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Motivation

• The application of reduced order models based on Proper Orthogonal
Decomposition (POD) to aerodynamics has been restricted to subsonic
flows or flows with weak shocks which had little movement.

• The inherent simplicity of the linear basis generated via POD also limits
it to representing phenomena which have been observed in the dataset
used to construct it.

• A simple example illustrates the problem.
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Motivation (cont.)
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(b) Mach = 0.30
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(c) Mach = 0.40
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(d) Mach = 0.50
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(e) Mach = 0.60
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Motivation (cont.)
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(a) Surface CP Distribution, M = 0.35
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Motivation (cont.)

• Lucia (2001) proposed and demonstrated the decomposition of a flow
with moving shocks into a subdomain in which the flow is represented
with a POD model and a small subdomain in which a full order flow
solver is used.

• Extend domain decomposition as a dynamic, a posteriori verification and
if necessary, correction of the approximate solution.

• The fidelity can be varied from extremely low - only a handful of degrees
of freedom coming solely from POD - to very high as the model recovers
the fidelity of a full order solver in the limit. This makes for a good fit
for multilevel optimization
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POD Theory

• We are seeking representations of a function, u(x), in terms of a basis
{ϕj(x)}∞j=1 which allows an approximation to be constructed as

uM =
M∑

j=1

ηj ϕj(x) (1)

• We would like to choose {ϕj(x)}∞j=1 so that these basis functions describe

a typical function in the ensemble {uk} better than any other linear basis,
which may be expressed mathematically as

max
ϕ

〈|(u, ϕ)|2〉
‖ϕ‖2 (2)
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POD Theory (cont.)

• We have a calculus of variations problem in which we would like to
maximize 〈|(u, ϕ)|2〉 subject to the constraint that ‖ϕ‖2 = 1 which may
be shown to require that the basis functions satisfy

∫

Ω

〈u(x)u(x′)〉ϕ(x′)dx′ = λϕ(x). (3)

• The POD basis is composed of the eigenfunctions of the integral Eq. 3.

• The member functions of the ensemble can now be decomposed as
follows

u(x) =
∞∑

j=1

ηj ϕj(x). (4)
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POD Theory (cont.)

• In the case of the Euler equations we use a vector state variable

w = (ρ, ρu, ρE),

where ρ, ρu, and ρE are the density, momentum, and total energy
respectively and the variables are assumed to have zero mean.

• The inner product is then computed as

(w(l),w(m)) =
∫

Ω

N∑

k=1

w(l)
k (x) w(m)

k (x) dΩ. (5)

where N = dim(w).
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Flow Analysis Procedure

• Approach is based on a finite-volume discretization in which the equations
of motion of the fluid can be written in integral form as

d

dt

∫∫

Ω

w dx dy +
∮

∂Ω

(f dy − g dx) = 0 (6)

where w is the vector of conserved flow variables, and f , g are the Euler
flux vectors

w =





ρ
ρu
ρv
ρE





, f =





ρu
ρu2 + p

ρuv
ρuH





, g =





ρv
ρuv

ρv2 + p
ρvH
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Flow Analysis Procedure (cont.)

• Applying Eq. 6 independently to each cell in the mesh we obtain a set of
ordinary differential equations

d

dt
(wij Vij) + R(wij) = 0, (7)

and in the steady state, the time derivative term drops out and we are
left with

R(wij) = 0. (8)

• An exact solution of Eq. 8 using the reduced basis will typically not
be possible since we have drastically reduced the number of available
degrees of freedom.
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Flow Analysis Procedure (cont.)

• One can use any weighted residual method such as collocation, least
squares, and the Galerkin method.

• Method used here is to minimize the residuals in a least squares sense.

• Defining the square of the residuals where R can now be expressed as a
function of η

R̃(η) =
∑

i,j

R(η)2 (9)

• The governing equations for the POD solution are then

R̂k(η) =
∂R̃

∂ηk
= 0. (10)
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Flow Analysis Procedure (cont.)

• Cost of the approximate solution is proportional to the number of modes
used in the approximation and also has a dependence on the number of
degrees of freedom in the original problem.

• Can lessen the impact of dimensionality for the non-linear case by not
using every single residual in the least squares fit.

• This approach essentially achieve somes of the low cost of collocation with
less dependence on the choice of collocation points and are sometimes
referred to as least squares collocation.

13



AIAA 2003-0250 41st Aerospace Sciences Meeting

Domain Decomposition

• Coupling is essentially the same as that used in mutliblock solvers
where the spatial domain of the problem is broken into blocks and
communication between subdomains is accomplished using halo cells
surrounding each subdomain.

• However, the coupling does require attention to the interface between
the approximate solution generated via POD and the full order solver.

• Sources/sinks of mass, momenta, and energy in the first level of halo
cells surrounding the full order domains to leave a conservative interface
between the POD and full order solver.
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Domain Decomposition (cont).

• Lagged iterations, beginning with a pure POD solution, between the
POD and full order solver are used to generate the solution of the
coupled system.

• The number of iterations required to solve the full order equations in the
coupled system is approximately the same as the number of iterations
required to solve the real full order system, but now there are far fewer
equations.

• There is additional cost to recompute the solution in the POD subdomain
as the solution in the full order subdomain evolves, typically one or two
more iterations beyond the three or four required to get the initial POD
solution.

15



AIAA 2003-0250 41st Aerospace Sciences Meeting

Error Estimation

• The coupling of the POD and full order solver allows one to generate
solutions of widely varying computational cost, but as is often the
problem in reduced order modeling the degree of accuracy is unknown.

• Ideally we would like to have error bounds, but this may have nearly the
same cost as computing the solution of the problem we are trying to
approximate in the first place.

• We can however prioritize which portions of the domain to augment
with additional basis functions to generate the best solution for a given
computational cost.
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Error Estimation (cont).

• Let subscript POD denote the solution as computed using POD

wPOD =
M∑

m=1

ηmϕm(x) (11)

and DD the solution using the POD basis functions plus some additional
top hat basis functions, ϕ̂n,

wDD =
M∑

m=1

ηmϕm(x) +
N∑

n=1

η̂nϕ̂n(x). (12)

• Define wPOD
DD as the solution using the expansion in (11) transferred to

the basis in (12).
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Error Estimation (cont).

• The residual operator representing the governing equations are

{
R̂k(η)
Rk(η̂n)

}
= RDD = 0. (13)

• The residual operator can be expanded as

RDD(wDD) = RDD(wPOD
DD ) +

∂RDD

∂wDD

∣∣∣∣
wPOD

DD

(wDD −wPOD
DD ) + · · ·

• This can be inverted to give the error in the state vector

(wDD −wPOD
DD ) ≈ −

[
∂RDD

∂wDD

∣∣∣∣
wPOD

DD

]−1

RDD(wPOD
DD ). (14)
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Error Estimation (cont).

• How useful and costly this estimate is depends on the number of
additional basis functions that are introduced.

• For this work we found that introducing new basis functions in blocks
of 8 by 8 cells (in a computational domain which was 160 by 32 cells)
gave a good compromise between capturing higher order effects and
computational cost.

• Each block was assigned a value equal to the norm of the change in
pressure for the cells inside that block to give priority to placing basis
functions that lead to a local change.
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Results - Flow Computation

• Error Estimation for the RAE 2822 Airfoil
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(a) Error Estimation, M = 0.60
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Results - Flow Computation (cont).

• POD with Domain Decomposition for the RAE 2822 Airfoil at M = 0.67
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Results - Drag Minimization

• Geometry of the airfoil is modified to reduce drag at fixed lift.

• To generate the snapshots a baseline NACA 4410 airfoil was perturbed
with 4 Hicks-Henne bump functions on both the upper and lower surfaces.

• Flow solutions for the 9 airfoil geometries were computed at Mach 0.67
and angles of attack of 1.5 ◦ and 1.6 ◦

• The drag minimization was carried out using the NACA 4410 airfoil at
Mach 0.67 and an angle of attack of 1.5 ◦.

• Gradients were computed by finite differencing of the approximate POD
model to determine the direction of change and a line search was made
at each iteration to determine the best step size.
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Results - Drag Minimization (cont.)

• 75% POD / 25% Full Order
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(a) Initial Solution, POD with DD:
Cl = 1.017, Cd = 0.0115;
Full Order: Cl = 1.018, Cd =
0.0115; α = 1.50 ◦
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(b) After 5 Design Iterations,
POD with DD: Cl = 0.993,
Cd = −0.0088; Full Order:
Cl = 1.018, Cd = 0.0034;
α = 1.40 ◦
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Results - Drag Minimization (cont.)
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Results - Drag Minimization (cont.)

• 50% POD / 50% Full Order

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

P
re

ss
ur

e 
C

oe
ffi

ci
en

t, 
C

p

POD with DD
Full Order

(a) Initial Solution, POD with
DD: Cl = 1.017, Cd =
0.0115; Full Order: Cl =
1.018, Cd = 0.0115; α =
1.50 ◦
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(b) After 5 Design Iterations,
POD with DD: Cl = 1.027,
Cd = 0.0003; Full Order:
Cl = 1.018, Cd = 0.0020;
α = 1.58 ◦
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Results - Drag Minimization (cont.)
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Conclusions & Future Work

• A procedure with continuously variable fidelity has been developed to use
POD-based reduced order models for aerodynamic problems with moving
shocks.

• To investigate the suitability of these types of models for use in design, a
drag minimization problem was performed with final results which were
very similar to the full order results.

• When fully integrated into a multilevel optimization procedure this
method will produce accurate optimization results at significantly reduced
computational cost and allow new design problems which are currently
infeasible to be considered.
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