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Abstract

This paper compares the continuous and discrete
viscous adjoint-based automatic aerodynamic opti-
mization. The objective is to study the complex-
ity of the discretization of the adjoint equation for
both the continuous and discrete approach, the ac-
curacy of the resulting estimate of the gradient, and
its impact on the computational cost to approach an
optimum solution. First, this paper presents com-
plete formulations and discretizations of the Navier-
Stokes equations, the continuous viscous adjoint
equation and its counterpart the discrete viscous
adjoint equation. The differences between the con-
tinuous and discrete boundary conditions are also
explored. Second, the accuracy of the sensitivity
derivatives obtained from continuous and discrete
adjoint-based equations are compared to complex-
step gradients. Third, the adjoint equations and
its corresponding boundary conditions are formu-
lated to quantify the influence of geometry modi-
fications on the pressure distribution at an arbitrary
remote location within the domain of interest. Fi-
nally, applications are presented for inverse, pressure
and skin friction drag minimization, and sonic boom
minimization problems.

Introduction

Computational methods have dramatically altered
the design of aerospace vehicles in the last sixty
years. In 1945 Lighthill1 first proposed employing
the method of conformal mapping to design two di-
mensional airfoils to achieve a desired target pres-
sure distribution. These methods were restricted to
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incompressible flow, but later McFadden2 extended
the method to compressible flow.
Bauer et al.3 and Garabedian et al.4 established

an alternate method by way of complex characteris-
tics to solve the potential equations in the hodograph
plane. This method successfully produced shock-
free transonic flows. Constrained optimization was
first attempted by Hicks et al.,5 where they intro-
duced the finite-difference method to evaluate the
sensitivity derivatives. Since then optimization tech-
niques for the design of aerospace vehicles have gen-
erally used gradient-based methods. Through the
mathematical theory for control systems governed
by partial differential equations established by Li-
ons et al.,6 Pironneau et al.7 created a framework
for the formulation of elliptic design problems. In
the last decade, Jameson et al.8–12 pioneered the
shape optimization method for Euler and Navier-
Stokes problems.
The mathematical theory for the control of sys-

tems governed by partial differential equations, as
developed by Lions et al.,6 significantly lowers the
computational cost and is clearly an improvement
over classical finite-difference methods. Using con-
trol theory the gradient is calculated indirectly by
solving an adjoint equation. Although there is the
additional overhead of solving the adjoint equation,
once it has been solved the cost of obtaining the
sensitivity derivatives of the cost function with re-
spect to each design variable is negligible. Conse-
quently, the total cost to obtain these gradients is
independent of the number of design variables and
amounts to the cost of one flow solution and one ad-
joint solution. The adjoint problem is a linear PDE
of lower complexity than the flow solver. Jameson
et al.8 first applied this method to transonic flow.
In the last seven years, automatic aerodynamic de-
sign of complete aircraft configurations has yielded
optimized solutions of wing and wing-body configu-
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rations by Reuther et al.13, 14 and Burgreen et al.15

The continuous adjoint approach theory was de-
veloped by combining the variation of the cost func-
tion and field equations with respect to the flow-
field variables and design variables through the use
of Lagrange multipliers, also called costate or ad-
joint variables. Collecting the terms associated with
the variation of the flow-field variables produces the
adjoint equation and its boundary condition. The
terms associated with the variation of the design
variable produce the gradient. The field equations
and the adjoint equation with its boundary condi-
tion must be discretized to obtain numerical solu-
tions. As the mesh is refined, the continuous adjoint
yields the exact gradient.
In the discrete adjoint approach, the control the-

ory is applied directly to the set of discrete field
equations. The discrete adjoint equation is derived
by collecting together all the terms multiplied by the
variation δwi,j of the discrete flow variable. If the
discrete adjoint equation is solved exactly, then the
resulting solution for the Lagrange multiplier pro-
duces an exact gradient of the inexact cost function
and the derivatives are consistent with complex-step
gradients independent of the mesh size.
A subject of on-going research is the trade-off be-

tween the complexity of the adjoint discretization,
the accuracy of the resulting estimate of the gra-
dient, and its impact on the computational cost to
approach an optimum solution. Shubin and Frank16

presented a comparison between the continuous and
discrete adjoint for quasi-one-dimensional flow. A
variation of the discrete field equations proved to be
complex for higher order schemes. Due to this limi-
tation of the discrete adjoint approach, early imple-
mentation of the discretization of the adjoint equa-
tion was only consistent with a first order accurate
flow equation.
Burgreen et al.15 carried a second order im-

plementation of the discrete adjoint on three-
dimensional shape optimization of wings for struc-
tured grids. For second order accuracy on unstruc-
tured grids, Elliot and Peraire17 performed opti-
mization on inverse pressure designs of multiele-
ment airfoils and wing-body configurations in tran-
sonic flow using a multistage Runge-Kutta scheme
with Roe decomposition for the dissipative fluxes
on two and three-dimensional problems. Anderson
and Venkatakrishnan18 computed inviscid and vis-
cous optimization on unstructured grids using both
the continuous and discrete adjoint. Iollo et al.19

used the continuous adjoint approach to investi-
gate shape optimization on one and two-dimensional

flows. Ta’saan et al.20 used a one-shot approach
with the continuous adjoint formulations. Kim,
Alonso, and Jameson21 conducted an extensive gra-
dient accuracy study of the Euler and Navier-Stokes
equations which concluded that gradients from the
continuous adjoint method were in close agreement
with those computed by finite difference methods.
A detailed comparison of the inviscid continuous
and discrete adjoint approaches was conducted by
Nadarajah et al.22

Another objective of this work is to develop the
necessary methods and tools to facilitate the de-
sign of low sonic boom aircraft that can fly su-
personically over land with negligible environmen-
tal impact. Traditional methods to reduce the sonic
boom signature were targeted towards reducing air-
craft weight, increasing lift-to-drag ratio, improving
the specific fuel consumption, etc. Seebass and Ar-
grow23 revisited sonic boom minimization and pro-
vided a detailed study of sonic boom theory and fig-
ure of merits for the level of sonic booms. In this
paper, a proof of concept of a new adjoint approach
of the above problem will be demonstrated in two
dimensional flow.

Objectives

1. Review the formulation and development of the
viscous adjoint equations for both the continu-
ous and discrete approach.

2. Investigate the differences in the implementa-
tion of boundary conditions for each method for
various cost functions.

3. Compare the gradients of the two methods to
complex step gradients for inverse pressure de-
sign and drag minimization.

4. Study the differences in calculating the exact
gradient of the inexact cost function (discrete
adjoint) or the inexact gradient of the exact cost
function (continuous).

The Navier-Stokes Equations

In order to allow for geometric shape changes it
is convenient to use a body fitted coordinate sys-
tem, so that the computational domain is fixed.
This requires the formulation of the Navier-Stokes
equations in a transformed coordinate system. The
Cartesian coordinates and velocity components are
denoted by x1, x2, and u1, u2. Einstein notation
simplifies the presentation of the equations, where
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summation over k = 1 to 2 is implied by a repeated
index k. The two-dimensional Navier-Stokes equa-
tions then take the form,

∂w

∂t
+

∂fi
∂xi

=
∂fvi
∂xi

in D, (1)

where the state vector w, inviscid flux vector f and
viscous flux vector fv are described respectively by

w =




ρ
ρu1

ρu2

ρE


 , fi =




ρui
ρuiu1 + pδi1
ρuiu2 + pδi2

ρuiH


 , (2)

fvi =




0
σijδj1
σijδj2

ujσij + k ∂T∂xi


 . (3)

In these definitions, ρ is the density, u1, u2 are the
Cartesian velocity components, E is the total energy
and δij is the Kronecker delta function. The pressure
is determined by the equation of state

p = (γ − 1)ρ
{
E − 1

2
(uiui)

}
,

and the stagnation enthalpy is given by

H = E +
p

ρ
,

where γ is the ratio of the specific heats. The viscous
stresses may be written as

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λδij

∂uk
∂xk

, (4)

where µ and λ are the first and second coefficients
of viscosity. The coefficient of thermal conductivity
and the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (5)

where Pr is the Prandtl number, cp is the specific
heat at constant pressure, and R is the gas constant.
For discussion of real applications using a dis-

cretization on a body conforming structured mesh,
it is also useful to consider a transformation to the
computational coordinates (ξ1,ξ2) defined by the
metrics

Kij =
[
∂xi
∂ξj

]
, J = det (K) , K−1

ij =
[
∂ξi
∂xj

]
.

The Navier-Stokes equations can then be written in
computational space as

∂ (Jw)
∂t

+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (6)

where the inviscid and viscous flux contributions are
now defined with respect to the computational cell
faces by Fi = Sijfj and Fvi = Sijfvj , and the quan-
tity Sij = JK−1

ij represents the projection of the ξi
cell face along the xj axis. In obtaining equation (6)
we have made use of the property that

∂Sij
∂ξi

= 0 (7)

which represents the fact that the sum of the face
areas over a closed volume is zero, as can be readily
verified by a direct examination of the metric terms.
When equation (6) is formulated for each com-

putational cell, a system of first-order ordinary dif-
ferential equations is obtained. To eliminate odd-
even decoupling of the solution and overshoots be-
fore and after shock waves, the conservative and vis-
cous fluxes are added to a diffusion flux. The ar-
tificial dissipation scheme used in this research is a
blended first and third order flux, first introduced
by Jameson, Schmidt, and Turkel.24 The artificial
dissipation scheme is defined as,

Di+ 1
2 ,j

= ε2i+ 1
2 ,j

(wi+1,j − wi,j)

− ε4i+ 1
2 ,j

(wi+2,j − 3wi+1,j + 3wi,j − wi−1,j). (8)

The first term in equation (8) is a first order scalar
diffusion term, where ε2

i+ 1
2 ,j

is scaled by the nor-
malized second difference of the pressure and serves
to damp oscillations around shock waves. ε4

i+ 1
2 ,j

is
the coefficient for the third derivative of the arti-
ficial dissipation flux. The coefficient is scaled so
that it is zero at regions of large gradients, such
as shock waves and eliminates odd-even decoupling
elsewhere.

Formulation of the Optimal Design
Problem for the Navier-Stokes

Equations

It is the intent of this paper to fully investigate the
derivation of both the continuous and discrete vis-
cous adjoint method. The following information is
drawn from a paper presented at the 29th AIAA
Fluid Dynamics Conference, Albuquerque,25 and re-
peated here to offer a comprehensive paper.
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Aerodynamic optimization is based on the de-
termination of the effect of shape modifications on
some performance measure which depends on the
flow. For convenience, the coordinates ξi describing
the fixed computational domain are chosen so that
each boundary conforms to a constant value of one
of these coordinates. Variations in the shape then
result in corresponding variations in the mapping
derivatives defined by Kij .
Suppose that the performance is measured by a

cost function

I =
∫
B
M (w, S) dBξ +

∫
D
P (w, S) dDξ,

containing both boundary and field contributions
where dBξ and dDξ are the surface and volume el-
ements in the computational domain. In general,
M and P will depend on both the flow variables w
and the metrics S defining the computational space.
In the case of a multi-point design the flow vari-
ables may be separately calculated for several differ-
ent conditions of interest.
The design problem is now treated as a control

problem where the boundary shape represents the
control function, which is chosen to minimize I sub-
ject to the constraints defined by the flow equations
(6). A shape change produces a variation in the flow
solution δw and the metrics δS which in turn pro-
duce a variation in the cost function

δI =
∫
B
δM(w, S) dBξ +

∫
D
δP(w, S) dDξ, (9)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII , (10)

where we continue to use the subscripts I and II
to distinguish between the contributions associated
with the variation of the flow solution δw and those
associated with the metric variations δS. Thus
[Mw]I and [Pw]I represent ∂M

∂w and ∂P
∂w with the

metrics fixed, while δMII and δPII represent the
contribution of the metric variations δS to δM and
δP .
In the steady state, the constraint equation (6)

specifies the variation of the state vector δw by

∂

∂ξi
δ (Fi − Fvi) = 0. (11)

Here δFi and δFvi can also be split into contributions
associated with δw and δS using the notation

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII . (12)

The inviscid contributions are easily evaluated as

[Fiw]I = Sij
∂fj
∂w

, δFiII = δSijfj .

The details of the viscous contributions are compli-
cated by the additional level of derivatives in the
stress and heat flux terms and will be derived in the
following section. Multiplying by a co-state vector
ψ, also known as Lagrange Multiplier, and integrat-
ing over the domain produces∫

D
ψT

∂

∂ξi
δ (Fi − Fvi) = 0. (13)

If ψ is differentiable this may be integrated by parts
to give ∫

B
niψ

T δ (Fi − Fvi) dBξ

−
∫
D

∂ψT

∂ξi
δ (Fi − Fvi) dDξ = 0. (14)

Since the left hand expression equals zero, it may be
subtracted from the variation in the cost function
(9) to give

δI =
∫
B

[
δM− niψ

T δ (Fi − Fvi)
]
dBξ

+
∫
D

[
δP +

∂ψT

∂ξi
δ (Fi − Fvi)

]
dDξ. (15)

Now, since ψ is an arbitrary differentiable function,
it may be chosen in such a way that δI no longer de-
pends explicitly on the variation of the state vector
δw. The gradient of the cost function can then be
evaluated directly from the metric variations with-
out having to re-compute the variation δw resulting
from the perturbation of each design variable.
Comparing equations (10) and (12), the variation

δw may be eliminated from (15) by equating all field
terms with subscript “I” to produce a differential
adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I + Pw = 0 in D. (16)

The corresponding adjoint boundary condition is
produced by equating the subscript “I” boundary
terms in equation (15) to produce

niψ
T [Fiw − Fviw]I = Mw on B. (17)

The remaining terms from equation (15) then yield
a simplified expression for the variation of the cost
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function which defines the gradient

δI =
∫
B

{
δMII − niψ

T [δFi − δFvi] II
}
dBξ

+
∫
D

{
δPII + ∂ψT

∂ξi
[δFi − δFvi] II

}
dDξ. (18)

The details of the formula for the gradient depend
on the way in which the boundary shape is parame-
terized as a function of the design variables, and the
way in which the mesh is deformed as the bound-
ary is modified. Using the relationship between the
mesh deformation and the surface modification, the
field integral is reduced to a surface integral by in-
tegrating along the coordinate lines emanating from
the surface. Thus the expression for δI is finally
reduced to

δI =
∫
B
GδF dBξ,

where F represents the design variables and G is
the gradient, which is a function defined over the
boundary surface.
The boundary conditions satisfied by the flow

equations restrict the form of the left hand side of
the adjoint boundary condition (17). Consequently,
the boundary contribution to the cost function M
cannot be specified arbitrarily. Instead, it must be
chosen from the class of functions which allow can-
cellation of all terms containing δw in the bound-
ary integral of equation (15). On the other hand,
there is no such restriction on the specification of
the field contribution to the cost function P , since
these terms may always be absorbed into the adjoint
field equation (16) as source terms.
For simplicity, it will be assumed that the portion

of the boundary that undergoes shape modifications
is restricted to the coordinate surface ξ2 = 0. Then
equations (15) and (17) may be simplified by incor-
porating the conditions

n1 = 0, n2 = 1, dBξ = dξ1,

so that only the variations δF2 and δFv2 need to be
considered at the wall boundary.

Derivation of the Viscous
Continuous Adjoint Terms

This section illustrates application of control theory
to aerodynamic design problems for the case of two-
dimensional airfoil design using the Navier-Stokes
equations as the mathematical model.

In computational coordinates, the viscous terms
in the Navier–Stokes equations have the form

∂Fvi
∂ξi

=
∂

∂ξi

(
Sijfvj

)
.

Computing the variation δw resulting from a shape
modification of the boundary, introducing a La-
grange vector ψ and integrating by parts following
the steps outlined by equations (11) to (14) produces∫

B
ψT

(
δS2jfvj + S2jδfvj

)
dBξ

−
∫
D

∂ψT

∂ξi

(
δSijfvj + Sijδfvj

)
dDξ,

where the shape modification is restricted to the co-
ordinate surface ξ2 = 0 so that n1 = 0, and n2 = 1.
Furthermore, it is assumed that the boundary con-
tributions at the far field may either be neglected or
else eliminated by a proper choice of boundary con-
ditions as previously shown for the inviscid case.9

The viscous terms will be derived under the as-
sumption that the viscosity and heat conduction co-
efficients µ and k are essentially independent of the
flow, and that their variations may be neglected.
This simplification has been successfully used for
many aerodynamic problems of interest. In the case
of some turbulent flows, the possibility exists that
the flow variations could result in significant changes
in the turbulent viscosity, and it may then be neces-
sary to account for its variation in the calculation.

Transformation to Primitive Variables

The derivation of the viscous adjoint terms is sim-
plified by transforming to the primitive variables

w̃T = (ρ, u1, u2, p)T ,

because the viscous stresses depend on the velocity
derivatives ∂ui

∂xj
, while the heat flux can be expressed

as

κ
∂

∂xi

(
p

ρ

)

where κ = k
R = γµ

Pr(γ−1) . The relationship between
the conservative and primitive variations is defined
by the expressions

δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices
M = ∂w

∂w̃ and M−1 = ∂w̃
∂w . These matrices are pro-
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vided in transposed form for future convenience

MT =




1 u1 u2
uiui

2
0 ρ 0 ρu1

0 0 ρ ρu2

0 0 0 1
γ−1




M−1T =




1 −u1
ρ −u2

ρ
(γ−1)uiui

2

0 1
ρ 0 −(γ − 1)u1

0 0 1
ρ −(γ − 1)u2

0 0 0 γ − 1


 .

The conservative and primitive adjoint operators L
and L̃ corresponding to the variations δw and δw̃
are then related by∫

D
δwTLψ dDξ =

∫
D
δw̃T L̃ψ dDξ,

with
L̃ = MTL,

so that after determining the primitive adjoint op-
erator by direct evaluation of the viscous portion of
(16), the conservative operator may be obtained by
the transformation L = M−1T L̃. Since the continu-
ity equation contains no viscous terms, it makes no
contribution to the viscous adjoint system. There-
fore, the derivation proceeds by first examining the
adjoint operators arising from the momentum equa-
tions.

Contributions from the Momentum Equa-
tions

In order to make use of the summation convention,
it is convenient to set ψj+1 = φj for j = 1, 2. Then
the contribution from the momentum equations is∫

B
φk (δS2jσkj + S2jδσkj) dBξ

−
∫
D

∂φk
∂ξi

(δSijσkj + Sijδσkj) dDξ. (19)

The velocity derivatives in the viscous stresses can
be expressed as

∂ui
∂xj

=
∂ui
∂ξl

∂ξl
∂xj

=
Slj
J

∂ui
∂ξl

with corresponding variations

δ
∂ui
∂xj

=
[
Slj
J

]
I

∂

∂ξl
δui +

[
∂ui
∂ξl

]
II

δ

(
Slj
J

)
.

The variations in the stresses are then

δσkj =
{
µ
[
Slj

J
∂
∂ξl

δuk + Slk

J
∂
∂ξl

δuj

]
+ λ

[
δjk

Slm

J
∂
∂ξl

δum

]}
I

+
{
µ
[
δ
(
Slj

J

)
∂uk

∂ξl
+ δ

(
Slk

J

) ∂uj

∂ξl

]
+ λ

[
δjkδ

(
Slm

J

)
∂um

∂ξl

]}
II
.

As before, only those terms with subscript I, which
contain variations of the flow variables, need be con-
sidered further in deriving the adjoint operator. The
field contributions that contain δui in equation (19)
appear as

−
∫
D

∂φk
∂ξi

Sij

{
µ

(
Slj
J

∂

∂ξl
δuk +

Slk
J

∂

∂ξl
δuj

)

+λδjk
Slm
J

∂

∂ξl
δum

}
dDξ.

This may be integrated by parts to yield∫
D
δuk

∂

∂ξl

(
SljSij

µ

J

∂φk
∂ξi

)
dDξ

+
∫
D
δuj

∂

∂ξl

(
SlkSij

µ

J

∂φk
∂ξi

)
dDξ

+
∫
D
δum

∂

∂ξl

(
SlmSij

λδjk
J

∂φk
∂ξi

)
dDξ,

where the boundary integral has been eliminated by
noting that δui = 0 on the solid boundary. By
exchanging indices, the field integrals may be com-
bined to produce∫

D
δuk

∂

∂ξl
Slj

{
µ

(
Sij
J

∂φk
∂ξi

+
Sik
J

∂φj
∂ξi

)

+ λδjk
Sim
J

∂φm
∂ξi

}
dDξ,

which is further simplified by transforming the inner
derivatives back to Cartesian coordinates∫

D
δuk

∂

∂ξl
Slj

{
µ

(
∂φk
∂xj

+
∂φj
∂xk

)
+ λδjk

∂φm
∂xm

}
dDξ.
(20)

The boundary contributions that contain δui in
equation (19) may be simplified using the fact that

∂

∂ξl
δui = 0 if l = 1

on the boundary B so that they become∫
B
φkS2j

{
µ

(
S2j

J

∂

∂ξ2
δuk +

S2k

J

∂

∂ξ2
δuj

)

+ λδjk
S2m

J

∂

∂ξ2
δum

}
dBξ. (21)
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Together (20) and (21) comprise the field and bound-
ary contributions of the momentum equations to the
viscous adjoint operator in primitive variables.

Contributions from the Energy Equation

In order to derive the contribution of the energy
equation to the viscous adjoint terms it is convenient
to set

ψ4 = θ, Qj = uiσij + κ
∂

∂xj

(
p

ρ

)
,

where the temperature has been written in terms
of pressure and density using (5). The contribution
from the energy equation can then be written as∫

B
θ (δS2jQj + S2jδQj) dBξ

−
∫
D

∂θ

∂ξi
(δSijQj + SijδQj) dDξ. (22)

The field contributions that contain δui,δp, and
δρ in equation (22) appear as

−
∫
D

∂θ

∂ξi
SijδQjdDξ =

−
∫
D

∂θ

∂ξi
Sij

{
δukσkj + ukδσkj

+κ
Slj
J

∂

∂ξl

(
δp

ρ
− p

ρ

δρ

ρ

)}
dDξ. (23)

The term involving δσkj may be integrated by parts
to produce∫

D
δuk

∂

∂ξl
Slj

{
µ

(
uk

∂θ

∂xj
+ uj

∂θ

∂xk

)

+λδjkum
∂θ

∂xm

}
dDξ, (24)

where the conditions ui = δui = 0 are used to elim-
inate the boundary integral on B. Notice that the
other term in (23) that involves δuk need not be
integrated by parts and is merely carried on as

−
∫
D
δukσkjSij

∂θ

∂ξi
dDξ. (25)

The terms in expression (23) that involve δp and
δρ may also be integrated by parts to produce both
a field and a boundary integral. The field integral
becomes∫

D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
SljSij

κ

J

∂θ

∂ξi

)
dDξ

which may be simplified by transforming the inner
derivative to Cartesian coordinates∫

D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
Sljκ

∂θ

∂xj

)
dDξ. (26)

The boundary integral becomes∫
B
κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2jSij

J

∂θ

∂ξi
dBξ. (27)

This can be simplified by transforming the inner
derivative to Cartesian coordinates∫

B
κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2j

J

∂θ

∂xj
dBξ, (28)

and identifying the normal derivative at the wall

∂

∂n
= S2j

∂

∂xj
, (29)

and the variation in temperature

δT =
1
R

(
δp

ρ
− p

ρ

δρ

ρ

)
,

to produce the boundary contribution∫
B
kδT

∂θ

∂n
dBξ. (30)

This term vanishes if T is constant on the wall but
persists if the wall is adiabatic.
There is also a boundary contribution left over

from the first integration by parts (22) which has
the form ∫

B
θδ (S2jQj) dBξ, (31)

where
Qj = k

∂T

∂xj
,

since ui = 0. Notice that for future convenience in
discussing the adjoint boundary conditions resulting
from the energy equation, both the δw and δS terms
corresponding to subscript classes I and II are con-
sidered simultaneously. If the wall is adiabatic

∂T

∂n
= 0,

so that using (29),

δ (S2jQj) = 0,

and both the δw and δS boundary contributions van-
ish.
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On the other hand, if T is constant ∂T∂ξl = 0 for l =
1, so that

Qj = k
∂T

∂xj
= k

(
Slj

J

∂T

∂ξl

)
= k

(
S2j

J

∂T

∂ξ2

)
.

Thus, the boundary integral (31) becomes
∫
B
kθ

{
S2j

2

J

∂

∂ξ2
δT + δ

(
S2j

2

J

)
∂T

∂ξ2

}
dBξ . (32)

Therefore, for constant T , the first term correspond-
ing to variations in the flow field contributes to the
adjoint boundary operator and the second set of
terms corresponding to metric variations contribute
to the cost function gradient.
All together, the contributions from the energy

equation to the viscous adjoint operator are the
three field terms (24), (25) and (26), and either of
two boundary contributions ( 30) or ( 32), depend-
ing on whether the wall is adiabatic or has constant
temperature.

The Viscous Adjoint Field Operator

Collecting together the contributions from the mo-
mentum and energy equations, the viscous adjoint
operator in primitive variables can be expressed as

(L̃ψ)1 = − p

ρ2

∂

∂ξl

(
Sljκ

∂θ

∂xj

)

(L̃ψ)i+1 =
∂

∂ξl

{
Slj

[
µ

(
∂φi
∂xj

+
∂φj
∂xi

)
+ λδij

∂φk
∂xk

]}

+
∂

∂ξl

{
Slj

[
µ

(
ui

∂θ

∂xj
+ uj

∂θ

∂xi

)
+ λδijuk

∂θ

∂xk

]}

− σijSlj
∂θ

∂ξl
for i = 1, 2

(L̃ψ)4 =
1
ρ

∂

∂ξl

(
Sljκ

∂θ

∂xj

)
.

The conservative viscous adjoint operator may now
be obtained by the transformation

L = M−1T L̃.

Derivation of the Viscous
Discrete Adjoint Terms

The discrete adjoint equation is obtained by apply-
ing control theory directly to the set of discrete field
equations. The resulting equation depends on the
type of scheme used to solve the flow equations. This
paper uses a cell-centered multigrid scheme with

upwind-biased blended first and third order fluxes
as the artificial dissipation scheme. A full discretiza-
tion of the equation would involve discretizing every
term that is a function of the state vector.

δI = δIc +
nx∑
i=2

ny∑
j=2

ψTi,jδ [R (w) +D (w) + V (w)]i,j

(33)
where δIc is the discrete cost function, R(w) is

the field equation, D(w) is the artificial dissipation
term, and V(w) are the viscous terms.
The discrete viscous adjoint equation can be cast

as such,

V
∂ψi,j
∂t

= R (ψ) +D (ψ) + V (ψ) . (34)

Terms multiplied by the variation δwi,j of the dis-
crete flow variables are collected and the following is
the resulting convective flux of the discrete adjoint
equation,

R (ψ) =(
∆yη

i+ 1
2 ,j

[
∂f

∂w

]T
i,j

−∆xη
i+ 1

2 ,j

[
∂g

∂w

]T
i,j

)
ψi+1,j

2

−
(
∆yη

i− 1
2 ,j

[
∂f

∂w

]T
i,j

−∆xη
i− 1

2 ,j

[
∂g

∂w

]T
i,j

)
ψi−1,j

2

+

(
∆xξ

i,j+ 1
2

[
∂g

∂w

]T
i,j

−∆yξ
i,j+ 1

2

[
∂f

∂w

]T
i,j

)
ψi,j+1

2

−
(
∆xξ

i,j− 1
2

[
∂g

∂w

]T
i,j

−∆yξ
i,j− 1

2

[
∂f

∂w

]T
i,j

)
ψi,j−1

2

−
(
∆yη

i+ 1
2 ,j

[
∂f

∂w

]T
i,j

−∆xη
i+ 1

2 ,j

[
∂g

∂w

]T
i,j

)
ψi,j
2

+

(
∆yη

i− 1
2 ,j

[
∂f

∂w

]T
i,j

−∆xη
i− 1

2 ,j

[
∂g

∂w

]T
i,j

)
ψi,j
2

−
(
∆xξ

i,j+ 1
2

[
∂g

∂w

]T
i,j

−∆yξ
i,j+ 1

2

[
∂f

∂w

]T
i,j

)
ψi,j
2

+

(
∆xξ

i,j− 1
2

[
∂g

∂w

]T
i,j

−∆yξ
i,j− 1

2

[
∂f

∂w

]T
i,j

)
ψi,j
2

(35)

and

D (ψ) = δdi+ 1
2 ,j

− δdi− 1
2 ,j

+ δdi,j+ 1
2
− δdi,j− 1

2
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where,

δdi+ 1
2 ,j

= ε2i+ 1
2 ,j

(ψi+1,j − ψi,j)− ε4i+ 3
2 ,j

ψi+2,j

+3ε4i+ 1
2 ,j

(ψi+1,j − ψi,j) + ε4i− 3
2 ,j

ψi−1,j

(37)

is the discrete adjoint artificial dissipation term and
V is the cell area. The dissipation coefficients ε2 and
ε4 are functions of the flow variables, but to reduce
complexity they are treated as constants.
If a first order artificial dissipation equation is

used, then equation (37) would reduce to the term
associated with ε2. In such a case, the discrete ad-
joint equations are completely independent of the
costate variables in the cells below the wall. How-
ever, if we use the blended first and third order equa-
tion, then these values are required. As shown later,
a simple zeroth order extrapolation across the wall
produces good results.
Similar to the adjoint convective and dissipative

fluxes, the discrete viscous adjoint flux can be ob-
tained by collecting all terms multiplied by the prim-
itive variables. After some lengthy algebraic ma-
nipulations, the conservative discrete viscous adjoint
operator is obtained by multiplying it with the trans-
formation matrix described in the section on Deriva-
tion of the Viscous Continuous Adjoint Terms. In
these calculations, the eddy viscosity was calculated
using the very simple Baldwin-Lomax turbulence
model. The eddy viscosity coefficient is treated as a
constant.

Viscous Adjoint Boundary Conditions
for Inverse Design

Continuous Adjoint

In the continuous adjoint case, the boundary term
that arises from the momentum equations including
both the δw and δS components (19) takes the form∫

B
φkδ (S2jσkj) dBξ.

Replacing the metric term with the corresponding
local face area S2 and unit normal nj defined by

|S2| =
√
S2jS2j , nj =

S2j

|S2|
then leads to ∫

B
φkδ (|S2|njσkj) dBξ.

Defining the components of the surface stress as

τk = njσkj

and the physical surface element

dS = |S2| dBξ,
the integral may then be split into two components∫

B
φkτk |δS2| dBξ +

∫
B
φkδτkdS, (38)

where only the second term contains variations in
the flow variables and must consequently cancel the
δw terms arising in the cost function. The first term
will appear in the expression for the gradient.
A general expression for the cost function that al-

lows cancellation with terms containing δτk has the
form

I =
∫
B
N (τ)dS, (39)

corresponding to a variation

δI =
∫
B

∂N
∂τk

δτkdS,

for which cancellation is achieved by the adjoint
boundary condition

φk =
∂N
∂τk

.

Natural choices for N arise from force optimiza-
tion and as measures of the deviation of the surface
stresses from desired target values.
In the inverse design case, in order to control the

surface pressure and normal stress one can measure
the difference

nj {σkj + δkj (p− pd)} ,
where pd is the desired pressure. The normal com-
ponent is then

τn = nknjσkj + p− pd,

so that the measure becomes

N (τ) =
1
2
τ2
n

=
1
2
nlnmnknj {σlm + δlm (p− pd)}

· {σkj + δkj (p− pd)} .
Defining the viscous normal stress as

τvn = nknjσkj ,
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the measure can be expanded as

N (τ) =
1
2
nlnmnknjσlmσkj

+
1
2
(nknjσkj + nlnmσlm) (p− pd) +

1
2
(p− pd)

2

=
1
2
τ2
vn + τvn (p− pd) +

1
2
(p− pd)

2
.

For cancellation of the boundary terms

φk (njδσkj + nkδp) ={
nlnmσlm + n2

l (p− pd)
}
nk (njδσkj + nkδp)

leading to the boundary condition

φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well
approximated by the equations

φk = nk (p− pd) , (40)

which should be compared with the single scalar
equation derived for the inviscid boundary condi-
tion. In the case of an inviscid flow, choosing

N (τ) =
1
2
(p− pd)

2

requires

φknkδp = (p− pd)n2
kδp = (p− pd) δp (41)

which is satisfied by equation (40), but which repre-
sents an over-specification of the boundary condition
since only the single condition need be specified to
ensure cancellation.

Discrete Adjoint

In the case of an inverse design, δIc is the discrete
form of equation (39). The δwi,2 term is added to the
corresponding term from equation (35), and the met-
ric variation term is added to the gradient term. In
contrast to the continuous adjoint, where the bound-
ary condition appears as an update to the Lagrange
multipliers in the cell below the wall, the discrete
boundary condition appears as a source term in the
adjoint fluxes. At cell i, 2 the adjoint equation is as
follows,

V
∂ψi,2
∂t

=

1
2

[
−ATi− 1

2 ,2
(ψi,2 − ψi−1,2)−ATi+ 1

2 ,2
(ψi+1,2 − ψi,2)

]
+

1
2

[
−BTi, 52

(ψi,3 − ψi,2)
]
+D(ψ) + V(ψ) + Φinv

(42)

where Φinv is the source term for inverse design,

Φinv =
(−∆yξψ2i,2 +∆xξψ3i,2 − (p− pT )∆si

)
δpi,2

and,

ATi+ 1
2 ,2

= ∆yη
i+ 1

2 ,2

[
∂f

∂w

]T
i,2

−∆xη
i+ 1

2 ,2

[
∂g

∂w

]T
i,2

All the terms in equation (42) except for the source
term are scaled as the square of ∆x. Therefore, as
the mesh width is reduced, the terms within paren-
thesis in the source term divided by ∆si must ap-
proach zero as the solution reaches a steady state.
One then recovers the continuous adjoint boundary
condition as stated in equation (40).

Viscous Adjoint Boundary Conditions
for Drag Minimization

Pressure Drag Minimization

In the continuous adjoint case, if the drag is to be
minimized, then the cost function is the drag coeffi-
cient,

I = Cd

=
(
1
c

∫
BW

Cp
∂y

∂ξ
dξ

)
cosα

+
(
1
c

∫
BW

−Cp
∂x

∂ξ
dξ

)
sinα

A variation in the shape causes a variation ∂p in
the pressure and consequently a variation in the cost
function,

δI =
1
c

∫
BW

Cp

(
∂y

∂ξ
cosα− ∂x

∂ξ
sinα

)
∂pdξ

+
1
c

∫
BW

Cp

(
δ

(
∂y

∂ξ

)
cosα− δ

(
∂x

∂ξ

)
sinα

)
dξ

(43)

As in the inverse design case, the first term is a
function of the state vector, and therefore is incorpo-
rated into the boundary condition, where the inte-
grand replaces the pressure difference term in equa-
tion (41) producing the following boundary condi-
tion,

φknk = − 1
1
2γP∞M2∞

[
cosα
sinα

]
nk (44)

The discrete viscous adjoint boundary condition
for pressure drag minimization can be easily ob-
tained by replacing the (p − pT )∆si term in the
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source term of equation (42) by the discrete form of
equation (43).

Skin Friction Drag Minimization

For viscous force optimization, the cost function
should measure skin friction drag. The skin friction
force in the xi direction is

CDfi =
∫
B
σijdSj =

∫
B
S2jσijdBξ

so that the force in a direction with cosines li has
the form

Cnf =
∫
B
liS2jσijdBξ.

Expressed in terms of the surface stress τi, this cor-
responds to

Cnf =
∫
B
liτidS,

so that basing the cost function (39) on this quantity
gives

N = liτi.

Cancellation with the flow variation terms in equa-
tion (38) therefore mandates the continuous viscous
adjoint boundary condition

φk = lk (45)

where,

lk = − 1
1
2γP∞M2∞

[
cosα
sinα

]

If one would take the dot product of equation (45)
then the resulting equation is identical to equation
(44). Therefore, the continuous adjoint boundary
condition for skin friction drag minimization also
satisfies the pressure drag minimization cost func-
tion. This choice of boundary condition also elimi-
nates the first term in equation (38) so that it need
not be included in the gradient calculation. Notice
that the choice for the first and fourth Lagrange
multipliers can be arbitrarily set to zero or a zeroth
order extrapolation across the wall can be adopted
since equation (45) provides no suggestion for these
values. The effect of this boundary condition is ex-
plored in the Results section.
Similar to the discrete viscous adjoint bound-

ary conditions for the inverse design case and pres-
sure drag minimization, the discrete viscous adjoint
boundary condition for skin friction drag minimiza-
tion appears as a source term in the adjoint fluxes.

At cell i, 2 the adjoint source term Φv in the direc-
tion normal to the surface is as follows,

Φv = µi+ 1
2 ,j+

1
2

{
2
[
∂ψ3
∂y

]
i+ 1

2 ,j+
1
2

+ vi+ 1
2 ,j+

1
2

[
∂ψ4
∂y

]
i+ 1

2 ,j+
1
2

− 2BC∆xξ sinα
}

− λi+ 1
2 ,j+

1
2

{[
∂ψ2
∂x

]
i+ 1

2 ,j+
1
2

+
[
∂ψ3
∂y

]
i+ 1

2 ,j+
1
2

+ ui+ 1
2 ,j+

1
2

[
∂ψ4
∂x

]
i+ 1

2 ,j+
1
2

+ vi+ 1
2 ,j+

1
2

[
∂ψ4
∂y

]
i+ 1

2 ,j+
1
2

− BC (∆yξ cosα+∆xξ sinα)}

where,

BC =
1

1
2γP∞M2∞

Unlike its counterpart the viscous continuous ad-
joint skin friction minimization boundary condition,
the viscous discrete adjoint provides boundary
conditions for all four Lagrange multipliers.

Total Drag Minimization

Since the continuous adjoint boundary condition
for skin friction drag minimization also satisfies the
pressure drag minimization cost function, then equa-
tion (45) is used for total drag minimization.
In the discrete adjoint case, a combination of the

source terms from the pressure drag minimization
cost function and the skin friction drag minimization
is used to achieve the desired effect.

Viscous Adjoint Boundary Conditions
for the Calculation of Remote

Sensitivities

Traditional adjoint implementations were aimed at
reducing a cost function computed from the pres-
sure distribution on the surface that is being modi-
fied. For supersonic boom minimization, however,
we would like to obtain sensitivity derivatives of
pressure distributions that are not collocated at the
points where the geometry is being modified. In or-
der to include the tailoring of the ground pressure
signatures, it becomes necessary to compute sensi-
tivity derivatives of the sonic boom signature with
respect to a large number of design variables that
affect the shape of the airfoil or aircraft.
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Figure 1 illustrates the pressure contour and near
field pressure distribution for a biconvex airfoil at
Mach 1.5. In this example, the near field is approxi-
mately 6 chord lengths from the airfoil surface. The
adjoint boundary condition developed to calculate
remote sensitivities is applied along this location.

Target Pressure

Initial Pressure

Near Field Plane

Biconvex Airfoil

6 Chord Lengths

Figure 1: Pressure Contour and Near Field Pressure
Distribution for Biconvex Airfoil at Mach 1.5

The weak form of the inviscid equations for steady
flow can be added to the variation of the inverse
pressure design cost function to yield,

δI =
∫
BW

(p− pd) δp ds+
1
2

∫
BW

(p− pd)
2
δds

−
∫
D
φT

∂Fk
∂ξk

dD.

The domain can then be split into two parts.
First, the near field domain (NF) whose bound-
aries are the airfoil surface and near field boundary
plane where the adjoint boundary condition will be
applied. Second, the far field domain (FF) which
borders the near field domain along the near field
boundary plane and the far field boundary. Inte-
grating these two field integrals by parts produces
the following equation,

δI =
∫
BNF

(p− pd) δp ds+
1
2

∫
BNF

(p− pd)
2
δds

−
∫
DNF

∂ψT

∂ξk
δFkdD +

∫
BW

(nkψT δFk)dB

−
∫
DF F

∂ψT

∂ξk
δFkdD +

∫
BNF

(nkψT δFk)dB (46)

The above equation contains two continuous ad-
joint boundary conditions. First, the fourth term

in equation (46) forms the continuous adjoint wall
boundary condition. Second, the first and sixth
terms combine to produce the continuous adjoint
boundary condition applied at the near field plane.
In the discrete adjoint case, the boundary con-

dition for the calculation of remote sensitivities for
supersonic flow is developed by adding the δwi,NF
(where NF denotes the cells along the Near Field)
term from the discrete cost function to the corre-
sponding term from Eq (35). The discrete bound-
ary condition appears as a source term in the adjoint
fluxes similar to the inverse and drag minimization
cases. For example, at cell (i, NF ) the source term
ΦNF for inverse design is as follows,

ΦNF = −(p− pT )∆siδpi,NF .

Optimization Procedure

The search procedure used in this work is a simple
descent method in which small steps are taken in the
negative gradient direction. Let F represent the de-
sign variable, and G the gradient. An improvement
can then be made with a shape change

δF = −λG,
The gradient G can be replaced by a smoothed

value G in the descent process. This ensures that
each new shape in the optimization sequence re-
mains smooth and acts as a preconditioner which al-
lows the use of much larger steps. To apply smooth-
ing in the ξ1 direction, the smoothed gradient G may
be calculated from a discrete approximation to

G − ∂

∂ξ1
ε
∂

∂ξ1
G = G,

where ε is the smoothing parameter. If the modifi-
cation is applied on the surface ξ2 = constant, then
the first order change in the cost function is

δI = −
∫ ∫

GδFdξ1

= −λ

∫ ∫ (
G − ∂

∂ξ1
ε
∂

∂ξ1
G
)
Gdξ1

= −λ

∫ ∫ (
G2

+ ε

(
∂G
∂ξ1

)2
)
dξ1

< 0,

assuring an improvement if λ is sufficiently small and
positive. The smoothing leads to a large reduction
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in the number of design iterations needed for conver-
gence. An assessment of alternative search methods
for a model problem is given by Jameson and Vass-
berg.26

Finite Difference Versus
Complex-Step Gradients

Traditionally, finite-difference methods have been
used to calculate the sensitivity derivatives of the
aerodynamic cost function. The computational cost
of the finite-difference method for problems involv-
ing large numbers of design variables is both unaf-
fordable and prone to subtractive cancellation error.
In order to produce an accurate finite-difference gra-
dient, a range of step sizes must be used, and thus
the ultimate cost of producing N gradient evalu-
ations with the finite-difference method is a prod-
uct of mN , where m is the number of different
step sizes that was used before a converged finite-
difference gradient was obtained. An estimate of the
first derivative of a cost function I using a first-order
forward-difference approximation is as follows,

I
′
(x) =

I(x+ h)− I(x)
h

+O(h), (47)

where h is the step size. A small step size is desired
to reduce the truncation error O(h) but a very small
step size would also increase subtractive cancellation
errors.
Lyness and Moler introduced the use of the

complex-step in calculating the derivative of an an-
alytical function. Here, instead of using a real step
h, the step size h is added to the imaginary part of
the cost function. A Taylor series expansion of the
cost function I yields,

I(x+ ih) = I(x) + ihI
′
(x )

− h2 I
′′
(x)
2!

− ih3 I
′′′
(x)
3!

+ ...

Take the imaginary parts of the above equation and
divide by the step size h to produce a second order
complex-step approximation to the first derivative

I
′
(x) =

Im[I(x + ih)]
h

+ h2 I
′′′
(x)
3!

+ ... (48)

The complex step formula does not require any sub-
traction to yield the approximate derivative.
Figure (2) illustrates the complex-step versus the

finite-difference gradient errors for the inverse design
case for decreasing step sizes.
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Figure 2: Complex-Step Versus Finite Difference
Gradient Errors for Inverse Design Case; ε = |g−gref |

|gref |

At a step size of 10−4 both the finite difference and
complex-step approximations to the first derivative
of the cost function is very similar. As the step-size is
reduced, the finite-difference gradient error starts to
increase instead of decreasing due to subtractive can-
cellation errors, however, the complex-step produces
more accurate results. Therefore, the complex-step
is more robust and does not require repeated calcu-
lations in order to produce an accurate gradient. If
a very small step size is chosen, the gradient is cal-
culated only once per design variable. However due
to the use of double precision complex numbers, the
code requires three times the wall clock time when
compared to the finite difference method. But the
benefits of using the complex-step to acquire accu-
rate gradients out-weights its disadvantage.
The code used for this paper was modified to

handle complex calculations using the automated
method developed by Martins et al.27

13

American Institute of Aeronautics and Astronautics



Results

This section presents the results of the viscous in-
verse design, drag minimization, and sonic boom
minimization cases. For each case, we compare
the continuous and discrete adjoint gradients to the
complex-step gradient.

Inverse Design

In an inverse design case, the target pressure is gen-
erally obtained from a known solution. The target
pressure was obtained using the FLO103 flow solver
for the NACA0012 airfoil at M = 0.75 and a lift
coefficient of Cl = 0.50 on a 512x64 C-grid.
The design procedure is as follows. First, the flow

solver module is run until at least 5 orders of magni-
tude drop in the residual. Second, the adjoint solver
is run until at least 3 orders of magnitude drop in
the residual. Next, the gradient is calculated by per-
turbing each point on the airfoil surface mesh. The
resulting gradient is then smoothed by an implicit
smoothing technique as described in the Optimiza-
tion Procedure section. Then the airfoil geometry is
updated and the grid is modified. The entire pro-
cess is repeated until the conditions for optimality
are satisfied. At each design iteration, 25 multigrid
cycles for the flow and adjoint solver are used before
the gradient is calculated. Figure (3) illustrates the
design procedure.

FLO103 Flow Solver

Adjoint Solver

Update Airfoil Geometry

Modify Grid

Calculate Gradient Convergence

Design Cycle
Repeated Until

Figure 3: Design Procedure

Figure (4) illustrates an inverse design case of a

NACA0012 to Onera M6 airfoil at fixed lift coeffi-
cient. Figure (4a) shows the solution for the NACA
0012 airfoil at M = 0.75 and Cl = 0.50. After only 4
design cycles, the general shape of the target airfoil is
achieved as shown in figure (4b). The circles denote
the target pressure distribution, the plus signs are
the current upper surface pressure, and lastly, the x
marks denote the lower surface pressure distribution.
After 100 design iterations the desired target airfoil
is obtained. Observe the point-to-point match along
the shock. The figures illustrate solutions that were
obtained using the continuous adjoint method. The
discrete adjoint method produces identical solutions.
Figure (5) illustrates another example of an in-

verse design problem of a RAE to NACA 64A410
airfoil at fixed lift coefficient. Figure (5a) shows
the solution for the RAE airfoil at M = 0.75 and
Cl = 0.50. The final design illustrates that the tar-
get airfoil is achieved but with a slight deviation at
the shock. The purpose of this example is to il-
lustrate the successful application of the method to
unsymmetric airfoils with cusped trailing edges. A
very strong shock is produced on the upper surface,
thus making this an ideal test case for the adjoint
versus complex-step gradient comparison.
To ensure that the gradients obtained from the ad-

joint method is accurate: first, investigate the sensi-
tivity of the gradient towards the convergence level
of the flow and adjoint solver; and second, compare
them to gradients obtained from a finite difference
or complex-step method. Figure (6) illustrates the
adjoint gradient errors for varying flow solver con-
vergence. As seen in the figure, at least a 4 order
magnitude drop in the flow solver convergence is re-
quired for adjoint gradients to be accurate up to 5
significant digits. Any further drop in the flow con-
vergence has a minimal effect on the accuracy of the
adjoint gradient; therefore, adjoint gradients as ex-
pected are sensitive to the convergence of the flow
solver. They are not, however, sensitive towards the
convergence of the adjoint solver. In figure (7) a 1
order magnitude drop in the adjoint solver produces
gradients that are accurate to 4 significant digits.
Figure (8) illustrates the values of the gradients

obtained from the continuous and discrete adjoint
and complex-step methods. The asterisks represent
the continuous adjoint gradients, the squares rep-
resent the discrete adjoint gradients, and the circles
denote values that were obtained using the complex-
step method. The gradient is obtained with respect
to variations in Hicks-Henne sine “bump”5 functions
placed along the upper and lower surfaces of the air-
foil. The figure only illustrates the values obtained
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with modifications to the upper surface starting from
the leading edge on the left and ending at the trailing
edge on the right. The discrete adjoint equation is
obtained from the discrete flow equations but with-
out taking into account the dependence of the dissi-
pation coefficients on the flow variables. Therefore,
in order to eliminate the effect of this on comparisons
with the complex-step gradient we compute the flow
solution until attaining a decrease of five orders of
magnitude in the residual. We then freeze the dis-
sipative coefficients and calculate the complex-step
value for each design variable.

Grid Size Cont. Disc. Cont-Disc
384 x 64 1.382e− 3 1.331e− 3 8.888e− 5
512 x 64 1.008e− 3 9.943e− 4 4.610e− 5
1024 x 64 7.809e− 4 7.795e− 4 1.425e− 5

Table 1: L2 norm of the Difference Between Adjoint
and Complex-Step Gradient

Table (1) contains values of the L2 norm of the
difference between the adjoint and complex-step gra-
dients. The table illustrates three important facts:
the difference between the discrete adjoint and the
complex-step gradient is slightly smaller than that
between the continuous adjoint and complex-step
gradient; the norm decreases as the mesh size is in-
creased; and the difference between continuous and
discrete adjoint gradients decreases as the mesh size
is increased. The second column depicts the differ-
ence between the continuous adjoint and complex-
step gradient, the third column depicts the differ-
ence between the discrete adjoint and complex-step
gradients, and lastly the last column depicts the dif-
ference between the discrete and continuous adjoint.
As the mesh size increases, the norm of the differ-
ence between adjoint and complex-step decreases as
expected. Since we derive the discrete adjoint by
taking a variation of the discrete flow equations,
we expect it to be consistent with the complex-step
gradients and thus to be closer to the complex-step
gradient than the continuous adjoint. This is con-
firmed by numerical results, but the difference is very
small. As the mesh size increases, the difference be-
tween the continuous and discrete gradients should
decrease, and this is reflected in the last column of
table 1.

Drag Minimization

The drag minimization problem is broken up into
three different subsections: pressure drag, skin fric-

tion drag, and total drag minimization. Figure (11)
illustrates the drag minimization of RAE 2822 air-
foil using the continuous adjoint formulation at a
M = 0.75 and a fixed lift coefficient of Cl = 0.65.
Figure (11a) shows the initial solution of the RAE
2822 airfoil with 56 drag counts due to viscous forces
and 92 drag counts due to pressure drag, thus adding
up to a total of 148 drag counts. In the first case, as
shown in figure (11b), only the pressure drag bound-
ary condition and its contribution towards the gra-
dient were included. After 20 design iterations, a
reduction of 50 drag counts was achieved; however,
the skin friction drag increased by 1 count. In the
case where only the skin friction drag boundary con-
dition was used, a reduction of 44 drag count for
the pressure drag was achieved but with no change
in the skin friction drag count. As described in the
section on Continuous Adjoint Formulation, the con-
tinuous viscous adjoint boundary condition for skin
friction drag minimization satisfies the skin friction
drag objective function and the pressure drag ob-
jective function. In figure (11d) the total drag was
used as the objective function. The resulting airfoil
has the same characteristics as the airfoil in figure
(11b) that was obtained by just using the pressure
drag. The skin friction drag boundary condition has
not contributed towards the reduction in the skin
friction drag.
Figure (12) illustrates the pressure, skin friction,

and total drag minimization of the RAE 2822 air-
foil using the Discrete Adjoint Formulation. In fig-
ure (12b) the airfoil was redesigned by using only
the pressure drag boundary condition and its con-
tribution towards the gradient. The solution is sim-
ilar to the one obtained using the continuous ad-
joint boundary condition. The pressure drag was
reduced by 50 drag counts, but the skin friction drag
increased by two drag counts. Thus the total drag
reduction is 49 drag counts, compared to the 50 that
was obtained with continuous adjoint method. Fig-
ure (12c) shows the skin friction drag minimization
case. Here, in contrast to the continuous adjoint
where no skin friction drag was reduced, the dis-
crete adjoint produced a reduction of 2 drag counts
for the skin friction drag but the pressure drag in-
creased by 42 drag counts. When a combination of
both boundary conditions are used and their respec-
tive contributions towards the gradient are consid-
ered, then the discrete adjoint produces the exact
same result as the continuous adjoint formulations.
In contrast to the continuous viscous adjoint bound-
ary condition for skin friction drag minimization, the
discrete viscous adjoint boundary condition does not
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satisfy the pressure drag boundary condition. Both
discrete boundary conditions are independent of one
from the other. This fact can be better illustrated by
comparing the adjoint gradients to the complex-step
gradient.
As expected, when only the pressure drag bound-

ary condition is used, both the continuous and dis-
crete adjoint gradients match with the complex-step
gradient as shown in figure (13). Figure (14) illus-
trates the difference between the continuous and dis-
crete boundary condition for skin friction drag min-
imization. The discrete adjoint gradient compares
well with the complex-step gradient; however, the
gradient produced by the continuous adjoint formu-
lation does not compare well with the complex-step
gradient. This figure illustrates why the discrete ad-
joint was able to reduce the skin friction drag count
but not the continuous adjoint.
Figure (15) shows the gradient comparisons for

the total drag minimization case. The discrete ad-
joint gradient is similar to the complex-step gradi-
ent, but discrepancies between the continuous and
complex-step exists. These discrepancies are due to
the continuous viscous adjoint boundary condition
for skin friction drag minimization.

Sonic Boom Minimization

In order to validate the use of this new method for
the calculation of flow sensitivities, we have con-
structed the following test problem, based on a bi-
convex airfoil with a 5% thickness ratio. For the
sonic boom minimization case, the target pressure
distribution was obtained by scaling down the initial
near field pressure distribution at 6 chord lengths
away. Figure 16 illustrates the shape of the re-
designed airfoil after 100 design iterations. Only a
slight modification of the lower surface of the airfoil
is needed to achieve the desired near field pressure
distribution. Figure 17 shows the initial near field
pressure distribution. In Figure 18, the peak pres-
sure has been reduced to almost 10% its original
value after 35 design iterations. After 100 iterations,
the target peak pressure is captured, as shown in
Figure 19. Both the continuous and discrete viscous
adjoint method produced the same result. The re-
sults shown were obtained using the discrete adjoint
method.

Conclusion

This paper presents a complete formulation for the
continuous and discrete adjoint approaches to auto-
matic aerodynamic design using the Navier-Stokes
equations. The gradients from each method are com-
pared to complex-step gradients. We conclude that:

1. The continuous adjoint boundary condition ap-
pears as an update to the costate values below
the wall for a cell-centered scheme, and the dis-
crete adjoint boundary condition appears as a
source term in the cell above the wall. As the
mesh width is reduced, one recovers the contin-
uous adjoint boundary condition from the dis-
crete adjoint boundary condition.

2. The viscous continuous adjoint skin friction
minimization boundary condition does not pro-
vide accurate gradients and thus failed to de-
crease the skin friction drag. It appears that the
extrapolation of the first and fourth multipliers,
as used in this work, is not adequate. However
the gradients for the viscous discrete adjoint
boundary condition for skin friction drag min-
imization does match with gradients obtained
from the complex-step method and does reduce
the skin friction drag.

3. Discrete adjoint gradients have better agree-
ment than continuous adjoint gradients with
complex-step gradients as expected, but the dif-
ference is generally small. (Figures 8-10)

4. As the mesh size increases, both the continu-
ous adjoint gradients and the discrete adjoint
gradients approach the complex-step gradients.

5. The difference between the continuous and dis-
crete gradients decrease as the mesh size in-
creases. (Tables 1)

6. The cost of deriving the discrete adjoint is
greater. (Equation 35)

7. The discrete adjoint may provide a route to im-
proving the boundary conditions for the contin-
uous adjoint for viscous flows.

8. The best compromise may be to use the con-
tinuous adjoint formulations in the interior of
the domain and the discrete adjoint boundary
condition.
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4a: Initial Solution of NACA0012 Airfoil
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4b: After 4 Design Iterations

0.
1E

+
01

0.
8E

+
00

0.
4E

+
00

-.
2E

-1
5

-.
4E

+
00

-.
8E

+
00

-.
1E

+
01

-.
2E

+

C
p

+++++
+++++

+++++
++++

+++
+++++++++++

++++++++
++++++

++++++
+++++++++++++++++++++++++++++++++++++++++++++++

+++++
+
+
+
+
+
+
+
+
+
+
+
+
+++++++++

++
+
+
+
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
++
+++++++++++++++++++++++++++++++

+

+

+

+

+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo

ooooo
ooooo

ooooo
oooooo

oooooooo
oooooooo

oooooo
oooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo
o
o
o
o
o
o
o
o
o
o
o
o
o
oooooooo
oo
o
o
o
o
o
o
o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o
o
o
oo
ooooooooooooooooooooooooooooooo

o

o

o

o

o
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

4c: After 50 Design Iterations
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4d: Final Design after 100 Iterations

Figure 4: Inverse Design of NACA 0012 to Onera M6 at Fixed Cl
Grid - 512 x 64, M = 0.75, Cl = 0.65, α = 1 degrees
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5a: Initial Solution of RAE Airfoil
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5b: After 100 Design Iterations

Figure 5: Inverse Design of RAE to NACA64A410 at Fixed Cl
Grid - 512 x 64, M = 0.75, Cl = 0.50, α = 1 degrees
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11a: Initial Solution of RAE Airfoil
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11b: Final Design Based on Pressure Drag
Minimization

CDv = .0056 → .0057
CTotal = .0148 → .0098
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11c: Final Design Based on Viscous Drag
Minimization

CDv = .0056 → .0056
CTotal = .0148 → .0104
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11d: Final Design Based on Total Drag
Minimization

CDv = .0056 → .0057
CTotal = .0148 → .0098

Figure 11: Drag Minimization of RAE Airfoil using the Continuous Adjoint Formulation
Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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12a: Initial Solution of RAE Airfoil
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12b: Final Design Based on Pressure Drag
Minimization

CDv = .0056 → .0058
CTotal = .0148 → .0099
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12c: Final Design Based on Viscous Drag
Minimization

CDv = .0056 → .0054
CTotal = .0148 → .0188
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12d: Final Design Based on Total Drag
Minimization

CDv = .0056 → .0057
CTotal = .0148 → .0098

Figure 12: Drag Minimization of RAE Airfoil using the Discrete Adjoint Formulation
Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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Figure 13: Adjoint Versus Complex-Step
Gradients for Pressure Drag Minimization
at Fixed Cl.
Fine Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 14: Adjoint Versus Complex-Step
Gradients for Viscous Drag Minimization
at Fixed Cl.
Fine Grid - 512 x 64, M = 0.75, Cl = 0.65

250 270 290 310 330 350 370 390 410 430 450
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Design Variable

G
ra

di
en

t, 
G

Cont Adjoint Gradient
Disc Adjoint Gradient
Complex−Step Gradient
 
||cont−fdg||

2
 = 7.422e−03

||disc−fdg||
2
  = 9.883e−04

||cont−disc||
2
  = 7.324e−03

Figure 15: Adjoint Versus Complex-Step
Gradients for Total Drag Minimization at
Fixed Cl.
Fine Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 16: Sonic BoomMinimization: Ini-
tial Airfoil Shape and Final Airfoil Shape
after 100 Design Iterations
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Figure 17: Sonic BoomMinimization: Ini-
tial Near Field Pressure Distribution
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Figure 18: Sonic Boom Minimization:
Pressure Distribution after 35 Design It-
erations
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Figure 19: Sonic Boom Minimization:
Pressure Distribution after 100 Design It-
erations
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