, (B.8)

where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij

∂fj

∂w
.

In order to design a shape which will lead to a desired pressure distribution, the

natural choice is to set

I =
1

2

∫

B

(p− pd)
2 dS

where pd is the desired surface pressure, and the integral is evaluated over the actual

surface area. In the computational domain this is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3,

where the quantity

|S2| =
√

S2jS2j

denotes the face area corresponding to a unit element of face area in the computational

domain. Now, to cancel the dependence of the boundary integral on δp, the adjoint

boundary condition reduces to

ψjnj = p− pd (B.9)

where nj are the components of the surface normal, given by:

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition on the co-state variables corre-

sponding to the momentum components. Note that it imposes no restriction on the

tangential component of ψ at the boundary.
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B.4 Derivation of the viscous adjoint equations

The viscous terms are derived below under the assumption that the viscosity and

heat conduction coefficients µ and k are essentially independent of the flow, and that

their variations may be neglected. This simplification has been successfully used for

may aerodynamic problems of interest. However, if the flow variations could result

in significant changes in the turbulent viscosity, it may be necessary to account for

its variation in the calculation.

The derivation of the viscous adjoint terms can be simplified by transforming to

the primitive variables

w̃T = (ρ, u1, u2, u3, p),

because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat

flux can be expressed as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R

= γµ

Pr(γ−1)
. The relationship between the conservative and primitive

variations is defined by the expressions

δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃

and M−1 = ∂w̃
∂w

. These

matrices are provided in transposed form for future convenience

MT =



















1 u1 u2 u3
uiui

2

0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1


















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M−1T
=



















1 −u1

ρ
−u2

ρ
−u3

ρ

(γ−1)uiui

2

0 1
ρ

0 0 −(γ − 1)u1

0 0 1
ρ

0 −(γ − 1)u2

0 0 0 1
ρ

−(γ − 1)u3

0 0 0 0 γ − 1



















.

The conservative and primitive adjoint operators L and L̃ corresponding to the vari-

ations δw and δw̃ are then related by

∫

D

δwTLψ dDξ =

∫

D

δw̃T L̃ψ dDξ,

with

L̃ = MTL,

so that after determining the primitive adjoint operator by direct evaluation of the

viscous portion of equation (B.7), the conservative operator may be obtained by the

transformation L = M−1T
L̃. Since the continuity equation contains no viscous terms,

it makes no contribution to the viscous adjoint system. Therefore, the derivation pro-

ceeds by first examining the adjoint operators arising from the momentum equations

and then the energy equation. The details may be found in [27].

In order to make use of the summation convention, it is convenient to set ψj+1 = φj

for j = 1, 2, 3 and ψ5 = θ. Collecting together the contributions from the momentum

and energy equations, the viscous adjoint operator in primitive variables can be finally

expressed as

(L̃ψ)1 = − p

ρ2
∂

∂ξl

(

Sljκ
∂θ
∂xj

)

(L̃ψ)i+1 = ∂
∂ξl

{

Slj

[

µ
(

∂φi

∂xj
+

∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

+ ∂
∂ξl

{

Slj

[

µ
(

ui
∂θ
∂xj

+ uj
∂θ
∂xi

)

+ λδijuk
∂θ
∂xk

]}

− σijSlj
∂θ
∂ξl

for i = 1, 2, 3

(L̃ψ)5 = 1
ρ

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

.
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The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T
L̃.

Finally, the resulting adjoint equations for the Navier-Stokes equations are as

follows:

CT
i

∂ψ

∂ξi
−M−1T

L̃ψ = 0 in D. (B.10)

The first and the second terms come from the convective and diffusive terms of the

Navier-Stokes equations respectively. The adjoint equation, a linear set of equations,

is solved by marching the co-state variables in time after a time-like derivative has

been added.

B.5 Viscous adjoint boundary conditions

The boundary term that arises from the momentum equations including both the δw

and δS components equation (B.7) takes the form

∫

B

φkδ (S2j (δkjp+ σkj)) dBξ.

Replacing the metric term with the corresponding local face area S2 and unit normal

nj defined by

|S2| =
√

S2jS2j , nj =
S2j

|S2|
then leads to

∫

B

φkδ (|S2|nj (δkjp+ σkj)) dBξ.

Defining the components of the total surface stress as

τk = nj (δkjp+ σkj)



APPENDIX B. ADJOINT EQUATIONS AND DISCRETIZATION 104

and the physical surface element

dS = |S2| dBξ,

the integral may then be split into two components

∫

B

φkτk |δS2| dBξ +

∫

B

φkδτkdS, (B.11)

where only the second term contains variations in the flow variables and must conse-

quently cancel the δw terms arising in the cost function. The first term will appear

in the expression for the gradient.

A general expression for the cost function that allows cancellation with terms

containing δτk has the form

I =

∫

B

I(τ)dS, (B.12)

corresponding to a variation

δI =

∫

B

∂I
∂τk

δτkdS,

for which cancellation is achieved by the adjoint boundary condition

φk =
∂I
∂τk

.

Natural choices for I arise from force optimization and are a measure of the deviation

of the surface stresses from desired target values.

The force in a direction with cosines qi has the form

Cq =

∫

B

qiτidS.

If we take this as the cost function (B.12), this quantity gives

I = qiτi.

Cancellation with the flow variation terms in equation (B.11) therefore mandates the
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adjoint boundary condition

φk = qk.

Note that this choice of boundary condition also eliminates the first term in equation

(B.11) so that it need not be included in the gradient calculation.

In the inverse design case, where the cost function is intended to measure the

deviation of the surface stresses from some desired target values, a suitable definition

is

I(τ) =
1

2
alk (τl − τdl) (τk − τdk) ,

where τd is the desired surface stress, including the contribution of the pressure, and

the coefficients alk define a weighting matrix. For flow variation cancellation of

φkδτk = alk (τl − τdl) δτk

we can choose the boundary condition

φk = alk (τl − τdl) . (B.13)

Assuming arbitrary variations in δτk, this condition is also necessary.

In order to control the surface pressure and normal stress one can measure the

difference

nj {σkj + δkj (p− pd)} ,

where pd is the desired pressure. The normal component is then

τn = nknjσkj + p− pd,

so that the measure becomes

I(τ) =
1

2
τ 2
n

=
1

2
nlnmnknj {σlm + δlm (p− pd)} {σkj + δkj (p− pd)}
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This corresponds to setting

alk = nlnk

in equation (B.13). Defining the viscous normal stress as

τvn = nknjσkj,

the measure can be expanded as

I(τ) =
1

2
nlnmnknjσlmσkj

+
1

2
(nknjσkj + nlnmσlm) (p− pd)

+
1

2
(p− pd)

2

=
1

2
τ 2
vn + τvn (p− pd) +

1

2
(p− pd)

2 .

For flow variation cancellation of the boundary terms,

φk (njδσkj + nkδp) =
{

nlnmσlm + n2
l (p− pd)

}

nk (njδσkj + nkδp)

leads to the boundary condition

φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well approximated by the equations

φk = nk (p− pd) , (B.14)

which should be compared with the single scalar equation derived for the inviscid

boundary condition (B.9). In the case of an inviscid flow, choosing

I(τ) =
1

2
(p− pd)

2
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requires

φknkδp = (p− pd)n
2
kδp = (p− pd) δp

which is satisfied by equation (B.14), but represents an over-specification of the

boundary condition since only the single condition (B.9) needs to be specified to

ensure cancellation.

The form of the boundary terms arising from the energy equation depends on the

choice of temperature boundary condition at the wall. For the adiabatic case, the

boundary contribution is
∫

B

kδT
∂θ

∂n
dBξ,

while for the constant temperature case the boundary term is

∫

B

kθ

{

S2j
2

J

∂

∂ξ2
δT + δ

(

S2j
2

J

)

∂T

∂ξ2

}

dBξ .

One possibility is to introduce a contribution into the cost function which depends

on T or ∂T
∂n

so that appropriate cancellation would occur. Since there is little physical

intuition to guide the choice of such a cost function for aerodynamic design, a more

natural solution is to set

θ = 0

in the constant temperature case or

∂θ

∂n
= 0

in the adiabatic case. Note that in the constant temperature case, this choice of θ on

the boundary would also eliminate the boundary metric variation terms in

∫

B

θδ (S2jQj) dBξ.
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B.6 Adjoint boundary condition for the structural

weight

For simplicity, it is assumed that the portion of the boundary that undergoes shape

modifications is restricted to the coordinate ξ2 = 0. Then equation (B.7) may be

simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1 and dBξ = dξ1dξ3,

so that only the variation δF2 needs to be considered at the wall boundary. Moreover,

the condition that there is no flow through the wall boundary at ξ2 = 0 is equivalent

to

U2 = 0,

and

δU2 = 0

when the boundary shape is modified. Consequently,

δF2 = δp



































0

S21

S22

S23

0



































+ p



































0

δS21

δS22

δS23

0



































. (B.15)

Following the derivation in section 2.3, the simplified weight model can be written as

CW = Kcorr,bCWb
+Kcorr,sCWs

,

where Kcorr,b and Kcorr,s are constants,

CWb
=

−β
cos(Λ)2

∮

B

p(ξ1, ξ3)K(ξ3)S22dξ1dξ3,
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and

CWs
=

1

Sref

∮

B

|S22|dξ1dξ3.

The variation of CW is

δCW = −Kcorr,bβ

∮

B

δp
KS22

cos(Λ)2
+ pδ

(

KS22

cos(Λ)2

)

dξ1dξ3

+
Kcorr,s

Sref

∮

B

δ|S22|dξ1dξ3 (B.16)

Since δF2 and δCW depend only on the pressure, it allows a complete cancellation

of dependency of the boundary integral on δp, and the adjoint boundary condition

reduces to

ψ2S21 + ψ3S22 + ψ4S23 =
−βKcorr,b

cos(Λ)2
KS22 (B.17)

Notice that since CWs
contains no flow variables, no contribution from the area-

dependent weight appears in the adjoint boundary condition.

B.7 Discretization of the adjoint equations

The adjoint differential equations for the Navier-Stokes formulation have been given

by equation (B.10). To find the solution of the adjoint equations, introduce a time-

like derivative term, which will vanish at the steady state solution of equation (B.10).

Thus the adjoint equations (B.10) can be written as

∂ψ

∂t
− CT

i

∂ψ

∂ξi
+M−1T

L̃ψ = 0 in D. (B.18)

The main difference between (B.18) and the corresponding flow equation (2.15) is

that (B.18) is a linear equation which is not in strong conservation form.

Basically, the same discretization methodology discussed in appendix A for the

flow equations is used for the flux balance of the adjoint equation. For the inviscid

terms in Equation (B.18), straightforward central differencing is applied with CT
i

evaluated at the cell centers. This differencing is essentially the same discretization
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described in appendix A for the inviscid flux balance of the flow equations.

To evaluate the viscous adjoint fluxes, the pseudo stress tensor of the co-state

variable ψ can be defined by

σ∗
ij = µ

(

∂φi

∂xj

+
∂φj

∂xi

)

+ λδij
∂φk

∂xk

, (B.19)

θ∗ij = µ

(

ui

∂θ

∂xj

+ uj

∂θ

∂xi

)

+ λδijuk

∂θ

∂xk

, (B.20)

and their derivative terms are obtained in the same manner described in appendix A

using the same auxiliary control volume.

Because central differencing applied to the inviscid adjoint fluxes permits odd-

even decoupling, the adjoint system has been augmented with artificial dissipation

just as was done for the Navier-Stokes equations. The last component of the ψi vector

(i = 4 for two dimensions, for example) is used without modification for the artificial

dissipation in this case. For the flow equations, the dissipation is applied to ρH

instead of ρE.

B.8 Solution Methodology and Convergence Ac-

celeration for the Viscous Adjoint Equation

The multistage Runge-Kutta time-stepping procedure described in section A.4 is

reused here to solve the adjoint equations. Furthermore, the convergence acceler-

ation techniques of section A.5 are also used here.

B.9 Discrete Adjoint Boundary Conditions

In order to make use of the summation convention, it is convenient to set ψj+1 = φj

for j = 1, 2, 3 and ψ5 = θ as before.
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B.10 Discrete Adjoint Wall Boundary Conditions

While the boundary conditions for the flow equations are based on physical phenom-

ena that occurs at the boundaries, the adjoint boundary conditions are based on

mathematics and depend upon the cost function used for design optimization.

For example, the adjoint wall boundary condition (B.9) has been formulated for

the inverse design problem with the cost function

I =
1

2

∫

B

(p− pd)
2 dS,

which is the Euclidean norm of the difference between the current pressure distribution

and a desired target pressure, pd.

This boundary condition is restated here as

φjnj = p− pd, j = 1, 2, 3 (B.21)

which means that the normal component of φ is equal to the difference between

the current pressure and target pressure at a solid wall. the mathematics of this

derivation imposes no restrictions on the tangential component of the φ vector. A

variety of different treatments for this tangential component could be devised. A

gradient accuracy study such as the one conducted in chapter 2 could be carried

out for each alternative treatment and the one producing highest accuracy gradients

can be selected as the preferred option. Three different types of boundary condition

treatments were tried for inverse problems and the gradient accuracy studies were

performed by Reuther [63]. The type described here is preferred due to its simplicity

and gradient accuracy and was selected for use in this research.

First, equation (B.21) is applied to the boundary cells shown in figure B.1 for the

cell centered finite-volume scheme as

(

φ+
j + φ−

j+1

2

)

nj = p− pd j = 1, 2, 3, (B.22)

where superscript + indicates the values in the cells right above the boundary and −
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O

O
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Solid wall

Figure B.1: Solid Boundary for the Finite-Volume Scheme

indicates the values in the halo cells right below the boundary. Additional conditions

are imposed on the tangential component of φ

φ+
j −

(

φ+
i ni

)

nj = φ−
j −

(

φ−
i ni

)

nj (B.23)

which represents that the tangential components of φ above and below the wall are

the same. The following expression is obtained for φ from the above relations

φ−
j = φ+

j + 2
[

(p− pd) − φ+
i ni

]

nj. (B.24)

For the first costate variable ψ1, the discrete boundary condition is given by

ψ−
1 = ψ+

1

as was given for ρ of the flow equations.

For the last costate variable θ, the same relation is found as

θ−1 = θ+
1

based on the adiabatic wall boundary condition described in section B.5.

Thus, for an inverse problem, a set of discrete boundary conditions at the wall
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may be summarized as

ψ−
1 = ψ+

1 ,

φ−
j = φ+

j + 2
[

(p− pd) − φ+
i ni

]

nj, j = 1, 2, 3 (B.25)

θ− = θ+.

For the force optimization cases such as the drag minimization and lift maximiza-

tion, the adjoint wall boundary condition has been derived in section B.5. It is simply

restated here as

φk = ck. (B.26)

Unlike the boundary condition for the inverse problem, no additional constraints are

necessary since we have the same number of equations as costate variables, φ.

Equation (B.26) can be written for the computational cells as

(

φ+
k + φ−

k

2

)

= ck (B.27)

and now the discrete wall adjoint boundary conditions are given by

φ−
k = 2ck − φ+

k . (B.28)

For force optimization problems, ψ1 and θ are obtained in the same way as was

described for the inverse problem.

B.11 Discrete Adjoint Far Field Boundary Condi-

tions

While various choices for the discretization of the far field boundary conditions for

the viscous adjoint equations are possible, in this work ψ1−5 were simply specified as

the initial value, which is typically zero, which is equivalent to assuming that the far

field boundary is very far from the geometry of interest.
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