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This paper presents a technique used to accelerate the convergence of unsteady cal-
culations of time-periodic flows to a periodic steady state. The basis of the procedure is
the use of the discrete Fourier transform in time, and is similar to the harmonic balance
procedure that has been pursued by Hall et. al. The technique is amenable to paral-
lel processing, and convergence acceleration techniques such as multi-grid and implicit
residual averaging. The computational efficiency of this method is compared with dual
time stepping algorithms. Sample calculations are provided, and a comparison between
solutions with varying temporal resolution is presented. The results show that the compu-
tational efficiency of the harmonic balance technique is largely a function of the temporal
resolution. Initial experiments confirm the promise of the harmonic balance method to
achieve significant reductions in computational cost.

Introduction
The calculation of periodic unsteady flows in tur-

bomachinery continues to present a severe challenge
to Computational Fluid Dynamics (CFD). The un-
steadiness stems mainly from the relative motion of
the rotating blade fields, and has a fundamental period
which depends on the rate of rotation and the num-
ber of blade passages. Currently, a popular approach
to the computation of this problem is to introduce a
fully implicit A-stable time discretization of the flow
equations requiring the solution of a set of coupled
nonlinear equations at each physical time step. These
equations are typically solved with an explicit inner
iteration by introducing a pseudo-time variable and
marching to a steady state. Converged solutions at-
tained at the end of the inner iterations represent a
solution of the implicit equations at the end of the
physical time step.1–4 A variety of techniques such
as variable local pseudo-time steps, implicit residual
averaging and multigrid are used to accelerate the con-
vergence of the inner iterations. The efficiency of this
dual time stepping method depends on the effective-
ness of these acceleration techniques in restricting the
number of inner iterations. If the physical time step
can be increased in comparison to an explicit scheme
by a factor larger than the number of inner iterations,
the implicit scheme will be more efficient than the ex-
plicit scheme. In practice it has been found that for
simple geometries and flows, on the order of 24-36 im-
plicit time steps are sufficient to resolve the features
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of one period in the oscillation of the flow. Typi-
cally one restricts the number of inner iterations to
the order of 30-80. At a minimum, capturing one pe-
riod requires 1000 inner iterations. As the number of
periods needed to obtain convergence increases the cal-
culation can become prohibitively expensive. This is
particularly true in multistage turbomachinery flows
where convergence to a periodic steady state can be
slow since it requires the physical propagation of dis-
turbances back and forth between the front and the
back of the turbomachinery component. The situation
is exacerbated in complex turbomachinery geometries
where 100 implicit time steps are often used to resolve
a fundamental period of the blade passing frequency.

Another approach to the calculation of turboma-
chinery flows is to linearize the unsteady flow about
a mean flow solution and solve for the unsteadiness
in the flow using a frequency domain approach.5 As-
suming that the disturbances are small compared to
the mean flow values, the unsteady component of the
solution can be expanded in a Fourier series and a
decoupled equation is obtained for each of the funda-
mental modes in the expansion. This equation can
be solved with small modifications to typical steady-
state solvers. The computational cost is proportional
to the cost of the steady-state solution multiplied by
the number of distinct modes specified by a desired
amount of temporal accuracy. Needless to say, the er-
ror in the linearization procedure becomes significant
when the level of unsteadiness in the flow is substantial
as it happens in most real-life viscous flow examples.

Hall et al,6 have proposed to apply the harmonic
balance technique to the fully non-linear Navier-Stokes
equations. For time-periodic flows, the method can
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be computationally more efficient than the dual-time
stepping approach without the assumptions required
by a linearized solution. Time periodicity is the fun-
damental property that permits this reduction in com-
putational cost when compared with the dual-time
stepping technique, which was designed for flows with
arbitrary time histories. As with the linearized method
the cost is proportional to the cost of the steady-state
solution multiplied by the number of temporal modes
required.

Time accurate solvers, such as those using the dual-
time stepping approach, accurately capture the entire
time history of the flow from initial guess to conver-
gence to a periodic steady state. The decay rate of
the transients associated with the initial guess can be
significantly slowed down by the reflectivity of bound-
ary conditions and geometric complexity. Harmonic
balance techniques transform the unsteady equations
in the physical domain into a steady problem in the
frequency domain. The process of finding a steady
solution to the transformed equations does not waste
time resolving the initial transients and their decay
since our interest lies on a time-periodic solution alone.
It must be noted that the cost of the frequency do-
main solver is closely tied to the number of temporal
modes needed to accurately resolve the flow phenom-
ena. If the physical phenomena that one wants to
resolve is such that only a few fundamental frequen-
cies are present, frequency domain solvers can provide
a significant computational advantage over more tra-
ditional techniques.

The purpose of this paper is to explore the poten-
tial advantages of frequency domain harmonic balance
techniques to compute time-periodic unsteady flows
of the sort that typically occur in multistage tur-
bomachinery (compressors and turbines). Before at-
tempting calculations of this complexity it seems well
advised to validate the harmonic balance method for
simpler periodic flows for which analytic solutions and
experimental data are available. Furthermore, some
of these simpler cases have been previously computed
in our group using the dual-time stepping technique
and can serve to provide direct cost comparisons be-
tween approaches.7, 8 In this paper we focus on two
test cases; one dimensional channel flow, and the vor-
tex shedding behind a cylinder in the laminar regime.

Governing Equations

Viscous unsteady fluid flows in two dimensions can
be described by the Navier Stokes equations presented
in integral form below

∫
Ω

∂W

∂t
dV +

∮
∂Ω

�F · �Nds = 0, (1)

where

W =




ρ
ρu
ρv
ρE




�F1 = f =




ρu
ρu2 + p − σxx

ρuv − σxy

ρuH − uσxx − vσxy + qx




�F2 = g =




ρv
ρuv − σxy

ρv2 + p − σyy

ρvH − uσxy − vσyy + qy


 , (2)

and �N is the outward pointing normal on the surface
of the control volume. The variables ρ, u, v, and E
are density, Cartesian velocity components and specific
total energy respectively. The flux terms also contain
the thermodynamic pressure, p, the stress tensor, σ,
and the heat flux vector obtained from Fourier’s heat
conduction law, �q. Closure is provided by the following
equations:

p = (γ − 1)ρ
[
e − 1

2
(u2 + v2)

]

σxx = 2µux − 2
3
µ(ux + vy)

σyy = 2µvy − 2
3
µ(ux + vy)

σxy = σyx = µ(uy + vx)

qx = κ
∂T

∂x
= − γ

γ − 1
µ

Pr

∂ p
ρ

∂x

qy = κ
∂T

∂y
= − γ

γ − 1
µ

Pr

∂ p
ρ

∂y
. (3)

The physical domain of interest can be discretized such
that a complete set of design variables resides at the
center of each cell in the mesh. The volume of each
cell is denoted by V . Applying Eq. 1 to each cell in
the mesh, we can take the time derivative operator
outside of the integral sign and the remaining integral
can be approximated by the product of the cell volume
and the current value of the flow solution at the cell
center. The boundary integral is calculated by discrete
integration of the fluxes around the control volume in
a manner which is equivalent to central differencing.
A modified JST scheme9, 10 is implemented to add in
third-order artificial dissipation for numerical stability.
In the physical domain the integral expression in Eq. 1
can be written in semi-discrete form as

V
∂W

∂t
+ R(W ) = 0, (4)

where

R(W ) =
n∑

j=1

�Fj · �Sj . (5)
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Under the assumption that the solution is periodic over
a given time period, we can transform the indepen-
dent variables and residual terms into the frequency
domain using a discrete Fourier transform. In our fol-
lowing discussion, the variables Ŵk and R̂k represent
the Fourier coefficients (for a given wavenumber k) of
the Fourier transforms of W and R(W ) respectively.
Numerically this transformation is accomplished using
the Fast Fourier Transform (FFT) in order to minimize
the cost of computation. The computational cost of
this transform is proportional to N log N , where N is
the number of time intervals used to describe the sig-
nal. For real solutions the Fourier coefficients for the
negative wavenumbers are simply the complex conju-
gates of the coefficients for the positive wavenumbers.
In taking advantage of this property we can eliminate
half of the wavenumbers from the computation. Once
we have obtained the Fourier coefficients for the expan-
sions of W and R(W ), we can recover these quantities
using the inverse discrete Fourier transform as follows:

W =

N
2 −1∑

k=− N
2

Ŵkeikt

R(W ) =

N
2 −1∑

k=− N
2

R̂keikt, (6)

where
i =

√−1.

If we apply the discrete Fourier transform to the semi-
discrete form of the governing equation in Eq. 4, and
we move the time derivative of the state variable in-
side the series summation, orthogonality of the Fourier
series ensures that the individual contributions from
each wavenumber is equal to zero

ikV Ŵk + R̂k = 0. (7)

It follows that a periodic steady-state equation can
be written for each independent wavenumber. Di-
rect solution of this equation is appropriate for all
wavenumbers except for that associated with the mean
value (k = 0). Instead of directly solving Eqs. 7 we add
in a pseudo-time derivative and numerically integrate
the resulting equations.

V
dŴk

dτ
+ ikV Ŵk + R̂k = 0 (8)

Note, however, that solution of the physical problem
will require iteration between physical and Fourier
spaces, since, due to the nonlinearity of the residual
operator, R(W ), R̂k cannot be computed directly from
Ŵk. R̂k can only be computed by physical evaluation
of the residual at a number of time locations within
one periodic cycle and the subsequent transformation
to Fourier space using the discrete Fourier transform.

Figure 1 provides a flow chart of the data and trans-
forms used to advance the solution through one itera-
tion in pseudo time. At the beginning of this iteration
we know Ŵ at every grid point for all wavenumbers.
This initial guess can simply result from the discrete
Fourier transform of a constant uniform flow. Using
an inverse FFT we can transform Ŵ back to the state
vector in physical space. The simulation now holds
W at every grid point and instance in time. At each
of the points in time being resolved in the simulation,
we compute the steady-state residual R, and, using an
FFT we transform it back to the frequency domain to
obtain R̂. We calculate the overall residual by adding
R̂ to the source term ikV Ŵ . This overall residual,
specified in the frequency domain, is used to compute
the new approximate Ŵ , and the process returns to
the beginning of the cycle.

Fig. 1 Process Flowchart

Farfield Boundary Conditions
During the process of development of the harmonic

balance technique, we found that the implementation
of proper far-field boundary conditions was necessary
to obtain convergence for the unsteady components of
the solution. For this reason, this section describes
in some detail the far-field boundary conditions that
have been implemented into our code.

At the boundary of the domain we assume that the
viscous terms in the stress tensor are negligible in com-
parison to the convective fluxes. We also assume that
the unsteady perturbations in the flow are small in
comparison to the average values. Given these as-
sumptions we apply the method of Riemann invariants
on a two-dimensional boundary to determine the mean
flow solution. The unsteady perturbations are calcu-
lated using Giles’11 boundary conditions applied to the
solution in the frequency domain.

The unsteady boundary conditions are derived by
substituting the linearized state vector into the Euler
equations written in the computational space (ξ, η):

W = W̄ + Ẃ

V
∂W

∂t
+

∂f1
∂ξ

+
∂g1
∂η

= 0, (9)

where

f1 = f
∂y

∂η
− g

∂x

∂η

g1 = −f
∂y

∂ξ
+ g

∂x

∂ξ
. (10)

Due to the assumption of linearity the mean flow terms
drop out of the resulting equation. Higher order per-
turbations are eliminated leaving only first order terms
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in the flux vectors. The Jacobian matrices are cal-
culated as the derivatives of these flux vectors with
respect to the perturbed variable, leaving only mean
flow variables in the definition of the Jacobians:

V
∂Ẃ

∂t
+ Ā

∂Ẃ

∂ξ
+ B̄

∂Ẃ

∂η
= 0,

where

Ā =
∂f́

∂Ẃ

∂y

∂η
− ∂ǵ

∂Ẃ

∂x

∂η

B̄ = − ∂f́

∂Ẃ

∂y

∂ξ
+

∂ǵ

∂Ẃ

∂x

∂ξ
. (11)

Since the Jacobians are independent of the perturbed
variables they act as simple linear operators on these
vectors. Consequently we can transform the perturbed
variables to the frequency domain using a straight-
forward Fourier transform. Taking advantage of the
system’s linearity and the orthogonality of the Fourier
series, we can eliminate the summation operator and
the complex exponential term

Ẃ =

N
2 −1∑

k=− N
2

W̃keikt

ikV W̃k + Ā
∂W̃k

∂ξ
+ B̄

∂W̃k

∂η
= 0. (12)

We assume that the derivatives with respect to η are
constant in the direction normal to the boundary.
Working in eigenspace, for a two dimensional flow,
the equations decouple into four independent ordinary
differential equations. A solution can be obtained by
integrating between two arbitrary points

Yj(ξ) = −Cj(0)
ikV

+
[
Yj(0) +

Cj(0)
ikV

]
e
− ikV

Λj , (13)

where

Ā = XΛX−1

Y = X−1W̃k

C = X−1B̄
∂W̃k

∂η
. (14)

In practice, the final interior point to the domain
serves as a basis to evaluate all of the terms in the
equation. The characteristic solutions associated with
the outgoing waves are extrapolated to the ghost cell.
Any eigenvectors associated with incoming character-
istics are specified at the ghost cell. The new state
vector at the ghost cell is then reconstructed as a lin-
ear combination of the eigenvectors.

For the unsteady one-dimensional duct problem,
there is no variation in the flow solution with respect
to η. Since the Cj term is a function of ∂W̃

∂η , it is con-
sequently zero. At the exit of the duct we can write an

explicit equation to recombine the eigenvectors at the
ghost cell; note that the subscripts ie and il denote
the ghost cell and first interior cell respectively. The
superscripts n and n+ 1 denote the value of the eigen-
vector before and after application of the boundary
condition.

Y n+1
ie = Λ+Y n

il + Λ−Y n
ie

Λ+ =


 e

−ik∆x
ū 0 0
0 e

−ik∆x
ū+c̄ 0

0 0 0




Λ− =


 0 0 0

0 0 0
0 0 1


 . (15)

The characteristic value at the ghost cell is computed
as a combination of the exit pressure perturbation
specified by the boundary conditions and the current
values of the state vector at the ghost cell.

Y n
ie = X−1


 ρ̃n

ie

ρ̃un
ie

ṕe

γ−1 − 1
2 ū

2ρ̃n
ie + ūρ̃un

ie


 . (16)

If the right hand vector contained in the above equa-
tion is split into the following sum

Y n
ie = X−1BW̃n

ie + X−1C

B =


 1 0 0

0 1 0
− 1

2 ū
2 ū 0




C =


 0

0
ṕe

γ−1


 , (17)

then we can write an implicit equation for the bound-
ary conditions. This form is advantageous in the fact
that the ghost cell value is a function only of the inte-
rior cell values and boundary condition constants:

W̃n+1
ie = (I − A−B)−1(A+W̃n

il + A−C)
A+ = XΛ+X−1

A− = XΛ−X−1. (18)

For the channel flow problem, the improved conver-
gence rates provided by the implicit form justify the
additional computational cost required in solving a lin-
ear system of equations. The equation for the inlet is
similar except that there is only one outgoing char-
acteristic which has speed ū − c̄. The characteristic
value at the inlet ghost cell (denoted 1) is formed to
hold stagnation pressure constant:

Y n
1 = X−1




ρ̃n
1

1
2 ūρ̃n

1 +
(

γ−1
γ−2

)
ρ̃E

n
1

ū

ρ̃E
n

1


 . (19)
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Forming an implicit equation for the inlet boundary
condition is similar to the steps used for the exit con-
dition. For the cylinder model the radiation boundary
condition assumes the incoming characteristic is zero.
The physical value at the ghost cell is reconstructed
using extrapolations based only on outgoing charac-
teristics. Since the incoming characteristic is ignored
no implicit formulation is necessary.

Solution of the Field Equations
Stability

In this section we examine the effect of the harmonic
balance technique on the stability of the pseudo-time
Eq. 8. For simplicity we assume a linearization using
only one space dimension:

dŴk

dτ
+ ikŴk + A

∂Ŵk

∂x
= 0. (20)

The A matrix is the Jacobian of the flow equations.
This equation can be further simplified using a von
Neumann test whereby we expand the solution using
a single spatial Fourier mode:

dW̌

dτ
+ ikW̌ +

M

∆x
W̌ = 0. (21)

Note that W̌ is the new solution variable, and M is
the spectral matrix corresponding to the spatial dis-
cretization. For example with central differences

M = Ai sin(ω∆x), (22)

where ω is the spatial frequency. The maximum eigen-
value of M is denoted as λ̄. For stability in steady-
state calculations, this eigenvalue divided by the mesh
spacing, λ̄

∆x , should lie in the stability region of the
time stepping scheme. If we split this eigenvalue into
real λ̄r and imaginary λ̄i parts, we arrive at a sim-
plified equation containing the additional terms intro-
duced by the harmonic balance technique:

dẆ

dτ
= −

[
λ̄r

∆x
+

(
λ̄i

∆x
+ k

)
i

]
Ẇ . (23)

Note that the new variable Ẇ is the characteristic
variable formed by the multiplication of the eigenvec-
tors of M with W̌k. Two observations are immediately
clear. Harmonic balance does not affect the stability
of the mean flow solution. Second, harmonic balance
affects only the imaginary part of the eigenvalue asso-
ciated with the time averaged solution. This effect is
small for the lower temporal frequencies but cannot be
ignored, as the higher frequencies will eventually pro-
duce a restriction in the stability limit. This stability
restriction is quite similar to the one imposed by the
original dual-time stepping method,1 only it shifts the
Fourier symbol of the residual along the imaginary axis
direction. Reduced CFL numbers may be necessary to

ensure stability of the solution for high wavenumbers.
Alternatively, in a manner similar to that proposed by
Melson et al.12 for the dual-time stepping method,
the ikW̌ term can be treated point-implicitly in the
Runge-Kutta iteration to ensure stability for the usual
CFL limit of the time stepping scheme.

Accuracy

For this subsection the advection equation in one-
dimension is used as a model to develop estimates for
the temporal and spatial accuracy of the numerical
scheme. The boundary condition specifies the solution
at the inflow as a periodic function in time:

∂u

∂t
+ c

∂u

∂x
= 0

u(0) = f(t). (24)

Due to the linearity of the model equation, an exact
solution (in the frequency domain) can be derived as
a function of each wavenumber

ûk(xf ) = ûk(xi)e
−ik(xf −xi)

c . (25)

The solution to the discretized equation will be de-
noted as w. Assuming a central difference operator,
the discrete equation in the frequency domain is pro-
vided as

c

2∆x
ŵkj+1 + ikŵkj −

c

2∆x
ŵkj−1 = 0. (26)

Assuming a semi-infinite domain, we can use a shift
operator to find an analytic expression for the solution
of the difference equation:

ŵkj+n = ŵkj σ
n

σ = −iγ ±
√

1 − (γ)2

γ =
k∆x

c
. (27)

The negative root of the above quadratic expression
is spurious. Using a Taylor series expansion we can
rewrite σ as the combination of an exponential term
and additional error components:

σ = e−iγ − αeiθ + hot

α =

√(
γ3

6

)2

+
(

γ4

6

)2

≈ |γ|3
6

θ = tan−1(
1
γ

). (28)

We denote the Fourier coefficient of the boundary con-
dition as f̂k. Subtracting the analytic and discrete
solutions provides an estimate for error at an arbitrary
point in space.

Êk(x) = ŵk(x) − ûk(x) =
(
σn − e

−ikx
c

)
f̂k. (29)
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Fig. 2 Solution and Error for the Advection Equa-
tion

Note that the σ term contains a binomial expansion.
The binomial expansion contains terms that are prod-
ucts of factorials based on n and various powers of
α. As n becomes large the factorial coefficients dom-
inate and more terms in the Taylor series expansion
are needed to properly evaluate the error. For small n
(and small x) we retain only the first term and provide
a useful estimate for error

Êk(x) = [−x

6

∣∣∣∣kc
∣∣∣∣
3

∆x2ei(−kx
c +γ+arctan 1

γ )]f̂k. (30)

Predictably, the magnitude of the error is a function
of ∆x2. The phase shift is represented by the expo-
nential term and grows linearly with x. The above
approximation shows no error as a function of time.
This assumes that all of the temporal modes excited
at the boundary are being resolved. If this is not the
case, then the unresolved modes will alias error back
into the solution.

A numerical experiment was performed to check the
accuracy of the above approximation. In Figure 2 the
analytic solution to the advection equation is plotted
as a solid line, the discrete solution is plotted as dots.
The exact difference between these two solutions is
plotted as a dashed line. The results produced by
Eq. 30 are plotted on the graph as diamonds.

Two different frequencies were excited at the inflow
boundary and the results were plotted for the entirety
of the larger wavelength. Note that the above equation
accurately predicts error for small x. For larger x, the
real error growth slows down and no longer follows the
linear relationship predicted by the above expression.
This error is largely a function of the phase shift in
the wave form caused by dispersive terms. The overall
shape of the waveform is in general preserved due to
the absence of dissipation in the spatial differencing
scheme.

Convergence Acceleration

The transformed equations represent the solution of
a steady system of equations in the frequency domain.
This facilitates applying established convergence ac-
celeration techniques to improve computational effi-
ciency. A V-cycle full multigrid scheme with variable
local pseudo-time stepping and implicit residual aver-
aging was implemented. The solution was advanced in
pseudo time using a modified multi-step RK scheme.
Except for the residual averaging operations, the ex-
plicit nature of the time advancement scheme facil-
itated the parallelization of this code. The current
solver utilizes multiple blocks distributed on differ-
ent processors. A dual halo scheme serves to locally
cache the state vector from neighboring grids. MPI li-
braries implement the actual communication between
processors. The amount of inter-block communication
scales linearly with the number of wavenumbers the
user specifies a priori.

Results
Unsteady Channel Flow

The first test used in the verification of this method
has an analytic solution. The test problem is the sim-
ulation of incompressible inviscid flow through a one
dimensional channel. The physical analogue to this
problem is pictured in Figure 4.

Assuming small perturbations, Merkle and
Athavale13 proposed a solution for the flow field.
Ignoring the time transient terms associated with the
initial guess, the periodic steady state solution is:

ú(t) = − ṕe

ρū

1
1 + Ω2

[sin(wt) − Ω cos(wt)]

Ω =
wL

ū
ṕ(x, t) = ṕe sin(wt)

+ (x − L)
ṕe

L

Ω
1 + Ω2

[Ω sin(wt) + cos(wt)] .

Conservation of mass dictates that velocity is constant
along the length of the duct. However, pressure varies
linearly along the duct length. Both quantities vary
sinusoidally with time.

A numerical experiment was performed to compare
the analytic results with the full non-linear harmonic
balance code. The code was run using the following
physical parameters:

Pressure Pertubation
ṕe

p̄
= 1e − 4

Mach Number M̄ = 0.1
Reduced Frequency Ω = 1.

Numerical solution fields plotted in space and time are
provided in Figs. 5 and 6. Cross sections of the normal-
ized error at different instances in time are provided
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Fig. 3 Computational Grid for Cylinder Flow

in Figs. 7 and 8. These plots show that the maximum
error for both pressure and velocity typically occurs at
the inlet of the channel. To non-dimensionalize these
results we normalized the error by the exit pressure
perturbation, or the maximum velocity perturbation.
Plotting these normalized errors at different instances
in time shows that the maximum error never exceeds
2%. Convergence history results are provided in Fig-
ure 9. Due to the linear nature of the solutions with
respect to x, a first order scalar dissipation scheme
was used. The model used a three level multigrid
V-cycle to accelerate convergence. Machine zero resid-
uals were obtained in 400 cycles. Selection of the
dissipation scheme has obvious impacts on conver-
gence, with higher order dissipation schemes (used in
the cylinder flow) contributing to slower convergence
rates.

Cylinder Flow

The solution in the channel flow test case contains
unsteady perturbations small enough to be modeled
using linear theory. We choose our second test case
as circular cylinder flow at a Reynolds number of 180.
The non-linear capabilities of the harmonic balance
solver are tested by the unsteady perturbations associ-
ated with the Karman vortex street. Figure 3 provides
a plot of the computational mesh directly surrounding
the cylinder.

The grid dimensions are 256 by 128 points in the
circumferential and radial directions respectively. The
mesh boundary is 200 chords from the center of the
cylinder. An exponential stretching function is used
in the radial direction with the smallest grid spacing
of 3.54e − 03 chords occurring at the wall. At the
top of the cylinder roughly 15 grid points captured
the boundary layer. Table 1 provides a list of time

averaged results from both physical experiment (first
three) and numerical computation. A numerical ex-

Experiment −Cpb Cd St

Williamson and Roshko14 0.83
Roshko15 0.185
Wieselsberger16 1.3
Henderson17 0.83 1.34

Table 1 Time Averaged Experimental Data

periment was conducted to determine the effect of the
temporal resolution on the time averaged data. Using
the same grid and boundary conditions we varied the
number of temporal modes used in each calculation.
Table 2 shows the results of these experiments for base
pressure coefficient and coefficient of drag. The num-
ber provided in the temporal modes column does not
include the time averaged mode (k = 0). In addition,
there is no Stroudhal column in the following table
because this parameter was specified a priori. The
Stroudhal value used for this numerical experiment is
0.185.

Temporal Modes −Cpb Cd

1 0.832 1.257
3 0.895 1.306
5 0.903 1.311
7 0.903 1.311

Table 2 Time Averaged Data versus Temporal
Modes

Convergence data for the cylinder test case is prob-
lematic. Given an initial uniform flow field, the so-
lution converged to a steady symmetrically separated
flow; similar to those achieved at lower Reynolds num-
bers. The flow field was then perturbed with user
intervention. The solution then converged to the clas-
sic periodic shedding similar to physical flows at that
Reynolds number. Given an initial solution that al-
ready contained vortex shedding, the single harmonic
case used 600 multigrid cycles, with 5 levels, to lower
the residual by two orders of magnitude. Convergence
rates slowed as the number of temporal modes was
increased.

Contour plots of the solution field are provided in
Figures 10 through 17. The left hand side figures
represent the solution at an initial time. As one moves
to the right, the flow evolves over the full period of
oscillation. Two sets of contour plots are provided in
this group of figures. The sets show the degradation
in the solution features from the lowest temporal res-
olution case containing one harmonic to the highest
temporal resolution case containing seven harmonics.
Obviously, increasing the number of wavenumbers in
the solution increases the detail and resolution of the
features in the unsteady wake.
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Conclusions
An unsteady solver for the fully non-linear viscous

Navier-Stokes equations has been developed. Har-
monic balance techniques are used to transform the
unsteady equations in the physical domain into a
steady system in the frequency domain. The solver
takes advantage of parallelizable convergence acceler-
ation techniques, such as multigrid, to find an efficient
solution to the transformed equations. To verify the
code, numerical experiments were performed on an
unsteady channel and a cylinder shedding periodic vor-
tices. The results showed very good agreement with
the analytic and experimental solutions. Further nu-
merical experiments showed that a limited number of
temporal modes could accurately resolve time aver-
aged flow field quantities.

The results confirm the promise of the harmonic
balance method to achieve significant reductions in
computational cost, particularly in cases where only
a small number of modes are sufficient to represent
the periodic flow. Work is ongoing to extend this code
to real applications in turbomachinery. At the very
least, we believe that it could be very beneficial to
use the harmonic balance method to provide an initial
solution for fully time accurate unsteady simulations.
This should eliminate the need to integrate the solu-
tion over a large number of periods before reaching a
periodic steady state.
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Fig. 4 One Dimensional Channel Flow
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Fig. 5 Velocity in Space/Time for Channel Flow
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Fig. 6 Pressure in Space/Time for Channel Flow
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Fig. 7 Normalized Velocity Error for Channel
Flow
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Fig. 8 Normalized Pressure Error for Channel
Flow
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Fig. 10 Contours of the X Component of Velocity - 1 Harmonic
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Fig. 11 Contours of the Y Component of Velocity - 1 Harmonic
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Fig. 12 Contours of Pressure - 1 Harmonic
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Fig. 13 Contours of Entropy - 1 Harmonic
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Fig. 14 Contours of the X Component of Velocity - 7 Harmonics
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Fig. 15 Contours of the Y Component of Velocity - 7 Harmonics
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Fig. 16 Contours of Pressure - 7 Harmonics
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Fig. 17 Contours of Entropy - 7 Harmonics

11 of 11

American Institute of Aeronautics and Astronautics Paper 2001–0152


