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Preface

This research demonstrates the accuracy and efficiency of the Non-Linear Frequency

Domain (NLFD) method in applications to unsteady flow calculations. The basis of

the method is a pseudo-spectral approach to recast a non-linear unsteady system of

equations in the temporal domain into a stationary system in the frequency domain.

The NLFD method, in principle, provides the rapid convergence of a spectral method

with increasing numbers of modes, and, in this sense, it is an optimal scheme for

time-periodic problems. In practice it can also be effectively used as a reduced order

method in which users deliberately choose not to resolve temporal modes in the

solution.

The method is easily applied to problems where the time period of the unsteadi-

ness is known a priori. A method is proposed that iteratively calculates the time

period when it is not known a priori. Convergence acceleration techniques like lo-

cal time-stepping, implicit residual averaging and multigrid are used in the solution

of the frequency-domain equations. A new method, spectral viscosity is also intro-

duced. In conjunction with modifications to the established techniques this produces

convergence rates equivalent to state-of-the-art steady-flow solvers.

Two main test cases have been used to evaluate the NLFD method. The first

is vortex shedding in low Reynolds number flows past cylinders. Numerical results

demonstrate the efficiency of the NLFD method in representing complex flow field

physics with a limited number of temporal modes. The shedding frequency is un-

known a priori, which serves to test the application of the proposed variable-time-

period method. The second problem is an airfoil undergoing a forced pitching motion

in transonic flow. Comparisons with experimental results demonstrate that a limited
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number of temporal modes can accurately represent a non-linear unsteady solution.

Comparisons with time-accurate codes also demonstrate the efficiency gains realized

by the NLFD method.
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Nomenclature

English Letters

A Jacobian of flux vector F or constant coefficient to Strouhal curve fit

B Jacobian of flux vector G or inverse coefficient to Strouhal curve fit

b Component of the control volume face velocity vector

c Isentropic speed of sound

C Linear coefficient to Strouhal curve fit

Cd Coefficient of drag

Cl Coefficient of lift

Cm Coefficient of moment

Dx Discrete operator approximating continuous derivative (x-direction)

Dy Discrete operator approximating continuous derivative (y-direction)

E Stagnation enthalpy

ENl
Error in lift coefficient magnitude

ENm Error in moment coefficient magnitude

e Residual averaging coefficient

F Component of flux vector contained in spatial residual

f Function that scales the speed of sound for Riemann invariants

G Component of flux vector contained in spatial residual

Gm Gain associated with step m of time advancement scheme

GP Gain associated with implicitly evaluated temporal derivative

GQ Gain associated with explicity evaluated temporal derivative

GR Gain associated with spatial residual

Fc Convective part of the flux vector
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Fv Viscous part of the flux vector

Î Fourier coefficient of unsteady residual

J Cell volume

k Wavenumber

Lα Lift transfer function

M∞ Farfield Mach number

Mα Moment transfer function

N Surface normal

NM Cost associated with the number of multigrid cycles required for a converged solution

NN Cost associated with the number of solution instances required to resolve a solution oscillation

NP Cost associated with the number of periods required to reach a periodic steady state

n Integer wavenumber

P̂m
k Temporal derivative used at step m of implicit time advancement

p Pressure

Pr Prantdl number

q Heat flux vector

Q Pressure switch for artificial dissipation scheme

Q̂m
k Temporal derivative used at step m of explicit time advancement

R Spatial residual or normal to cell face orthogonal to boundary wall

Rc Convective part spatial residual

Rv Viscous part spatial residual

R̂ Fourier coefficient of spatial residual

R̂m
k Spatial operator used at step m of time advancement scheme

Re Reynolds number

S Surface area or source term representing temporal derivative

St Strouhal number

t Time

∆t Time step

T Time period of the unsteady solution

Ts Time required to time accurately drive a solution to its periodic steady state

U Fluid velocity vector
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u Component of the fluid velocity vector

V Volume

W Solution

W̄ Steady component of solution

W̃ Unsteady component of solution

Ŵ Fourier coefficient of solution

X Position vector

x Component of the position vector

y Component of the position vector

Greek and Roman Symbols

α Angle of attack or coefficient multiplying overall unsteady residual

αm Mean angle of attack

α0 Magnitude of dynamic angle of attack

δij Kronecker delta

ρ Density

σ Shear stress tensor

γ Ratio of specific heats

Λ Steady state CFL

λ Eigenvalue of spatial discretization

λt Eigenvalue of temporal discretization

λc Convective component of eigenvalue

λv Viscous component of eigenvalue

µ Absolute viscosity

τ Pseudo time

κ Heat transfer coefficient

ε(2) Coefficient controlling first order dissipation

ε(4) Coefficient controlling third order dissipation

εN Coefficient that scales course grid spectral viscosity

ξ Coordinate direction on uniform grid orthogonal to η

η Coordinate direction on uniform grid ξ
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Subscripts and Superscripts

()∗ Dimensionless quantity

()∞ Characteristic quantity
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(‖Ĉl1

‖
‖α̂1‖

)
. . . . . 109

4.14 Magnitude of phase shift between the fundamental harmonic in lift co-

efficient and angle of attack for various temporal resolutions employed

by the NLFD method
(
∠Ĉl1 − ∠α̂1

)
. . . . . . . . . . . . . . . . . . . 110

xv



5.1 Description of the test case used in the comparison of UFLO82 and

the NLFD codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Cost estimation for dual time stepping codes like UFLO82. . . . . . . 125

5.3 Cost estimation for frequency domain codes like NLFD. . . . . . . . . 125

5.4 The number of solutions per wavelength required by UFLO82 to reach

error levels equivalent to results produced by an NLFD code using one,

two, and thee time varying harmonics. . . . . . . . . . . . . . . . . . 127

5.5 Variation in UFLO82 unsteady coefficient of lift as a function of tem-

poral resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 The number of multigrid cycles required by the NLFD solver to obtain

a solution at equivalent error levels. . . . . . . . . . . . . . . . . . . . 129

5.7 NLFD execution time per multigrid cycle as a function of temporal

resolution. Results are normalized by the execution time required by

the steady state or zeroth mode case. . . . . . . . . . . . . . . . . . . 129

5.8 The number of time periods required by the UFLO82 solver to reach

convergence. Separate data is provided for each temporal resolution

listed as SPW or Solutions Per Wavelength. . . . . . . . . . . . . . . 130

5.9 Cost comparison between UFLO82 and NLFD codes using the error in

coefficient of lift as the figure of merit. . . . . . . . . . . . . . . . . . 131

5.10 Cost comparison between UFLO82 and NLFD codes using the error in

coefficient of moment as the figure of merit. . . . . . . . . . . . . . . 131

B.1 Boundary conditions used for test case. . . . . . . . . . . . . . . . . . 170

B.2 The number of multigrid cycles required to achieve machine zero con-

vergence. Two separate cases are provided at different values of T ū
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Chapter 1

Introduction

1.1 Motivation

The calculation of unsteady flows continues to present a severe challenge to Compu-

tational Fluid Dynamics (CFD). While preserving the accurate spatial discretizations

associated with established steady-state solvers, unsteady codes also need to accu-

rately resolve the time history of the solution. The challenge to CFD lies in this

added dimension and its associated computational cost. The motivation behind this

research has been to develop new numerical techniques that can mitigate this cost

while maintaining a high quality representation of the solution.

Estimates from a turbomachinery calculation illustrate the extreme cost of com-

puting a complex unsteady solution. An example is a proposed high fidelity simulation

of both a complete turbine and compressor to be completed as part of Stanford Uni-

versity’s contribution to the Accelerated Strategic Computing Initiative (ASCI). The

unsteadiness in the solution stems from the relative motion of the rotating and fixed

blades, and has a fundamental period which depends on the rate of rotation and the

number of blade passages. Table 1.1 provides estimates for total processor utilization,

and the overall time required to complete the job using one of the massively parallel

computers owned by the Department of Energy [12]. It is obvious from the estimates

that units of months and years are needed to quantify the amount of time required

to complete these jobs. Given the magnitude of these times, unsteady CFD cannot

1
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be appropriately used in an industrial setting as a design tool for applications of this

type.

Component Blade
Rows

Grid
Points
(millions)

Percent
Wheel

CPU
Hours
(millions)

Execution
Duration
(days)

Turbine 9 94 16 3.0 500
Compressor 23 NA 16 7.7 1300

Table 1.1: Computational cost estimates for a multistage compressor and turbine
calculation. Execution time estimates based on 750 processors running in parallel
approximately 8 hours a day.

The above example is representative of a variety of industrial applications for

which the solution exhibits unsteady periodic behavior. The initial conditions deter-

mine the evolution of the solution over time. Typically, the initial transients decay

until the solution reaches a periodic steady state where the solution repeats over a

given time period. It is difficult to define precise mathematical criteria to determine

whether a solution has reached a periodic state. In general, its statistics (mean and

higher order moments integrated over time) will no longer be a function of time. The

rate at which the calculation evolves from its initial solution to a periodic steady state

is a function of the flow field physics, and for most complex flows is indeterminable a

priori.

Many problems have multiple temporal scales associated with their physics. In

the worst case the time scale of initial decay is much larger than the time scale of the

periodic solution. In this situation, the decay of the initial transients represents the

dominant computational cost in comparison with a single oscillation of the solution

at its periodic steady state. For example, Mitchell [53] performed a direct numerical

simulation of the acoustic field produced by an axisymmetric jet. Given an initial axial

velocity profile, the shear layer of the jet was excited via small amplitude disturbances

in the inflow boundary conditions. The shear layer rolled up into vortices which may

or may not pair with one another as they propagate downstream. A fourth order

Runge-Kutta scheme was used to calculate the evolution to a periodic steady state.
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The ratio of the amount of time required to compute a single oscillation in the flow

field versus the amount of time required to reach a periodic steady state is shown

in table 1.2. The table presents the results of three different simulations performed

at varying Mach numbers and shear layer widths. Given that the user only required

a solution for a periodic steady state, it is evident that roughly 95 percent of the

computational time was used to generate irrelevant results.

Description Mach Number T
Ts

Thick Shear Layer 0.4 5.8 %
Single Pairing
Thick Shear Layer 0.8 3.6 %
Single Pairing
Thin Shear Layer 0.8 3.6 %
Dual Pairing

Table 1.2: Results from a number of different runs produced by Mitchell’s direct
numerical simulation of subsonic axisymmetric jets. The final column provides the
ratio of time required to capture one oscillation for the lowest frequency in the solution
(T ) to the time required to reach a periodic steady state (Ts).

Another example of a physical problem with multiple time scales is the numerical

simulation of the flow through an axial flow turbine. Such a calculation has been

performed by Yao et al. [77] as part of a verification process for the ASCI TFLO

solver. The code performed an unsteady Reynolds Averaged Navier-Stokes (RANS)

calculation on a 11
2

stage turbine modeled after an experimental test rig. Figure 1.1

shows the evolution of the mass flux into the machine during the process of the

computation. A periodic steady state was reached after roughly 2500 time steps.

The fundamental period of the oscillation of the solution at its converged state is

resolved in about 80 time steps, a ratio is approximately 3.2 percent, which is similar

to the results for the shear layer.

Unsteady flows can be divided into two main categories. The first category in-

cludes flows where the resolution of the initial transients is relevant, and accurate

initial conditions are required. In the second category the user requires only the so-

lution once it has reached a periodic steady state. As in the case of a steady flow
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Figure 1.1: A plot of mass flux as a function of time for the TFLO simulation of the
Aachen experimental test rig.

simulation, the final periodic state is independent of the initial conditions. Com-

monly the initial conditions are arbitrary guesses, although they may be derived by

a lower order method. If a time-accurate solver is used in this case, the simulation

of the evolution to a periodic steady state may be a function of non-physical initial

conditions, and consequently deemed irrelevant.

The motivation of this research is to improve solver technologies for the second

class of problems. There exist many physical problems within this class where bound-

ary conditions force the unsteadiness at predetermined frequencies. Examples of this

include the internal flows in turbomachinery, the external flow fields of helicopter

blades or propellers, and certain aeroelastic computations. A second category exists

where the unsteadiness is induced by instability waves within the flow field. The

resulting periodic flow is the result of boundary conditions, but the unsteadiness is

not forced at any predetermined frequency. Examples in this class include (but are

obviously not limited to) vortex shedding behind a cylinder and other fluid dynamic

cases involving separated flows and free shear layers. Estimates of the frequencies of

the unsteadiness can be gained via experimental data or simplified analytic models.
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However, the exact temporal frequencies for a given spatial discretization are usually

impossible to determine a priori. The research presented in this thesis focuses on

methods that are amenable to both situations.

1.2 Previous Work

Topics covered in the following sections include explicit, implicit, factored ADI, lin-

earized frequency domain, and non-linear frequency domain schemes. While a variety

of different governing equations may be used to model fluid mechanics (from linear

potential methods to fully non-linear direct Navier-Stokes calculations), this work fo-

cuses only on solutions to the unsteady Euler and Navier-Stokes equations. Citations

to investigators employing these schemes will originate from fields of study inside of

unsteady computational fluid dynamics which include: aeroacoustics, aeroelasticity,

turbomachinery and numerical investigations of turbulence.

1.2.1 Time-Accurate Methods

Most schemes, with the notable exception of the Lax-Wendroff scheme, can be con-

structed by discretizing in space while leaving the time term continuous to produce

a system of coupled Ordinary Differential Equations (ODE) [22]. This is known as

the semi-discrete form of the equations, and advancing this system forward in time

is also known as the method of lines. Equation 1.1 shows the semi-discrete form of

an arbitrary system of conservation laws in two spatial dimensions. The Dx and Dy

operators are discrete approximations to the continuous derivatives operators ∂
∂x

and
∂
∂y

respectively. The vectors F and G represent functions of the solution variable W

constructed to conserve a property of the fluid (mass, momentum, energy etc)

dW

dt
= −R(W )

R(W ) = DxF (W ) + DyG(W ). (1.1)

The following sections focus on previous work where numerical schemes for this
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approach have been applied to unsteady problems in fluid dynamics. Global time

accuracy requires that approximation of the temporal derivative is at least second

order accurate in the time step O (∆t2).

Explicit Time-Stepping Schemes

The most straightforward approach to solving a system of ODEs via the method of

lines is to employ an explicit time integration scheme, where the time derivative of

the ODE is evaluated using known information. Explicit schemes can be be classified

into two basic types: multistep methods and predictor-corrector schemes. Two-step

multistep methods can be generally described as:

(1 + ξ)W n+1 = [(1 + 2ξ)W n − ξW n−1] + ∆t[(1 + ϕ)
dW n

dt
− ϕ

dW n−1

dt
], (1.2)

where the solution at the nth time step is denoted as W n. This equation can be ex-

tended to multistep methods using more than two steps. Similarly, predictor-corrector

schemes (including Runge-Kutta) can be generally described by the following system

of equations:

W β = W n + γtα1
dW n

dt

W γ = W n + γt(α2
dW n

dt
+ β2

dW β

dt
)

W δ = W n + γt(α3
W n

dt
+ β3

dW β

dt
+ γ3

dW γ

dt
)

W n+1 = W n + γt(α4
dW n

dt
+ β4

dW β

dt
+ γ4

dW γ

dt
+ δ4

dW δ

dt
). (1.3)

These schemes use the solution W n at the nth time step and non-physical solutions

at fractional time steps denoted as W β, W γ and W δ. Because of the similarity of the

methods, this section will address issues associated with both of these groups.

The error and stability characteristics for a number of methods contained in both

categories are provided in table 1.2.1. The second and third columns in this table
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provide the order of the solution error in terms of the linearized form of the semi-

discrete equation provided as:
dW

dt
= λW. (1.4)

These columns define the relationship between the spectral radius, λ, and the solution

error components in terms of their magnitude and phase contributions for the model

convection problem

Using columns two and three, and following the arguments of Pulliam et al. [43],

estimates for the efficiency of each scheme can be derived. Columns four and five

provide the numerical error produced by a simulation which advances a linear system

forward a fixed amount of time. The amount of work consumed by the different

simulations is held constant. This is achieved by altering the time step ∆t for each

scheme such that the total number of residual evaluations remains fixed. The scheme

with the least amount of error can be considered the most efficient; within this group

the most efficient method is arguably the fourth order Runge-Kutta scheme. The

final column provides a plot of the stability region of the scheme in the complex λ∆t

plane. The gray sections of these plots show the values of λ∆t for which the numerical

scheme will remain stable.

Given a rectangular cell (with width ∆x and height ∆y), an estimate of the

spectral radius produced from a second order symmetric discretization of the Navier-

Stokes equations is provided in equation 1.5. The variables u and v denote the

components of the velocity vector in the x and y directions respectively, while µ is

the absolute viscosity of the fluid

λ =
|u|+ c

∆x
+
|v|+ c

∆y
+

4µ

∆x2
+

4µ

∆y2
+

2

3

µ

∆x∆y
. (1.5)

For time-accurate schemes the time step for all the cells in the mesh is the min-

imum of the time step calculated at each cell. For viscous calculations at large

Reynolds numbers, the mesh needs to be significantly refined in the boundary/shear

layers to resolve the gradients in the solution. The dominant contribution in the

calculation of the spectral radius becomes the 1
∆y2 term which typically determines
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the minimum time step. Given the stability regions of even the most efficient ex-

plicit schemes, a large number of time steps and work will be required to resolve a

single oscillation in the solution. As the Reynolds number increases the grid refine-

ment increases and the time step decreases. Eventually any further increases in the

Reynolds number of the simulation will require more computational effort than what

is available via modern computer hardware.

Successful calculations have been performed using explicit techniques for very

low Reynolds number flows. For example, Kwak et al. [41] used a second order

Adams-Bashforth method to perform unsteady computations of periodic turbulent

flow matching experiments generating mesh turbulence at a Reynolds number of

34,000. More recently, Manning and Lele [44] performed unsteady calculations of

a moving shock interacting with a shear layer. They used the third-order accurate

RK scheme of Wray [76] to advance the viscous equations at a Reynolds number

of 1000 based on the initial vorticity thickness. However, these calculations may

represent the upper bound in the attainable Reynolds number for explicit schemes.

This conclusion is reinforced by a study of flow separation behind a backward facing

step performed at similar Reynolds numbers by Akselvoll and Moin [2]. Prior to

the simulation, Akselvoll calculated the allowable time steps for a similar flow to

demonstrate the dominance of the viscous terms on stability. Even at these low

Reynolds numbers, Akselvoll adopted an implicit implementation of these terms to

mitigate their restrictions on stability.

Implicit Time-Stepping Schemes

Implicit methods are more difficult to implement because the time derivatives of the

discretization must be evaluated using future or unknown values of the solution. The

benefit of these schemes is typically an expansion of the stability region, ultimately to

the extent that they can be stable for arbitrarily large time steps whenever the true

solution is non-increasing (A-stability). In contrast to the limited stability regions

of the explicit schemes, A-stable methods are stable over the entire left half of the

complex λ∆t plane. The disadvantage of these schemes is that they require the

solution of a system of (possibly non-linear) equations at each time step.
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A popular implicit time-accurate scheme, the Crank-Nicholson method (also known

as the ”One-Step Trapezoidal” method), is defined as follows:

W n+1 = W n +
∆t

2

[
dW n+1

dt
+

dW n

dt

]
. (1.6)

Following Briley and McDonald [10] or Beam and Warming [7] one can linearize the

non-linear residual term using a Taylor series expansion as provided below:

R(W n+1) = R(W n) +
∂R(W n)

∂W
(W n+1 −W n) +O(∆t2). (1.7)

Using equations 1.6, 1.7 and 1.1, one can write the Crank-Nicholson scheme as applied

to a multidimensional system of equations in delta form:

[
I +

∆t

2

(
Dx

∂F

∂W
+ Dy

∂G

∂W

)]
∆W = −∆tR(W n), (1.8)

where

∆W = W n+1 −W n. (1.9)

If one were to directly solve this system of equations using LU factorization, the

operation count would grow like O(N(b + 1)2) where b is the bandwidth of the left

hand matrix and N is the number of equations [27]. In two dimensions the equations

can be ordered so that the bandwidth is proportional to the product of the smallest

dimension of the grid and the number of flow variables. In three spatial dimensions

the bandwidth grows like the product of the two smallest dimensions and the number

of flow variables. Consequently calculations on grids with even a moderate number

of cells may become too expensive to compute. In this case the benefits afforded by

the enlarged stability region are outweighed by the cost of directly inverting large

matrices.

The first alternative to this approach is to use an iterative procedure and ap-

proximately solve the system of equations to a residual level that does not affect the

overall accuracy of the solution. In this case, there is no need to linearize the tempo-

ral discretization scheme. A widely used approach is to add a pseudo time derivative
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to the equations, and advance the solution in pseudo time until the residual of the

discrete unsteady equation is negligible [34, 5, 13, 78]. This is commonly called the

dual time-stepping method. It can be adapted to the Crank-Nicholson scheme shown

in equation 1.6. However it is more commonly used with the backward difference

formula:
dW n+1

dτ
+

3W n+1 − 4W n + W n−1

2∆t
+ R(W n+1) = 0. (1.10)

This has the advantage that it is both A-stable and damps the highest frequency

modes. In the dual time-stepping method a nested system of loops is required to

advance the solution. The inner loop is the set of iterations required by the solver to

advance the solution forward in pseudo time to reduce the magnitude of the unsteady

residual. The outer loop is the set of solutions at each physical instance in time.

Extremely large physical time steps can be used due to the A-stable nature of the

second order version of the time discretization.

Since the inner iterations are advanced in pseudo time, established iterative meth-

ods to accelerate the convergence (such as multigrid, residual averaging and local time

stepping) can be applied without loss of temporal accuracy for the outer loop in phys-

ical time. These methods use explicit evaluations of the residual, avoiding the need

to invert a linearized system of equations. The overall cost of the solution is propor-

tional to the product of the work done per time step and the number of time steps

required to drive the initial transients from the solution while accurately resolving it

at its periodic steady state.

The second alternative is to factor the left hand side of equation 1.8, thus in-

troducing an error term proportional to the product of ∆t2 and the change in the

solution between time steps ∆W :

[
I +

∆t

2
Dx

∂F

∂W

] [
I +

∆t

2
Dy

∂G

∂W

]
∆W =

−∆tR(W n)− ∆t2

4
Dx

∂F

∂W
Dy

∂G

∂W
∆W. (1.11)

Factoring the delta form of the equations has advantages in terms of convergence

over factoring a non-delta form of the same equations [43]. Ignoring the factorization



CHAPTER 1. INTRODUCTION 11

error, one can solve the above equation in two steps, each requiring the solution of

multiple block tridiagonal systems:

[
I +

∆t

2
Dx

∂F

∂W

]
∆W̄ = −∆tR(W n)

[
I +

∆t

2
Dy

∂G

∂W

]
∆W = ∆W̄ . (1.12)

The advantage of this approach is that the computational cost grows linearly with

the number of grid points used in the calculation. The resulting scheme is nominally

second order accurate with three sources of error: discretization error, linearization

error, and factorization error. Unfortunately the factorization error can dominate

at large CFL numbers, and the matrix inversion process is not easily amenable to

parallel processing.

Commonly the time step that can be used with explicit algorithms is limited

by the stability restrictions of the scheme. At first glance, A-stable schemes seem

to be more efficient because they eliminate these restrictions. Unfortunately, there

are complications when two separate time scales exist. Figure 1.2 shows the time

history of the velocity at a point in the unsteady channel flow problem proposed

in Appendix B. Note that the time scale associated with the decay of the initial

transients is much larger than the time period of the oscillation of the solution in its

periodic steady state. Although this is a model problem, similar phenomena are found

in other applications such as aeroacoustics, aeroelasticity [15] and turbomachinery

(see section 1.1). Regardless of the stability criteria, the time step is limited by

the number of points required to resolve one time period (see modified wavenumber

discussion in section 2.2.3). In this case, the time step is a fraction of the period

of oscillation which in turn is a fraction of the time scale associated with the initial

decay. If the time step is fixed over the duration of the calculation, the majority of

work is spent resolving the solution during its initial decay.

In order to take full advantage of implicit schemes, one must adaptively change

the time step during the evolution to a periodic steady state. The definition of

robust criteria for setting the time step is difficult for non-linear problems in complex
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Figure 1.2: Perturbed velocity at any point along the unsteady channel with a reduced
frequency Ω = 50.

geometries. Taking this approach to an extreme, one can solve for the time-averaged

solution to initially seed the time-accurate calculation. This procedure is analogous

to using an implicit time-accurate scheme with an infinite time step. Unfortunately,

since the time-average is not a solution to the time-accurate equations, an initial

transient will still be created, although it will be smaller than one created by a bad

initial guess. In turbomachinery calculations this technique sometimes decreases the

cost of the calculation by roughly half [12].

1.2.2 Periodic Methods

An alternative to the time-accurate methods discussed in previous sections is to as-

sume that the solution is periodic over time. This is not a time-accurate approach

in the sense that it does not admit transient decay as a component of the solution.

Instead the method directly calculates the solution at its periodic steady state. Given

the assumption of periodicity, trigonometric interpolants such as a Fourier series, can

be used to accurately and efficiently represent the solution. The application of these
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methods to a non-linear system of equations presents some difficulties. The following

sections cover the different approaches in the application of these techniques culminat-

ing in the full Non-Linear Frequency Domain (NLFD) method, which is the subject

of this research.

Linearized Frequency Domain Methods

A commonly-used approach is to linearize the governing equations by splitting the

solution variable into steady W̄ and unsteady components W̃ :

W = W̄ + W̃ . (1.13)

The magnitude of the unsteady (or perturbed) component is assumed to be much

smaller than the magnitude of the steady component. Substitution of the split form

of the solution into the governing equations leads to the following equation:

∂W̃

∂t
+

∂F (W̄ )

∂x
+

∂F (W̄ , W̃ )

∂x
+

∂F (W̄ , W̃ 2+)

∂x

+
∂G(W̄ )

∂y
+

∂G(W̄ , W̃ )

∂y
+

∂G(W̄ , W̃ 2+)

∂y
= 0. (1.14)

Note that the flux vectors F and G have been split into three components.

• F (W̄ ) are the components of F depending only on the mean of the solution,

W̄ .

• F (W̄ , W̃ ) are the components of F depending on the mean of the solution W̄

and terms which are first order in the unsteady variable W̃ . This term and

its analogue in the y-direction can be rewritten as the product of the Jacobian

matrices, calculated using the mean flow values, and the perturbed variables as

follows:

F (W̄ , W̃ ) = ĀW̃

G(W̄ , W̃ ) = B̄W̃ . (1.15)
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Where A and B are the Jacobian matrices

A =
∂F

∂W
B =

∂G

∂W
. (1.16)

• F (W̄ , W̃ 2+) are the components of F depending on the mean of the solution W̄

and terms which are second order and greater in the perturbed variable W̃ .

To simplify equation 1.14, assume that the mean flow is solved to a residual level

that is negligible in comparison with the unsteady perturbations. Second, ignore all

terms in the derivation that are second order in the perturbed variables (F (W̄ , W̃ 2+)

and G(W̄ , W̃ 2+)). This assumption is valid, given that the perturbed variables were

assumed to be small in comparison to the mean flow, and hence first order terms

will be dominant. The linearized form of the governing equations for both the time-

averaged and unsteady modes can be stated as:

∂F (W̄ )

∂x
+

∂G(W̄ )

∂y
= 0

∂W̃

∂t
+

∂(ĀW̃ )

∂x
+

∂(B̄W̃ )

∂y
= 0. (1.17)

The perturbed variable can be represented as a Fourier series

W̃ (t) =
∞∑

k=−∞
Ŵke

ikt. (1.18)

Taking advantage of orthogonality, substitution of the above series into the unsteady

equation leads to the following form:

ikŴk +
∂

(
ĀŴk

)

∂x
+

∂
(
B̄Ŵk

)

∂y
= 0. (1.19)

The procedure is to first solve for the mean flow components of the solution. Then

one can solve for any temporal frequency of the solution using the mean flow com-

ponents to calculate the Jacobian matrices Ā and B̄. Due to the linearity of the

governing equations, all of the temporal modes are uncoupled and can be calculated
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independently and simultaneously. The cost of this solution procedure is propor-

tional to the product of the number of temporal modes calculated and the cost of the

steady solution. The scheme does have drawbacks. Applications in turbomachinery

and aeroelasticity often require transonic solutions where the movement of the shock

wave is non-negligible, making this approach inapplicable due to the assumptions of

the linearization.

Deterministic-Stress Methods

Adamczyk [1] proposed several different linearizations and averaging operators of

the velocity variable to form what he termed the deterministic stress. This term is

similar to a Reynolds stress in that it attempts to quantify the effects of the unsteady

field on the time averaged solution. Adamczyk proposed modeling these terms, but

subsequent authors [25, 11] proposed calculating these terms with a modified version

of a linearized frequency domain solver. The method begins with the split form of

the governing equations presented in equation 1.14. This equation is then integrated

over a period of time T equivalent to the time period of the fundamental harmonic.

Terms which are periodic over this interval do not contribute to the integral and can

be dropped, resulting in the following equation

F (W̄ )

∂x
+

G(W̄ )

∂y
+

1

T

∫ T

0

F (W̄ , W̃ 2+)

∂x
+

G(W̄ , W̃ 2+)

∂x
dt. (1.20)

The terms contained in the integral are labeled the deterministic stresses and

represent the feedback that the unsteady modes have on the time-averaged solu-

tion. The unsteady modes are solved using the same linear equation presented above,

except now the modes are coupled and require simultaneous solution of both the

time-averaged and unsteady terms. Assuming the coupling process does not affect

the convergence rate of the solver, the execution time required by the non-linear

method should be equivalent to the execution duration of a linearized method. A

slight penalty is incurred by the additional memory required to hold all the unsteady

modes simultaneously.

Although some of the nonlinearities are addressed in the time-averaged solution,
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the higher order terms are still neglected in the solution of the unsteady modes. The

assumptions of the linearization still must apply for these modes, limiting the applica-

bility of the method. In addition, the method couples only the time-averaged solution

to the higher harmonics. No direct coupling between the harmonics is mathematically

evident. This method will poorly represent physical problems where significant energy

is transferred between the fundamental and higher harmonics. Despite these short-

comings, Adamczyk-type methods are widely used throughout the turbomachinery

industry.

Non-Linear Frequency Domain Methods

None of the preceding methods can adequately account for the strong nonlinearities

which are typically encountered in flows in turbomachinery and rotorcraft. This

brings us to methods which represent the full non-linear equations in the frequency

domain. These are the focus of the research reported in this thesis. The Harmonic

Balance method proposed by Hall et al. [24] represents the first full non-linear method

in the frequency domain.

Beginning with the governing equations presented in equation 1.1, both the resid-

ual and the solution can be represented by Fourier series in time (see equation 1.18).

Taking advantage of the orthogonality of Fourier series, the resulting governing equa-

tion can be expressed in the frequency domain as:

ikŴk + R̂k = 0. (1.21)

Here, because R(t) is a non-linear function of W (t), R̂k can not be easily determined

from Ŵk. A more efficient approach is to obtain W (t) as the transform of Ŵk, use it

to calculate R(t), and obtain R̂k as the transform of R(t).

Transforming equation 1.21 back into the temporal domain results in a coupled

set of equations which represent the unsteady residual terms at each instance in the

time history of the solution

S(t) + R(t) = 0, (1.22)
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where S(t) is the spectral representation of ∂W
∂t

under the assumption of periodicity

S(t) =

N
2
−1∑

k=−N
2

ikŴke
ikt. (1.23)

With the addition of a pseudo-time term, established methods of convergence accel-

eration developed for steady flows can now be applied to this stationary system of

equations. Hall adds pseudo-time derivatives to the coupled equations 1.22 to solve for

the unsteady residuals in the time domain. In the present work pseudo-time deriva-

tives are added directly to the equations 1.21 in the frequency domain. In contrast

to conventional time-domain methods, the non-linear frequency domain approach in

either of these variations constitutes an integrated space-time discretization in which

the equations must simultaneously be solved for all the discrete samples in both space

and time.

Assuming that all of the relevant modes in the solution and residual are repre-

sented, the method will account for all the nonlinearities in the governing equations.

However, Hall et al. [23, 24] and McMullen et al. [48, 49] show that a limited number

of modes are often sufficient to capture the dominant physics in the solution. Lim-

iting the number of modes has the obvious advantage of decreasing the number of

instances of the unsteady residual that need to be calculated. If all the modes of the

solution converge as quickly as a similar steady state calculation, then the cost of the

calculation is the product of the cost of a steady solution and the number of instances

used in the time series of the unsteady residual.
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Scheme Local Error Global Error Stability
Mag Phase Mag Phase Diagram

Adams
Bashforth

p4

4
5p3

12
2.18e-02 9.79

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Leapfrog p4

4
p3

12
9.17e-02 4.45

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

RK-2 p4

8
p3

6
8.31e-02 14.5

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

RK-3 p4

24
p5

30
7.63e-02 2.48

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Hyman p4

12
4p5

45
4.43e-02 1.30

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

RK-4 p6

144
p5

120
2.25e-02 1.96

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Table 1.3: The error and stability characteristics of a number of explicit multistep
methods. Note: ip = λ∆t. Source: Pulliam [43]
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1.3 Approach

The main objective of this work is to improve the efficiency of periodic steady state

flow solvers. While the Non-Linear Frequency Domain method leads to an integrated

space-time discretization, this research is focused primarily on the representation

of the temporal derivatives. The approach which has been adapted is to modify a

steady state code with its existing spatial operators by adding an implementation of

the Non-Linear Frequency Domain method. The efficiency and accuracy of the new

method have been verified for three different model problems. Each model problem

demonstrates a different aspect of the functionality of the new solver.

• Linearized unsteady channel flow was chosen as the initial model problem. An

analytic solution derived in the context of linearized perturbation theory is avail-

able for comparison. The decay rates of the initial transients can be expressed

as a simple exponential function and the convergence rates of the NLFD solver

can be shown to be independent of this parameter.

• The second model problem was the laminar vortex shedding behind a circular

cylinder. Primarily the case demonstrates the efficiency of the solver in repre-

senting complex flow field physics with a limited number of temporal modes.

Since the shedding frequency is unknown a priori, it also serves to test the ap-

plication of gradient-based-variable-time-period methods. These methods were

developed by this research to iteratively find the exact time period of the dis-

crete equations given an initial guess in its vicinity.

• The third model problem was transonic flow about a pitching airfoil. Due to

the popularity of this case in aeroelastic research, this research has the luxury

of comparing NLFD results to multiple experiments and time-accurate codes.

The case demonstrates the efficiency and accuracy of the solver in capturing

the fully non-linear physics of moving shock waves.

The emphasis of this research is on algorithm development. It is not the main intent

of this work to provide additional understanding of physical phenomena. As such,

the model problems chosen in this work are relatively simple. The intent was to
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reduce the physical complexity of the model problems to assist in the isolation of the

algorithm strengths and weaknesses.

The other criterion used in the selection of the model problems was the existence

of analytic, computational or experimental data previously obtained in independent

investigations. A time-accurate code had already been developed for the case of the

pitching airfoil, providing the opportunity to compare both the accuracy and efficiency

of the different techniques.

1.4 Overview

The research has produced several noteworthy results.

• Harmonic balance methods, as proposed by K. Hall [23, 24] for the Euler equa-

tions, have been recast in the frequency domain and extended to the laminar

and turbulent Navier-Stokes equations. Modifications to convergence acceler-

ation methods (multigrid, residual averaging, and pseudo-local time stepping)

have been successfully applied to guarantee convergence rates equivalent to

state-of-the-art steady flow solvers.

• A gradient-based-variable-time-period method has been developed to allow fre-

quency domain methods to be applied to classes of problems where the dominant

frequency is unknown a priori. The method is shown to improve the quality

of the solution over fixed-time-period computations, which do not completely

minimize the magnitude of the unsteady residual.

• Comparisons with experimental datasets and other numerically generated re-

sults have been made. The experimental comparisons support the conclusions

that the NLFD methods can accurately describe fully non-linear problems using

a limited number of modes. Comparison to state of the art time-accurate codes

show that NLFD methods offer significant savings in computational cost.

• The convergence rate of the Non-Linear Frequency Domain method is shown
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to be independent of the decay rates of the initial transients. Because time-

accurate solvers are accurately capturing the decay of the initial transients, the

computational cost of these solvers are direct functions of this decay rate. Alter-

natively, NLFD methods solve only for solutions that exhibit periodic behavior.

Chapter 2 documents the numerical methods employed in this research. In addi-

tion to describing the frequency domain method, this chapter outlines aspects of the

spatial discretization, boundary conditions, and convergence acceleration techniques

used in the solver. Chapter 3 presents results from laminar vortex shedding behind

a cylinder. This chapter compares NLFD solutions (with and without variable time

period methods) to experimental data sets. The goal is to verify the accuracy of the

NLFD and variable-time-period methods. Chapter 4 compares NLFD solutions to

experimental data from a transonic pitching airfoil at a fixed frequency. This chapter

begins by comparing steady NLFD results with experimental data in an attempt to

verify the spatial accuracy of the grids employed. These same grids are the basis

for unsteady NLFD computations which are compared to different sets of unsteady

experimental data. The goal of this chapter is to verify the accuracy of the NLFD

method in a non-linear environment containing significant shock movements. Chap-

ter 5 compares the efficiency of a NLFD solver to time-accurate codes. To eliminate

the impact of spatial error on the comparison, the chapter begins by demonstrating

the equivalence of the spatial operators contained in the two codes. An efficiency

comparison is performed based on the amount of work needed to reach equivalent

temporal error levels.



Chapter 2

Methodology

2.1 Governing Equations

For an arbitrary volume of fluid Ω, conservation of mass, momentum and energy can

be expressed in the following integral form:

d

dt

∫

Ω

WdV +

∮

∂Ω

~F · ~Nds = 0. (2.1)

This integral form contains volumetric integrals denoted as
∫
Ω

dV and surface integrals

denoted as
∮

∂Ω
ds. The outward pointing unit normal to the surface is defined as ~N .

For a two-dimensional flow, the physical properties of the fluid (density ρ, Cartesian

velocity components ui, and stagnation energy E) are collected into the state vector

W =




ρ

ρu1

ρu2

ρE




. (2.2)

The transport and/or production of these properties is accounted for in the flux

vector ~F . For convenience this overall flux is split into convective, ~Fc, and viscous,

~Fv, components

~F = ~Fc − ~Fv. (2.3)

22
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The convective fluxes will include those terms normally associated with the Euler

equations and the fluxes associated with a moving control volume. The velocity of

the surface of the control volume is denoted as ~b. Using indicial notation these terms

can be defined for each coordinate direction, i, in two-dimensional space as:

Fci
=




ρ (ui − bi)

ρu1 (ui − bi) +δ1ip

ρu2 (ui − bi) +δ2ip

ρE (ui − bi) +uip




. (2.4)

The viscous fluxes will include the stress tensor terms associated with viscous dissi-

pation

Fvi
=




0

σi1

σi2

ujσij + qi




. (2.5)

Closure for the energy and viscous stress tensor terms is provided by the following

relationships:

p = (γ − 1)ρ

[
E − 1

2
(ujuj)

]

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λδij

∂uk

∂xk

qi = κ
∂T

∂xi

=
γ

γ − 1

µ

Pr

∂

∂xi

(
p

ρ

)
. (2.6)

For all the analyses presented in this thesis the ratio of specific heats, γ, and the

Prandtl number, Pr, are held constant at 1.4 and 0.72 respectively. The relationship

between absolute viscosity µ and temperature T is determined by Sutherland’s law.

Following the analysis presented in appendix A.1 the conservation laws can be

stated in dimensionless form as:

d

dt∗

∫

Ω

W ∗dV ∗ +

∮

∂Ω

~Fc
∗ · ~Nds∗ =

√
γ

M∞
Re∞

∮

∂Ω

~Fv
∗ · ~Nds∗. (2.7)
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2.2 Numerical Method

2.2.1 Transforming the Equations into the Frequency Do-

main

This section presents the complete discretization used to approximate the conserva-

tion laws presented in equation 2.7. These equations are approximated using the

finite volume approach where the continuous surface integrals are represented by a

discrete summation of fluxes across a finite number of faces on the control volume:

∮

∂Ω

~F · ~Nds =
∑
cv

~F · ~S. (2.8)

The approximation of the flux vector, ~F , that ensures numerical stability is the subject

of shock capturing theory, which has been developed over the last two decades. This

theory is well established and is not the focus of this research. Consequently, the

implementation of these schemes and all other spatial operators used in this research

are described in the appendixes.

Having approximated all the spatial operators, the remaining term in the conser-

vation laws is the temporal derivative of the volumetric integral of the solution. This

is approximated as the product of the cell volume with the temporal derivative of

the average of the solution over the cell. Adding the spatial and temporal operators

together results in the complete approximation to the governing equations:

V
∂W

∂t
+

∑
cv

~Fc · ~S −
∑
cv

Fd −
√

γM∞
Re∞

∑
cv

~Fv · ~S = 0. (2.9)

The spatial operator R is introduced as a function of space and time including both

the convective and dissipative fluxes.

R =
∑
cv

~Fc · ~S −
∑
cv

Fd −
√

γM∞
Re∞

∑
cv

~Fv · ~S. (2.10)
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The term includes not only the natural viscous dissipation, ~Fv, but also any artifi-

cial dissipation, Fd, provided by shock capturing schemes and turbulence modeling.

Taking advantage of this simplified notation, a semi-discrete form of the governing

equations can be written as:

V
∂W

∂t
+ R = 0. (2.11)

Assuming that the solution W and spatial operator R are periodic in time both can

be represented by separate Fourier series:

W =

N
2
−1∑

k=−N
2

Ŵke
ikt

R =

N
2
−1∑

k=−N
2

R̂ke
ikt (2.12)

where,

i =
√−1. (2.13)

These discrete Fourier transforms can be substituted into the semi-discrete form of

the governing equations provided by equation 2.11, and the time derivative of the

state variable can be moved inside the series summation. Taking advantage of the

orthogonality of the Fourier terms results in a separate equation for each wavenumber,

k, in the solution

ikV Ŵk + R̂k = 0. (2.14)

Here, however each coefficient R̂k of the transform of the residual depends on all

the coefficients Ŵk, because R(W (t)) is a non-linear function of W (t). Thus (2.14)

represents a non-linear set of equations which must be iteratively solved. The solver

attempts to find a solution, W , that drives this system of equations to zero for all

wavenumbers, but at any iteration in the solution process the unsteady residual, Îk,

will be finite:

Îk = ikV Ŵk + R̂k. (2.15)

The nonlinearity of the unsteady residual stems from the spatial operator. There
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are two approaches to calculating the spatial operator expressed in the frequency

domain. The first uses a complex series of convolution sums to calculate R̂k directly

from Ŵk. Such an approach was discussed in Hall’s introductory paper on Harmonic

Balance techniques [24]. Hall justly discarded the approach due its massive complexity

(considering artificial dissipation schemes and turbulence modeling) and cost that

scales quadratically with the number of modes N .

The alternative proposed by Hall and implemented by this research is to use

a pseudo-spectral approach that relies on the computational efficiency of the Fast

Fourier Transform (FFT). A diagram detailing the transformations used by the pseudo

spectral approach is provided in figure 2.1.

W
k

W(t) R(t) R
k

I
k

+

ikVW
k

Solution

S
ol

ut
io

n

Time

Residual

R
es

id
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l

Time

0 +1 +2-1-2

Frequency Domain

0 +1 +2-1-2

Frequency Domain

Figure 2.1: Simplified dataflow diagram of the time advancement scheme illustrating
the pseudo spectral approach used in calculating the non-linear spatial operator R.

The pseudo-spectral approach begins by assuming that Ŵk is known for all wavenum-

bers. Using an inverse FFT, Ŵk can be transformed back to the physical space re-

sulting in a state vector W (t) sampled at evenly distributed intervals over the time

period. At each of these time instances the steady-state operator R(W (t)) can be

computed. A FFT is then used to transform the spatial operator to the frequency

domain where R̂k is known for all wavenumbers. The unsteady residual Îk can then



CHAPTER 2. METHODOLOGY 27

be calculated by adding R̂k to the spectral representation of the temporal derivative

ikV Ŵk.

The cost of evaluating the spatial operator is the product of the cost of evaluating

a steady-state spatial operator and the number of time instances used to represent

the solution N . The cost of the FFT is proportional to N ln (N). For most realistic

values of N (N = 1 → 10) the cost of the pseudo-spectral approach is dominated by

the cost associated with calculating the spatial operator. Although this estimate is

not exact, timing estimates provided in section 5.4 substantiate these statements.

One of the advantages of the pseudo-spectral approach is its flexibility in admitting

different forms of the non-linear operators. This research uses finite volume formula-

tions, but application of the pseudo-spectral approach is equally well suited for finite

difference or other types of spatial operators. In addition, turbulence models which

would be difficult to explicity express in the frequency domain are easily admitted in

the pseudo-spectral approach.

2.2.2 Pseudo-Time Derivative

This section discusses the basic strategy used by the solver to find a solution that

minimizes the magnitude of the unsteady residual. A simple iterative approach for

solving this equation at all wavenumbers except for the mean value (k = 0) would be

to solve for the temporal derivative as

Ŵk =
−1

ikV
R̂k. (2.16)

Given a linearization of the spatial operator, R̂n
k = λŴ n

k , an equation defining the

growth factor of the solution is provided as:

Ŵ n+1
k

Ŵ n
k

=
−1

ikV
λ. (2.17)

The magnitude of this growth factor tends to infinity as kV tends to zero. Conse-

quently the stability characteristics of this approach are poor for the low frequency

cases (k << 1).
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Instead of directly solving equation 2.14 a pseudo-time derivative can be added,

and a time-stepping scheme can be employed to numerically integrate the resulting

equations

V
∂Ŵk

∂τ
+ Îk = 0. (2.18)

The application of the pseudo-time derivative is consistent with established conver-

gence acceleration techniques used to solve steady-state problems. In the NLFD

case, an unsteady residual exists for each wavenumber used in the solution and the

pseudo-time derivative acts as a gradient to drive the absolute value of all of these

components to zero simultaneously.

2.2.3 Temporal Resolution

This section investigates the accuracy of the temporal discretization of the NLFD

method relative to another discretization used in a common time-accurate method. To

facilitate this discussion we will base the following analysis on the Harmonic Balance

form of the equations, which yield solutions equivalent to the NFLD approach. As

stated in section 1.2, the Harmonic Balance form is

S(t) + R(t) = 0, (2.19)

where S(t) is the spectral representation of ∂W
∂t

under the assumption of periodicity

S(t) =

N
2
−1∑

k=−N
2

ikŴke
ikt. (2.20)

The time-accurate code proposed as an example for this section approximates the

temporal derivative using a second-order implicit discretization of the following form:

3W n+1 − 4W n + W n−1

2∆t
+ R(W n+1) = 0. (2.21)
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At issue is the accuracy of S(t) in the NLFD method relative to the 3-4-1 difference

operator in the time-accurate approach. The comparison begins with a modified-

wavenumber analysis where a periodic basis function eikt containing only one mode

is substituted into the difference operator resulting in an expression for the modified

wavenumber k′:

DtŴ
n
k =

[3− 4cos(k∆t) + cos(2k∆t)] + [4sin(k∆t)− sin(2k∆t)] i

2∆t
Ŵ n

k

= k′Ŵ n
k . (2.22)

According to the Sampling theorem [54] the discrete Fourier transform exactly rep-

resents any signal if the frequency of this mode lies within the sampling frequency,

kc:

DtŴ
n
k = ikŴ n

k

k′ = ik where k < kc. (2.23)

The sampling frequency is defined by the Nyquist limit of two points per wavelength.

Since the exact derivative is purely imaginary, any real components of the modified

wavenumber are error and represent the dissipative effects of the scheme. The disper-

sive error is associated with any imaginary component that deviates from the linear

relationship specified in equation 2.23.

The results of the modified-wavenumber analysis for the two temporal operators

are plotted in figure 2.2. The horizontal axis is quantified in terms of the product

of the wavenumber and time step (k∆t), which is inversely related to the points per

wavelength

N =
T

∆t
=

2π

k∆t
. (2.24)

Vertical lines have been drawn to show values of points per wavelength. The horizontal

axis is terminated at the Nyquist sampling limit of two points per wavelength. The

figure shows that significant variations between the NLFD and 3-4-1 operators begin

at approximately eight points per wavelength.
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Figure 2.2: Modified wavenumber analysis for the backward difference formula em-
ployed in UFLO82. By definition N = 2π

k∆t
. (a) Real component. (b) Imaginary

component

The modified wavenumber analysis gives no insight into the accuracy of the spec-

tral representation for solutions containing frequencies outside of the sampling fre-

quency of the series. The energy from these unresolved modes is transferred back into

the solution in a corrupting process known as aliasing. In this case, the overall accu-

racy is a function of the convergence rate of Fourier series, which has been estimated

by Snider [60]. He proceeds in two stages. First he considers the rate of convergence

of a true Fourier series,

Sn(t) =
A0

2
+

n∑
r=1

(arcos(rt) + brsin(rt)) . (2.25)

to a smooth periodic function, g(t), as the number of terms is increased. Here the

true Fourier coefficients are

ar =
1

π

∫ 2π

0

g(t)cos(rt)dt

br =
1

π

∫ 2π

0

g(t)sin(rt)dt. (2.26)
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It follows from repeated integration by parts that

| ar | ≤ 2M

rK

| br | ≤ 2M

rK
(2.27)

where M is a bound on the Kth derivative of g(t)

| gK(t) |≤ M. (2.28)

Thus the rate of decay of the coefficients is very fast if K is large. The error between

Sn(t) and g(t) may now be estimated as the remainder of the series, consisting of the

terms from n + 1 to ∞. This yields the result

| Sn(t)− g(t) |≤ 2M

K − 1

1

nk−1
(2.29)

Snider then considers the additional error when the true Fourier coefficients are re-

placed by the interpolated coefficients to give

Cn(t) =
A0

2
+

n−1∑
r=1

(Arcos(rt) + Brsin(rt)) +
An

2
cos(nt) (2.30)

where,

Ar =
1

n

2n−1∑
j=0

g(tj)cos(rtj)

Br =
1

n

2n−1∑
j=0

g(tj)sin(rtj) (2.31)

which are provided by the discrete transform. Here the result of the aliasing is

manifested in the formulas

Ar = ar +
∞∑

l=1

(a2ln−r + a2ln+r)
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Br = br +
∞∑

l=1

(b2ln−r + b2ln+r) (2.32)

in which the higher harmonics are absorbed into the interpolation coefficients, Ar

and Br. The rapid decay of the higher order coefficients of signal g(t) possessing K

continuous derivatives finally results in a bound for the error between the exact and

the discrete representations:

| g(t)− Cn(t) | <
13 max g(K)(t)

nK−1

= O
(

1

nK−1

)
. (2.33)

This estimate, which includes the effects of aliasing, asserts that a discrete Fourier

series will converge to a smooth function (k → ∞) at a rate faster than any power

of n. This exponential convergence rate is faster than convergence rates which could

be obtained with any finite difference operator in the temporal domain. In this sense

the spectral representation provides the optimal time accuracy.

The NLFD method requires the user to specify a finite number of temporal modes

to be used in the representation of the solution. In an effort to reduce the compu-

tational cost, users typically specify a small number of modes, deliberately choosing

to ignore the effects of harmonics outside those used by the Fourier series. In this

case, the NLFD method falls under a general class of schemes known as reduced order

methods [8].

In non-linear environments energy from one temporal mode is transferred to other

harmonics. The exact solution contains energy distributed through a large number

of modes, many of which go unresolved in the numerical simulation. The non-linear

processes which transfer energy between modes vary with the problem. Since the

error is a function of this transfer mechanism, the application of the NLFD scheme

as a reduced order method must be verified on a case by case basis. This verification

process should categorize the type of results accurately predicted for each different

flow field. Capturing only the dominant modes in the solution field can provide

accurate estimates for global properties such as Cl and Cd, but may produce inferior
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results for the local unsteady pressure coefficients [48].

2.2.4 Variable Time Period

Unsteady flows can be subdivided into two classes. The first class includes flows

where the boundary conditions force the unsteadiness at predetermined frequencies.

Examples of this include the internal flows of turbomachinery, the external flow fields

of helicopter blades or propellers, and certain aeroelastic-elastic computations. Prob-

lems within the forced classification are the easiest to solve, since the time period is

known at the beginning of the NLFD simulation.

The second general class of unsteady flows are those where the instabilities in the

equations of fluid mechanics allow unsteadiness to evolve into the flow field. Examples

in this class include (but are obviously not limited to) vortex shedding behind a

cylinder and other fluid dynamic cases involving separated flows and free shear layers.

Using experimental or simplified analytic models, the temporal frequencies can be

estimated a priori for this second class. However, any approximation of this type will

not be exactly equivalent to the natural frequency of the discretized equations.

A major outcome of this research has been the development of a gradient approach

for this second class of problems that iteratively determines the time period of the

fundamental harmonic. In practice, the user provides an initial guess in the vicinity

of the final answer and the gradient information is used to change the estimate to

the time period after each iteration in the solution process. Convergence is achieved

when changes in the fundamental time period and all of the residual levels in the

unsteady equations are negligible.

A derivation of the Gradient-Based-Variable-Time-Period (GBVTP) method be-

gins by noting that the wavenumber k is calculated by normalizing the sinusoidal

period of oscillation 2π with the time period of interest T

k =
2πn

T
. (2.34)

The unsteady residual in equation 2.18 can then be written as a function of the time
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period T

În =
i2πnV

T
Ŵn + R̂n. (2.35)

The process of finding a solution to the unsteady flow equations is regarded as an

optimization problem where the magnitude of the unsteady residual is minimized. A

gradient of this residual with respect to the time period can be calculated and used

to iteratively modify this time period until the magnitude of all components of the

unsteady residual are negligible.

Because În is a complex quantity, the figure of merit will be defined as the square

of the magnitude of this quantity. Using the chain rule, a gradient of this cost function

with respect to the time period can be written as

1

2

∂
∣∣∣În

∣∣∣
2

∂T
= Înr

∂Înr

∂T
+ Îni

∂Îni

∂T
. (2.36)

The quantity În is already calculated while monitoring the convergence of the solution

(note that the real and imaginary parts of În are Înr and Îni respectively). The partial

derivative terms can be expanded as:

∂Înr

∂T
=

2πnV Ŵni

T 2

∂Îni

∂T
= −2πnV Ŵnr

T 2
. (2.37)

The formulas can be further simplified by introducing cross product notation with

the Fourier coefficients of the solution and residual written as vectors

~Wn = Ŵnre1 + Ŵnie2

~In = Înre1 + Înie2. (2.38)

Using this notation the gradient can be expressed as the magnitude of the cross
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product of the above vectors

1

2

∂
∣∣∣În

∣∣∣
2

∂T
=

2πnV

T 2
|~In × ~Wn|. (2.39)

The time period can be updated using the gradient information by selecting a stable

step ∆T

T n+1 = T n −∆T
∂

∣∣∣În

∣∣∣
2

∂T
. (2.40)

Typically one can start with an initial guess in the vicinity of the final answer for

the time period. An unsteady flow solution can be obtained by solving the unsteady

equations to some residual level. The above gradient can then be used to adjust the

time step at each iteration in the solution. The solution and gradients are hence si-

multaneously updated, and a final solution can be calculated to any arbitrary residual

level.

A numerical experiment was performed to validate the GBVTP method. The

NLFD code was used to calculate the flow over a cylinder (see chapter 3) at a Reynolds

number of 105 in both fixed- and variable-time-period modes. While driving the resid-

ual to machine zero, the GBVTP algorithm determined the exact Strouhal number

for the discretized equations. The fixed-time-period calculations were seeded with

Strouhal numbers over a range of values in the vicinity of the Strouhal number de-

termined by the GBVTP method. The minimum residual obtained during each fixed

time period calculation is provided in figure 2.3. The data within this figure is plotted

in two different formats. The first format shows the minimum residual of the fixed-

time-period calculation as a function of the Strouhal number. A dramatic change in

the minimum residual levels occurs at the Strouhal number near the value calculated

by the GBVTP method. To determine the exact relationship, the same data was

replotted as a function of the distance between the Strouhal number of the fixed-

time-period method and the value from the GBVTP method. The plots show that to

obtain machine zero level residuals using fixed-time-period calculations the Strouhal

number specified by the user a priori must approximate the GBVTP value to machine
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Figure 2.3: (a) The minimum residual obtained in a fixed time period NLFD cal-
culation as a function of the distance between Strouhal number specified a priori.
The data is plotted using a logarithmic scaling for the vertical axis only. (b) The
minimum residual obtained in a fixed time period NLFD calculation as a function
of the distance between Strouhal number specified a priori and the Strouhal number
produced from a GBVTP calculation. The data is plotted using a logarithmic scaling
for both horizontal and vertical axes.

accuracy. The results from this numerical experiment demonstrate the capability of

the GBVTP algorithm to find this value. In addition, since there is only one minimum

in the residual values, the data supports the notion that there is a unique Strouhal

number associated with the exact solution of the discretized equations.

2.3 Convergence Acceleration of the Pseudo-Time

Equation

With the NLFD method, solving the unsteady problem is similar to the process of

solving a steady-state system since the governing equations and solution expressed in

the frequency domain are time invariant. Accelerating the convergence of this station-

ary system of equations is achieved through a suite of methods originally developed

for steady flow solvers including local pseudo-time stepping, residual averaging and

multigrid. These techniques need to be modified for the NLFD method to ensure
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that the convergence rates of the NLFD solver are equivalent to steady-state codes.

In addition, the effects of unsteady terms in the governing equations can have a neg-

ative impact on the convergence rates of the NLFD solver. To mitigate these effects,

new methods like coarse grid spectral viscosity had to be developed in the course of

this research to regain the original steady convergence rates. The following sections

describe the implementation of these techniques in the NLFD solver.

2.3.1 Local Time Stepping

A modified Runge-Kutta (RK) time-stepping scheme is used to advance the solution

forward in pseudo time [45]. Separate coefficients are used for the dissipative and

convective components of the spatial operator at each stage of the RK scheme. These

are based on a set of coefficients optimized to accelerate convergence for steady-state

flows. Since the pseudo-time equation is being used to solve equations 2.15 in the

frequency domain, the transformations between the frequency and the time domain

illustrated in figure 2.1 are applied at every stage of the RK scheme.

A varying local time step dictated by numerical stability is used in each cell. Unlike

an explicit time-accurate scheme where the global time step is determined by the

minimum of the time steps for all the cells, the local time stepping scheme maximizes

the correction each cell can make per time step. The pseudo-time evolution does not

affect the temporal accuracy of the NLFD formulation, which is only a function of

the number of modes used to represent the solution and residual.

Previous methods to solve unsteady flow problems have employed both explicit [34]

and implicit [50] approaches in the treatment of the diagonal terms associated with

the temporal derivatives. The explicit approach bases the calculation of the temporal

derivative on known values of the solution, while the implicit approach uses a future

value of the solution in this calculation. Following the work of Melson et al. [50]

this section presents a stability analysis that handles both implicit and explicit time-

stepping schemes to compare their relative merits for the solution of the pseudo-time

equation 2.18. Either permutation of the time-stepping scheme can be expressed by
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the following set of equations:

Ŵ 0
k = Ŵ n

k

(1 + γαm∆τkλt) Ŵm
k = Ŵ 0

k − αm
[
−γP̂m−1

k + Q̂m−1
k + R̂m−1

k

]

m = 1, 2...M

λt = ikV

Ŵ n+1
k = ŴM

k . (2.41)

The following list describes the different variables in this scheme.

• γ is the variable that switches the nature of the method from implicit to explicit:

for explicit schemes γ = 0, for implicit schemes γ = 1.

• ∆τk is the pseudo time step calculated as a function of the stability region of

the scheme.

• αm is the set of coefficients multiplying the overall unsteady residual. αm
P , αm

Q

and αm
R are coefficients used in the calculation of the P̂k, Q̂k and Rv terms

respectively.

• Ŵ n
k and Ŵ n+1

k are the Fourier coefficients of the solution at pseudo-time steps

n and n + 1 respectively.

• Ŵm
k is the Fourier coefficient of the solution at stage m of the Runge-Kutta

scheme with a total of M stages.

• R̂m−1
k is the Fourier coefficient of the transformed spatial operator. Since the

spatial operator contains non-linear terms a pseudo-spectral approach has been

adopted. The convective and dissipative terms are calculated at each instance

of the solution in its time history. The convective fluxes are calculated using

only the solution at the current stage of Runge-Kutta scheme:

Rm
c =

∑
cv

~Fc(W
m) · ~S. (2.42)



CHAPTER 2. METHODOLOGY 39

Depending on the αm
R coefficients, the overall viscous flux is formed as a linear

combination of the viscous flux calculated using the current stage of the solution

and the overall viscous flux calculated at a previous stage of the Runge-Kutta

scheme following Martinelli and Jameson [45]:

Rm−1
v = αm

R Rm−1
v + (1− αm

R )Rm−2
v

Rm
v =

∑
cv

~Fv(W
m) · ~S. (2.43)

The different time instances of the viscous and convective fluxes are added

together to form the complete time history of the spatial operator. This term is

then transformed into the frequency domain via a FFT and directly substituted

into the time-stepping scheme:

Rm−1 = Rm−1
c + Rm−1

v

R̂m−1
k =

1

N

N−1∑
j=0

Rm−1
j eiktj . (2.44)

• P̂m−1
k is the implicit temporal derivative of the solution expressed for each

wavenumber in the frequency domain. This term is calculated in a manner

similar to the evaluation of the overall viscous flux discussed in the previous

subsection. Depending on the αm
P coefficient, the overall temporal derivative is

a linear combination of the temporal derivative evaluated using the solution at

the current stage and the overall temporal derivative calculated at a previous

stage in the Runge-Kutta scheme:

P̂m−1
k = αm

P λt∆τkŴ
m−1
k + (1− αm

P )Pm−2. (2.45)

• Q̂m−1
k is the explicit temporal derivative of the solution calculated for each

wavenumber in the frequency domain. This term is similar to P̂m−1
k except that
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it is based on a different set of coefficients αm
Q :

Q̂m−1
k = αm

Qλt∆τkŴ
m−1
k + (1− αm

Q )Qm−2. (2.46)

The stability of the scheme can be addressed using a linearized analysis. Assume that

the iterates of the convective and viscous residual can be represented as products of

a complex eigenvalue and the solution at the same stage:

R̂c
m

k = λcŴ
m
k

R̂v
m

k = λvŴ
m
k . (2.47)

In a similar manner, gain functions for stage m of the Runge-Kutta scheme can be

defined for the solution Gm, the two temporal derivatives Gm
P , Gm

Q , and the viscous

residual Gm
R as:

Ŵm
k = GmŴ 0

k

P̂m
k = Gm

P Ŵ 0
k

Q̂m
k = Gm

QŴ 0
k

R̂v
m

k = Gm
RŴ 0

k . (2.48)

Substituting the definitions for the linearized residual and gain functions into the

equation for the time-stepping scheme results in a recursive equation for the different

gain functions:

Gm−1
P = αm

P ∆τkλtG
m−1 + (1− αm

P )Gm−2
P

Gm−1
Q = αm

Q∆τkλtG
m−1 + (1− αm

Q )Gm−2
Q

Gm−1
R = αm

R ∆τkλvG
m−1 + (1− αm

R )Gm−2
R

Gm =
1− αm

(−γGm−1
P + Gm−1

Q + ∆τkλcG
m−1 −Gm−1

R

)

1 + αm∆τkγλt

. (2.49)

Due to the recursive nature of the equations listed above, some initial conditions are
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also defined as:

G0 = 1

G−1
P = 0

G−1
Q = 0

G−1
R = 0. (2.50)

The goal is to quantify the magnitude of the overall gain ‖GM‖ for an M stage

Runge-Kutta scheme defined using a given set of coefficients αm, αm
P , αm

Q and αm
R .

This overall gain can be evaluated for each permutation of the eigenvalue trio, λt∆τ ,

λc∆τ and λv∆τ :

λ∆τ = λt∆τ + λc∆τ + λv∆τ. (2.51)

It is assumed that the convective eigenvalue is purely imaginary, and the viscous

eigenvalue is purely real. The eigenvalue associated with the temporal derivative has

been previously defined as purely imaginary.

Figure 2.5 provides a contour plot of the gain magnitude, when it is less than one,

for four different schemes. These plots are generated in the complex λ∆τ plane, by

fixing λt∆τ and varying λc∆τ and λv∆τ over a range of values.

The upper left corner of this figure shows the stability region for an explicit scheme

that does not lag the calculation of the temporal derivative at each stage. The plot

is consistent with stability diagrams presented by Martinelli [45].

The upper right corner shows a stability diagram for the same coefficients as the

previous case except that the temporal derivative is evaluated implicitly (γ = 1).

Melson et al. [50] used a similar implicit technique to integrate a temporal eigen-

value with a real component. They showed that the implicit technique expands the

stability region of the original scheme. Unfortunately, in the case of an imaginary

component, the complex denominator acts to rotate the stability region about the ori-

gin. Consequently this technique is not suitable for the NLFD formulation because

many eigenvalues associated with the spatial discretization lie close to the imaginary

axis and hence outside the stability region of the implicit method.
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The lower left corner presents the stability region based on a explicit scheme with

a lagged approach to the temporal derivative. The effect is to rotate the stability

contours in the opposite direction as the implicit technique effectively suffering the

same deficiencies.

The lower right corner presents the stability region based on an implicit scheme

with a similar lagged approach to the temporal derivative. At first glance, the combi-

nation of lagging and implicit handling would seem to offset each other, providing a

stability region similar to the fully explicit scheme in the upper left corner. On closer

inspection, the stability contours near the origin move to the left of the imaginary

axis, making the scheme useless for spatial discretizations with higher order artificial

dissipation.

Given the deficiencies of the implicit and lagged approaches, the NLFD code has

been implemented with a explicit scheme where the temporal derivative is completely

reevaluated at each step in the scheme (αQ = [1, 1, 1, 1, 1]). However, the set of

coefficients associated with the viscous terms lag the evaluation of the spatial operator.

This complicates the dataflow diagram for the pseudo-spectral approach shown in

figure 2.1. A modified dataflow diagram including these lagged operations is included

in figure 2.4. This diagram shows that the spatial operator, R, calculated in physical

space is a function of the spatial operator at the previous stage and the spatial

operator calculated using the current stage of the solution. The current iterate of the

spatial operator is transformed back into the frequency domain using a FFT where

it is added to frequency domain representations of the temporal derivative and the

initial solution to produce a new stage of the solution.

+ Wk
^FFT FFT +R̂k

m−1

ikVŴk
m−1

R(t)W(t)
m−1 m−1

Ŵk
m−1

R(t)
m−2

m

^
kW
o

Figure 2.4: Complete dataflow diagram of the time-stepping method.
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Figure 2.5: Stability diagrams of the magnitude of the overall time-stepping scheme in
the complex λ∆t plane. The coefficients for all above permutations: α = [1

4
, 1

6
, 3

8
, 1

2
, 1]

αR = [1, 0, 0.56, 0.44].
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2.3.2 Residual Averaging

An implicit smoothing operator is applied to the unsteady residual in a process known

as residual averaging. The coefficients of this implicit smoothing operator are chosen

such that larger time steps can be used while maintaining the overall stability of

the numerical scheme. The additional cost of applying the operator is offset by the

improved convergence rates per multigrid cycle.

One of the goals of this research is ensure that the cost of a NLFD simulation is the

product of the cost of an equivalent steady calculation and the number of instances

used to represent the solution. With respect to a steady computation, the NLFD

code has some additional overhead due to the costs of forming the ikV Ŵ term and

performing the Fast Fourier transforms on the solution and residual. If these costs

are small in comparison with the cost of evaluating the spatial residual terms then

the aforementioned goal can be met. To ensure this, one should avoid any numerical

operations done in the unsteady code that are not done in the steady solver. With

this in mind, this section proposes a residual averaging method which averages only

in the spatial directions.

Inspection of the unsteady residual presented in equation 2.18 shows that the tem-

poral derivative term is proportional to the product of the temporal frequency and cell

volume. For low frequency cases on a well refined grid these terms are second order

and their impact on the stability of the numerical method can be neglected. However,

the multigrid process transfers the solution to a very coarse mesh where these terms

may dominate. If one does not adjust the time step accordingly, the instabilities cre-

ated on the coarse mesh will cause instabilities on the fine mesh ultimately corrupting

the solution.

The remainder of this section will use the advection equation as a model to de-

rive stability estimates for the residual averaging operators. In space and time a

continuous form of implicit residual averaging can be written as follows:

(
1− e

∂2

∂x2

)
∆τ Ī = ∆τ

(
∂u

∂t
+ c

∂u

∂x

)
. (2.52)

For consistency with the NLFD method, assume that both the solution and residual
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can be represented by a Fourier series in time. Applying central difference operators to

the spatial derivatives results in a discrete approximation to the continuous equation

− e∆τk
ˆ̄Iki+1

+ (1 + 2e)∆τk
ˆ̄Ik − e∆τk

ˆ̄Iki−1
= −∆τk

(
ikûk + c

ûki+1
− ûki−1

2∆x

)
. (2.53)

A von Nuemann analysis of the resulting equation provides the spectral footprint of

the time advancement scheme. In semi-discrete form the averaged residual can be

written as the product of an eigenvalue λ and the solution

∆τk
ˆ̄Ik = λiûk

| λ | =
k∆τk + Λsin(ρ)

1 + 2e (1− cos(ρ))

ρ = ω∆x (2.54)

The effects of dissipation are ignored by this analysis by only quantifying the length

of this eigenvalue along the imaginary axis. After some algebra, the above equation

can be rewritten in quadratic form for sin(ρ)

(π2 + 4e2)sin2(ρ) + 2aπsin(ρ) + (a2 − 4e2) = 0 (2.55)

where,

Λ =
c∆τk

∆x

π =
Λ

| λ |
γ =

k∆x

c
a = πγ − 2e− 1. (2.56)

The quadratic equation yields two separate roots. The negative root is chosen for

this application because as the unsteady term γ goes to zero the steady-state residual
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averaging equations are regained

sin(ρ) =
−aπ − 2e

√
π2 − a2 + 4e2

π2 + 4e2
. (2.57)

The frequency of the discrete solution ρ that maximizes the length of the eigenvalue

| λ | is now determined by forming the gradient of the eigenvalue with respect to the

frequency and setting it equal to zero

∂ | λ |
∂ρ

= 0 =
(k∆τk + Λsin(ρ))2esin(ρ) + (1 + 2e(1− cos(ρ)))Λcos(ρ)

(1 + 2e(1− cos(ρ)))2
. (2.58)

After some algebra, a similar polynomial in sin(ρ) can be derived as:

((γ2e)2 + (1 + 2e)2)sin2(ρ) + 8γe2sin(ρ)− (1 + 4e) = 0. (2.59)

In this case, the positive root is selected to regain the steady-state equations as the

unsteady terms go to zero

sin(ρ) =
−4γe2 + (1 + 2e)

√
(γ2e)2 + (1 + 4e)

(γ2e)2 + (1 + 2e)2
. (2.60)

Subtracting equation 2.57 from equation 2.60 produces an expression for the residual

averaging coefficient that rescales the length of the eigenvalue to a user specified value

that ensures numerical stability. Unfortunately the resulting polynomial is large, and

a symbolic math program was needed to simplify the expression. There is more than

one root for the residual averaging coefficient e; the largest root is expressed as:

e =
1

4

(
π2 − (πγ)2 + 2πγ − 1

1− πγ

)
. (2.61)

Figure 2.6 plots all the roots of the residual averaging coefficient as a function of

the unsteadiness of the problem quantified using the product k∆τk. The largest root

identified by equation 2.61 provides the most physical damping, and should be the

one selected to ensure stability.

Note that the residual coefficient defined in equation 2.61 diverges to infinity as
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Figure 2.6: Residual averaging coefficient as a function of k∆τk. These roots are
calculated using a pseudo time step calculated based on the CFL = 6 and a rescaled
eigenvalue λ = 2.

the product πγ goes to one. This non-dimensionalized parameter can be simplified

by replacing π and γ with the fundamental variables used in their definitions (see

equation 2.56):

πγ =
c∆τk

∆x | λ |
k∆x

c
=

k∆τk

| λ | . (2.62)

Setting the left hand side of the above expression to one and solving will define a

maximum permissible time step, which in essence is a CFL limiter

∆τk <
| λ |
k

for k > 0. (2.63)

Without the extensive algebra, a similar result can be obtained using asymptotic

methods. If the temporal derivative is large in comparison to the spatial residual then

equation 2.54 is simplified to

| λ |= k∆τk

1 + 2e (1− cos(ρ))
. (2.64)
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By inspection, the frequency ρ that maximizes the length of the residual is zero. Sub-

stituting this result back into the original equation results in an expression identical

to equation 2.63.

In practice the residual averaging coefficient defined in equation 2.61 is not used in

the spatial operators. Instead, the steady-state values for these coefficients are used

in conjunction with the time step or CFL limiter. The unsteady contribution is not

smoothed or resized by the spatial operators, and by itself can exceed the stability

region of the time advancement scheme. In this case, the CFL limiter rescales the

length of the eigenvalue to ensure stability.

2.3.3 Multigrid

The multigrid scheme accelerates convergence to a steady state in pseudo-time by

moving the solution and residual through a sequence of successively coarser grids,

following an idea proposed by Fedorenko [18] and improved by Brandt [9]. Typically

one starts with a solution defined on a fine mesh and projects it onto a coarser mesh

with the goal of gaining a low-cost correction to the fine grid solution that eliminates

the low frequency error component. Many combinations of grids have been proposed;

some of the V and W cycles used in this research are depicted in figure 2.7.

The pseudo-time derivative employed by the time-stepping scheme is modified to

ensure that the change in the coarse grid solution provides an effective correction to

the fine grid solution

− ∂Ŵm
k

∂τ
= Ah

2hÎk(Wh)− Îk(A
h
2hW

M
h ) + Îk(W

m
2h). (2.65)

In the above equation, Ah
2h is the transfer operator which moves a solution or residual

from a fine mesh to a coarser one. This transfer operator is typically referred to as

a restriction or aggregation [38] operator. Figure 2.8 shows the zone of influence for

this operator and introduces the subscript notation used in its defining equations.

The restriction operator for a steady-state code based on a volumetric average [45]
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Figure 2.7: System of grids used inside of a multigrid cycle. E, evaluate the change
in the flow for one step; T, transfer the data without updating the solution. Source:
Jameson [37].

can be stated as:

WI,J =
Vi,jWi,j + Vi,j+1Wi,j+1 + Vi+1,jWi+1,j + Vi+1,j+1Wi+1,j+1

Vi,j + Vi,j+1 + Vi+1,j + Vi+1,j+1

. (2.66)

In unsteady cases where the mesh is rigidly rotating, only the solution terms are

functions of time. Multiplying the above equation by e−ikt and summing over all the

instances in the time history of the solution will result in a restriction operator for

each wavenumber used in the solution. The resulting equation mimics the original

since all the operators are linear

ŴkI,J
=

Vi,jŴki,j
+ Vi,j+1Ŵki,j+1

+ Vi+1,jŴki+1,j
+ Vi+1,j+1Ŵki+1,j+1

Vi,j + Vi,j+1 + Vi+1,j + Vi+1,j+1

. (2.67)

The restriction operators for the residual are a subset of the ones used for the solution.
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Figure 2.8: Pictorial of multigrid restriction operator.

In this case, all the volumetric terms in the numerator are equal to one and the sum

of the volumes in the denominator is also equal to one.

The other operator in the multigrid scheme is the prolongation operator, which

transfers a change in the solution from a coarse grid to a finer one. The correction

to the fine mesh is calculated using bi-linear interpolation based on the change in the

solution at the closest cells within the coarser mesh. Figure 2.9 shows the zone of

influence for this operator and introduces the subscript notation used in its mathe-

matical description. In the steady case, the coefficients for the prolongation operator

can be derived using a two-dimensional Taylor series expansion of the coarse grid

solution

∆Wi,j =
9

16
∆WI,J +

3

16
∆WI,J+1 +

3

16
∆WI+1,J +

1

16
∆WI+1,J+1. (2.68)

As in the case of restriction, the linear prolongation operators can easily be expressed

in the frequency domain, resulting in a similar equation for each wavenumber.
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Figure 2.9: Pictorial of multigrid prolongation operator.

2.3.4 Coarse Grid Spectral Viscosity

During tests of the multigrid solver it was noticed that the convergence rate of the

solver exhibits a weak dependence on the frequency of the unsteady solution: as

this frequency increases the convergence rate decreases. Noting equation 2.69, the

effect of frequency on the temporal derivative is obvious. It can be argued that if

the convergence rate of the steady problem (k = 0) is considered optimal, then any

increase in frequency moves the set of equations away from the steady-state solution

and negatively impacts convergence. In order to mitigate these effects, additional

terms have been added to the coarse grid residual:

V
dŴk

dτ
+ ikV Ŵk + R̂k = εNV (ik)2sŴk. (2.69)

Terms of this type were originally introduced in spectral viscosity methods proposed

by Gelb and Tadmor [19, 62]. The intent of these schemes was to add even powered

derivatives of the solution to damp higher frequencies while maintaining spectral

accuracy. However, in our approach these additional terms only affect the residual on
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coarser meshes in the multigrid process, and do not affect the converged answer on

the fine mesh. By damping high frequency errors they improve the projected coarse

mesh correction to the finest solution.

An analysis similar to that proposed in section 2.3.1 was performed to determine

the gain of the time-stepping scheme as a function of the spatial frequencies in the

discretized solution. For the purposes of this analysis the spectral footprint of the

overall discrete operator is assumed to be

λ∆τ = λt∆τ − 3

8
(1− cos(ρ))2 + 2.5 sin(ρ)i. (2.70)

This spectral footprint is drawn on the stability diagrams for an explicit scheme

in the left-hand plot of figure 2.10. The blue line is calculated using a λt∆τ = i
2

which is representative of an NLFD scheme without spectral viscosity. The red line

is calculated with λt∆τ = −1
2
+ i

2
corresponding to an NLFD with spectral viscosity.

Obviously, the addition of spectral viscosity shifts the ellipses farther to the left in the

complex λ∆τ plane. The gain along the path of the ellipse is provided in the right-

hand plots within figure 2.10. The data shows that the shift in the spectral footprint

induced by the spectral viscosity lowers the gain of the time-stepping scheme for

the majority of frequencies in the solution. Lower gains increase the damping and

improve the efficiency of the multigrid solver. However, the stability region of the

time-advancement scheme limits the magnitude of this shift, which is proportional to

the magnitude of the spectral viscosity term.

The above results are for a single value of spectral viscosity relative to the other

components of the spectral footprint. Given that this approach affects only the con-

vergence and not the final answer, a number of schemes of different order, with

different coefficients and cutoff frequencies were tested. The cutoff frequency repre-

sents the lowest frequency to which the spectral viscosity term was applied; typically

the fundamental harmonic. Within limits dictated by stability, the lower order dis-

sipation schemes, including the zeroth order (s = 0), outperformed the higher order

approaches. However, a uniform approach of equal efficiency for all the different

test cases was not found, and some level of tuning was required to maintain optimal
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Figure 2.10: (a) Stability diagram of the explicit time-stepping scheme. The red and
blue ellipses are the spectral footprint of the discretization with and without spectral
viscosity respectively. (b) The gain of the time-stepping scheme along the paths of
the spectral footprint.

convergence rates.

To illustrate the effects of this method on a NLFD calculation of the unsteady

Euler equations, a convergence study was performed using a test case which highlights

the dependence between convergence and frequency. The case uses a 193x49 C-mesh

around a 64A010 pitching airfoil with boundary conditions approximating Davis’s

experiment described by table 4.3. The only deviation from the parameters defining

this case are an increase in the dynamic angle of attack to ±3.0◦. This was chosen to

increase the nonlinearities in the flow field ultimately providing a more challenging

test case.

Figure 2.11 shows the magnitude of all components of the unsteady residual as a

function of the multigrid cycle. The plots in this figure show the residual convergence

for solvers with and without coarse grid spectral viscosity. Overplotted on these

graphs is the convergence rate of the NLFD solver for the analogous steady problem

lacking the pitching motion of the airfoil. Without spectral viscosity, the convergence

rate of the unsteady NLFD solver is not equivalent to the steady-state case. However,

the left-hand figure shows that the optimal convergence rate of the steady solver can



CHAPTER 2. METHODOLOGY 54

be reclaimed for unsteady calculations through the use of spectral viscosity.

In the current formulation the coarse grid spectral viscosity does not affect the fine

grid solution. This is confirmed by figure 2.12, which shows the difference between

the solutions with and without spectral viscosity. The subplots are generated for

each solution variable at a consistent point in time in the rotation of the airfoil.

The magnitude of the differences are consistent with the accuracy limitations of the

floating point math used in each simulation; effectively indicating that the difference

between the solutions is machine zero.
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Figure 2.11: Magnitude of all components of the unsteady density residual as a
function of the multigrid cycle. (a) NLFD solver with coarse grid spectral viscosity
(b) NLFD solver without coarse grid spectral viscosity.

2.3.5 Parallelization

Except for the residual averaging operations, the explicit nature of the time advance-

ment scheme has facilitated the parallelization of this code. Following the work of

Alonso et al. [4], the current solver decomposes the grid into sub-blocks which are dis-

tributed on different processors. The problem decomposition is spatially based with

all the instances of the solution at a given point held on the same processor. A dual
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Figure 2.12: Magnitude of the difference between solutions computed with and with-
out spectral viscosity shown at time t = 6
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halo scheme serves to locally cache the state vector from neighboring grids. MPI li-

braries implement the actual communication between processors. Both the amount of

work and inter-block communication scale linearly with the number of wavenumbers

the user specifies a priori. This yields ratios of computation to communication that

are consistent with steady-state codes using similar spatial decompositions. Conse-

quently, the parallel efficiencies achieved in steady-state solvers can be obtained for

NLFD methods.



Chapter 3

Cylindrical Vortex Shedding

This chapter addresses the first of three test cases which have been used to evaluate

and also validate the NLFD method. Simulations of vortex shedding in low Reynolds

number flows past cylinders demonstrate the efficiency of the NLFD method in rep-

resenting complex flow field physics with a limited number of temporal modes. Since

the shedding frequency is unknown a priori, vortex shedding is also a good test case

for the application of Gradient-Based-Variable-Time-Period methods.

3.1 Test Case Description

Laminar vortex shedding occurs behind a circular cylinder over a range of Reynolds

numbers between 40 and 194 [73]. Unsteady vortices alternately shed from the leeward

surface of the cylinder forming an ordered wake known as the von Kármán vortex

street. Figure 3.1 illustrates this phenomena with a picture of an experiment using

smoke to visualize the vortex structure.

Laminar vortex shedding has been investigated in numerous modern experimental

studies. Despite the accuracy of modern experimental equipment, the value of the

universal Strouhal-Reynolds number relationship varied by approximately 20 percent

between experiments conducted at different laboratories. This variation has been at-

tributed to the existence of oblique shedding modes that introduce three-dimensional

effects in a flow field assumed to be invariant along the length of the cylinder [69].

56
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Figure 3.1: Smoke visualization of laminar vortex shedding in the wake of a cylinder
at a Reynolds number of 140. Experiment conducted by Taneda [63] and reproduced
by Van Dyke [17].

Figure 3.2 captures a top down view from two experiments using flow visualization

techniques to observe the difference between the shedding modes. Using the experi-

mentally observed oblique angle, Williamson proposed an equation to correct oblique

data to yield parallel results. More importantly he demonstrated an experimental

apparatus to correct the end boundary conditions in order to force parallel shedding

modes. Experiments after 1988 that purposefully induce parallel shedding, reduce the

original scatter in the data to 1 percent [68]. Of note is an experiment by Norberg [57]

which used different end boundary conditions to ensure parallel shedding, yet yielded

remarkable agreement with Williamson’s data.

This discussion is relevant because independent experimental data is compared to

the two-dimensional numerical results provided by this research. To make a consistent

comparison the physical wake found in the experiment should be approximately two-

dimensional. Given the work of Williamson in this field, his experimental data will

be used exclusively for the comparisons presented later in this section.

In addition to comparisons with experimental results comparisons have also been

made with the numerical results of Henderson [26]. His code uses spectral elements

with an eighth order basis. To verify the accuracy of his results, Henderson performed
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(a) (b)

Figure 3.2: Top view of cylinder wake experiments using flow visualization techniques
to identify parallel and oblique shedding modes. (a) Parallel mode. (b) Oblique
modes. Source: Williamson [68].

a spatial and temporal resolution study for flows at higher Reynolds numbers that

included additional scales of motion. In comparison, the NLFD code uses a lower

order spatial discretization with a limited number of temporal modes that purposely

under-resolve the solution. A comparison of results between these two codes confirm

the accuracy of the NLFD method and highlight the benefits to be gained from higher

order methods and their associated cost.

3.2 Computational Grid

A numerical resolution survey was conducted using several different grids. Table 3.1

provides a list of the grids and their pertinent features. All the grids have a circular

topology with adjacent radial grid lines subtending arcs of equal magnitude. An

exponential function stretches the grid in the radial direction. This stretching function

and the quadratic relationship between the cell area and radius, combine to create

a mesh with poor spatial resolution in the mid and farfield. This coarse spatial

resolution in combination with the artificial dissipation schemes employed by this

research act to quickly diffuse the structure of the vortices as they travel downstream

of the cylinder. Within six chords of the cylinder the vortices contained in the most
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Circumferential Radial Boundary Boundary
Points Points Layer Distance

Points (Chords)

129 65 12 200
193 81 15 200
257 129 19 200
385 161 23 200

Table 3.1: Pertinent features of the grids used in the cylinder simulations. The
number of points in the boundary layer was calculated using the velocity profiles at
the 12 o’clock position on the cylinder at a Reynolds number of 150.

accurate numerical solutions showed little definition, while figures 3.1 and 3.2 picture

experimental conditions where well-formed vortices exist much farther downstream.

A poorly resolved farfield will have some effect on the prediction of statistics

like Strouhal number and base suction coefficient. However, the results will show

that these parameters can be accurately predicted using the grids presented in this

section. In addition, these simulations take advantage of the diffusive character of the

farfield of the grid and implement relatively simple boundary conditions. The degree

to which these conditions reflect energy is no longer a critical parameter given the de

facto sponge created by diffusion and the extended distance of the boundary.

3.3 Cylinder Results

This section presents results from NLFD calculations of the cylinder test case and

compares them with similar data from experiments and other numerical computa-

tions. Temporal and spatial resolution surveys are included to show the convergence

these results exhibit as a function of diminishing numerical error. Residual con-

vergence data related to solver performance will not be presented for this case. A

perfectly symmetric spatial discretization and initial conditions produce a symmetric

wake after driving the residual close to machine zero. Depending on the grid and

Reynolds number, the random effects of machine error may be enough to stimulate

the instability in the shear layer generating a von Kármán vortex street. It was more
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efficient to stop the solver, manually perturb the solution, and restart the solution

process than to wait for instabilities to arise from a machine-accurate symmetric so-

lution. Because of this manual intervention, the residual histories are functions of the

relative time and magnitude of the perturbation process. This made comparison to

other codes difficult.

The temporal resolution survey covers four solutions using one, three, five and

seven time varying harmonics. The flow field, as it exists in nature, obviously contains

a larger number of modes. During the computation, these unresolved modes transfer

energy back into lower frequencies in a corrupting process known as aliasing. This

effect is a function of the magnitude of the unresolved modes, which are unknown

in the absence of an exact solution. This resolution survey looks at solution changes

with varying resolution in order to identify an answer that is independent of aliasing

affects.

The spatial resolution survey employs the four grids presented in table 3.1. The

physics of unsteady flows dictate that the spatial and temporal modes are coupled.

Increasing the spatial resolution resolves additional spatial modes corresponding to

an increased number of temporal modes that affects the aliasing issues addressed

earlier. To ensure a systematic search of the solution space, the survey computes

every permutation of the four temporal and four spatial discretizations.

The resolution survey is performed at 10 equally spaced Reynolds numbers within

the range of Reynolds numbers admitting laminar vortex shedding. The results show

that the relative magnitude of the higher harmonics grows with increasing Reynolds

number. The changing distribution of energy between modes affects aliasing and

further tests the capabilities of the NLFD method to accurately resolve the solution.

To summarize the above discussion, table 3.2 identifies all values of the three dif-

ferent parameters used in these surveys. Including all the permutations, 160 different

solutions were calculated. A byproduct of this three-dimensional parameter survey is

that a large number of solutions will statistically give a better estimate of accuracy;

eliminating any random effects that can occur with a single point comparison.

In order to evaluate the effect of the GBVTP algorithm two separate sets of results

are provided. The first set uses a fixed-time-period algorithm where the period of
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Variable Values

Temporal Resolution 1,3,5,7
Grid Resolution 129x65,193x81,257x129,385x161
Reynolds Number 60,70,80,90,100,110,120,130,140,150

Table 3.2: Values of parameters used in the three-dimensional parametric survey,
which combines both temporal and spatial resolution surveys over a range in Reynolds
number.

the fundamental harmonic is specified a priori based on the experimental data of

Williamson et al. [69, 75, 74, 70]. The second set of data uses the same experimental

data as the initial guess to the shedding frequency, and employs the GBVTP method

to iteratively determine the exact fundamental frequency for the discretized equations.

A comparison of the base suction coefficient extracted from these two data sets will

quantify the relative merits of the GBVTP method.

3.3.1 Variable-Time-Period Results

This section presents results from NLFD calculations using the GBVTP method. A

comparison between variable-time-period and fixed-time-period methods is presented

in a subsequent section, so only contour and Strouhal number data will be provided

here. Given the large number of solutions contained in this survey, this section does

not provide contour plots for every computation. Instead, figures 3.3 and 3.4 provide

entropy contours at the extremes in temporal and spatial resolution showing the

qualitative difference in the solution with changing numerical accuracy. Because the

energy contained in the higher harmonics increases with increasing Reynolds number,

these contours have been provided for the most challenging case; a Reynolds number

of 150.

The diffusiveness of the O-mesh topology with increasing radius is evident from

the plots. This is epitomized by the coarse mesh, where significant diffusion of the

vortex structure occurs after only four chords. These vortices show no well defined

small scale features like a braid region, and large scale features like the overall shape

of the vortex are poorly defined.
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Of interest is the change in the single harmonic solution between the coarse and

fine grids. One would expect to see an improvement in the qualitative features as

the grids are refined, but in this case the opposite is true. Although the coarse grid

results show the effects of dissipation, the vortex structure is largely intact. The fine

grid case exhibits spurious features including a split of the vortex during the roll up

process. These finer spatial resolutions support more spatial modes, which correspond

to an increased number of temporal modes; heightening the effects of aliasing. Instead

of improving the answer, the additional spatial resolution exacerbates the corruptive

process.

This section also provides a more quantitative comparison of the numerical and

experimental results based on Strouhal number. Given the three dimensionality of

this parametric study, these statistics are provided in a number of different formats.

Figure 3.5 provides the Strouhal frequency statistics as a function of Reynolds number.

Each subplot presents results from a different grid while each line represents the

locus of solutions computed at a single temporal resolution over a range in Reynolds

numbers. For comparative purposes, Williamson’s [69, 72, 70] experimental data

is overplotted on the graphs with circles. At the low end of the Reynolds number

range, several of the coarse grid calculations did not support an unsteady solution.

These coarser grids have substantial amounts of artificial dissipation which effectively

lowers the Reynolds number of the computation. This shift can move a computation

from a Reynolds number supporting unsteady flow into a regime where only steady

symmetric separation is admitted.

For consistency with William’s experimental report [71] the following function is

used to define the Strouhal/Reynolds number relationship for the numerical data:

St = A +
B

Re

+ CRe. (3.1)

For every spatial and temporal resolution, ten solutions were computed over a range of

Reynolds numbers. For each numerical solution, the Strouhal and Reynolds numbers

form a dependent pair that can used to solve for the coefficients A,B,C in equa-

tion 3.1. The coefficients are determined by solving a system of equations (shown by
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129x65 Grid 193x81 Grid 257x129 Grid 385x161 Grid
1 Harmonic 50.3 44.7 31.1 19.3
3 Harmonic 68.5 33.5 8.7 3.3
5 Harmonic 68.3 33.6 8.5 2.9
7 Harmonic 68.3 33.6 8.6 2.9

Table 3.3: Shift in Reynolds number between the NLFD calculations and the experi-
mental dataset for all permutations of temporal and spatial resolution.

equation 3.2) to minimize the sum of the square of the error between the Strouhal

data and equation 3.1 evaluated at each of the Reynolds numbers:




∑N
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Sti

Rei∑N
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i=1 StiRei


 . (3.2)

Using the coefficients from the curve fit process of the numerical data, a second equa-

tion is proposed to investigate the Reynolds number shift between the experimental

and numerical results

St = A +
B

Re + D
+ C (Re + D) . (3.3)

The shift operator D, can be chosen such that the error between the curve fit equation

(using the coefficients A,B,C derived from the numerical data) and the experimental

results is minimized. This parameter represents a statistically averaged Reynolds

number shift between the experimental and numerical datasets, and is provided in

table 3.3.

Because of the limited number of converged solutions, the data for the coarsest

mesh is suspect. In general, the Reynolds number shift decreases by a factor of four

for every doubling in the grid size. This shift can be attributed to the truncation error

of the baseline discretization, which is second order accurate. This error component

has a dissipative influence lowering the effective Reynolds number of the numerical

solution.
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Spatial Convergence

The same data provided in figure 3.5 can be replotted as a function of spatial reso-

lution. Figure 3.6 shows Strouhal data versus the number of points in a grid at four

different Reynolds numbers (60,90,120,150). Most importantly, the numerical data

shows convergence to the experiment as the grid spacing is decreased. However, the

Strouhal number results continue to change even on the finest grids reinforcing the

results presented in table 3.3. Unfortunately, the spatial resolution survey has not

converged to an answer independent of grid size.

Temporal Convergence

This subsection replots the same data from previous sections except that here it

is represented as a function of temporal resolution. Figure 3.7 shows the Strouhal

number as a function of the temporal resolution at four different Reynolds numbers

(60,90,120,150). Again, the numerical data shows convergence to the experiment

as the temporal resolution is increased. In fact, most of the data shows little vari-

ation after using just three time-varying modes. In a small number of cases, the

data computed at the highest Reynolds number and spatial resolution shows a small

improvement when using more than three modes.

This variation can be explained by the data presented in figure 3.8. The L2 norm

of the energy within the solution for each harmonic defined is quantified on the vertical

axis of this figure by the following equation:

‖Ek‖ =

[∫

Ω

| ρ̂ek |2 dV

] 1
2

. (3.4)

The aforementioned figure plots this norm as a function of the Reynolds number for

the four different grids used in this survey. These plots are based on data compiled

from the seven mode calculations which were the most physically representative solu-

tions generated. They show that the relative energy in the higher harmonics increases

as the Reynolds number increases. At the upper end of the Reynolds number range,

the unresolved modes alias more energy back into the lower modes leading to a vari-

ation in the predicted Strouhal number between the three and five mode solutions.
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At the lower end of the Reynolds number range, the higher modes carry substantially

less energy and fewer modes are required to accurately predict Strouhal number and

other statistics.

3.3.2 Fixed-Time-Period Results

This section compares the results of calculations using variable- and fixed-time-period

methods to show their relative merits. Two sets of data have been generated. The

first set consists of all the spatial, temporal and Reynolds number permutations using

the GBVTP method outlined in section 2.2.4. The second set contains the exact same

permutations as in the first, except that the time period is held fixed throughout the

calculation. The Strouhal value for these calculations is derived from a curve fit (the

expression is provided in equation 3.1) based on Williamson’s experimental data.

Because the fixed-time-period calculations use the experimental Strouhal data,

a comparison between these two data sets based on Strouhal number would simply

replicate the results presented in section 3.3.1. Instead the comparison will be based

on the value of the base suction pressure coefficient, which is the negative mean

pressure coefficient at the far leeward edge of the cylinder.

Figure 3.9 shows the base suction coefficient as a function of Reynolds number.

Each subplot presents results from a different grid, while each line connects all the

data points calculated using the same temporal resolution over a range in Reynolds

numbers. In general, the difference between the NLFD and experimental datasets

decreases as the Reynolds number decreases. Surprisingly, this difference on the

finest mesh is smaller than the difference between the Henderson results and the

experimental data over the entire range in Reynolds numbers.

In general, the fixed-time-period results at a given spatial and temporal resolution

are farther from the experimental results than similarly resolved variable-time-period

results. The GBVTP algorithm effectively moves the numerical results closer to the

experimental data representing a positive influence on the accuracy of the NLFD

method.
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Spatial Convergence

The same data provided in figure 3.9 can be replotted as a function of spatial resolu-

tion. Figure 3.10 plots the base suction coefficient versus the number of points in the

grid at four different Reynolds numbers (60,90,120,150). The spatial resolution study

shows that unlike the Strouhal results, additional increases in grid size will have a

negligible effect on the suction coefficient data.

The plots also shows that the positive effect of the GBVTP algorithm is most

noticeable on the coarser meshes. For example, the coarsest grid results at a Reynolds

numbers of 120 and 150, shows that a single mode GBVTP calculation outperforms

any temporal resolution calculated using a fixed-time-period method. The difference

between fixed- and gradient-time-period results diminishes as the spatial resolution

is improved and can be considered negligible on the finest grid case.

Temporal Convergence

This subsection replots the same data as in the previous sections, except here it is

presented as a function of temporal resolution. Figure 3.11 plots the base suction

coefficient as a function of the temporal resolution at four different Reynolds num-

bers (60,90,120,150). Consistent with the Strouhal results, there is a slight variation

between the three and five mode results on the finest mesh at the highest Reynolds

number. The cause of this variation has already been discussed in section 3.3.1. In

general, the base suction coefficient has converged to engineering accuracy using just

three time varying harmonics in the representation of the solution.

3.4 Summary

The NLFD method has been successfully applied to the unsteady laminar Navier-

Stokes equations for low Reynolds number flows behind cylinders. Grid resolution

surveys show that spatial convergence was achieved for the base suction coefficient

results but not for the Strouhal number results. The temporal resolution surveys

show that predictions to engineering accuracy can be achieved using between one
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and three time varying modes. Surprisingly, the NLFD results are closer to the

experimental data than the Henderson results calculated using a very high order

method. The Gradient-Based-Variable-Time-Period method (GBVTP) predicted the

Strouhal number of the discrete equations, and in doing so improved the quality of

the solution over fixed-time-period solvers.
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Figure 3.3: Contours of entropy at a Reynolds number of 150 utilizing the 129x65
grid. (a) solution using 1 time varying harmonic. (b) solution using 7 time varying
harmonics.
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Figure 3.4: Contours of entropy at a Reynolds number of 150 utilizing the 385x161
grid. (a) solution using 1 time varying harmonic. (b) solution using 7 time varying
harmonics.
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Figure 3.5: Strouhal number as a function of Reynolds number plotted for different
temporal resolutions. (a) 129x65 grid (b) 193x81 grid (c) 257x129 grid (d) 385x161
grid.
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Figure 3.6: Strouhal number as a function of the spatial resolution plotted for different
temporal resolutions. (a) Re = 60 (b) Re = 90 (c) Re = 120 (d) Re = 150.
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Figure 3.7: Strouhal number as a function of the temporal resolution plotted for
different grid sizes. (a) Re = 60 (b) Re = 90 (c) Re = 120 (d) Re = 150.
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Figure 3.8: L2 norm of the product of density and energy for each wavenumber as a
function of Reynolds number. (a) 129x65 grid (b) 193x81 grid (c) 257x129 grid (d)
385x161 grid.
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Figure 3.9: Base suction coefficient as a function of the Reynolds number plotted for
different temporal resolutions. (a) 129x65 grid (b) 193x81 grid (c) 257x129 grid (d)
385x161 grid.
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Figure 3.10: Base suction coefficient as a function of the spatial resolution plotted for
different temporal resolutions. (a) Re = 60 (b) Re = 90 (c) Re = 120 (d) Re = 150.
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Figure 3.11: Base suction coefficient as a function of the temporal resolution plotted
for different grid sizes. (a) Re = 60 (b) Re = 90 (c) Re = 120 (d) Re = 150.



Chapter 4

Pitching Airfoil Experimental

Validation

This chapter addresses the second of three test cases which have been used to evaluate

and validate the NLFD method. The numerical results produced by the NLFD code

are compared with results obtained from independently conducted experiments of a

pitching airfoil rotating periodically about its quarter chord at a given frequency.

Farfield quantities like angle of attack, velocity and thermodynamic properties of the

fluid are held constant in time. Due to the transonic environment, the solutions will

contain shock waves that move periodically with some phase lag to the angle of attack

changes [6]. The convergence of these results is assessed by surveys of spatial and

temporal resolution based on global force coefficients.

4.1 Introduction

Table 4.1 is taken from McCroskey’s review of airfoils in unsteady flows [46]. It lists

the different governing equations used in these simulations and the physical conditions

that limit their range of applicability. The approaches with the highest fidelity and

computational cost are at the top of the list. This section presents the results of

simulations using both the Euler and the Reynolds averaged Navier-Stokes equations

using a Baldwin-Lomax turbulence model. Given the alternative choices, the test

77
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cases should be representative of the capabilities of the governing equations. At issue

is the level of nonlinearity in the problem which simplified models do not account for.

Equations Remarks

Navier-Stokes Strong shock waves and separation
with turbulence modeling
Thin-layer Navier-Stokes Strong shock waves, moderate separation
with turbulence modeling
Euler Inviscid, rotational, strong shock waves
Full potential Weak shock waves, exact airfoil boundary conditions
Small disturbance Simplified grids and boundary conditions
Non-linear Moderate amplitude
Time linearized Small amplitude shock motion, harmonic or indicial
Local linearizations Small amplitudes, harmonic or indicial
Transonic linear theory High-frequency, stationary shock waves

Table 4.1: Hierarchy of governing equations used in the analysis of unsteady transonic
flow over airfoils. Source: McCroskey [46].

Citing work by Tijdemann and Seabass [64], Ashley [6] and Nixon [56], Mc-

Croskey [46] asserts “In the absence of boundary-layer separation, the motion of

the shock wave is the essential feature that makes the unsteady transonic problem

non-linear”. Dowell et al. [15, 16] suggest that solutions transition from the linear to

the non-linear regime as the shock motion increases above 5 percent of the chord. The

shock motion is a function of the magnitude of the dynamic angle of attack and the

reduced frequency. In general, this motion and its resulting nonlinearities grow with

increasing rotation magnitudes and decreasing reduced frequencies. Approximately

linear solutions may be regained when the rotation angles become very small or the

reduced frequencies become large.

Using the criteria presented above, the nonlinearity of the test cases can be estab-

lished by analyzing the numerical simulations presented in subsection 4.7. Table 4.2

shows the magnitude of the shock movement based on inviscid NLFD solutions cal-

culated with the highest temporal and spatial resolutions. The data supports the

assertion that the cases used in this section are adequate tests for the non-linear
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capabilities of the NLFD solver.

Investigator Case Identifier Shock Movement
(percentage of chord)

Davis CT Case 6 7.4%
Landon CT Case 1 7.9%

Table 4.2: Shock movement as a percentage of the airfoil chord for the different
experimental test cases used in chapter 4.

The effects of viscosity on airfoils in unsteady flows is primarily a function of the

Reynolds number. This dimensionless quantity affects the shape of the boundary

layer, the location of its transition/separation points, and the interaction between

shock waves and the boundary layer [64]. Strong viscous effects are typified by flows

containing shock-induced boundary layer separation and trailing-edge separation [46].

Numerical simulations of these flows are extremely sensitive to the turbulence mod-

eling approach [61]. This is not a focus of this research. To isolate these effects, one

of the test cases presented later in this section is a fully attached flow, while a second

case exhibits mild separation affects.

4.2 Test Case Description

The experimental data was published as part of AGARD report 702. Two different

airfoils, the NACA 64A010 and the NACA 0012, were tested by Davis [14] and Lan-

don [42] respectively. Each study provides data for a variety of different test cases.

This research uses only the priority cases containing the highest fidelity data pub-

lished by each experimentalist. The important parameters used in the description of

these priority cases are summarized in table 4.3.

The data for the 64A010 airfoil is for a transonic symmetric airfoil oscillating at a

low reduced frequency over a limited range in angle of attack. Because of this fairly

small variation in angle of attack, the numerical results are considered to be less sen-

sitive to the choice of turbulence model than the data for the 0012 airfoil. Another
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Description Variable Davis Landon
Experiment Experiment

AGARD Case Number Data Set 2 Data Set 3
CT Case 6 CT Case 1
Dynamic Index 55

Airfoil NACA 64A010 NACA 0012
Mean Angle of Attack αm 0.0◦ 2.89◦

Angle of Attack Variation α0 ±1.01◦ ±2.41◦

Reynolds Number Re∞ 12.56× 106 4.8× 106

Mach Number M∞ 0.796 0.6
Reduced Frequency kc 0.202 0.0808

Table 4.3: Description of priority test cases used from AGARD Report 702.

factor contributing to its selection was its popularity in the numerical-analysis com-

munity. Numerous existing numerical results are available for comparison with those

produced by the NLFD method.

In comparison to the data for the 64A010, the data for the 0012 was obtained

at a lower Reynolds number but with an angle of attack variation approaching the

stall boundary. The increased sensitivity of these results to the choice of turbulence

model is a drawback. In the following sections, we first verify the accuracy of the

spatial discretization of the NLFD scheme by running it as a steady-state solver and

comparing its results to experimental and numerical datasets. These comparisons

confirm that the grids used for the unsteady cases provide sufficient resolution. In

addition, the comparisons exhibit the sensitivity of the results to the choice of the

mathematical model.

Experimental results exist for the 64A010 airfoil in steady flow [40]. However, one

of the advantages of using the 0012 airfoil is the large number of experimental studies

that have been performed. McCroskey’s [47] review identifies the major sources of

error that exist in 50 independent 0012 wind-tunnel experiments and categorizes those

experiments by there ability the mitigate the effect of these error sources. The dataset

of Green and Newman [21] was selected for use in this paper, because it was the only

transonic source in group 1 of McCroskey’s review. This group 1 classification was
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described as containing only “...the experiments which clearly stand out as having

been conducted with the utmost care and/or as most nearly eliminating the important

sources of wind-tunnel errors”. The test cases within this experiment, which are used

as a basis for comparison with the numerical results are described in table 4.4.

Description Variable Green-Newman
Experiment

Airfoil NACA 0012
Mean Angle of Attack αm −2◦ ↔ 10◦

Reynolds Number Re∞ 3.0× 106

9.0× 106

Mach Number M∞ 0.7
Slotted-Wall Tunnel Runs 119

134
Adaptive-Wall Tunnel Runs 201

Table 4.4: Description of test cases used within Green and Newman’s steady experi-
ment.

4.3 Computational Grid

Two separate grid configurations have been used in the simulations solving the Euler

equations. The first grid configuration is an O-mesh generated by conformal mapping

procedures. The second topology is a C-mesh which was generated using a hyperbolic

grid generation tool. Table 4.5 provides a list of the different grids and their defining

characteristics used in the Euler studies. The steady 0012 results presented in later

sections show little variation in force coefficients over the range of spatial resolutions.

Given this observation, the calculations for the 64A010 have been performed with

grids that are generally coarser with larger cell heights at the airfoil wall. Figures 4.1

and 4.2 provide a nearfield picture of the grids for all the combinations of the different

airfoils and grid sizes.

A C-mesh grid topology has been used exclusively for the Navier-Stokes calcula-

tions. The grids were generated with the same hyperbolic mesh generation tool used
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Airfoil Topology Dimensions Mean Mean Grid
Boundary Spacing
Distance at Wall
(Chords) (Chords)

0012 O-mesh 161x33 26 0.0090
0012 O-mesh 321x65 26 0.0045
0012 C-mesh 257x33 21 0.0035
0012 C-mesh 321x97 22 0.0017
64A010 O-mesh 81x33 26 0.0090
64A010 O-mesh 161x33 26 0.0090
64A010 C-mesh 129x33 21 0.0087
64A010 C-mesh 193x49 22 0.0087

Table 4.5: Description of meshes employed for the NLFD Euler calculations.

Airfoil Topology Dimensions Boundary Distance from
Distance First Cell
(Chords) to Wall

(y+)

0012 C-mesh 257x49 16 1.12
0012 C-mesh 513x97 18 1.10
64A010 C-mesh 129x33 15 11.6
64A010 C-mesh 193x49 12 6.9
64A010 C-mesh 257x65 12 3.8

Table 4.6: Description of meshes employed for the NLFD Navier-Stokes calculations.

for the Euler C-mesh grids. In contrast to the Euler cases, a significant grid refine-

ment normal to the wall was employed to capture the viscous boundary layer. The

average height of the first cell adjacent to the wall is quantified in table 4.6 in terms of

y+ units based on a Reynolds number of 3.0 million for 0012 airfoils and 12.5 million

for the 64A010 airfoils. Other descriptive parameters including grid dimensions and

farfield boundary distances are also provided in table 4.6. Figures 4.3 and 4.4 provide

a nearfield picture of the grids for all permutations of spatial resolutions and airfoils.
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Figure 4.1: Nearfield resolution of 0012 grids used in the Euler calculations. (a)
161x33 points in O-mesh topology (b) 321x65 points in O-mesh topology (c)257x33
points in C-mesh topology (d) 321x97 points in C-mesh topology.
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Figure 4.2: Nearfield resolution of the 64A010 grids used in the unsteady Euler calcu-
lations. (a) 81x33 points in O-mesh topology (b) 161x33 points in O-mesh topology
(c) 129x33 points in C-mesh topology (d) 193x49 points in C-mesh topology.
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Figure 4.3: Nearfield resolution of the 0012 Navier-Stokes grids. (a) 257x49 points in
C-mesh topology (b) 513x97 points in C-mesh topology.
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Figure 4.4: Nearfield resolution of the 64A010 grids used in the unsteady Navier-
Stokes calculations. (a) 129x33 points in O-mesh topology (b) 193x49 points in
O-mesh topology (c) 257x65 points in C-mesh topology.
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4.4 Steady Inviscid Flow

This section compares the experimental results of Green and Newman [21] to steady

Euler solutions produced by the NLFD code on the four 0012 grids introduced in the

previous section. The following subsections provide numerical results for this airfoil,

while excluding any steady results for the 64A010 airfoil. Matching the experimental

test conditions, the farfield Mach number was set to 0.7 for the numerical simulations.

Due to the range in angle of attack used by the unsteady experiments, the angle of

attack for the steady numerical calculations will be limited to between −2◦ and 6◦

(calculated in 1◦ increments). Figures 4.5 through 4.7 compare numerical results from

the NLFD code to the two different sets of experimental data collected at Reynolds

numbers of 3.0 and 9.0 million. The steady results at 3.0 million are included due to

their proximity to Landon’s unsteady results at 4.8 million which are the focus of this

research. The additional dataset at 9.0 million provides trends in the force coefficients

for increasing Reynolds number. This trend would be expected to approach the

solutions of the Euler equations that represent the limit as the Reynolds number

increases to infinity.

There are six different sets of experimental data points in these figures. They

represent all the permutations of three different wind-tunnel tests using two iter-

ative passes in the correction process of the force coefficients. The experimental

results were collected in the NASA Langley 0.3 meter Transonic Cryogenic Tunnel

(TCT) using both slotted- and adaptive-wall technologies to minimize interference

effects. Results numbered 200 and greater are those collected using adaptive walls

while those results numbered less than 200 are the slotted-wall experiments. The

raw force coefficients are corrected using a nonlinear post-test wall-interference as-

sessment/correction (WIAC) code. The code solves the two-dimensional transonic

small disturbance equations using three different sets of boundary conditions. The

three different solutions are repeated until the camber line of an equivalent inviscid

body matches the actual test geometry [21, 52, 20]. Different passes from this scheme

are provided in figures 4.5 through 4.7 to show changes between iterations in the

correction process.
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Figure 4.5: Lift coefficient as a function of angle of attack at a free-stream Mach
number of 0.7 including both Euler NLFD and experimental data. (a) Experimental
Reynolds number equal to 3.0 million. (b) Experimental Reynolds number equal to
9.0 million.

Coefficient of Lift Results

For the entire range in angles of attack, the numerical Cl results show little variation

over the range of different spatial resolutions and grid topologies. Below 3◦ angle of

attack, the Euler results consistently over-predict the magnitude of the experimental

lift curve slope. Table 4.7 provides an estimate of this slope using a least-squares fit

based on pass 2 data points with an angle of attack less than 3◦.

Above 3◦ angle of attack, the lift curve slope of the experimental data begins to

decay. This is consistent with the hypothesis that the flow contains a shock induced

separation. This observation is supported by subsequent Navier-Stokes calculations

where at 3◦ angle of attack, a small region of separation immediately following the

shock is predicted. As expected, the numerical Euler results do not predict the shock
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Figure 4.6: Drag coefficient as a function of angle of attack at a free-stream Mach
number of 0.7 including both Euler NLFD and experimental data. (a) Experimental
Reynolds number equal to 3.0 million. (b) Experimental Reynolds number equal to
9.0 million.

induced flow separation, consequently providing poor results for angles of attack above

3◦.

Two trends can be noted based on inspection of the data contained in table 4.7

and figure 4.5. As expected, increasing the Reynolds number shifts the experimental

datasets closer to the numerical inviscid results. Second, the Euler numerical results

are consistently closer to the adaptive-wall data than the slotted-wall data. However,

Navier-Stokes calculations presented in future sections exhibit a reduced lift-curve

slope in good agreement with the slotted-wall data (especially run 134). Based on the

steady inviscid results, one can conclude that the resolution of the grids is adequate

to predict unsteady lift coefficients using the Euler equations under the assumption

that the flow remains attached.
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Figure 4.7: Moment coefficient as a function of angle of attack at a free-stream Mach
number of 0.7 including both Euler NLFD and experimental data. (a) Experimental
Reynolds number equal to 3.0 million. (b) Experimental Reynolds number equal to
9.0 million.

Coefficient of Drag Results

A slight variation in Cd results appears over the different spatial resolutions employed.

This variation is attributable to both the different mesh topologies and the difference

in artificial dissipation schemes employed in the O-mesh and C-mesh solvers. As

expected, the numerical Cd results based on the Euler equations differ from the viscous

experimental results in the absence of an estimate of the drag due to friction. However,

both results consistently predict the onset of drag divergence as the angle of attack

is increased. Since the unsteady experimental results do not differentiate between

the viscous and shock wave components of drag it will be difficult to make useful

comparisons of numerical and experimental results for any test cases except those

dominated by strong shocks.
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Results Type Reynolds Lift Curve Slope
Number (mil) (per degree)

Run 119 3 0.157
Run 119 9 0.163
Run 134 3 0.157
Run 134 9 0.162
Run 201 3 0.172
Run 201 9 0.181
O-mesh 161x33 ∞ 0.193
O-mesh 321x65 ∞ 0.191
C-mesh 257x33 ∞ 0.190
C-mesh 321x97 ∞ 0.191

Table 4.7: Steady lift curve slope based on angles of attack less than 3◦ for all nu-
merical and experimental results.

Coefficient of Moment Results

At higher angles of attack, there is a significant variation between the numerical

Cm predictions over the range of spatial resolutions. The finer discretizations tend

toward the experimental results, but the variation between the datasets remains large.

Further grid refinements produce no substantive effects. Even in areas where the flow

remained fully attached, the numerical Cm predictions approximate the experimental

data, yet show the opposite slope with respect to change in angle of attack. However,

when the magnitude of the Cm results are scaled by the maximum Cl (the maximum

Cm is roughly forty times less than the maximum Cl), the numerical and experimental

results approximate the prediction of thin airfoil theory that the coefficient of moment

for a symmetric airfoil is zero. Despite the scaling arguments, the results of the steady

calculations force the expectation that Euler calculations will be inaccurate in the

prediction of the unsteady moment coefficients.
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4.5 Steady Viscous Flow

This section compares the experimental results of Green and Newman [21] to steady

Navier-Stokes solutions produced by the NLFD code on the two grids introduced

in the section 4.3. The farfield Mach number and the range in angle of attack are

identical to those used in the Euler surveys presented in section 4.4. Figure 4.8

compares numerical results from the NLFD code to the experimental data collected

at a Reynolds number of 3.0 million.

Coefficient of Lift Results

A description of the six different sets of experimental data is provided in section 4.4.

As with the Euler results, the numerical Cl results show little variation between

the coarse and fine grids for angles of attack less than 3◦. The numerical solution

at 3◦ angle of attack contains a small zone of separation immediately following the

shock. This area extends roughly 4 percent downstream of the shock where the flow

reattaches. As angle of attack increases, the length of the separated region continues

to increase. Calculations on the coarse grid at 6◦ angle of attack predict separated

flow from the shock position to the trailing edge. Calculations on the fine grid at

the same angle of attack would not accurately converge to a steady state. At issue

is the ability of the turbulence model to accurately capture the physics of the flow in

the separated region ultimately predicting the location of reattachment. Given the

simplicity of the Baldwin-Lomax turbulence model, any results showing regions of

separated flow are suspect.

Table 4.8 provides the lift curve slope for the experimental results and the nu-

merical Navier-Stokes results based on angles of attack less than 3◦. Increasing the

spatial resolution has a slight tendency to increase the lift curve slope moving the

numerical predictions toward the adaptive-wall data.

Coefficient of Drag Results

Even with significant regions of separated flow, the numerical Cd results agree well

with the experimental data. The adaptive-wall data shows remarkable agreement for
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Results Lift Curve
Type Slope (per degree)

Run 119 0.157
Run 134 0.157
Run 201 0.172
C-mesh 257x49 0.165
C-mesh 513x97 0.167

Table 4.8: Steady lift curve slope based on angles of attack less than 3◦ for Navier-
Stokes calculations (Reynolds number of 3.0 million) and experimental results.

the lower angles of attack. Pass two of the slotted-wall data exhibits slightly poorer

agreement for these lower angles of attack, but improves at angles above 2◦. As with

the numerical Cl results, little is gained in the prediction of Cd by increasing the

spatial resolution.

Coefficient of Moment Results

In contrast to the numerical Euler results, the viscous Cm results show excellent agree-

ment with the experimental data when the flow remains attached. Agreement with

the adaptive-wall data set is poor above 3◦ angle of attack, but both sets of slotted-

wall data show decent agreement through the entire range. The data shows that for

symmetric airfoils which induce relatively negligible moment coefficients, the addition

of the viscous terms in the numerical calculations is required to accurately capture

the experimental Cm data. Except in the separated flow region, little difference is

exhibited between the two numerical results.
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Figure 4.8: Force coefficient as a function of angle of attack at a free-stream Mach
number of 0.7 and a Reynolds number of 3.0 million including both Navier-Stokes
NLFD and experimental data. (a) Coefficient of lift. (b) Coefficient of drag. (c)
Coefficient of moment.
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4.6 Unsteady Inviscid Flow

This section compares the experimental results of Davis and Landon with numerical

calculations of the unsteady Euler equations by the NLFD code. The parameters

of each numerical simulation match the description of the experiments provided in

section 4.2. For each Euler mesh presented in section 4.3 three separate solutions are

calculated using one, two and three time varying modes. Both the 0012 and 64A010

airfoils are included in this section. Overall, 12 different cases have been calculated.

In the case of the 0012 airfoil the unsteady data was obtained at a lower Mach

number than the steady data with a dynamic angle of attack above the stall angle

deduced from the steady results presented in section 4.4. Inspection of the viscous

solutions presented later in this chapter show a small region of separated flow appear-

ing briefly behind the shock. The flow reattaches only to re-separate at the trailing

edge. This latter separation zone is larger (roughly 1 to 2 percent of chord) and exists

on the suction side of the airfoil for half the period of oscillation. Given these viscous

effects the accuracy of the 0012 inviscid solutions is suspect.

Coefficient of Lift Results

Figures 4.9 and 4.10 show both the numerical and experimental Cl results as a function

of the instantaneous angle of attack for the 0012 and 64A010 airfoils. For each grid,

a subfigure shows several ellipses each computed using a different number of time

varying modes. These plots show that the variation in time varying Cl as a function of

the temporal resolution is negligible, and that results convergent to plotting accuracy

can be obtained using one mode.

Figures 4.11 and 4.12 shows the same force coefficient data, except that each sub-

figure now plots the results as a function of the spatial resolution. Three subfigures,

one for each temporal resolution, contain multiple ellipses representing the solutions

calculated on different grids. There are some variations in the results as a function of

spatial resolution, but the effects are negligible and provide no visible trend toward

improving the comparison between experimental and numerical results.

Transfer functions are introduced to quantify the time varying results presented
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in previous paragraphs. The magnitude of this transfer function is computed by

dividing the magnitude of the Fourier coefficient for Cl at a given wavenumber by the

magnitude of the Fourier coefficient for α at the same wavenumber

Lα =
Ĉlk

α̂k

=
‖Ĉlk‖
‖α̂k‖ ei(\Ĉlk

−\α̂k) (4.1)

This is analogous to the lift curve slope commonly used in the analysis of steady state

airfoils. The phase lag of the transfer function is defined as the difference in phase

angles between the Fourier coefficients for Cl and α quantified in terms of degrees.

The phase angle represents the fraction of the time period that the coefficient of lift

lags behind the angle of attack.

Nonlinear systems transfer energy between modes providing non-zero contribu-

tions to Cl and Cm in temporal modes that are not being forced by the boundary

conditions. Transfer functions will not be quantified for these unforced modes, since

they are generally smaller than the fundamental harmonic and α̂k is zero for these

cases. Tables 4.9 to 4.11 provide the transfer functions in terms of magnitude and

phase lag for the experimental data and all spatial and temporal resolutions in the

NLFD numerical datasets.

For the zeroth harmonic (time average), the numerical estimate of the magnitude

of the 0012 lift transfer function consistently over-predicts the experimental data.

On average the difference between the numerical and experimental predictions is 11

percent, with negligible difference existing between the various spatial and temporal

resolutions. The steady numerical results in sections 4.4 and 4.5, and the unsteady

viscous results that will be introduced in section 4.7 show that this over-prediction

can be attributed to the lack of viscosity in these simulations.

However for the fundamental harmonic, there is no consistent trend in the mag-

nitude of the Cl transfer function. The coarse grid 0012 results provide excellent

agreement with the experimental data. Unfortunately, increasing the spatial reso-

lution lowers these estimates, and increases the distance between the experimental

and numerical results. A negligible difference is exhibited as additional temporal

harmonics are added to the solution. The agreement between the experimental and
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Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

Experimental 0.143
O-mesh 161x33 0.161 0.161 0.161
O-mesh 321x65 0.160 0.161 0.161
C-mesh 257x33 0.160 0.160 0.160
C-mesh 321x97 0.160 0.160 0.160

Table 4.9: Magnitude of zeroth harmonic in coefficient of lift divided by the magnitude

of the zeroth harmonic in angle of attack
(‖Ĉl0

‖
‖α̂0‖

)
for various temporal resolutions

employed by NLFD simulations on the 0012 airfoil.

average numerical results is excellent with a variation of approximately 1 percent. In

regards to the 64A010 dataset, little variation is observed in the magnitude of the Cl

transfer function throughout the range of spatial and temporal resolutions. Contrary

to the 0012 case, the 64A010 results consistently over-predict the experimental data

on average by 9 percent.

Airfoil Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

0012 Experimental 0.121
0012 O-mesh 161x33 0.122 0.121 0.121
0012 O-mesh 321x65 0.119 0.118 0.118
0012 C-mesh 257x33 0.123 0.122 0.122
0012 C-mesh 321x97 0.117 0.116 0.116
64A010 Experimental 0.095
64A010 O-mesh 81x33 0.104 0.104 0.103
64A010 O-mesh 161x33 0.104 0.104 0.104
64A010 C-mesh 129x33 0.104 0.104 0.104
64A010 C-mesh 193x49 0.106 0.105 0.105

Table 4.10: Magnitude of fundamental harmonic in coefficient of lift divided by the

magnitude of the fundamental harmonic in angle of attack
(‖Ĉl1

‖
‖α̂1‖

)
for various tem-

poral resolutions employed by NLFD simulations.

The numerical results for the phase lag between Cl and α for the 0012 and 64A010

airfoils respectively over-predict and under-predict the experimental data. In all but

one case, increasing the spatial or temporal resolutions moves the numerical results
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away from the experimental data. However, the variation between datasets remains

small; on average −2.1◦ and 4.2◦ for the 0012 and 64A010 airfoils respectively.

Airfoil Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

0012 Experimental -10.9
0012 O-mesh 161x33 -13.1 -13.8 -13.7
0012 O-mesh 321x65 -13.9 -14.7 -14.7
0012 C-mesh 257x33 -11.2 -11.8 -11.8
0012 C-mesh 321x97 -11.8 -12.5 -12.5
64A010 Experimental -25.6
64A010 O-mesh 81x33 -22.3 -22.1 -22.2
64A010 O-mesh 161x33 -21.3 -21.2 -21.2
64A010 C-mesh 129x33 -20.7 -20.6 -21.0
64A010 C-mesh 193x49 -21.5 -21.3 -21.3

Table 4.11: Phase lag between the fundamental harmonic in lift coefficient and angle

of attack
(
∠Ĉl1 − ∠α̂1

)
for various temporal resolutions employed by NLFD simula-

tions on the 0012 airfoil.

Coefficient of Moment Results

This section presents a corresponding set of figures for the coefficient of moment

results. Figures 4.13 and 4.14 show both the numerical and experimental Cm results

as a function of the instantaneous angle of attack for the 0012 and 64A010 airfoils. For

each grid, a subfigure shows several ellipses computed using different numbers of time

varying modes. As could be expected from the steady simulations, the agreement

between the experimental and numerical results is poor, and will be improved by

the addition of viscosity. For the 0012 airfoil, some variation in Cm results appears

to be a function of temporal resolution while the 64A010 results are invariant to

the number of modes used in the solution. Although not shown, cases with higher

temporal resolution were calculated for the 64A010 airfoil, showing that convergence

to plotting accuracy was achieved with three temporal modes.

Figures 4.15 and 4.16 show the same force coefficient data, except that each sub-

figure now shows the results as a function of the spatial resolution. Three subfigures,
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one for each temporal resolution, contain multiple ellipses representing the solutions

calculated on different grids. There are some variations in the results as a function

of spatial resolution, but the effects are negligible and provide no visible trend in

improving the comparison between experimental and numerical results.
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Figure 4.9: Lift coefficients as a function of the instantaneous angle of attack provided
from unsteady Euler NLFD calculations and Landon’s 0012 experiment. (a) 161x33
O-mesh. (b) 321x65 O-mesh. (c) 257x33 C-mesh. (d) 321x97 C-mesh.
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Figure 4.10: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Euler NLFD calculations and Davis’s 64A010 experiment. (a)
81x33 O-mesh. (b) 161x33 O-mesh. (c) 129x33 C-mesh. (d) 193x49 C-mesh.
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Figure 4.11: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Euler NLFD calculations and Landon’s 0012 experiment. (a) 1
Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.12: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Euler NLFD calculations and Davis’s 64A010 experiment. (a) 1
Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.13: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Euler NLFD calculations and Landon’s 0012 experiment. (a)
161x33 O-mesh. (b) 321x65 O-mesh. (c) 257x33 C-mesh. (d) 321x97 C-mesh.
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Figure 4.14: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Euler NLFD calculations and Davis’s 64A010 experiment.
(a) 81x33 O-mesh. (b) 161x33 O-mesh. (c) 129x33 C-mesh. (d) 193x49 C-mesh.
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Figure 4.15: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Euler NLFD calculations and Landon’s 0012 experiment. (a)
1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.16: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Euler NLFD calculations and Davis’s 64A010 experiment.
(a) 1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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4.7 Unsteady Viscous Flow

This section compares the experimental results of Davis and Landon to numerical

calculations by the NLFD code using the unsteady Navier-Stokes equations. The

format of this section closely mirrors the format for the Euler results presented in

section 4.6. For each viscous mesh presented in section 4.3 three separate solutions

were calculated using one, two and three time-varying modes. Six cases, comprising

two grids and three temporal resolutions, are provided for the 0012 airfoil. Nine cases,

comprising three grids and three temporal resolutions, are supplied for the 64A010

airfoil.

Coefficient of Lift Results

Figures 4.17 and 4.18 provide Cl predictions as a function of temporal resolution,

while figures 4.19 and 4.20 provide these quantities in terms of spatial resolution. To

ease the comparison, the experimental results are overplotted for all the cases. The

most striking feature of the results is that they exhibit little variation over the range

of temporal resolutions. The viscous and inviscid results are consistent in that one

temporal mode provides a solution convergent to plotting accuracy. While there are

some variations in the results as a function of spatial resolution for the 64A010 airfoil,

these effects are small and provide no visible trend toward improving the comparison

between experimental and numerical results.

This section also provides the magnitudes and phase lags of the lift transfer func-

tions in tables 4.12 through 4.14. For the zeroth harmonic, numerical predictions

of the lift transfer function show excellent agreement with experimental results with

little difference observed as time varying modes are added. The improvement of

these unsteady viscous calculations over the unsteady inviscid calculations, resembles

a similar trend between the steady inviscid results in section 4.4 and the steady vis-

cous results in section 4.5. This confirms that good approximations to the mean lift

transfer function require viscous simulations.

For the fundamental harmonic, the magnitude of the 0012 lift transfer functions

vary on average only 2.2 percent from the experimental results. Using coarser grids
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Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

Experimental 0.143
C-mesh 257X49 0.142 0.143 0.143
C-mesh 513X97 0.144 0.144 0.144

Table 4.12: Magnitude of zeroth harmonic in coefficient of lift divided by the mag-
nitude of the zeroth harmonic in angle of attack for various temporal resolutions

employed by the NLFD method
(‖Ĉl0

‖
‖α̂0‖

)
.

for the 64A010 airfoil this deviation in on average 5.5 percent. No distinct trends are

found in the data as spatial resolution is varied. Adding time varying modes into the

calculation of the solution provides no significant difference.

To determine the impact of viscosity, these results can be compared to the equiva-

lent inviscid values in table 4.10. For the 0012 cases, the error approximately doubles

as one adds viscosity while the opposite is true for the 64A010 cases where the error

is halved. Unlike the time-average, the data for the fundamental harmonic is incon-

clusive with respect to the fundamental harmonics dependency on viscous effects.

Airfoil Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

0012 Experimental 0.121
0012 C-mesh 257X49 0.119 0.119 0.119
0012 C-mesh 513X97 0.118 0.118 0.117
64A010 Experimental 0.095
64A010 C-mesh 129X33 0.104 0.103 0.103
64A010 C-mesh 193X49 0.097 0.097 0.097
64A010 C-mesh 257X65 0.101 0.101 0.101

Table 4.13: Magnitude of fundamental harmonic in coefficient of lift divided by the
magnitude of the fundamental harmonic in angle of attack for various temporal res-

olutions employed by the NLFD method
(‖Ĉl1

‖
‖α̂1‖

)
.

In contrast to the magnitude predictions, the addition of the viscous terms moves

the phase lag estimates farther from the experimental results than similar estimates
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provided by Euler calculations. The average deviation between the NLFD predictions

and the experimental results is 5.2◦ for the 64A010 airfoil and −4.1◦ for the 0012

airfoil. These estimates represent an increase in the average deviation from the Euler

predictions. Little variation in the phase lag is exhibited as a function of the temporal

resolution, and no consistent trend is found as a function of spatial resolution.

Airfoil Mesh Type 1 Harmonic 2 Harmonic 3 Harmonic

0012 Experimental -10.9
0012 C-mesh 257X49 -14.7 -15.4 -15.2
0012 C-mesh 513X97 -14.6 -15.0 -14.9
64A010 Experimental -25.6
64A010 C-mesh 129X33 -20.3 -20.0 -20.1
64A010 C-mesh 193X49 -20.9 -20.9 -20.9
64A010 C-mesh 257X65 -20.0 -20.0 -20.0

Table 4.14: Magnitude of phase shift between the fundamental harmonic in lift coef-
ficient and angle of attack for various temporal resolutions employed by the NLFD

method
(
∠Ĉl1 − ∠α̂1

)
.

Coefficient of Moment Results

Figures 4.21 and 4.22 provide Cm predictions as a function of temporal resolution,

while figures 4.23 and 4.24 provide this quantity in terms of spatial resolution. The

experimental results are overplotted for all the cases to ease the comparison with the

numerical results.

As in the case of the Euler calculations, significant variation is exhibited between

the temporal resolutions in the results for the 0012 airfoil. In comparison to the

Euler results, the addition of viscous terms improves the agreement between the

numerical and experimental results. However, the 64A010 results show little variation

as a function of temporal resolution indicating that one mode is adequate. In either

case, the variation between the turbulent Navier-Stokes calculations and experimental

results is still significant and should be a topic of further investigation.

Little conclusive evidence is offered by these figures in regards to the variation
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Figure 4.17: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Navier-Stokes NLFD calculations and Landon’s 0012 experi-
ment. (a) 257x49 C-mesh. (b) 513x97 C-mesh.

in Cm results as a function of spatial resolution. There is some variation in the

results between the different meshes, but no consistent trend is observed between

grid refinement and improving the agreement with experimental results.

4.8 Summary

The NLFD method has been used to solve both the Euler and Reynolds averaged

Navier-Stokes equations for flow around a pitching airfoil. The numerical results

have been compared with experimental data for both steady and unsteady flow. The

accuracy of the results is obviously a function of the resolution of the discretization

and the choice of the governing equations, but some generalizations can be made.

Increasing the spatial resolution had little effect on the results suggesting that the
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grids are sufficiently fine. Excluding the Cm results for the 0012, in most of these cases

there is no discernible benefit in using more than one temporal mode. In the case of

coefficient of moment, the comparison between the numerical and experimental results

is poor. Results presented in chapter 5 of this thesis show that this is no different

than time-accurate solvers with similar spatial discretizations. Consequently, it may

be concluded that the discretization of the temporal derivative is not the source of

the discrepancy, which may partly be due to turbulence-modeling errors.
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Figure 4.18: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Navier-Stokes NLFD calculations and Davis’s 64A010 experi-
ment. (a) 129x33 C-mesh. (b) 193x49 C-mesh. (c) 257x65 C-mesh.
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Figure 4.19: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Navier-Stokes NLFD calculations and Landon’s 0012 experi-
ment. (a) 1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.20: Lift coefficients as a function of the instantaneous angle of attack pro-
vided from unsteady Navier-Stokes NLFD calculations and Davis’s 64A010 experi-
ment. (a) 1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.21: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Navier-Stokes NLFD calculations and Landon’s 0012 exper-
iment. (a) 257x49 C-mesh. (b) 513x97 C-mesh.
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Figure 4.22: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Navier-Stokes NLFD calculations and Davis’s 64A010 exper-
iment. (a) 257x49 C-mesh. (b) 513x97 C-mesh. (c) 257x65 C-mesh.
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Figure 4.23: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Navier-Stokes NLFD calculations and Landon’s 0012 exper-
iment. (a) 1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.
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Figure 4.24: Moment coefficients as a function of the instantaneous angle of attack
provided from unsteady Navier-Stokes NLFD calculations and Davis’s 64A010 exper-
iment. (a) 1 Harmonic. (b) 2 Harmonics. (c) 3 Harmonics.



Chapter 5

Pitching Airfoil Numerical

Validation

A crucial question is whether the Non-Linear Frequency Domain method offers a

major reduction in computational cost over established time-accurate methods. This

chapter addresses this question by presenting a comparison of a state of the art

time-accurate code UFLO82 [34, 58], with an NLFD code for Euler simulations of

a pitching airfoil. In order to make a fair comparison the boundary conditions and

spatial operators of the NLFD code have been replaced with exactly those of the

UFLO82 code. With equivalent spatial errors the two codes can then be compared

solely on their approximation of the temporal derivative in the conservation equations.

A convergence study is first performed to quantify the error as a function of

temporal resolution via time steps of modes. Using equivalent overall error levels the

two codes are then compared on the basis of computational cost. This is the inverse

of Pulliam’s approach outlined in section 1.2 where he fixed the cost and compared

methods on basis of error.

5.1 Choice of a Test Case

In the comparison of experimental and numerical results in the previous sections

the flows contained only moderately strong shocks. In order to evaluate the NLFD

120
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method in the presence of strong nonlinear effects the case used in this section is

more challenging. The reduced frequency and the dynamic angle of attack have been

chosen to promote nonlinearites that result in a coupling of temporal modes within

the flow field. Table 5.1 provides a list of the parameters defining this case.

Parameter Value

Airfoil NACA 64A010
Mean Angle of Attack 0.0◦

Angle of Attack Variation ±2.0◦

Mach Number 0.8
Reduced Frequency 0.05

Table 5.1: Description of the test case used in the comparison of UFLO82 and the
NLFD codes.

5.2 Computational Grid

Due to the mesh topology requirements of the UFLO82 code the grid used in this

section is a 161x33 O-mesh. This mesh is substantially different from the 161x33 grid

used in the experimental validation. Specifically the average height of the cell adjacent

to the airfoil surface is 0.0048 chords, roughly half of the height of the cell contained

in grids used in the experimental comparisons. Also the average farfield boundary

distance for this grid is 129 chords approximately six times the farfield distance in the

previous grids. Figure 5.1 provides a picture of the nearfield distribution of cells within

this mesh. The mesh was created using the algebraic grid generation procedures of

UFLO82.

5.3 Comparison With UFLO82 For Steady Flow

The first test is to verify the exact equivalence of the spatial discretization and bound-

ary conditions of the modified NLFD code with those contained in the UFLO82 code.

Both UFLO82 and the modified NLFD code employ a cell centered finite volume
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Figure 5.1: Nearfield resolution of 161x33 O-mesh used in the numerical comparison
of UFLO82 and NLFD codes.

scheme with JST artificial dissipation, a linear pressure extrapolation at the wall,

and Riemann invariants in the farfield boundary condition [28, 29, 31, 32, 33].

By default, the NLFD code has the capability to do steady calculations. However

UFLO82 required a slight modification; the coefficients used in the temporal derivative

were set to zero to nullify any unsteady effects. For both codes, the magnitude of the

dynamic angle of attack was set to zero to nullify any grid rotation terms. One set

of multigrid cycles was used to drive the steady residual to a negligible value. The

output from both codes was a steady solution at the time-averaged angle of attack

and farfield boundary conditions.

Figure 5.2 plots the difference between steady solutions produced by these two

codes. The four components of the different solutions match to machine accuracy,

verifying the equivalence of the spatial operators and boundary conditions. Obviously,

any derived quantity like Cl or Cm would match to machine accuracy as well.
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Figure 5.2: The absolute value of the difference between a UFLO82 and NLFD steady
solution for Euler calculation on a 161x33 O-mesh. The different figures represent
different components of the solution. (a) ρ (b) ρu (c) ρv (d) ρe.
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5.4 Comparison With UFLO82 For Unsteady Flow

In order to substantiate the cost analysis, this section highlights the differences be-

tween UFLO82 and the modified NLFD code. UFLO82 uses a dual time stepping

technique implementing a series of nested loops. The inner loop is a set of multi-

grid cycles used to drive the unsteady residual for that time step to a negligible

value. This unsteady residual is written as the combination of an implicitly evalu-

ated spatial residual and a backward difference formula approximating the temporal

derivative. As presented earlier, UFLO82 uses the second order accurate A-stable

scheme
3W n+1 − 4W n + W n−1

2∆t
+ R(W n+1) = 0. (5.1)

Typically, the solution at the end of an inner loop is not converged to machine accu-

racy. In this case, the marginal change in the fluid properties due to one additional

multigrid cycle should be less than the accuracy/stability requirements for the cal-

culation. The number of multigrid cycles used per time step ultimately controls the

accuracy with which the discretized equations of motion are being solved. For fre-

quency domain solvers, the magnitude of the unsteady residual for all the wavenum-

bers (or time instances in the temporal domain) is minimized by a series of multigrid

cycles. The equations are simultaneously solved to a given accuracy level in a manner

analogous to dual time stepping techniques.

The final residual levels are functions of the value of the initial residual level used

to start the multigrid cycle and the rate of decay in the residual per multigrid cycle.

The initial residual for dual time stepping techniques will become smaller as the

number of points per wavelength is increased. In the limit as the time step goes to

zero, simple extrapolation techniques provide excellent first guesses to the solution.

For most practical cases, the initial residual level for the UFLO82 solver is one or

two orders of magnitude less than the initial unsteady residual for NLFD solvers.

Depending on the implementation, the decay rate of the residual per multigrid cycle

may or may not be equivalent between the solvers.

The outer loop of the dual time stepping technique provides the time history of

the discrete solution. A complete discussion of the error associated with the NLFD
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and UFLO82 temporal discretizations is provided in section 2.2.3.

The final parameter affecting a time-accurate solution is its proximity to a periodic

steady state. Time-accurate solvers capture the decay of initial transients. As these

diminish the solution asymptotically approaches a periodic steady state. Eventually

the marginal decay of these transients during each additional time step is within the

accuracy requirements for the solution. When this condition has been met, the cal-

culation is typically stopped. The cost of resolving the initial transients is eliminated

in NLFD methods since these solvers admit only components of the solution which

are periodic over a predefined length of time.

Table 5.2 itemizes the costs associated with the dual time stepping method, and

table 5.3 does the same for the NLFD method. The final cost analysis presented at

the end of this section quantifies each of the terms presented in these two tables for

test cases producing equivalent error.

Description Variable

Number of multigrid cycles required for a so-
lution at each time step.

NM

Number of time steps (or solutions) required
to resolve an oscillation in the solution.

NN

Number of periods needed to reach a periodic
steady state

NP

Overall Cost Cost ≈ NMNNNP

Table 5.2: Cost estimation for dual time stepping codes like UFLO82.

Description Variable

Number of multigrid cycles to solve the unsteady
residual in the frequency domain.

NM

The ratio of the cost of an NLFD solution to a
steady state solution. This is approximately the
number of solution instances per time period.

NN

Overall Cost Cost ≈ NMNN

Table 5.3: Cost estimation for frequency domain codes like NLFD.
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Temporal Resolution

In order to quantify the required number of time steps per oscillation NN , a conver-

gence study in temporal accuracy was performed for both codes running in unsteady

mode according to the parameters listed in table 5.1. For UFLO82 the residual at the

end of each time step was driven to machine zero. This code was run at 8 different

temporal resolutions including 8, 16, 24, 32, 64, 128, 256 and 512 points per wave-

length. To eliminate any error associated with initial transients, 48 periods of the

airfoil oscillation were simulated. As the solution evolved in time, Fourier transforms

of the latest period of Cl and Cm data were computed. The magnitude of the funda-

mental harmonic of these data sets is used to quantify the error. The control solution

was selected from the last oscillation of the most accurate solution (512 points per

wave), and is subtracted from all other solutions to quantify the error due to the

temporal resolution EN

ENl
=

∣∣∣|Ĉl1| − |Ĉl1512
|
∣∣∣

ENm =
∣∣∣|Ĉm1| − |Ĉm1512

|
∣∣∣ . (5.2)

Similar runs were made with the NLFD code using one, two and three time varying

modes. All components of the unsteady residual were driven to zero, and Fourier

transforms of Cl and Cm were computed from the periodic steady state solution.

The magnitude of the fundamental harmonic was then subtracted from the control

solution in a manner consistent with the UFLO82 results.

Figures 5.3 and 5.4 shows the error for both lift and moment coefficients. The plots

include the time history of error for the calculation producing the control solution,

showing the difference in the figure of merit between the converged solution and the

solution at any point in time. This is included to show that the error associated with

the initial transients for the control calculation is significantly less than the overall

error for any other calculation, and hence can be considered as insignificant.

Each solution approaches an error level representing the minimum error achievable

in realistic environments. These minimum errors are replotted on figures 5.5 and 5.6 as
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a function of the temporal resolution used by each UFLO82 calculation. Overplotted

on these figures are horizontal lines from NLFD calculations with varying numbers

of temporal modes. The subfigures provide the same data in different logarithmic

formats while quantifying the horizontal axis differently. As expected the loglog plot

shows that the error decay rate is proportional to ∆t2.

The intersection of the NLFD lines with the UFLO82 curve shows the temporal

resolutions each code must use to achieve equivalent error levels. This data is summa-

rized in table 5.4. Using Cl as a figure of merit, the NLFD code needs only 1 temporal

mode to obtain similar error levels as a UFLO82 code using 45 points per wavelength.

Using Cm in the same capacity, the UFLO82 code needs only 18 points for one mode

in the NLFD code. Regardless of the figure of merit, for every additional temporal

mode added in the NLFD calculation, the temporal resolution of UFLO82 needs to

be increased by roughly a factor of 2.5 to 3.

Cl Cm

NLFD Modes UFLO82 SPW UFLO82 SPW

1 45 18
2 125 45
3 244 123

Table 5.4: The number of solutions per wavelength required by UFLO82 to reach
error levels equivalent to results produced by an NLFD code using one, two, and thee
time varying harmonics.

Multigrid Cycles

In an attempt to quantify NM for UFLO82, a convergence study was performed to

identify the number of multigrid cycles per time step required to reach the asymptotic

error levels identified in figures 5.3 and 5.4. These error levels were functions of

UFLO82 calculations where the residual was driven to machine zero at each time

step. However, the residual error needs only to be small relative to the error due

to the temporal discretization. Consequently an unbiased cost comparison of the

methods should quantify the minimum number of multigrid cycles per step required
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by UFLO82 to reach the equivalent error levels. Figure 5.7 provides this data, for

both Cl and Cm, for each temporal resolution identified in table 5.4. In most cases,

only six multigrid cycles per step were required.

This number is surprisingly small, but may be due to the properties of the UFLO82

prediction method and the concave curvature of the Cl data. Table 5.5 shows that the

effect of temporal dissipation is to lower the magnitude of the unsteady lift coefficient

away from the more accurate results. UFLO82 uses a linear extrapolation method to

predict the solution at each new time step. Based on the curvature of the Cl time

history, the initial prediction will be closer to the more accurate solution. Additional

multigrid cycle will lower the residual, heighten the effect of the dissipation and move

the solution away from the more accurate result. This theory is reinforced by figure 5.9

which shows that increasing the number of multigrid cycles per time step has in some

cases a detrimental effect.

Solutions
Per Wave 8 16 24 32 64 128 256 512
|Cl| 0.1657 0.1740 0.1759 0.1765 0.1771 0.1773 0.1773 0.1773

Table 5.5: Variation in UFLO82 unsteady coefficient of lift as a function of temporal
resolution.

A similar convergence study was performed for the NLFD code. Figure 5.8 plots

the error level as a function of the number of multigrid cycles. The intersection of the

dashed line with the individual curves approximately identifies the minimum number

of cycles required to reach the asymptotic error levels. These intersection points are

quantified in table 5.6.

The UFLO82 results are quantified in terms of multigrid cycles per step, while

the NLFD results are quantified in the overall number of cycles used. For consistent

comparisons, this latter result needs to be multiplied by an additional factor to ac-

count for the work performed for each additional temporal mode. This factor will be

identified in the section that immediately follows.
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Cl Cm

NLFD Modes MG Cycles MG Cycles

1 44 37
2 60 50
3 72 65

Table 5.6: The number of multigrid cycles required by the NLFD solver to obtain a
solution at equivalent error levels.

Cost per Multigrid Cycle

NLFD solvers calculate instances of the spatial residual along the time period of

the solution. Consequently the work per multigrid cycle scales with the number of

time instances used to represent the solution. If N is the number of time varying

modes, then the work per multigrid cycle should grow like 2N − 1. The NLFD solver

incurs the additional cost of the transformation of the solution and residual between

the temporal and frequency domains by Fast Fourier Transform. Table 5.4 provides

measured data for the execution time per NLFD multigrid cycle divided by the time

required for a similar steady state cycle. The data approximates the growth rate cited

above; substantiating the claim that the cost of the FFT is small in comparison to

the total work done in the multigrid cycle.

0th mode 1st mode 2nd mode 3rd mode

Normalized
execution speed 1.0 3.06 5.13 7.30
(time per cycle)

Table 5.7: NLFD execution time per multigrid cycle as a function of temporal reso-
lution. Results are normalized by the execution time required by the steady state or
zeroth mode case.

Decay of Initial Transients

The final factor in the cost of the UFLO82 solution is the time rate of decay of

the initial transients. Figures 5.9 and 5.10 plot the decay in the error over time for
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each temporal resolution identified in table 5.4 and each multigrid cycle permutation

provided in figure 5.7. Based on this data, table 5.8 provides estimates of the number

of periods required for the error to approach its asymptotic value. Given the curves

plotted in figures 5.9 and 5.10, these numbers were selected conservatively to the

benefit of the cost estimation for UFLO82.

Cl Cm

SPW Periods SPW Periods

45 4 18 3
125 5 45 4
244 7 123 6

Table 5.8: The number of time periods required by the UFLO82 solver to reach
convergence. Separate data is provided for each temporal resolution listed as SPW
or Solutions Per Wavelength.

Cost Comparison

The cost of the two solvers can now be compared using the data provided in the

previous sections. This comparison assumes that the work associated with a single

multigrid cycle is equivalent between the two codes. This is an accurate approxima-

tion, given that UFLO82 and the NLFD code use the same pseudo-time advance-

ment, residual averaging and multigrid aggregation and prolongation operators. This

approach provides a relative comparison independent of the machine or compiler op-

timization algorithms. These latter parameters affect the cost of each method, but

code implementation and profiling details are not the focus of this research.

Tables 5.9 and 5.10 provide the relative cost data using Cl and Cm as the figures

of merit. If the user requires equivalent error levels for both Cl and Cm data, then

the lift results will drive the cost comparison. In this case, the NLFD code is a factor

of 8 to 19 times faster than the UFLO82 code depending on the error level. In the

worst case, using only Cm error as the basis for comparison, the NLFD code at the

lowest temporal resolution is approximately 3 times faster the UFLO82 code. Not

surprisingly, the marginal cost of the NLFD solver is also better than the UFLO82
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code. For either figure of merit, the cost multiple between the two codes increases in

favor of the NLFD method as the number of modes is increased.

NLFD UFLO82
Modes NM ×NN = Cost SPW NM ×NN ×NM = Cost

1 44× 3.06 = 135 45 6× 45× 4 = 1080
2 60× 5.13 = 308 125 6× 125× 5 = 3750
3 72× 7.30 = 526 244 6× 244× 7 = 10248

Table 5.9: Cost comparison between UFLO82 and NLFD codes using the error in
coefficient of lift as the figure of merit.

NLFD Cost UFLO82 Cost
Modes Multigrid Cycles SPW Multigrid Cycles

1 3.06× 37 = 113 18 18× 6× 3 = 324
2 5.13× 50 = 257 45 45× 6× 4 = 1080
3 7.30× 65 = 475 123 123× 6× 6 = 4428

Table 5.10: Cost comparison between UFLO82 and NLFD codes using the error in
coefficient of moment as the figure of merit.
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Figure 5.3: Cl1 error as defined by equation 5.2 between various temporal resolutions
of the UFLO82 code and the control solution. The control solution is based on the
coefficient of lift extracted from the final period of the most accurate solution (512
solutions per wavelength). (a) Entire time history of all data. (b) Magnified version
of the same data focusing on less accurate solutions.
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Figure 5.4: Cm1 error as defined by equation 5.2 between various temporal resolutions
of the UFLO82 code and the control solution. The control solution is based on the
coefficient of moment extracted from the final period of the most accurate solution
(512 solutions per wavelength). (a) Entire time history of all data. (b) Magnified
version of the same data focusing on less accurate solutions.
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Figure 5.5: Asymptotic error in Cl1 computed at various temporal resolutions by the
UFLO82 and NLFD codes. (a) Cl1 Error as a function of ∆t on a fully logarithmic
axis. (b) Cl1 Error as a function of the number of solutions used to resolve an
oscillation in the solution using a logarithmic vertical scale.
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Figure 5.6: Asymptotic error in Cm1 computed at various temporal resolutions by the
UFLO82 and NLFD codes. (a) Cm1 Error as a function of ∆t on a fully logarithmic
axis. (b) Cm1 Error as a function of the number of solutions used to resolve an
oscillation in the solution using a logarithmic vertical scale.
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Figure 5.7: The number of multigrid cycles required by the UFLO82 code to reach
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Figure 5.8: The number of multigrid cycles required by the NLFD code to reach
equivalent error levels. (a) Cl1 . (b) Cm1
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Figure 5.9: Cl error as a function of physical time in units of periods. (a) 45 Steps
per wavelength (b) 125 Steps per wavelength (c) 244 Steps per wavelength.
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Figure 5.10: Cm error as a function of physical time in units of periods (a) 18 Steps
per wavelength (b) 45 Steps per wavelength (c) 123 Steps per wavelength.
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5.5 Sensitivity of the NLFD Solver To Flow Con-

ditions

In addition to comparisons with experimental and other numerical data, variations

in the efficiency of the NLFD solver with the flow field properties have also been

evaluated. Steady parameters such as farfield Mach and Reynolds numbers will not

be investigated. Instead the following sections look strictly at unsteady parameters

such as pitching frequency and dynamic angle of attack.

5.5.1 Convergence Versus Reduced Frequency

According to equation 2.18, increased pitching frequency obviously moves the un-

steady residual away from its steady analogue. A study was performed to determine

the effect of this displacement on the residual convergence rate of the solver. Steady

convergence rates represent the optimal efficiency, but unsteady conditions will pro-

vide additional scales of motion possibly impacting the convergence rate of the solver.

The test case is consistent with Davis’s 64A010 experiment, except that the dy-

namic angle of attack has been increased from ±1.01◦ to ±2.0◦. Solutions were calcu-

lated on the 193x49 C-mesh proposed in section 4.3 using three time varying modes

such that the highest temporal component is oscillating at three times the funda-

mental frequency. The calculations were performed at reduced frequencies between

0 and 0.5, holding constant any convergence acceleration parameters and artificial

dissipation coefficients. The difference in residual convergence rates over this set of

16 calculations is thus strictly a function of the pitching frequency of the airfoil.

The first subplot within figure 5.11 shows the maximum over all the wavenumbers

of the absolute value of the residual as a function of the multigrid cycle. The fastest

converging solution was produced from a steady calculation (zero reduced frequency)

at the mean angle of attack. The unsteady calculations exhibit similar convergence

trends up to 100 multigrid cycles. At this point, the convergence rates begin to

vary until the residual reaches machine zero. The second subplot within figure 5.11

shows the convergence rate per multigrid cycle based on the first 140 cycles of each
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calculation. The plot shows a distinct difference between the steady and unsteady

convergence rates with the latter being slightly less efficient. Another noticeable

trend is also observed for the high frequency band, where larger frequencies reduce

the efficiency of the solver by a maximum of 2.7 percent from the steady-state value.

5.5.2 Convergence Versus Dynamic Angle of Attack

Unlike the reduced frequency, the dynamic angle of attack affects terms calculated

within the spatial operator, and consequently may have a stronger influence on the

convergence rate. The effect of increasing the dynamic angle of attack is to increase

the flow field nonlinearities and subsequent coupling between temporal modes.

A convergence study was performed with a fixed reduced frequency while the

dynamic angle of attack was varied from ±0◦ to ±2.8◦. Again, convergence accel-

eration parameters and artificial dissipation coefficients are held constant to ensure

convergence rates are strict functions of dynamic angle of attack

Subplot (a) within figure 5.12 shows the maximum over all the wavenumbers of

the absolute value of the residual as a function of the multigrid cycle. The fastest

converging solution was predictably produced by the steady solver (dynamic angle of

attack at ±0◦). Overall, little variation is found over the range of dynamic angles of

attack, with the poorest converging solution requiring only 10 additional multigrid

cycles to reach machine zero. The statement is reinforced by subplot (b) within

figure 5.12, which shows the convergence rate per multigrid cycle based on the first

140 cycles of each calculation. The overall variation in convergence rate per cycle

is 1.6 percent; with a slight trend toward reducing the efficiency of the solver with

increased dynamic angle of attack.

5.6 Summary

The computational efficiency of the NLFD solver has been compared to that of

UFLO82, a state-of-the-art time accurate code. Unbiased comparisons were made
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between the methods by measuring the amount of work required by each solver to

reach equivalent error levels. Using error in coefficient of lift as the figure of merit the

NLFD code is 8 to 19 times faster than UFLO82. Using coefficient of moment as the

basis for comparison, the NLFD method is roughly three to nine times faster than

the time-accurate approach. Numerical experiments confirm that the NLFD solver

retains its efficiency over a wide range of unsteady flow conditions. This confirms its

robustness as a tool for practical applications.
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Figure 5.11: The effects of reduced frequency on the convergence of the NLFD un-
steady residual. (a) The maximum over all the wavenumbers of the absolute value of
the residual as a function of the multigrid cycle. (b) The residual convergence rate
per multigrid cycle for the first 140 cycles.
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Figure 5.12: The effects of dynamic angle of attack on the convergence of the NLFD
unsteady residual. (a) The maximum over all the wavenumbers of the absolute value
of the residual as a function of the multigrid cycle. (b) The residual convergence rate
per multigrid cycle for the first 140 cycles.



Chapter 6

Conclusions

The main conclusions which can be drawn from this work are presented below in

categories corresponding to chapters 2 through 5.

6.1 Solver Implementation

Non-linear frequency domain methods can be integrated into robust solvers exhibiting

convergence performance close to that of more established steady-state solvers like

FLO82 and FLO103. Convergence acceleration technologies like multigrid need to be

modified with coarse grid spectral viscosity to mitigate the dependence of convergence

rates on unsteady effects. The point-implicit treatment commonly found in the inner

iterations of the dual time stepping codes is not recommended for NLFD solvers,

due to the introduction of instabilities associated with the extension to the complex

domain. Given that the temporal derivative in pseudo-time is handled explicitly,

residual averaging techniques need to be modified with CFL limiters to ensure stability

for coarse grids in the multigrid cycle. In contrast to Harmonic Balance techniques,

the NLFD method advances the unsteady residual in the frequency domain, allowing

the use of a separate pseudo-time step for each wavenumber that includes the effect

of the temporal derivative on the stability of the system.

For simple problems, numerical experiments confirm fast convergence to a periodic

steady state, independent of the decay rate of the initial transients in physical time.

145
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This uncouples the efficiency of the solver from the physical aspects of the flow field,

and encourages the application of this method to more complex problems in turbo-

machinery, where resolving the transient decay dominates the cost of a conventional

time-dependent calculation.

6.2 Cylindrical Vortex Shedding

The motivation behind performing NLFD calculations of vortex shedding behind a

cylinder were threefold:

• To demonstrate that the NLFD method using a limited number of time vary-

ing modes could accurately resolve complex flow field physics such as the von

Kármán vortex street.

• To demonstrate the ability of the GBVTP method to automatically determine

the shedding frequency of the discrete equations.

• To show the impact of the GBVTP method on the solution in comparison to

fixed-time-period results.

The temporal resolution survey shows that only three time varying modes are

required to predict the Strouhal number and base suction coefficient to engineering

accuracy for the entire range of laminar Reynolds numbers. However, the energy in

the higher harmonics decreases with decreasing Reynolds number. At the lower end of

the Reynolds number range, one or two modes can be used to achieve results that are

as accurate as three mode calculations at the higher end of the range. Surprisingly,

some of the NLFD results are closer to the experimental data than the Henderson

results calculated using a very high order method.

Using an initial guess based on experimental data, the GBVTP method can be

used to predict the time period of the fundamental harmonic. The iterative ad-

justment of this parameter results in the prediction of the Strouhal number for the

discrete equations. This shedding frequency is unique for a given mesh and boundary
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conditions, and is the only frequency that will allow the unsteady residual to decay

to zero.

In general, the GBVTP method improved the agreement between the numerical

and experimental results for base suction coefficient in comparison to methods where

the time-period was fixed a priori. The improvement is largely a function of the dif-

ference between the shedding frequency value associated with the fixed-time-period

calculation and the final value predicted by the GBVTP method. This improve-

ment is more pronounced for coarser grids where the discretization error produces a

substantial Reynolds number shift, exacerbating the difference in values of shedding

frequency used by the different methods.

6.3 Pitching Airfoil

The motivations for the selection of the pitching airfoil problem are summarized

below:

• To demonstrate the ability of the NLFD method to time accurately resolve

flows of engineering importance like a transonic pitching airfoil in inviscid and

turbulent viscous environments.

• To compare the efficiency of the NLFD solver in comparison to time-accurate

codes like UFLO82 which implements a dual time stepping technique.

The numerical experiments confirm the accuracy and efficiency of the NLFD

method for this problem. It is remarkable that using just one time varying mode, the

NLFD predictions for coefficient of lift provide excellent agreement with experimental

results. This applies even to flow fields where mild separation effects are predicted.

In the case of the coefficient of moment, NLFD predictions provide poor agreement

with experimental studies. This is no different than time-accurate solvers with similar

spatial discretizations. Consequently it may be concluded that the discretization of

the temporal derivative is not the source of the discrepancy, which may partly be due

to turbulence-modeling errors. Moreover, the experimental results are questionable,



CHAPTER 6. CONCLUSIONS 148

given the magnitude of the corrections applied by the experimentalists during post-

test analysis.

6.4 Computational Efficiency of the NLFD Method

Given equivalent spatial discretizations and overall error, the NLFD method is signif-

icantly more efficient than dual time stepping codes like UFLO82. Specifically, using

coefficient of lift as a figure of merit the NLFD solver is 8 to 19 times faster than the

dual time stepping code. Using coefficient of moment as the basis for comparison, the

NLFD method is roughly three to nine times faster than the time-accurate approach.

The ratio of efficiency between the codes is provided as a range because the NLFD

method gains efficiency at higher temporal resolutions.

The NLFD method should in principle provide the very rapid convergence of a

spectral method with increasing numbers of modes, and in this sense it is an optimal

discretization scheme for time-periodic problems. In practice it turns out that it can

also be effectively used as a reduced order method in which users deliberately choose

not to resolve the higher temporal modes in the solution. It is particularly efficient

in cases where the vast majority of the energy within the solution is contained in

the fundamental harmonic. More challenging cases include solutions where energy

is distributed among several modes. Consequently, validation of this method should

be done on a case by case basis with a focus on quantifying not only the solution

error, but also error in the data values useful to engineers, which must be extracted

by post-processing the solution.

6.5 Future Work

In this work the NLFD method has been applied only to the solution of the Euler

and Navier-Stokes equations. The same efficiency benefits might be realized for other

systems of equations. Specifically, it could be used to solve the adjoint system to

the Euler and Navier-Stokes equations for shape optimization problems in unsteady

flows [55]. This could benefit the design of both turbomachinery and helicopter blades.
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In addition, solutions of the adjoint equations could be used to obtain error estimates

for functionals such as lift and drag coefficients. This might eliminate the need for

refinement studies where solutions with additional modes are calculated to estimate

the functional convergence.

The stationary system of equations produced by the NLFD method has been

solved using established techniques to accelerate convergence. Specifically these con-

sist of a modified Runge-Kutta scheme, used with pseudo local time stepping, residual

averaging and multigrid. Recently, other solvers using Gauss-Seidel relaxation in a

multigrid procedure have demonstrated significantly faster convergence rates. The

application of these new convergence acceleration techniques to the NLFD method

offers the opportunity for a further major improvement in efficiency.



Appendix A

Discretization

A.1 Non-Dimensionalization

The analysis starts by presenting a form of the conservation equations where the flux

vector,~F , has been split into convective, ~Fc, and dissipative, ~Fv, components:

d

dt

∫

Ω

WdV +

∮

∂Ω

~Fc · ~Nds +

∮

∂Ω

~Fv · ~Nds = 0. (A.1)

Following the work of Martinelli [45], non-dimensionalization of the equation set

can be achieved by dividing the dimensional quantities by characteristic properties,

denoted by the ∞ symbol, to achieve the dimensionless quantities denoted by the ∗
symbol:

xi
∗ =

xi

x∞

t∗ =
t

x∞
(

ρ∞
p∞

) 1
2

ρ∗ =
ρ

ρ∞

ui
∗ =

ui(
p∞
ρ∞

) 1
2
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bi
∗ =

bi(
p∞
ρ∞

) 1
2

E∗ =
E(
p∞
ρ∞

)

µ∗ =
µ

µ∞
. (A.2)

The volumetric and flux integrals of the conservation equations can be rewritten in

dimensionless quantities:

d

dt

∫

Ω

WdV = x2
∞




(p∞ρ∞)
1
2

p∞

p∞(
p∞3

ρ∞

) 1
2




d

dt∗

∫

Ω

W ∗dV ∗ (A.3)

∮

∂Ω

~Fc · ~Nds = x2
∞




(p∞ρ∞)
1
2

p∞

p∞(
p∞3

ρ∞

) 1
2




∮

∂Ω

~F ∗
c · ~Nds∗ (A.4)

∮

∂Ω

~Fv · ~Nds = x2
∞




0

µ∞
x∞

(
p∞
ρ∞

) 1
2

µ∞
x∞

(
p∞
ρ∞

) 1
2

µ∞
x∞

(
p∞
ρ∞

)




∮

∂Ω

~F ∗
v · ~Nds∗. (A.5)

The conservation equations then simplify into the following dimensionless form:

d

dt∗

∫

Ω

W ∗dV ∗ +

∮

∂Ω

~Fc
∗ · ~Nds∗ =

√
γ

M∞
Re∞

∮

∂Ω

~Fv
∗ · ~Nds∗. (A.6)

Ratios of common dimensionless coefficients can be used to scale the viscous stress

terms. Here M∞ and Re∞ are the Mach number and Reynolds number respectively.

For the sake of brevity, the remainder of this paper will drop the ()∗ notation.
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A.2 Spatial Operators

A.2.1 Convective Fluxes

In applying this formula to the convective flux, the following notation is introduced:

~S = |S| (N1e1 + N2e2)

~Fc = Fc1e1 + Fc2e2. (A.7)

The outward facing normal can be calculated as the perpendicular vector to the cell

face whose length is equal to the length of the face.

Figure A.1 illustrates a typical grid (shown by the solid lines), and the derived

control volume (shown as dashed lines). The values of the state vector are held at

the center of the cell. The exact flux vectors are approximated by taking the average

of the flux based on the cell values. The overall convective flux evaluated at the i+ 1
2

face can be written as:

~Fc
i+1

2

· ~Si+ 1
2

=
1

2

[
~Fc(Wi+1) + ~Fc(Wi)

]
· ~Si+ 1

2
. (A.8)

On a Cartesian grid this results in a pure central difference scheme that provides no

damping to the odd-even modes. Hence upwind biasing by artificial dissipation or

directly constructed upwind schemes are employed.

A.2.2 Artificial-Dissipation Fluxes

A variety of artificial-dissipation schemes were used in this work. The cylinder and

O-mesh pitching airfoil cases were calculated with a Symmetric Limited Positive

(SLIP) [30, 80, 65, 79] scheme based on differences in the characteristic form of the

state vector. The C-mesh pitching airfoil cases were calculated with a Jameson-

Schmidt-Turkel (JST) [39] scheme that will be the focus of this section. A thorough

discussion of the implementation and mathematical properties (positivity, etc.) of

both these schemes is provided by Jameson [35, 36]. Using the pitching airfoil results

shown in chapter 4 as a reference, little difference is exhibited between solutions using
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i,j

i,j−1

i+1,j

i−1,j

i,j+1

S(i+1/2)

S(j−1/2) S(i−1/2)

S(j+1/2)

Figure A.1: Convective Flux Control Volume

different schemes.

For the purposes of this section, the ∆ symbol denotes the difference in the solution

between two adjacent cells

∆Wi+ 1
2

= Wi+1 −Wi. (A.9)

The JST scheme uses a blended mix of first (∆Wi+ 1
2
) and third order (∆Wi+ 3

2
−

2∆Wi+ 1
2

+ ∆Wi− 1
2
) dissipation operators evaluated at each cell face to stabilize the

solution

Fd
i+1

2

= ε
(2)

i+ 1
2

∆Wi+ 1
2

− ε
(4)

i+ 1
2

(
∆Wi+ 3

2
− 2∆Wi+ 1

2
∆Wi− 1

2

)
. (A.10)

The coefficients that control which dissipation operator is dominant, ε
(2)

i+ 1
2

and ε
(4)

i+ 1
2

,
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are given by:

ε
(2)

i+ 1
2

= c2ai+ 1
2
Qi+ 1

2

ε
(4)

i+ 1
2

=
(
c4 − c2Qi+ 1

2

)
ai+ 1

2
. (A.11)

The spectral radius of the convective fluxes at the cell face (ai+ 1
2
) properly scales the

coefficients to ensure stability

ai+ 1
2

= ~Ui+ 1
2
· ~Si+ 1

2
+ c‖~Si+ 1

2
‖. (A.12)

This mixing process is controlled by a switch (Qi+ 1
2
) based on differences in the

pressure field

Qi =

∣∣∣∣
pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1 + ε

∣∣∣∣

Qi+ 1
2

= min

(
1

4
, max (Qi+2, Qi+1, Qi, Qi−1)

)
. (A.13)

At discontinuities such as a shock wave, the pressure differences between adjacent

cells will be large, causing Qi+ 1
2

to saturate at 1
4
. Consequently the low order term

dominates the dissipation scheme essentially providing first order upwinding. Away

from the shock where the solution is smooth the switch tends toward zero. In this case

a Taylor series analysis is valid (under the assumption of a smooth pressure field),

and shows that the switch decays like ∆x2. This decay ensures that the third order

term is the dominant contribution to the dissipation scheme in smooth areas of the

solution.

A.2.3 Viscous Fluxes

This section describes the spatial discretization used to approximate the viscous

stresses associated with the Navier-Stokes equations. In his dissertation Martinelli

described two separate discretizations of viscous terms based on different control vol-

umes named CCS-A and CCS-B [45]. This section outlines the mathematics behind
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the CCS-A approach, but both schemes were implemented in the NLFD code with

negligible difference.

The viscous fluxes require us to estimate the values of σij and qi at the cell faces.

These terms are functions of derivatives of temperature and velocity. To estimate

these derivatives, a second control volume is introduced and shown as the dashed

lines in figure A.2. Through the application of the divergence theorem the derivatives

A

B

a

bc

d

W(i+1,j) W(i,j+1)

X(i,j+1)X(i+1,j)

X(i,j−1) X(i−1,j)

W(i−1,j)W(i,j−1)

W(i,j)

W(i+1,j+1)

X(i,j)

Figure A.2: Viscous Flux Control Volume

of any flow field quantity at point A can be approximated as:

∫

Ω

∂u

∂xi

dV =

∫
5 · ueidV =

∮

∂Ω

uei · ~Nds. (A.14)

The same technique can be shifted to point B, and an estimate can then be made of

the derivative along cell face AB. The variable u is used in this section as a sample

variable and does not necessarily represent velocity.

On a discrete mesh the continuous integrals can be replaced by their discrete

approximations. The product of the volume and the average value of the derivative
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at the cell center approximates the volumetric integral. As in previous cases, the

surface integral is replaced by the sum of fluxes over each cell face

VcvDxi
u =

∑
cv

uSi. (A.15)

The derivatives of all the quantities are computed consistently. To illustrate the

technique, Dx evaluated at point A (or Xi,j on the mesh) can be stated as:

VcvDxui,j =
1

2
(ua + ub) (ya − yb) +

1

2
(ub + uc) (yb − yc)

+
1

2
(uc + ud) (yc − yd) +

1

2
(ud + ua) (yd − ya)

=
1

2
[(ua − uc)(yd − yb) + (ud − ub)(yc − ya)] . (A.16)

The values of the solution at the vertices of the control volume can be approximated

by averaging the nearest solution values held at the cell centers:

ua =
1

2
(ui,j+1 + ui+1,j+1)

ub =
1

2
(ui,j+1 + ui,j)

uc =
1

2
(ui+1,j + ui,j)

ud =
1

2
(ui+1,j + ui+1,j+1) . (A.17)

The position of the vertices defining the control volume are calculated by averaging

the end points of the mesh line containing that vertex:

ya =
1

2
(yi,j+1 + yi,j)

yb =
1

2
(yi−1,j + yi,j)

yc =
1

2
(yi,j−1 + yi,j)

yd =
1

2
(yi+1,j + yi,j) . (A.18)
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The averaged derivative notation is introduced to rewrite equation A.16 into a form

mirroring the strong conservation form of Viviand [67] and Vinokur [66] (see equa-

tion A.33 for the conservative form of the derivative operators):

ud − ub =
1

2
(ui+1,j+1 − ui,j+1 + ui+1,j − ui,j)

=
1

2

(
Diui+ 1

2
,j+1 + Diui+ 1

2
,j

)
= Diu (A.19)

ua − uc =
1

2
(ui+1,j+1 − ui+1,j + ui,j+1 − ui,j)

=
1

2

(
Djui+1,j+ 1

2
+ Djui,j+ 1

2

)
= Dju (A.20)

ya − yc =
1

2
(yi,j+1 − yi,j−1) = Djy (A.21)

yd − yb =
1

2
(yi+1,j − yi−1,j) = Diy. (A.22)

Substituting equations A.19- A.22 into equation A.16 results in an expression for the

spatial derivative in terms of solution differences defined in the computational plane

and metric terms:

DxuA =

(
Diu Djy −Dju Diy

)

2Vcv

. (A.23)

The stress tensor terms σij for the AB face can now be approximated by averaging

the derivative terms evaluated at points A and B as:

DxuAB =
1

2
(DxuA + DxuB) . (A.24)

The viscous fluxes can then be evaluated at each face and summed over the control

volume defined in figure A.1.

A.2.4 Turbulence Model

Several different types of simulations have been used in this research to validate the

numerical methods. The first model presented is a low Reynolds laminar simulation of

unsteady vortex shedding behind a cylinder. Due to the laminar flow characteristics
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no turbulence model was needed for this case. A pitching airfoil with a turbulent

boundary layer was used as the second case. A Baldwin-Lomax turbulence model

was implemented to model the turbulent motions in the boundary layer which would

have gone uncaptured by the relatively coarse mesh. Due to the absence of a boundary

layer, the Euler calculations presented for the pitching airfoil obviously did not use

any turbulence models.

The Baldwin-Lomax turbulence model is based on a set of algebraic equations

that estimate eddy viscosity µ̃ for a steady flow field. The model was implemented

for unsteady flow by calculating µ̃ at a given instance in time based on the solution

and the grid at that same instant. This snapshot approach effectively ignores the

unsteady effects on the turbulence characteristics.

A.3 Boundary Conditions

A.3.1 Wall

The NLFD solver has been developed using ghost cells to represent the wall boundary

conditions. Lower order dissipation schemes typically only need a pressure extrapo-

lation for the ghost cell values since the mass flux is zero through the wall. However,

higher order dissipation schemes with extended stencils have been used throughout

this research. These extended stencils use the entire state vector at the ghost cell

when calculating the artificial dissipation flux at the top face of the cell adjacent to

the wall. Hence the boundary condition needs to not only extrapolate pressure to the

ghost cell but all other state variables. Figure A.3 provides a cartoon of a curvilinear

mesh at the wall. The subscript notation used throughout this section is based on the

labels placed in this figure: g denotes the ghost cell, i or i, j denotes the first interior

cell.

The density variable for both Navier-Stokes and Euler simulations is simply con-

tinued across the wall

ρg = ρi. (A.25)

The velocity components are calculated such that the average of the ghost and interior
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Figure A.3: Pictorial of cells at the wall for a curvilinear mesh.

velocity vectors provide a zero mass flux at the wall. For the Euler equations this

implies that the averaged vector is perpendicular to the wall vector, and the tangential

components of the velocity are equal for both the ghost and interior cells. If ~N is the

wall normal then an equation can be written for the ghost cell velocity vector as:

~Ug = ~Ui − 2
(

~Ui · ~N
)

~N. (A.26)

For the Navier-Stokes case, the no-slip boundary condition implies that the averaged

vector is zero at the wall

~Ug = − ~Ui. (A.27)

A pressure extrapolation for these flow simulations can be presented as:

pg = pi + α (pi − pi+1) . (A.28)

The α variable acts as a switch between Navier-Stokes and Euler computations. In

the viscous case, α equal to zero provides a simple pressure continuation across the

wall. In the inviscid case, α equal to one ensures that the ghost cell pressure is equal
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to a linear extrapolation of the pressure using the next two interior points.

Rizzi [59] proposed another boundary condition for pressure applicable to the

Euler equations. Following the notes of Alonso [3], the remainder of this section will

document the implementation of this boundary condition.

As a particle moves along a streamline the volumetric flux perpendicular to that

streamline is always zero; or in mathematical terms the substantial derivative of the

volumetric flux is zero (
∂

∂t
+ ~U · ∇

) (
~U · ~S

)
= 0. (A.29)

For the remainder of this subsection the use of vector notation will be dropped; this

section opts to individually name the velocity components u and v and the spatial

dimensions x and y. Using the definition of the dot product and applying the chain

rule to separate any derivatives of products will result in the following expression:

Sx
∂u

∂t
+ u

∂Sx

∂t
+ Sy

∂v

∂t
+ v

∂Sy

∂t
+ uSx

∂u

∂x
+ u2∂Sx

∂x
+

uSy
∂v

∂x
+ uv

∂Sy

∂x
+ vSx

∂u

∂y
+ uv

∂Sx

∂y
+ vSy

∂v

∂y
+ v2∂Sy

∂y
= 0. (A.30)

In non-conservative form the x- and y-components of the momentum equations can

be written as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= 0. (A.31)

The x-component of the momentum equation is now multiplied by Sx while the y-

component of the momentum equation is multiplied by Sy. Subtracting the resulting

expressions from equation A.30 will result in the following equation:

Sx

ρ

∂p

∂x
+

Sy

ρ

∂p

∂y
=

(
u
∂Sx

∂t
+ v

∂Sy

∂t

)
+

(
u2∂Sx

∂x
+ uv

∂Sy

∂x
+ uv

∂Sx

∂y
+ v2∂Sy

∂y

)
. (A.32)
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Using the transforms between a curvilinear and uniform mesh presented by Vi-

viand [67] and Vinokur [66] the directional derivatives can be replaced using a com-

bination of metrics and derivatives evaluated on a uniform mesh

∂

∂x
=

1

J

(
∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η

)

∂

∂y
=

1

J

(
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

)
. (A.33)

The metric terms should be evaluated at the face of the wall, hence the outward wall

normal is equivalent to derivatives in the ξ direction

∂x

∂ξ
= Sy

∂y

∂ξ
= −Sx. (A.34)

Derivative terms in the η direction are approximated by averaging the cell face normals

in the tangential direction (see figure A.3)

∂y

∂η
= R̄x =

1

2
(Rxi−1 + Rxi)

∂x

∂η
= −R̄y =

−1

2

(
Ryi−1 + Ryi

)
(A.35)

The cell volume J can be calculated as a product of these wall normals

J = SyR̄x − SxR̄y. (A.36)

Using these definitions the Rizzi boundary condition can be written using the face

normals of the cell adjacent to the wall

(
S2

x + S2
y

) ∂p

∂η
= Jρ

(
u
∂Sx

∂t
+ v

∂Sy

∂t

)
+

ρ
(
uR̄x + vR̄y

) (
u
∂Sx

∂ξ
+ v

∂Sy

∂ξ

)
− (

SxR̄x + SyR̄y

) ∂p

∂ξ
. (A.37)
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Due to the magnitude of the terms the derivatives of the grid metrics with respect to

time
(

∂Sx

∂t
, ∂Sy

∂t

)
can be ignored.

A.3.2 Farfield

Two different farfield boundary conditions were used by the NLFD codes. The cylin-

der simulations used a boundary condition based on one-dimensional characteristic

theory applied to a linearized system of Euler equations. The approach approximates

a non-reflecting boundary condition by allowing outgoing characteristics to continue

information to the halo cells while nullifying incoming characteristics. The method

is derived using a solution represented in the frequency domain that takes advantage

of the representation of the state vector by the NLFD code. A full derivation of the

boundary condition is provided by McMullen et al. [48].

In the case of the pitching airfoil, one-dimensional Riemann invariants are applied

to each instance of the solution in its time history. The boundary conditions for the

cylinder are based on a form of the governing equations linearized using the assump-

tion that the unsteady terms are small in comparison to the time-averaged values. For

the pitching airfoil, the validity of this assumption is a function of the magnitude of

the mesh velocity terms in equation 2.4. The magnitude of these terms will increase

as the boundary distance or the reduced frequency increases. A point exists where

the growth of these terms would be large enough to invalidate the linearization of the

equations and the resulting boundary conditions.

In addition, applying Riemann invariants facilitates comparisons with other codes.

Chapter 5 of this work compares NLFD solutions to those produced by the UFLO

and FLO family of solvers. All of these codes use Riemann invariants in their farfield

boundary conditions. Thus inconsistency in the boundary conditions is eliminated as

a possible source of error.

Results from the pitching airfoil simulations presented in chapters 4 and 5 use

farfield boundaries that are 20 chords from the wall. The magnitude of an unsteady

wave naturally diminishes as it travels in multi-dimensional space. The effect is
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heightened by numerical dissipation and a coarse farfield grid that artificially damp-

ens the waves as they travel outward. The very small magnitude of the unsteady

disturbances in the farfield allow for the application of a steady boundary condition,

like Riemann invariants, without significant corruption of the solution in the interior.

Using the homentropic assumption, conservation of mass and momentum equa-

tions for one-dimensional flow can be simplified into a system of material derivatives

D+

Dt
(u + f) = 0

D−

Dt
(u− f) = 0. (A.38)

The material derivative operators and the f function can be simply defined as follows:

D+

Dt
=

∂

∂t
+ (u + c)

∂

∂x
D−

Dt
=

∂

∂t
+ (u− c)

∂

∂x

f =
2

γ − 1
c. (A.39)

Figure A.4 provides a diagram of the cells and the notation used in the imple-

mentation of the boundary condition in a two-dimensional environment. Farfield and

ghost cell quantities will be denoted with ∞ and g subscript respectively. The coor-

dinate frame for the Riemann invariants will be along the outward pointing normal

to the cell face. All velocities will be projected in this direction using the dot product

operator

q = ~U · ~N. (A.40)

The right running characteristics associated with D+ are a function of the interior

properties while the left running characteristics associated with D− are a function

of farfield values. The normal component of the velocity and speed of sound at the

ghost cell are simple linear combinations of the invariants

J+ = qi,j + fi,j
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Figure A.4: Pictorial of cells in the farfield for a curvilinear mesh.

J− = q∞ − f∞

qg =
1

2
(J+ + J−)

cg =
γ − 1

4
(J+ − J−). (A.41)

Consistent with the direction of the entropic and vortical characteristics, the entropy

(s) and tangential component of velocity (r) are continued along the particle path.

Hence for outgoing flows where qg > 0 the ghost cell values are equivalent to the

interior values

rg = ri,j

sg = si,j. (A.42)

For incoming flows where qg < 0, the farfield values are simply continued to the ghost
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cell

rg = r∞

sg = s∞. (A.43)

The velocity at the ghost cell in the X,Y frame can be constructed from the veloc-

ity components in the normal frame, and all the thermodynamic properties can be

calculated using the values of entropy and speed of sound.



Appendix B

Unsteady Channel Flow

B.1 Small Perturbation Theory

The first model used in the verification of this method was the simulation of incom-

pressible inviscid flow through a one-dimensional channel. A pictorial representation

of this problem is provided in figure B.1. This model was selected because an ana-

lytic solution to the flow field was derived using small perturbation theory by Merkle

and Athavale [51]. This derivation assumes that the magnitude of the unsteadiness

is small in comparison with the mean flow values, allowing the problem to be ap-

proximated by linear theory where all the wavenumbers of the problem uncouple. As

such, the model does not test any of the non-linear capabilities of the NLFD scheme

and is provided as basic verification of the overall numerical scheme and boundary

conditions.

A derivation of the analytic solution begins with the incompressible form of the

mass and momentum equations in one dimension:

∂u

∂x
= 0

∂u

∂t
+

1

ρ

∂p

∂x
= 0. (B.1)

Differentiating the mass equation with respect to time, the momentum equation with

166
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Figure B.1: Pictorial of one-dimensional channel flow model problem.

respect to space, and subtracting the resulting equations provides the following:

∂2p

∂x2
= 0. (B.2)

The solution can be decomposed into two parts; the time-average of the solution

over a given period and an unsteady component which is assumed to be significantly

smaller than the average

p = p̄ + ṕ

u = ū + ú. (B.3)

Given an infinite period of time, the following integral relations are assumed to hold

for both pressure and velocity:

1

T

∫ ∞

0

p dt = p̄

1

T

∫ ∞

0

ṕ dt = 0. (B.4)

By substituting the above definitions into the equations B.1 and B.2 and integrating



APPENDIX B. UNSTEADY CHANNEL FLOW 168

over a time period one can take advantage of equation B.4 and write the following:

∂2ṕ

∂x2
= 0

∂ú

∂x
= 0. (B.5)

These partial differential equations can be integrated with respect to x and written

as a function of the perturbed variables in space and time:

ú = f(t)

ṕ = g(t)x + h(t). (B.6)

Boundary conditions applied at the extents of the channel dictate that inlet stagna-

tion pressure is held constant in time while a sinusoidal variation in exit pressure is

specified as:

p0(x = 0) = p(0, t) +
1

2
ρu(0, t)2

p(L, t) = p̄ + ṕesin(wt). (B.7)

Substituting the definitions provided in equations B.3 the boundary conditions can

be linearized by dropping any of the higher order unsteady terms. Repeating the

technique introduced above, one can integrate over a time period and take advantage

of the definitions in equation B.4. This provides a linearized set of equations for the

perturbed variable

ṕ(0, t) + ρūú(0, t) = 0

ṕ(L, t) = ṕesin(wt). (B.8)

Using the boundary conditions and the momentum equation the temporal functions

f(t), g(t), and h(t) can be derived as

g(t)L + h(t) = ṕesin(wt)
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h(t) + ρūf(t) = 0

df(t)

dt
+

1

ρ
g(t) = 0. (B.9)

The above three equations can be combined to form an ordinary differential equation

df(t)

dt
+

ū

L
f(t) = − ṕe

ρL
sin(wt). (B.10)

This ODE can be simplified into a form which can be directly integrated

d
(
e

ūt
L f(t)

)

dt
= −e

ūt
L

ṕe

ρL
sin(wt)

f(t) = − ṕe

ρL
e
−ūt
L

[∫ t

e
ūs
L sin(ws)ds + c

]
. (B.11)

This is integrated over an arbitrary length of time with the constant of integration

determined by the initial values of the solution. For an initially steady flow the

velocity perturbations are quantified as:

f(t) = ú = − ṕe

ρū

1

1 + Ω2

[
sin(wt)− Ωcos(wt) + Ωe−

ūt
L

]

Ω =
wL

ū
. (B.12)

Having solved for f(t), solutions for the temporal functions g(t) and h(t) can be solved

by employing equation B.9. Combinations of these functions result in an equation for

the pressure perturbation as originally provided by Merkle and Athavale:

ṕ(x, t) = ṕesin(wt) + ṕe

(
x− L

L

)
Ω

1 + Ω2

[
Ωsin(wt) + cos(wt)− e−

ūt
L

]
. (B.13)

B.2 Channel Flow Results

The solution in equations B.13 and B.12 includes terms representing the exponential

decay of the initial transients. The NLFD solver does not admit these terms given

that they are zero at a periodic steady state. This periodic solution can be restated
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as follows:

ú(t) = − ṕe

ρū

1

1 + Ω2
[sin(wt)− Ω cos(wt)]

ṕ(x, t) = ṕe sin(wt) + ṕe

[
x− L

L

]
Ω

1 + Ω2
[Ω sin(wt) + cos(wt)] . (B.14)

A one-dimensional incompressible NLFD flow solver was developed based on the the-

ory of artificial compressibility. Because the analytic solution of pressure and velocity

is linear in space, a first order spatial differencing scheme was used which should rep-

resent this analytic solution without error. The solver used convergence acceleration

techniques similar to those documented in previous chapters of this thesis; a simpler

multigrid V-cycle was employed with a multistage time advancement scheme.

Results from an arbitrary test case are provided to illustrate the solution. Ta-

ble B.1 displays the boundary condition parameters that define this case while fig-

ures B.2 and B.3 plot the velocity and pressure in space and time. As the analytic

solution would suggest both plots produce ruled surfaces where the solution varies

linearly in space and sinusoidally in time.

Nomenclature Symbol Value

Exit pressure perturbation ṕe

p̄
1e-4

Reduced frequency Ω 1.0
Inlet stagnation pressure po constant

Table B.1: Boundary conditions used for test case.

A parameter survey was designed to verify the accuracy of the solver. Since the

spatial and temporal discretization error should be zero, the only error contribution

should be from the second order terms dropped in the derivation of the linearized

solution. Consequently, the difference between the analytic and NLFD solutions

should decay by the square of the exhaust pressure perturbation. A set of test cases

was run with the NLFD solver over a range of 12 orders of magnitude in the exhaust

pressure perturbation. The infinity norm of the difference between the analytic and

numerical solution is provided in figure B.4.
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Figure B.2: Three-dimensional plot of channel velocity as a function of streamwise
coordinate and time.

The figure shows that the error decays to a minimum which corresponds to the

numerical precision of the computer. For all solutions, calculated within the precision

of the machine, the error predictably decays like the square of the exhaust pressure

perturbation.

B.3 Channel Flow Convergence

This section investigates the convergence rates of the solver as a function of unsteady

parameters like exhaust pressure perturbation and the decay rate of the initial tran-

sients. Given the the accuracy of the linearization is a function of the magnitude

of the unsteadiness, then the exhaust pressure perturbation is an indicator of the

nonlinearity inherent in the solution. Plotting convergence rates as a function of this

parameter shows the sensitivity of the solver to nonlinearities in the solution. Fig-

ure B.5 shows the residual in the fundamental harmonic as a function of the iteration

number in the solver. Each line on the figure represents a separate case with a unique

exhaust pressure perturbation. The residuals all begin at different levels because the
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Figure B.3: Three-dimensional plot of channel pressure as a function of streamwise
coordinate and time.

uniform initial solution becomes closer to the unsteady solution as the unsteady per-

turbations decrease. However, the slope of all the lines on this graph are the same

indicating that the convergence rate of the solver is independent of the magnitude of

the exhaust pressure perturbation.

In contrast to time-accurate solvers, a frequency domain solver attempts to di-

rectly solve for the periodic steady state. The decay rate of the initial transients,

which adversely affect time-accurate solvers, should not affect the performance of the

NLFD solver. This decay rate for the channel flow problem, is quantified by the

exponential term in equations B.12 and B.13. Table B.2 documents the results of a

parametric survey that varied the ū
L

term by 10 orders of magnitude while varying

the frequency such that the term T ū
∆x

remained constant. The data shows that the

same number of multigrid cycles are required to obtain a fully converged solution over

a range in transient decay rates. This illustrates that for a fixed spatial resolution,

the convergence rates of this solver are independent of the physical eigenvalues of the

problem.
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Figure B.4: The infinity norm of the difference between analytic and NLFD solutions
as a function of exhaust pressure perturbation.

T ū
∆x

Decay Rate of Initial Transients Multigrid Cycles

10 10−10 → 1 206
100 10−10 → 1 98

Table B.2: The number of multigrid cycles required to achieve machine zero conver-
gence. Two separate cases are provided at different values of T ū

∆x
. Within each case,

the initial transients decay rate was varied by ten orders of magnitude.
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