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Abstract

We present a new continuous adjoint method for aerodynamic shape optimization using the Euler

equations, which reduces the computational cost of the gradients by reducing the volume integral

part of the adjoint gradient formula to a surface integral. The savings are particularly signifi-

cant for three-dimensional aerodynamic shape optimization problems on general unstructured and

overset meshes. In order to validate the concept, the new gradient equations have been tested

for various aerodynamic shape optimization problems, including an inverse problem for three-

dimensional wing configurations, and drag minimization problems of a single-element airfoil and

a three-dimensional wing-fuselage configuration. In order to assess their accuracy, the results are

compared with finite-difference gradients, complex-step gradients, and gradients calculated by the

previous adjoint method which includes a volume integral.
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AIAA Fellow
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Nomenclature

Ai = Cartesian flow Jacobian matrix in the ith direction

c = chord length

CD, CL = coefficients of drag and lift in three dimension

Cd, Cl = coefficients of drag and lift in two dimension

Ci = contravariant flow Jacobian matrix in the ith direction

Cp = pressure coefficient

E = total energy

fi = Cartesian inviscid fluxes

Fi = contravariant inviscid fluxes

F = boundary shape

G = gradient vector

H = total enthalpy

I = cost function

J = det (K)

Kij = mesh transformation Jacobian matrix components

M∞ = free stream Mach number

p = static pressure

pd = desired target static pressure

R = governing equations or residual

Re = Reynolds number

Sij = velocity transformation matrix

t = time

ui = Cartesian velocity components

Ui = contravariant velocity components
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w = conservative flow variables in Cartesian coordinates

W = conservative contravariant flow variables

xi = Cartesian coordinates

y+ = dimensionless wall distance

α = angle of attack

αclmax = stall angle of attack

δ = first variation

δij = Kronecker delta function

εijk = permutation tensor

γ = ratio of specific heats, = Cp

Cv

λ = step size in steepest descent method

ψ = Lagrange multiplier, co-state or adjoint variable

ρ = density

ξi = computational coordinates

Introduction

Recently the focus of Computational Fluid Dynamics (CFD) applications has shifted to aero-

dynamic design 1,2,3,4,5,6. This shift has been facilitated by the availability of high performance

computing platforms and by the development of new and efficient analysis and design algorithms.

In particular, automatic design procedures which use CFD combined with gradient-based optimiza-

tion techniques, have made it possible to remove difficulties in the decision making process faced

by the aerodynamicist.

Typically, in gradient-based optimization techniques, a control function to be optimized (an

airfoil shape, for example) is parameterized with a set of design variables, and a suitable cost

function to be minimized or maximized is defined (drag coefficient, lift/drag ratio, difference from
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a specified pressure distribution, etc). Then, a constraint, the governing equations in the present

study, can be introduced in order to express the dependence between the cost function and the

control function. The sensitivity derivatives of the cost function with respect to the design variables

are calculated in order to get a direction of improvement. Finally, a step is taken in this direction

and the procedure is repeated until convergence to a minimum or maximum is achieved. Finding a

fast and accurate way of calculating the necessary gradient information is essential to developing an

effective design method since this can be the most time consuming portion of the design algorithm.

This is particularly true in problems which involve a very large number of design variables, as is

the case in a typical three-dimensional wing shape design.

The control theory approach has dramatic computational cost advantages over the finite-

difference method of calculating gradients, for which the computational cost is proportional to

the number of design variables. The control theory approach is often called the adjoint method,

since the necessary gradients are obtained via the solution of the adjoint equations of the governing

equations of interest. The adjoint method is extremely efficient since the computational expense

incurred in the calculation of the complete gradient is effectively independent of the number of

design variables. The only cost involved is the calculation of one flow solution and one adjoint

solution whose complexity is similar to that of the flow solution. Control theory was applied in this

way to shape design for elliptic equations by Pironneau 7 and it was first used in transonic flow by

Jameson 1,2,8. Since then this method has become a popular choice for design problems involving

fluid flow 4,9,10,11.

Existing approaches to the adjoint method can be classified into two categories: the continuous

adjoint and discrete adjoint methods. If the adjoint equations are directly derived from the gov-

erning equations and then discretized, they are termed continuous, and if instead they are directly

derived from the discretized form of the governing equations then they are referred to as discrete.

In theory, the discrete adjoint method should give gradients which are closer in value to exact
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finite-difference gradients. On the other hand, the continuous adjoint method has the advantage

that the adjoint system has a unique form independent of the scheme used to solve the flow-field

system. Recently Nadarajah and Jameson performed a detailed gradient comparison study of the

continuous and discrete adjoint approaches using the Euler equations 12 and the Navier-Stokes

equations 13, and found that in typical shape optimization problems in transonic flow the difference

are small enough that they have no significant effect on the final result.

The work of the first author and his associates has mainly been based on the continuous adjoint

method. In fact this method has been successfully used for the aerodynamic design of complete

aircraft configurations 3,14. At an early stage Jameson realized that the true gradient should not

depend on the way the mesh is modified, and thus there must be an adjoint-based formula for the

gradient which is independent of the mesh modification. Motivated by the special case of a mesh

variation with a fixed geometry, he derived a surface integral which replaces the volume integral

part of the adjoint gradient15. During a visit to Sweden in 1999 he learnt that reduced formulas for

the gradient had also been derived by Weinerfelt and Enoksson 16. It was subsequently determined

that these independently derived equations are essentially identical, though their expressions are

different 17. Since our existing software had been very carefully validated, and the computational

cost of evaluating the field integrals is negligible on structured meshes, we did not immediately

pursue the alternative formulation. However, when considering extensions of the method to general

unstructured and overset meshes, the evaluation of formulas based on mesh movement can incur

significant computational costs. Moreover, the equivalence of the alternate gradient formulas is

true only in the continuous limit, and is not exact for the discretized formulas. Thus we feel it is

now useful to make a careful evaluation of the accuracy of the surface gradient formulas.

In the present paper, the new adjoint gradient equations are implemented and tested for various

two-dimensional and three-dimensional design problems, and the accuracy of the resulting derivative

information is investigated by comparison with gradients from the finite-difference, complex-step,
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and original adjoint methods. The finite-difference method is extremely easy to implement. How-

ever the cost of computing gradient information is proportional to the number of design variables

since in the finite-difference method, small steps are taken in each of the design variables inde-

pendently, and then a complete flow solution is computed for each of these steps in order to find

the sensitivity of the cost function with respect to that design variable. Moreover the accuracy of

the finite-difference gradient information depends strongly on the choice of step-size (which is not

known a priori) since a small step-size is desired to reduce the truncation error, but too small a

step-size would also increase subtractive cancellation errors. The complex-step method, introduced

by Lyness and Moler 18, overcomes this difficulty. Since the complex-step formula does not require

any subtraction to yield the approximate derivative, its accuracy is independent of the choice of

step-size though the computational cost is unfortunately still proportional to the number of design

variables. Detailed comparisons of finite-difference versus adjoint gradients are available in the au-

thors previous work 19, using the earlier adjoint formulation. Also comparisons of finite-difference

versus complex-step gradients can be found in the work of Martins et. al. 20 The complex-step

gradient formula has been implemented in the present work in order to provide a better standard

for the present gradient accuracy study.

The General Formulation of the Adjoint Approach to Optimal De-

sign

For flow about an airfoil or wing, the aerodynamic properties which define the cost function are

functions of the flow-field variables, w, and the physical location of the boundary, which may be

represented by the function F , say. Then

I = I (w,F) ,
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and a change in F results in a change

δI =
∂IT

∂w
δw +

∂IT

∂F δF , (1)

in the cost function. Using control theory, the governing equations of the flow field are introduced as

a constraint in such a way that the final expression for the gradient does not require reevaluation of

the flow-field. In order to achieve this δw must be eliminated from (1). Suppose that the governing

equation R which expresses the dependence of w and F within the flow-field domain D can be

written as

R (w,F) = 0. (2)

Then δw is determined from the equation

δR =
[
∂R

∂w

]
δw +

[
∂R

∂F
]
δF = 0. (3)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F δF − ψT

([
∂R

∂w

]
δw +

[
∂R

∂F
]

δF
)

=
{

∂IT

∂w
− ψT

[
∂R

∂w

]}
δw +

{
∂IT

∂F − ψT

[
∂R

∂F
]}

δF .

Choosing ψ to satisfy the adjoint equation

[
∂R

∂w

]T

ψ =
∂I

∂w
(4)

the first term is eliminated, and we find that

δI = GδF , (5)

where

G =
∂IT

∂F − ψT
[
∂R

∂F
]
.

The advantage is that (5) is independent of δw, with the result that the gradient of I with respect

to an arbitrary number of design variables can be determined without the need for additional flow-

field evaluations. In the case that (2) is a partial differential equation, the adjoint equation (4) is

also a partial differential equation and appropriate boundary conditions must be determined.
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After making a step in the negative gradient direction, the gradient can be recalculated and

the process repeated to follow a path of steepest descent until a minimum is reached. In order

to avoid violating constraints, such as a minimum acceptable wing thickness, the gradient may be

projected into the allowable subspace within which the constraints are satisfied. In this way one

can devise procedures which must necessarily converge at least to a local minimum, and which

can be accelerated by the use of more sophisticated descent methods such as conjugate gradient

or quasi-Newton algorithms. There is the possibility of more than one local minimum, but in any

case the method will lead to an improvement over the original design. Furthermore, unlike the

traditional inverse algorithms, any measure of performance can be used as the cost function.

Design using the Euler Equations

The application of control theory to aerodynamic design problems is illustrated in this section for the

case of three-dimensional wing design using the compressible Euler equations as the mathematical

model. It proves convenient to denote the Cartesian coordinates and velocity components by x1,

x2, x3 and u1, u2, u3, and to use the convention that summation over i = 1 to 3 is implied by a

repeated index i. Then, the three-dimensional Euler equations may be written as

∂w

∂t
+

∂fi

∂xi
= 0 in D, (6)

where

w =





ρ

ρu1

ρu2

ρu3

ρE





, fi =





ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH





(7)
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{
E − 1

2

(
u2

i

)}
, (8)

and

ρH = ρE + p (9)

where γ is the ratio of the specific heats.

Consider a transformation to coordinates ξ1, ξ2, ξ3 where

Kij =

[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =

[
∂ξi

∂xj

]
,

and

S = JK−1.

The elements of S are the cofactors of K, and in a finite volume discretization they are just the face

areas of the computational cells projected in the x1, x2, and x3 directions. Using the permutation

tensor εijk we can express the elements of S as

Sij =
1
2
εjpqεirs

∂xp

∂ξr

∂xq

∂ξs
. (10)

Then

∂

∂ξi
Sij =

1
2
εjpqεirs

(
∂2xp

∂ξr∂ξi

∂xq

∂ξs
+

∂xp

∂ξr

∂2xq

∂ξs∂ξi

)

= 0. (11)

Also in the subsequent analysis of the effect of a shape variation it is useful to note that

S1j = εjpq
∂xp

∂ξ2

∂xq

∂ξ3
,

S2j = εjpq
∂xp

∂ξ3

∂xq

∂ξ1
,

S3j = εjpq
∂xp

∂ξ1

∂xq

∂ξ2
. (12)
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Now, multiplying equation(6) by J and applying the chain rule,

J
∂w

∂t
+ R (w) = 0 (13)

where

R (w) = Sij
∂fj

∂ξi
=

∂

∂ξi
(Sijfj) , (14)

using (11). We can write the transformed fluxes in terms of the scaled contravariant velocity

components

Ui = Sijuj

as

Fi = Sijfj =




ρUi

ρUiu1 + Si1p

ρUiu2 + Si2p

ρUiu3 + Si3p

ρUiH




.

Assume now that the new computational coordinate system conforms to the wing in such a way

that the wing surface BW is represented by ξ2 = 0. Then the flow is determined as the steady state

solution of equation (13) subject to the flow tangency condition

U2 = 0 on BW . (15)

At the far field boundary BF , conditions are specified for incoming waves, as in the two-dimensional

case, while outgoing waves are determined by the solution.

The weak form of the Euler equations for steady flow can be written as

∫

D
∂φT

∂ξi
FidD =

∫

B
niφ

T FidB, (16)

where the test vector φ is an arbitrary differentiable function and ni is the outward normal at the

boundary. If a differentiable solution w is obtained to this equation, it can be integrated by parts
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to give
∫

D
φT ∂Fi

∂ξi
dD = 0

and since this is true for any φ, the differential form can be recovered. If the solution is discontinuous

(16) may be integrated by parts separately on either side of the discontinuity to recover the shock

jump conditions.

Suppose now that it is desired to control the surface pressure by varying the wing shape. For

this purpose, it is convenient to retain a fixed computational domain. Then variations in the shape

result in corresponding variations in the mapping derivatives defined by K. As an example, consider

the case of an inverse problem, where we introduce the cost function

I =
1
2

∫ ∫

BW

(p− pd)
2 dξ1dξ3,

where pd is the desired pressure. The design problem is now treated as a control problem where the

control function is the wing shape, which is to be chosen to minimize I subject to the constraints

defined by the flow equations (13). A variation in the shape will cause a variation δp in the pressure

and consequently a variation in the cost function

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3. (17)

Since p depends on w through the equation of state (8–9), the variation δp can be determined

from the variation δw. Define the Jacobian matrices

Ai =
∂fi

∂w
, Ci = SijAj . (18)

The weak form of the equation for δw in the steady state becomes

∫

D
∂φT

∂ξi
δFidD =

∫

B
(niφ

T δFi)dB,

where

δFi = Ciδw + δSijfj ,
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which should hold for any differential test function φ. This equation may be added to the variation

in the cost function, which may now be written as

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3

−
∫

D

(
∂φT

∂ξi
δFi

)
dD

+
∫

B

(
niφ

T δFi

)
dB. (19)

On the wing surface BW , n1 = n3 = 0. Thus, it follows from equation (15) that

δF2 =




0

S21δp

S22δp

S23δp

0




+




0

δS21p

δS22p

δS23p

0




. (20)

Since the weak equation for δw should hold for an arbitrary choice of the test vector φ, we are

free to choose φ to simplify the resulting expressions. Therefore we set φ = ψ, where the costate

vector ψ is the solution of the adjoint equation

∂ψ

∂t
− CT

i

∂ψ

∂ξi
= 0 in D. (21)

At the outer boundary incoming characteristics for ψ correspond to outgoing characteristics for δw.

Consequently one can choose boundary conditions for ψ such that

niψ
T Ciδw = 0.

Then, if the coordinate transformation is such that δS is negligible in the far field, the only re-

maining boundary term is

−
∫ ∫

BW

ψT δF2 dξ1dξ3.
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Thus, by letting ψ satisfy the boundary condition,

S21ψ2 + S22ψ3 + S23ψ4 = (p− pd) on BW , (22)

we find finally that

δI = −
∫

D

∂ψT

∂ξi
δSijfjdD

−
∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (23)

Here the expression for the cost variation depends on the mesh variations throughout the domain

which appear in the field integral. However, the true gradient for a shape variation should not

depend on the way in which the mesh is deformed, but only on the true flow solution. In the next

section we show how the field integral can be eliminated to produce a reduced gradient formula

which depends only on the boundary movement.

The Reduced Gradient Formulation

Consider the case of a mesh variation with a fixed boundary. Then,

δI = 0

but there is a variation in the transformed flux,

δFi = Ciδw + δSijfj .

Here the true solution is unchanged. Thus, the variation δw is due to the mesh movement δx at

fixed boundary configuration. Therefore

δw = ∇w · δx =
∂w

∂xj
δxj (= δw∗)

and since

∂

∂ξi
δFi = 0,
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it follows that

∂

∂ξi
(δSijfj) = − ∂

∂ξi
(Ciδw

∗) . (24)

It is verified below that this relation holds in the general case with boundary movement. Now

∫

D
φT δRdD =

∫

D
φT ∂

∂ξi
Ci (δw − δw∗) dD

=
∫

B
φT Ci (δw − δw∗) dB

−
∫

D
∂φT

∂ξi
Ci (δw − δw∗) dD. (25)

Here on wall boundary

C2δw = δF2 − δS2jfj . (26)

Thus, by choosing φ satisfying the adjoint equation (21) and the adjoint boundary condition (22),

we have finally the reduced gradient formulation that

δI =
∫

BW
ψT (δS2jfj + C2δw

∗) dξ1dξ3

−
∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (27)

For completeness the general derivation of equation(24) is presented here. Using the formula(10),

and the property (11)

∂
∂ξi

(δSijfj)

=
1
2

∂

∂ξi

{
εjpqεirs

(
∂δxp

∂ξr

∂xq

∂ξs
+

∂xp

∂ξr

∂δxq

∂ξs

)
fj

}

=
1
2
εjpqεirs

(
∂δxp

∂ξr

∂xq

∂ξs
+

∂xp

∂ξr

∂δxq

∂ξs

)
∂fj

∂ξi

=
1
2
εjpqεirs

{
∂

∂ξr

(
δxp

∂xq

∂ξs

∂fj

∂ξi

)}

+
1
2
εjpqεirs

{
∂

∂ξs

(
δxq

∂xp

∂ξr

∂fj

∂ξi

)}

=
∂

∂ξr

(
δxpεpqjεrsi

∂xq

∂ξs

∂fj

∂ξi

)
. (28)

Now express δxp in terms of a shift in the original computational coordinates

δxp =
∂xp

∂ξk
δξk.
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Then we obtain

∂

∂ξi
(δSijfj) =

∂

∂ξr

(
εpqjεrsi

∂xp

∂ξk

∂xq

∂ξs

∂fj

∂ξi
δξk

)
. (29)

The term in ∂
∂ξ1

is

ε123εpqj
∂xp

∂ξk

(
∂xq

∂ξ2

∂fj

∂ξ3
− ∂xq

∂ξ3

∂fj

∂ξ2

)
δξk.

Here the term multiplying δξ1 is

εjpq

(
∂xp

∂ξ1

∂xq

∂ξ2

∂fj

∂ξ3
− ∂xp

∂ξ1

∂xq

∂ξ3

∂fj

∂ξ2

)
.

According to the formulas(12) this may be recognized as

S2j
∂f1

∂ξ2
+ S3j

∂f1

∂ξ3

or, using the quasi-linear form(14) of the equation for steady flow, as

−S1j
∂f1

∂ξ1
.

The terms multiplying δξ2 and δξ3 are

εjpq

(
∂xp

∂ξ2

∂xq

∂ξ2

∂fj

∂ξ3
− ∂xp

∂ξ2

∂xq

∂ξ3

∂fj

∂ξ2

)
= −S1j

∂f1

∂ξ2

and

εjpq

(
∂xp

∂ξ3

∂xq

∂ξ2

∂fj

∂ξ3
− ∂xp

∂ξ3

∂xq

∂ξ3

∂fj

∂ξ2

)
= −S1j

∂f1

∂ξ3
.

Thus the term in ∂
∂ξ1

is reduced to

− ∂

∂ξ1

(
S1j

∂f1

∂ξk
δξk

)
.

Finally, with similar reductions of the terms in ∂
∂ξ2

and ∂
∂ξ3

, we obtain

∂

∂ξi
(δSijfj) = − ∂

∂ξi

(
Sij

∂fj

∂ξk
δξk

)
= − ∂

∂ξi
(Ciδw

∗)

as was to be proved.
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Optimization Procedure

The search procedure used in this work is a descent method using a smoothed gradient. Let F

represent the design variable, and G the gradient. An improvement could then be made with a

shape change

δF = −λG. (30)

In fact, however, the gradient G is generally of a lower smoothness class than the shapeF , with

the result that this process may fail to converge or even become unstable. In order to preserve the

smoothness we redefine the gradient to correspond to a weighted Sobolev inner product of the form

< u, v >=
∫ (

uv + ε
∂u

∂ξ

∂v

∂ξ

)
dξ.

Thus we define a modified gradient Ḡ such that

δI =< Ḡ, δF > .

In the one dimensional case, taking Ḡ = 0 at the end points, integration by parts yields

δI =
∫ (

Ḡ − ∂

∂ξ1
ε
∂Ḡ
∂ξ1

)
δFdξ.

Then Ḡ is obtained by solving the smoothing equation

Ḡ − ∂

∂ξ1
ε

∂

∂ξ1
Ḡ = G. (31)

In the multi-dimensional case the smoothing is applied in product form. Finally we set

δF = −λḠ (32)

with the result that

δI = −λ < Ḡ, Ḡ > < 0,
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unless Ḡ = 0, and correspondingly G = 0.

When second-order central differencing is applied to (31), the equation at a given node, i, can

be expressed as

Ḡi − ε
(Ḡi+1 − 2Ḡi + Ḡi−1

)
= Gi, 1 ≤ i ≤ n,

where Gi and Ḡi are the point gradients at node i before and after the smoothing respectively, and

n is the number of design variables equal to the number of mesh points in this case. Then,

Ḡ = AG,

where A is the n× n tri-diagonal matrix such that

A−1 =




1 + 2ε −ε 0 . 0

ε . .

0 . . .

. . . −ε

0 ε 1 + 2ε




.

Now using the steepest descent method in each design iteration, a step, δF , is taken such that

δF = −λAG. (33)

As can be seen from the form of this expression, implicit smoothing may be regarded as a precon-

ditioner which allows the use of much larger steps for the search procedure and leads to a large

reduction in the number of design iterations needed for convergence. Our software also includes an

option for Krylov acceleration 21. We have found this to be particularly useful for inverse problems.

Results

This section presents the results of numerical tests of the new gradient formula. Its accuracy is as-

sessed by comparison with the original adjoint-based, complex-step, and finite-difference gradients.
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Examples are presented for a two-dimensional airfoil design, for a three-dimensional wing inverse

problem, and for the wing redesign of a wing-fuselage combination. In all cases the flow is modeled

by the Euler equations.

Gradient Comparison for Two-Dimensional Design

Figure 1 shows the comparison of the gradients obtained using the reduced adjoint method and the

original adjoint method. Computations were performed for an RAE 2822 airfoil at a fixed coefficient

of lift, Cl = 0.6, and M∞ = 0.75, using a C-mesh of size 192 × 32 for both the flow and adjoint

solutions. Every mesh point on the airfoil was used as a design variable and the pressure drag, Cd

was used for the cost function. In this case, a comparison with finite-difference gradients was not

made, since accurate finite-difference gradients cannot be calculated with the shape discontinuity

caused by movement of a single mesh point. As shown in Figure 1, the gradients obtained using

both the original and new adjoint formulas agree well. Some discrepancies exist around the leading

edge region where the curvature is large. We believe that the new formulas may be sensitive to

details of their discretization in regions of high curvature. Also, since the reduced adjoint gradient

equations are integrals over a surface only, the new formulas are more sensitive to details of their

integration over regions of steep pressure gradient. In fact small differences in gradients are observed

both in the regions of high pressure gradient near the leading-edge and in the regions where the

shock appears.

The following figures show a comparison between the gradients obtained using the adjoint-

based methods, the finite-difference method, and the complex-step technique. In order to avoid

geometric discontinuities, bumps were generated such that, while the same movement of each

mesh point in turn was made as before, one-fourth of the movement was distributed to its two

neighboring points, corresponding to local B-splines. Although more continuous bumps can be

used, this approach was selected in order to generate gradient information similar to the previous
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comparison. Figure 2 illustrates the values of the gradients obtained from the reduced adjoint,

original adjoint, complex-step, and finite-difference methods. In order to eliminate any possible

effect of the flow solution convergence on the finite-difference and complex-step gradient accuracy,

flow solutions were converged to more than 7 orders of magnitude. A step-size, h, of 10−4 of

the distance of first node from the surface was chosen for the finite-difference gradient. Since the

complex-step method has no roundoff error in subtraction, a step-size of 10−6 of the step-size used

for the finite-difference gradient was chosen in order to get an accurate complex-step gradient, with

a negligible truncation error O(h2). Figure 2a shows that the three gradients from the reduced

adjoint, original adjoint, complex-step methods agree quite well, although there is a discrepancy

near the leading edge and at the location of the shock. The difference between the original adjoint

and the complex-step gradient is slightly smaller than that between the reduced and the complex-

step gradient. The difference between the adjoint-based gradients is smaller than that between the

complex-step and adjoint-based gradients. Figure 2b shows the gradient comparison between the

finite-difference and complex-step methods. The difference is the greatest in this case, presumably

due to the sensitivity of the finite-difference gradient to the step-size.

Grid Size Original New Org.-New.

128× 32 1.06e− 01 1.41e− 01 1.11e− 01

192× 32 8.54e− 02 1.21e− 01 8.48e− 02

384× 32 1.62e− 01 2.02e− 01 8.07e− 02

192× 64 8.67e− 02 1.04e− 01 5.46e− 02

192× 96 9.56e− 02 1.09e− 01 4.93e− 02

384× 96 7.27e− 02 8.56e− 02 4.40e− 02

Table 1: Difference between adjoint and complex-step gradient

Table 1 shows values of the normalized difference (for example, ε = ||adjoint−complex||2
||complex||2 ) between
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the adjoint and complex-step gradients using different mesh sizes. The second column depicts the

difference between the original adjoint and complex-step gradients, the third column depicts the

difference between the reduced adjoint and complex-step gradients, and the last column depicts the

difference between the original adjoint and reduced adjoint gradients. The normalized difference

between the complex-step gradients and two adjoint-based gradients does not decrease much as

the mesh interval is decreased, possibly because the bumps are too abrupt to produce reliable flow

variations. However we can see first, that the difference between the original adjoint and complex-

step gradients is always somewhat smaller than the difference between the reduced adjoint and

complex-step gradients; and second, that the difference between the original adjoint and reduced

adjoint gradients decreases as the mesh interval is decreased. Figure 3, 4, and 5 show three of the

gradient comparisons summarized in the table above. It can be seen that the difference near the

leading-edge is reduced, and that the differences are more localized to the regions of high pressure

gradient as the mesh is refined. This verifies the proper formulation of the new reduced adjoint

gradient, while confirming that the new formulas are more sensitive to details of their discretization

in regions of high curvature and high surface pressure gradient. Moreover, as shown in Figure 6,

there are rapid variations in the costate variables across the stagnation point(“∗” in figure), which

is very close to the leading-edge point on the airfoil. The authors believe that the new method may

be more sensitive to large gradients in the costate solution, and this might explain the remaining

difference at the leading-edge regions visible in Figure 5. A detailed study of adjoint solution

behaviour can be found in Giles and Pierce’s previous work 22

Drag Minimization for RAE 2822 Airfoil

In order to validate the usefulness of the reduced adjoint gradient formula in aerodynamic shape

design, a drag minimization for the RAE 2822 airfoil has been performed, and the result has been

compared with the result using the original adjoint gradients. The C-mesh of size 192×32 was used
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and every mesh point on the airfoil was chosen as a design variable. The gradients computed by

both the reduced adjoint and the original adjoint formula were modified by the implicit smoothing

procedure described above. Figure 7 illustrates the drag minimization of the RAE 2822 airfoil using

the reduced adjoint formulation at M∞ = 0.75 and fixed Cl = 0.6. After 12 design iterations, the

initial shock was completely removed and the coefficient of drag has been reduced from Cd = 0.0081

to Cd = 0.0019. Figure 8 shows the same design case using the original adjoint gradients. The lines

drown normal to the airfoils of Figure 7b and Figure 8b represent the gradients calculated. It can

be seen that the differences in the gradients from the two methods result in slightly different airfoils,

showing small differences in the Cp distributions, particularly around the leading-edge. However,

the performance improvements from the two methods are almost identical, with a reduction of 62

drag counts being achieved in the same number of design iterations.

Gradient Comparison for Wing Redesign of Boeing 747 Wing-Body Configura-

tion

A gradient comparison was performed for the Boeing 747 wing-body configuration, in order to

verify the proper implementation of the reduced gradient formulas for three dimensional design

applications. Gradients with repect to mesh points on the wing of the Boeing 747 were computed

using both the original adjoint and reduced adjoint methods on a C-H grid of size 192× 32 × 32.

The surface mesh is shown in Figure 9. The results from the original adjoint and reduced adjoint

are shown respectively in Figure 10a and Figure 10b. Overall the gradients agreed very well all

over the wing surface. In the figures, “I” is the index of mesh which runs from lower trailing-edge

to leading-edge and to upper trailing-edge and “K” is the index of mesh running span-wise from

root wing section to tip wing section. Figure 10c shows the comparison of the gradients at the root

wing section, where the maximum differences were observed, and Figure 10d shows the the gradient

comparison at the wing section of K = 3 where the differences in gradients are the least. Similarly,
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Figure 10e and Figure 10f show the gradients of maximum(I=95) and minimum (I=127) differences

at a fixed “I” repectively. As in the two-dimensional case, the maximum differences were observed

at the leading-edge of the wing.

Drag Minimization for Wing Redesign of Boeing 747 Wing-Body Configuration

For a validation of the use of the reduced adjoint formulation in three-dimensional design, a drag

minimization of the Boeing 747 wing-body configuration was performed by modifying the wing with

the fuselage shape fixed. An Euler calculation was carried out for the wing-body configuration at a

fixed coefficient of lift, CL = 0.425, and M∞ = 0.87 using the same C-H grid of size 192× 32× 32.

Figure 11 shows a comparison of the flow over the initial configuration with that over the improved

configuration after 10 design cycles. The final pressure contours on the upper surface are displayed

in the upper left quadrant, while the other three quadrants superpose the Cp distributions at root,

mid, and tip sections. Color contours of the upper surface pressure before and after the redesign

are displayed in Figure 12. While keeping CL fixed close to 0.425, the total wing drag was reduced

from CD = 0.01047 to CD = 0.00901. It can be seen that the initial shock was completely removed

over the entire wing, while rather small modifications of the each section shape were required.

Wing Inverse Problem

The last demonstration is an application of the new adjoint method for inverse design. The pressure

distribution of the ONERA M6 wing at α = 3◦ and M∞ = 0.84 is taken as the target pressure.

Starting from an initial wing with an NACA0012 section, the ONERA M6 wing is to be recovered

by minimizing the pressure difference from the target pressure. This is a hard problem because it

calls for the recovery of a smooth symmetric profile from an asymmetric pressure distribution with

a double shock pattern. The calculations were performed on a 192× 32× 48 C-H grid. Figure 13a

shows the solution for the wing section of NACA0012 airfoil at M∞ = 0.84 and CL = 0.305. In
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the following figures, the “o” denotes the target pressure distribution, the “+” denotes the current

upper surface pressure, and the “×” denotes the lower surface pressure distribution. After only 10

design cycles, the general shape of the target section at 86% semi-span was recovered, as shown

in Figure 13b. Furthermore 93% of the total reduction in the cost function was achieved in only

20 design cycles. After 100 design iterations the desired target section was completely obtained.

Figure 13d shows a perfect Cp match even inside the shock. Similar point-to-point matches in the

Cp distribution were observed at all span stations. The results for wing sections at 10.9%, 29.7%,

48.4%, and 67.1% semi-span are shown in Figure 14. As can be seen in the figure, the double

shock in each section (λ-shock of the ONERA M6 wing) was completely captured by the redesign.

Finally, Figure 15 illustrates the convergence history: full convergence was obtained in 83 design

cycles.

Conclusion

The methods described in this work are the culmination of ongoing studies over the past 14 years,

since the adjoint method was first formulated for shape optimization in transonic flow 1. The

numerical tests establish that accurate gradient information can be obtained by the new reduced

adjoint formulation. While the original adjoint gradients agree slightly better than the new reduced

adjoint gradients with complex-step gradients, the difference between the original adjoint and re-

duced adjoint gradients decreases as the mesh interval decreases. Although the formulas are not

exactly equivalent for the discretized equations, the optimization process works just as well with

the reduced gradient formula as it did with the original formula. By eliminating the dependence

of the gradient formulas on the mesh perturbation, the new formulas provide the opportunity to

make a drastic simplification of gradient calculations on overset and unstructured meshes.
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Figure 2: Euler drag minimization for RAE2822: Comparison of original adjoint, reduced ad-

joint, complex-step, and finite-difference gradients using 3 mesh-point bumps as design variables.

Grid:192 x 32.
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Figure 5: Euler drag minimization for RAE2822: Comparison of original adjoint, reduced adjoint,

complex-step, and finite-difference gradients using 3 mesh-point bump as design variable. Fine

grid:384 x 96.
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Figure 6: Rapid variation of adjoint variables across the stagnation point

32



RAE 2822                                                                        
MACH   0.750    ALPHA  0.919

CL    0.5992    CD    0.0081    CM   -0.1339
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7a: Initial,Cd = 0.0081, Cl = 0.5992, M∞ = 0.75, α = 0.919◦.
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7b: 12 Design Iterations, Cd = 0.0019, Cl = 0.5912, M∞ = 0.75,

α = 1.260◦.

Figure 7: Euler drag minimization at fixed Cl = 0.6 using reduced gradient formula, RAE 2822

airfoil.
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8a: Initial,Cd = 0.0081, Cl = 0.5992, M∞ = 0.75, α = 0.919◦.
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8b: 12 Design Iterations, Cd = 0.0019, Cl = 0.5959, M∞ = 0.75,

α = 1.034◦.

Figure 8: Euler drag minimization at fixed Cl = 0.6 using original gradient formula, RAE 2822

airfoil.
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Figure 9: 192× 32× 32 C-H grid for wing redesign of Boeing 747 wing-body configuration
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10a: Original adjoint gradient.
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10b: Reduced adjoint gradient.
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10c: Wing section at K = 1.
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10d: Wing section at K = 3.
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10e: Wing span-wise Line with I = 95.
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10f: Wing span-wise Line with I = 127.

Figure 10: Comparison between original adjoint and reduced adjoint gradients for a wing. Test

case: Boeing 747-200, wing-body configuration, M∞ = .87, fixed α = 2.3◦.
36



BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 2.117                                                     
CL:  0.427    CD: 0.00901    CM:-0.1455                                         
Design:  10    Residual:  0.1180E+00                                            
Grid: 193X 33X 33                                                               

Cl:  0.363    Cd: 0.04519    Cm:-0.1405                                         
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.603    Cd: 0.00294    Cm:-0.2214                                         
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.457    Cd:-0.02640    Cm:-0.1983                                         
Tip Section:  88.1% Semi-Span

Cp = -2.0

Figure 11: Solution after 10 design iterations, Euler drag minimization at fixed Cl = 0.425 using

reduced gradient formula, Boeing 747 wing-body. Initial Cp : −−−, Redesigned Cp :
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12a: Initial solution : CD = 0.01047, α = 2.199◦.

12b: Solution after 10 design iterations :

CD = 0.00901, α = 2.177◦.

Figure 12: Pressure contours over the upper surface of the wing. Test case: Boeing 747-200,

wing-body configuration, M∞ = .87, fixed CL = 0.425.
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NACA 0012 WING TO ONERA M6 TARGET                                               
MACH   0.840    ALPHA  2.954      Z     0.86

CL    0.2735    CD   -0.0019    CM   -0.0549
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13a: Initial solution of NACA0012 wing,

CL = 0.305, CD = 0.020, α = 2.954◦.
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13b: After 10 design iterations, CL = 0.304,

CD = 0.015, α = 3.149◦.
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13c: After 20 design iterations, CL = 0.305,

CD = 0.014, α = 3.151◦.

NACA 0012 WING TO ONERA M6 TARGET                                               
MACH   0.840    ALPHA  3.137      Z     0.86

CL    0.2833    CD   -0.0033    CM   -0.0459
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13d: After 100 design iterations, CL = 0.304,

CD = 0.014, α = 3.137◦.

Figure 13: Euler inverse design of NACA 0012 wing to Onera M6 wing. M∞ = .84, fixed CL = .305.

85.9% Semi-Span.
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NACA 0012 WING TO ONERA M6 TARGET                                               
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14a: 10.9% Semi− Span
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14b: 29.7% Semi− Span
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14c: 48.4% Semi− Span
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14d: 67.1% Semi− Span

Figure 14: Target (o) and computed (+) pressure distributions of redesigned Onera M6 wing.

M∞=.84, CL = 0.304, CD = 0.014, α = 3.137◦.
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Figure 15: Convergence history of pressure difference for the inverse wing design.
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