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This paper presents a technique used to accelerate the convergence of unsteady flows
to a periodic steady state. The basis of this procedure is to assume the time period of
the solution’s oscillation and to transform both the solution and residual using a discrete
Fourier transform. However, this paper also presents a method which iteratively solves
for the time period during the process of calculating a solution. These methods are
amenable to parallel processing and convergence acceleration techniques such as multigrid
and implicit residual averaging. The accuracy and efficiency of the technique is verified
by Euler and Navier-Stokes calculations for a pitching airfoil whose period of oscillation
is forced. The capability to identify the natural frequency of oscillation is verified by
Navier-Stokes calculations for laminar vortex shedding behind a cylinder where the time
period of oscillation is unknown a priori. Results show that a limited number of modes
can accurately capture the major flow physics of these model cases.

Introduction
Unsteady flows still present a severe challenge to

Computational Fluid Dynamics (CFD). In general
these flows can be subdivided into two general classes.
The first are unsteady flows where the boundary con-
ditions are forcing the unsteadiness at predetermined
frequencies. Examples of this include the internal flows
of turbomachinery, the external flow fields of helicopter
blades or propellers, and certain aero-elastic computa-
tions. The second general class of unsteady flows are
where instabilities in the fluid mechanical equations in-
duces unsteadiness in the flow field. Examples in this
class include (but are obviously not limited to) vortex
shedding behind a cylinder, and other fluid dynamic
cases involving separated flows and free shear layers.
Without experimental or simplified analytic models,
the temporal frequencies are difficult to determine a
priori for this second class. This paper will present
a reduced order scheme capable of solving unsteady
flows for both classes of problem. The motivation for
developing this scheme is the need to reduce the cost
of unsteady CFD simulations for complex flows.

In general, time accurate solvers are designed to cap-
ture any arbitrary time history in the evolution of the
solution. There are many applications, however, such
as helicopter rotors or turbomachinery where users
are typically only concerned with the data once the
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solution has reached a periodic steady state. Never-
theless, the majority of the computational effort is
expended in resolving the decay of the initial tran-
sients. Algorithmic efficiency is a function of the time
duration associated with this decay rate and the time
step permitted by the algorithm. This time step can
be selected either as a function of the CFL condition
required for stability, or as a function of the tempo-
ral accuracy required by the user. In turbomachinery
cases, any time accurate algorithm will pay a sub-
stantial computational penalty. The decay rate of the
initial transients is slowed by the physical propaga-
tion of waves through the length of the turbomachinery
component. Each wave can reflect in the opposite di-
rection as it contacts a new stage, or it can propagate
through the blade passage. As waves propagate back
and forth through the machine, the length scales of
the system are dramatically increased, and the phys-
ical decay rate is substantially slowed. This situation
is exacerbated in complex geometries where 100 time
steps are often needed to resolve a fundamental period
of the blade passing frequency.

A less expensive approach to the calculation of un-
steady flows is to linearize the flow field about a mean
flow solution and solve for the unsteadiness using a fre-
quency domain approach.1 Assuming that the distur-
bances are small compared to the mean flow values, the
unsteady component of the solution can be expanded
in a Fourier series and a decoupled equation is obtained
for each of the fundamental modes in the expansion.
This equation can be solved with small modifications
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to typical steady-state solvers. The computational
cost is proportional to the cost of the steady-state
solution multiplied by the number of distinct modes
required to attain a desired level of temporal accu-
racy. However the error in the linearization procedure
becomes significant when the amplitude of unsteadi-
ness in the flow is substantial, as happens in most real
viscous flow examples.

Hall et al,2,3 have proposed a harmonic balance
technique for the fully non-linear Navier-Stokes equa-
tions. McMullen et al4 have proposed an alterna-
tive technique in which the equations are solved in
the frequency domain. For time-periodic flows, ei-
ther method can be computationally more efficient
than time-accurate approaches without requiring the
assumptions of a linearized solution. In comparison
with time accurate solvers, which are developed for
arbitrary time histories, frequency domain methods
assume the flow solution is periodic in time. This
permits a substantial reduction in computational cost
when compared with time accurate methods. As with
the linearized method the cost is proportional to the
cost of the steady-state solution multiplied by the
number of temporal modes required. In contrast with
the linearized methods, nonlinear frequency domain
methods do not make assumptions which limit the
magnitude of the unsteadiness in the flow field. This
allows these methods to predict flow field behavior for
a broader class of problems and provides solutions in
which all the temporal modes are coupled together.

Until now, one of the major deficiencies in frequency
domain solvers was the requirement that the user spec-
ify a priori the time period of the solution’s oscillation.
This paper will present a method to address this prob-
lem. Application of this method requires the user
to provide an initial guess of the time period. The
method then iteratively solves for the solution as the
residual of the unsteady equations is minimized.

The Non-Linear Frequency Domain method calcu-
lates only a limited number of temporal modes in the
solution. Because of this, this scheme is generally clas-
sified as a reduced order method.5 These schemes
typically trade a reduced level of computational ac-
curacy for improvements in computational efficiency.
Since each flow field presents different challenges the
validity of the method must be verified on a case by
case basis. In addition, this verification process should
categorize the type of results which can be accurately
predicted for each different flow field. Capturing only
the dominant modes in the solution field can provide
accurate estimates for global properties such as coeffi-
cient of lift and drag but may produce inferior results
for individual unsteady pressure coefficients. In this
paper we examine results from several different test
cases and compare them to experimental data.

Governing Equations
Viscous unsteady fluid flows in two dimensions can

be described by the Navier Stokes equations in integral
form ∫

Ω

∂W

∂t
dV +

∮

∂Ω

~F · ~Nds = 0, (1)

where

W =




ρ
ρu
ρv
ρE




~F1 = f =




ρu
ρu2 + p− σxx

ρuv − σxy

ρuH − uσxx − vσxy + qx




~F2 = g =




ρv
ρuv − σxy

ρv2 + p− σyy

ρvH − uσxy − vσyy + qy


 , (2)

and ~N is the outward pointing normal on the surface
of the control volume. The variables ρ, u, v, and E are
density, Cartesian velocity components and specific to-
tal energy respectively. The flux terms also contain
the thermodynamic pressure, p, the stress tensor, σ,
and the heat flux vector obtained from Fourier’s heat
conduction law, ~q. Closure is provided by the follow-
ing equations for the pressure, shear stresses, and heat
conduction.

p = (γ − 1)ρ
[
e− 1

2
(u2 + v2)

]

σxx = 2µux − 2
3
µ(ux + vy)

σyy = 2µvy − 2
3
µ(ux + vy)

σxy = σyx = µ(uy + vx)

qx = κ
∂T

∂x
= − γ

γ − 1
µ

Pr

∂ p
ρ

∂x

qy = κ
∂T

∂y
= − γ

γ − 1
µ

Pr

∂ p
ρ

∂y
. (3)

The equations can be discretized by dividing the flow
domain into smaller cells. The volume of each cell
is denoted by V . Applying Eq. 1 to each cell in the
mesh, we can take the time derivative operator outside
of the integral sign and the remaining integral can be
approximated by the product of the cell volume and
the current value of the flow solution at the cell cen-
ter. The boundary integral is calculated by discrete
integration of the fluxes around the control volume
in a manner which is equivalent to central differenc-
ing. A modified JST scheme6,7 is implemented to add
third-order artificial dissipation for numerical stability.
Thus Eq. 1 may be expressed as

V
∂W

∂t
+ R(W ) = 0. (4)
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Here

R(W ) =
n∑

j=1

~Fj · ~Sj (5)

is he residual for each cell, and vecFj is the flux
through the cell face with area ~Sj .

Under the assumption that the solution is periodic
over a given time period, we can transform the in-
dependent variables and residual terms into the fre-
quency domain using a discrete Fourier transform. In
the following discussion, the variables Ŵk and R̂k rep-
resent the Fourier coefficients (for a given wavenum-
ber k) of the Fourier transforms of W and R(W )
respectively. Numerically this transformation is ac-
complished using the Fast Fourier Transform (FFT)
in order to minimize the cost of computation. The
computational cost of this transform is proportional
to N log N , where N is the number of time inter-
vals used to describe the signal. For real solutions
the Fourier coefficients for the negative wavenumbers
are simply the complex conjugates of the coefficients
for the positive wavenumbers. By taking advantage of
this property we can eliminate half of the wavenum-
bers from the computation. Once we have obtained
the Fourier coefficients for the expansions of W and
R(W ), we can recover these quantities using the in-
verse discrete Fourier transform as follows:

W =

N
2 −1∑

k=−N
2

Ŵkeikt

R(W ) =

N
2 −1∑

k=−N
2

R̂keikt, (6)

where
i =

√−1.

If we apply the discrete Fourier transform to the
semi-discrete form of the governing equation in Eq. 4,
and we move the time derivative of the state vari-
able inside the series summation, orthogonality of the
Fourier series ensures that the individual contributions
from each wavenumber are separately equal to zero

ikV Ŵk + R̂k = 0. (7)

It follows that a periodic steady-state equation can be
written for each independent wavenumber.

Instead of directly solving Eqs. 7 we add in a pseudo-
time derivative and numerically integrate the resulting
equations

V
dŴk

dτ
+ ikV Ŵk + R̂k = 0 (8)

to reach a steady state solution satisfying Eq. 7. Note,
however, that solution of the physical problem will re-
quire iteration between physical and Fourier spaces,

Fig. 1 Process Flowchart

since, due to the nonlinearity of the residual operator,
R(W ), R̂k cannot be computed directly from Ŵk. R̂k

can only be computed by evaluation of the residual at
a number of time locations within one periodic cycle
and subsequent transformation to Fourier space using
the discrete Fourier transform.

Figure 1 provides a flow chart of the data and trans-
forms used to advance the solution through one itera-
tion in pseudo time. At the beginning of this iteration
we know Ŵ at every grid point for all wavenumbers.
This initial guess can simply result from the discrete
Fourier transform of a constant uniform flow. Using
an inverse FFT we can transform Ŵ back to the state
vector W (t) in time at every grid point. At each time
point we compute the residual R, and, using an FFT
we transform it back to the frequency domain to ob-
tain R̂. We calculate the overall residual by adding R̂
to the source term ikV Ŵ . This overall residual, spec-
ified in the frequency domain, is used to compute the
new approximate Ŵ , and the process returns to the
beginning of the cycle.

Solution Techniques
The modified Eq. 8 represents the solution of a

steady system of equations in the frequency domain.
This facilitates established convergence acceleration
(originally developed for steady systems) techniques
to improve computational efficiency. A V or W cycle
full multigrid scheme with variable local pseudo-time
steps and implicit residual averaging has been imple-
mented. The solution at each grid point is advanced in
pseudo time using a modified multi-step RK scheme.
Except for the residual averaging operations, the ex-
plicit nature of the time advancement scheme facili-
tates parallelization. The current solver utilizes multi-
ple blocks distributed on different processors. A dual
halo scheme serves to locally retrieve the state vec-
tor from neighboring grids. MPI libraries implement
the actual communication between processors. The
amount of inter-block communication scales linearly
with the number of wavenumbers the user specifies a
priori.

Gradient Based Methods for
Determining the Time Period

For the class of flows where the time period of os-
cillation is not known a priori we propose a method
to iteratively determine this parameter. This method
is based on forming a gradient of the residual with
respect to the time period. This gradient informa-
tion is then used to iteratively update the time period
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as convergence is obtained for the unsteady flow solu-
tion. Thomas et al8 have proposed a harmonic balance
method that solves the unsteady equations in the time
domain. They argue that working in the time domain
is easier, and facilitates reuse of existing codes. How-
ever, solving the equations in the frequency domain
provide obvious approaches to forming gradients that
are the basis of this method.

To begin the derivation, the wavenumber k is calcu-
lated by normalizing the sinusoidal period of oscilla-
tion 2π by the time period of interest T .

k =
2πn

T
(9)

The unsteady residual in Eq. 8 can be can then be
written as a function of the time period T .

−V
dŴn

dτ
=

i2πnV

T
Ŵn + R̂n (10)

The process of finding a solution to the unsteady flow
equations is analogous to an optimization problem
where the magnitude of the unsteady residual is min-
imized. We can calculate a gradient of this unsteady
residual with respect to the time period. This gradi-
ent may then be used to iteratively modify the time
period until the unsteady residual is minimized.

In order to implement this concept, we rewrite our
unsteady residual as a figure of merit În defined for
each wavenumber.

În = −V
dŴn

dτ
(11)

Because În is a complex quantity we minimize the
square of the magnitude of this quantity. We can form
a gradient of this cost function with respect to the time
period as

1
2

∂
∣∣∣În

∣∣∣
2

∂T
= Înr

∂Înr

∂T
+ Îni

∂Îni

∂T
(12)

The quantity În is already calculated while monitoring
the convergence of the solution (note that the real and
imaginary parts of În are Înr and Îni respectively).
The partial derivative terms can be expanded in the
following equations.

∂Înr

∂T
=

2πnV Ŵni

T 2
(13)

∂Îni

∂T
= −2πnV Ŵnr

T 2
(14)

The formulas can be further simplified by introducing
cross product notation. We can write the fourier co-
efficient of the solution and residual in terms of two
vectors.

~Wn = Ŵnr î + Ŵniĵ
~In = Înr î + Îniĵ (15)

Description Variable Value
AGARD Case
Number CT6 DI 55
Airfoil 64A010
Mean Angle
of Attack αm 0.00
Angle of Attack
Variation α0 ±1.01◦

Reynolds Number Re∞ 12.56x106

Mach Number M∞ 0.796
Reduced Frequency kc 0.202

Table 1 AGARD Test Case Descriptions

Using this notation the gradient can be expressed as
the magnitude of the cross product of the above vec-
tors.

1
2

∂
∣∣∣ ˆ̂
In

∣∣∣
2

∂T
=

2πnV

T 2
| ~In × ~Wn| (16)

The time period can be updated using the gradient
information by selecting a stable step ∆T .

Tn+1 = Tn −∆T
∂

∣∣∣În

∣∣∣
2

∂T
(17)

Typically one can start with an initial guess in the
vicinity of the final answer for the time period. An
unsteady flow solution can be obtained by solving the
unsteady equations to some residual level. The above
gradient can then be used to adjust the time step at
each iteration in the solution. The solution and gra-
dients are hence simultaneously updated, and a final
solution can be calculated to any arbitrary residual
level.

Results - Pitching Airfoil
In the following subsections we present results from

numerical simulations of the Euler and Navier-Stokes
equations for a two dimensional airfoil undergoing a
periodic pitching motion. The motion of the airfoil is
identical to the experiments performed by Davis.9 The
characteristics of the test are summarized in Table 1.

Euler Equations

Two separate grid configurations were used to gener-
ate the Euler results. The first grid configuration was
an ”O-mesh” generated by a conformal mapping pro-
cedure. The second topology was a ”C-mesh” which
was generated using a hyperbolic grid generation tool.
Table 2 provides a list of the different grids used in
the Euler studies. Figures 2 and 3 depict the near
field resolution of both the ”O-mesh” and ”C-Mesh”
grids respectively.

It should be noted that the measured coordinates of
the experimental cross-section do not exactly match
the 64A010 theoretical profile. The deviation between
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Topology Dimensions Mean Mean Grid
Boundary Spacing
Distance at Wall
(Chords) (Chords)

O-mesh 81x33 128 0.0096
O-mesh 161x33 128 0.0097
C-mesh 129x33 22 0.0087
C-mesh 193x49 22 0.0087

Table 2 Euler Mesh Descriptions

theoretical12,13 and measured coordinates is plotted in
Figure 5. The impact this deviation had on the solu-
tion was investigated using the higher fidelity Navier-
Stokes solutions presented in upcoming sections. For
the Euler simulations, the theoretical coordinates for
the 64A010 airfoil were used in all cases.

In general, the Euler solutions were relatively in-
sensitive to mesh variations. Steady state simulations
were run and compared to the subsonic experimental
results of Peterson.14 The results of all the numerical
simulations reproduce the experimental results with
sufficient accuracy; verifying the spatial resolution of
all the grids.

On each mesh listed in Table 2 we have computed
solutions which use 1,2 and 3 temporal modes for a to-
tal of 12 different solutions. Coefficient of lift (Cl) data
as a function of angle of attack, for all solution permu-
tations, is provided in Figure 6. It is noteworthy, that
little deviation in the global coefficients is achieved
with additional temporal resolution. One can conclude
that Euler solutions can be obtained with only one
mode; which incurs the lowest possible computational
cost. The magnitude of the Cl ellipse is larger than
the experimental results for every case. Having veri-
fied the spatial accuracy of the grid, and investigated
the effect of increasing temporal resolution; it seems
that the over prediction of the Cl experimental results
may be attributed to the lack of viscous damping in
the governing equations, or to errors in the experimen-
tal data. Comparisons with the viscous results in the
following sections tend to support this assertion.

Figure 7 provides coefficient of moment (Cm) data
for the ”C-mesh” cases listed in Table 2. The Cm data
deviates badly from the experimental results. The
trend is not surprising, considering that previous inves-
tigators, using similar spatial discretizations,10 showed
similar discrepancies between the data and time accu-
rate computations of this flow field.

Navier Stokes Equations

A ”C-mesh” grid configuration was used exclusively
to generate the Navier-Stokes results. The grids were
generated with the same hyperbolic mesh generation
tool used in the previous section. Parameters defining
the three different grids used in this survey are pro-
vided in Table 3. The highest density grid, 257x65

Topology Dimensions Boundary Mean Grid
Distance Spacing
(Chords) at Wall

(y+)
C-mesh 129x33 15 11.6
C-mesh 193x49 12 6.9
C-mesh 257x65 12 3.8

Table 3 Viscous Mesh Descriptions

points, is displayed in Figure 4.
Each set of parameters defined in Table 3 were used

to generate grids around both the 64A010 airfoil and
the measured airfoil of the CT6 experiment. All of
these grids were used to provide solutions employing
1,2 and 3 temporal modes. Nine different solutions
were created for grids based on the 64A010 coordi-
nates, and another nine solutions were created for the
measured coordinates of the experimental CT6 airfoil.

For the 64A010 coordinates, the coefficient of lift
results are provided in Figure 8. The variation in Cl

is minimal throughout the range of grid and mode
combinations. The coarsest mesh using only a sin-
gle mode provides a reasonable approximation to the
higher resolution cases. Although the viscous terms
have mitigated the effect, there is still a tendency for
the numerical data to overshoot the experimental re-
sults.

Coefficient of lift results for the CT6 experimental
airfoil are provided in Figure 9. Since the measured
coordinates are not perfectly symmetric, there is a
slight amount of asymmetry in the ellipses. Compari-
son of Figures 8 and 9 shows that there is a significant
amount of variation in the Cl data for a slight variation
in the airfoil geometry.

The coefficient of moment data is more sensitive to
variations in the solution than the Cl data. Figures 10-
12 provide Cm data as function of angle of attack for
each mesh used in this survey. The coarsest mesh pro-
vides small variations in Cm over the range of temporal
modes employed in the solution. The finer meshes, ca-
pable of resolving a larger number of temporal modes,
show some variation in Cm with temporal accuracy.
In both cases, the magnitude of the ellipse (formed by
the numerical results) is lessened with an increasing
number of modes. This effect slightly moves the nu-
merical results closer to the experiment data, but the
difference between the two sets is still significant.

Due to the variation in the numerical results, Cm

data for both the CT6 experimental airfoil and 64A010
airfoil are provided in Figure 13. The differences noted
above (between the CT6 and 64A010 solutions) in the
Cl data are further magnified by the sensitivity of the
Cm data. The figure shows that there is a signifi-
cant variation in the moment coefficient over the entire
range of solution permutations.
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Mesh 1 Mode 2 Modes 3 Modes
(secs/cycle) (secs/cycle) (secs/cycle)

129x33 0.59 1.0 1.5
193x49 1.9 2.9 4.5

Table 4 Execution Time

Computational Cost

This subsection provides data on the computational
cost of the nonlinear frequency domain solver. We
will provide data on the convergence rates of the force
coefficients and the execution speed of the code. For
the Cl and Cm convergence surveys, we will narrow
our focus to solutions using only one temporal mode.
In addition, we will only provide data for two different
grid configurations. The 129x33 ”C-mesh” will be used
for all the Euler results and the 193x49 ”C-mesh” will
be used in the compilation of the viscous results.

Figures 14- 15 provide coefficient of lift data (for
both Euler and Navier-Stokes cases) as a function of
the number of multigrid cycles used in the solver. The
Euler solver provides a converged Cl solution within
10 to 15 cycles. Due to the increased condition num-
ber, the convergence rate of the Navier-Stokes solver is
slower. This latter case takes approximately 60 cycles
to provide a reasonably converged result. Figures 16-
17 provide coefficient of moment data as a function of
the number of multigrid cycles. A trend similar to the
Cl data is observed, with 20 to 30 cycles required to
converge the Euler case, and 120 cycles for the viscous
case.

The speed at which the code executes is provided
in Table 4. The matrix provides execution times
(in terms of seconds per multigrid cycle) as a func-
tion of the number of temporal modes used in the
solution. The results were collected using a desktop
computer equipped with an AMD 1.4Ghz Athlon pro-
cessor. Note that the number of cycles required to
converge the global coefficients is roughly independent
of the number of temporal modes used in the solution.
The required execution time can be approximated by
the product of the number of required multigrid cycles
and the amount of time needed per cycle. All the tim-
ing runs use 64 bit floating point arithmetic. 32 bit
math can be utilized and will reduce execution times
by approximately 50 percent. The timing results con-
firm that the computational cost approximately grows
like 2N +1, where N is the number of unsteady modes
(not including the time average) used in the solution.

Results - Cylinder Flow
Our second test case is the laminar flow around a cir-

cular cylinder. At Reynolds numbers between 49 and
19415 vortices alternately shed off behind the cylinder
into a two-dimensional wake known as a Karman vor-
tex street. The unsteady perturbations in this wake

are substantial and represent a good test of the non-
linear frequency domain method. In contrast with the
forced oscillations of the pitching airfoil, the vortex
shedding is a function of instabilities in the shear layer
of the flow, and the shedding frequency is not known
a priori. Experimental methods or simplified analytic
techniques can be used to provide initial guesses at
this parameter. But the exact shedding frequency pre-
dicted by the discretized equations is unknown at the
start of any numerical investigation.

Last year, McMullen et al4 presented results for this
cylinder flow case at Reynolds number of 180. These
results were produced without the ability of varying
the time period. Instead, the Strouhal number was
fixed a priori based on experimental results. Coeffi-
cient of drag and pressure results from this previous
paper are included in Table 5. The experimental
results cited by this paper are included in Table 6.
Counter intuitively, the predicted base suction coef-
ficient deviates away from the experimental data as
temporal resolution is increased.

Temporal Modes −Cpb Cd

1 0.832 1.257
3 0.895 1.306
5 0.903 1.311
7 0.903 1.311

Table 5 Time Averaged Data versus Temporal
Modes Source: McMullen et al4

Experiment −Cpb Cd

Williamson and Roshko16 0.8265
Henderson17 0.83 1.34

Table 6 Time Averaged Experimental Data

Here we present a new set of results generated by
the Gradient Based Variable Time Period (GBVTP)
algorithm. These results are compiled from a sweep
of simulations over a range of Reynolds numbers and
temporal accuracies. This sweep encompassed 40 dif-
ferent numerical simulations. Ten different Reynolds
numbers were simulated between 60 and 150. For
each Reynolds number, 4 separate simulations were
run with 1,3,5 and 7 time varying harmonics. This
breadth of simulations will statistically give a better
estimate in the accuracy of these solutions; eliminat-
ing any random results that can occur with a single
point comparison.

The grid used in these simulations is identical to
the grid previously employed by McMullen et al.4 Fig-
ure 18 displays this grid directly near the cylinder wall.
The dimensions are 256 by 128 points in the circum-
ferential and radial directions respectively. The mesh
boundary is 200 chords from the center of the cylin-
der. An exponential function stretches the grid in the
radial direction with the smallest spacing of 3.54e−03
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chords occurring at the wall. At the top of the cylinder
roughly 15 grid points capture the boundary layer.

Figures 19- 21 show the Strouhal frequency, mean
base suction coefficient, and mean drag coefficient
as functions of Reynolds number and temporal ac-
curacy. For the purpose of validation, experimental
results from Williamson et al16,18–21 and numerical
results from Henderson et al17 are plotted on these
figures. The latter numerical experiments are consid-
ered highly accurate. They employ a spectral element
method based on 8th order accurate polynomials.

Unlike our previous results, our new predictions con-
verge toward the experimental results as temporal ac-
curacy is increased. For the cases where more than one
temporal mode was used, the percentage difference in
the Strouhal data between the experiment and numer-
ical results is approximately 3.5 percent. This error
is consistent throughout the range of Reynolds num-
bers, with the numerical simulations constantly under
predicting the experimental values. When a single har-
monic is used, we observe another under predicting
trend. In this case, the numerical Strouhal data be-
comes a better approximate of the experimental results
as the Reynolds number decreases.

Unlike the Strouhal data, the mean base pressure co-
efficient converges to experimental values at the lower
Reynolds number for all different temporal resolutions.
As the Reynolds number increases, only the least ac-
curate solution drastically diverges. Slightly different
observations can be made for the mean drag coefficient
data. At the higher temporal resolutions, the numeric
results consistently under predict the mean drag coef-
ficient data of Henderson. When the components of
drag are separated into viscous and pressure compo-
nents the same trend holds true.

The convergence patterns of the global coefficients
suggest that the magnitude of the higher harmonics in
the exact solution continues to increase with increasing
Reynolds number. This observation is supported by
Figure 22 which shows the L2 norm of the magnitude
of the solution’s Fourier coefficient. As the Reynolds
number decreases the decay rate in the solutions higher
harmonic increases. For the lower temporal accuracy
simulations, the error incurred by the unresolved fre-
quencies in the solution decays as the Reynolds num-
ber decreases.

We now examine this equation: If one does not
use a variable time period algorithm, how accurate is
the solution based on any close guess of the Strouhal
number? This question is partially answered in Fig-
ures 23 and 24 which quantify the minimum residual as
a function of the distance between the exact Strouhal
number and one used in fixed Strouhal number sim-
ulation. The data was generated by first obtaining
the exact Strouhal value using a gradient based tech-
nique. Subsequent fixed Strouhal number simulations
were run at Strouhal number perturbed a given dis-

tance from the exact value. Each simulation would
converge to a residual level greater than the machine
zero value. This is the residual plotted in semi-log
format in Figure 23 and log-log format in Figure 24.
With these figures one can estimate the convergence
error in the solution as a function of Strouhal number;
since the residual scales with the distance between an
approximate solution and the exact one. This sup-
ports the assertion that there is a unique time period
that provides an exact (machine level representation)
solution to the discretized equations.

Conclusions
The numerical results confirm the accuracy and

computational efficiency of the nonlinear frequency do-
main method which we have implemented for several
challenging problems of significant practical impor-
tance.

For the cylinder shedding test case, relatively ac-
curate global coefficients were obtained using three
temporal modes. For the forced pitching airfoil case
only one temporal mode was needed to accurately pre-
dict the coefficient of lift. Experimental data for the
coefficient of moment is poorly predicted. The limited
number of modes needed for each case confirms the
promise that this method can provide a computation-
ally efficient algorithm for complex problems.

We have also shown that in problems like vortex
shedding from the cylinder, the dominant natural fre-
quency can be predicted by the Gradient Based Vari-
able Time Period (GBVTP) method.
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Fig. 7 Coefficient of Moment versus Angle of Attack - All Euler Solutions
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Fig. 8 Coefficient of Lift versus Angle of Attack - All Viscous Solutions of 64A010 Airfoil
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Fig. 9 Coefficient of Lift versus Angle of Attack - All Viscous Solutions of CT6 Experimental Airfoil
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Fig. 10 Coefficient of Moment versus Angle of Attack - Viscous Solution - 129x33 Grid of 64A010 Airfoil
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Fig. 11 Coefficient of Moment versus Angle of Attack - Viscous Solution - 193x49 Grid of 64A010 Airfoil
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Fig. 12 Coefficient of Moment versus Angle of Attack - Viscous Solution - 257x65 Grid of 64A010 Airfoil
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Fig. 13 Coefficient of Moment versus Angle of Attack - Viscous Solution - All Grids of CT6 Experimental
Airfoil
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Fig. 14 Convergence of Coefficient of Lift versus Angle of Attack - Euler - 129x33 Grid
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Fig. 15 Convergence of Coefficient of Lift versus Angle of Attack - Viscous - 193x49 Grid
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Fig. 16 Convergence of Coefficient of Moment versus Angle of Attack - Euler - 129x33 Grid
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Fig. 17 Convergence of Coefficient of Moment versus Angle of Attack - Viscous - 193x49 Grid
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Fig. 19 Strouhal Numbers versus Reynolds Number For Laminar Vortex Shedding
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Fig. 20 Mean Base Pressure Coefficient versus Reynolds Number For Laminar Vortex Shedding
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Fig. 21 Mean Coefficient of Drag versus Reynolds Number For Laminar Vortex Shedding
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Fig. 22 L2 Norm of Solution Energy versus Reynolds For Laminar Vortex Shedding
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