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| Introduction

e High-Lift System Configuration Design

— Wind tunnel testing
— CFD as an Analysis Tool
— Difficulties in Decision Making

e CFD as a Design Tool

— Automatic Design Procedure : CFD + Gradient Based Optimization
— Gradient Based Optimization

* Cost function to be Min/Maximized (Drag, L/D).

« Control function to be Optimized (Airfoil Shape).

« Design Variables (Mesh points, Sine Bump function)

« Constraint (Euler eq. NS eq)

x Gradients (Finite Difference, Complex, Adjoint)

* Optimization Algorithm (Steepest Descent)
— Control Theory Approach or Adjoint Method by Jameson 1988.

e Continuous Adjoint Design Method using the Navier-Stokes equations as a flow
model and the Gradient Accuracy study.

e Application to High-Lift System Design.
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Objectives

1. Viscous Aerodynamic Sensitivity Accuracy Study
e 2D Implementation of a Continuous Adjoint Design Method that uses the
Navier-Stokes equations as a flow model.

e Verification of the Accuracy and Efficiency of the present Continuous Adjoint
Method by comparison with Gradients from Finite Difference Method.

e Demonstration with Preliminary Examples.
2. High-Lift System Design
e Develop numerical optimization tools for design and development of high-lift system
configurations.

e [mprove take-off and landing performance of high-lift systems using a Continuous
Adjoint Design Method.

—Cl,Cd, L/D and Cl,.




Symbolic Description of Continuous Adjoint Method

Let I be the cost (or objective) function

where

I=1(w,F)
w = flow field variables
F = design variables

The first variation of the cost function is

or’ or’

The flow field equation and its first variation are

R(w,F) =0
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Introducing a Lagrange Multiplier, ¢, and using the flow field equation as a

constraint
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By choosing 1 such that it satisfies the adjoint equation
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This reduces the gradient(G) calculation for an arbitrarily large number of design
variables at a single design point to

One Flow Solution
+ One Adjoint Solution




Navier-Stokes Inverse

Adjoint Gradient
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Flowchart of the Design Process
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Navier-Stokes Cj Min. : RAE2822 at Fixed C] = .84
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Advantages of Viscous Adjoint Method Over Finite Differencing

e Computational Cost was Drastically Reduced.

e Required Level of Flow Solver Convergence is Lower than for Finite Differencing.

e Step Insensitive. (In Adjoint Method, Step is only used for Geometry Perturbation.)
e Required Level of Convergence of Adjoint is Minimal.

— More Efficient, More Robust Method for Sensitivity Analysis in Viscous Flows.




High-Lift System Design : SYN103MB

e Design Variables

— Sine Bumps : Shape design for each element.

— Rigging Variables : Gaps, Overlaps and Deflections

— Angle of Attack («) : Cl,,4, maximization




-

e Grid Topology : Multi-block structured, Overall C- and O- mesh topologies.
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Figure 4: Viscous Mesh for 30P30N Multielement Airfoil

e Mesh Perturbation
New grids are generated by shifting the grid points along the radial coordinate lines
depending on the shape boundary modification.







High-Lift System Design : SYN103MB (cont.)

¢ FLO103-MB Methodology
— Runge-Kutta Explicit Time Stepping
— Cell Centered Spatial Discretization
— Jameson-Schmidt-Turkel(JST) Scheme
— Local Time Stepping
— Implicit Residual Smoothing
— Multigridding

e Turbulence

— Spalart-Allmaras One Equation Model solved by ADI Scheme for Multi-Element
Airfoil Designs. ( Dr. Creigh McNeil )

e ADJ103-MB : The same methodology.
e MPI (Message Passing Interface) parallel solution methodology.




FLO103-MB CONVERGENCE HISTORY (SA Model)
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C'p Comparison : M=0.2, & = 8°, Re = 9 x 109, 30P30N
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Stall Prediction : M = 0.2, Re =9 x 109
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Velocity Profiles : M = 0.2 @ = 8° Re = 9 x 10V
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4d: High-Lift Configuration 4e: Comparison of velocity profiles




High-Lift System Design Philosophy

e Neccessary in take-off and landing conditions
— Minimize runway length and Maximize payload.

e Typical Configurations
Take—Off Configuration Landing Configuration

- High Maximum Lift Coefficient — High Maximum Lift Coefficien
- High L/D (Climb) — Less Strict Requirements on

e Approaches

— Take-off : Maximize C1 while maintaining high L/D.
* Fix C'd and Maximize C1 (shape and «)
* Fix Cl and Minimize Cd (shape and «)
— Landing : Maximize Cl without worrying about C'd or L/D.

x Cl,,0, Maximization.




Multi-Element C'l Max. : 30P30N with Fixed C'd=0.065

g g
: g
o :
& 8] % *% & &
F
IR\ '
iy
g N % * g
: \$ S :
& E P, ; % o
g | i z \\_‘] \) 3
5a: Initial, C1=4.0412 5b: 10 Design lteration, C'1=4.1227
M =0.2, a = 16.02°, Re =9 x 105, M =02, a=15.127°, Re =9 x 10°,

C'd = 0.0650 Cd = 0.0661




RAE2822 Clyqr Maximization.

Cl « Maximization for RAE2822 Airfoil (Approah 1)
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RAE2822 Clyqr Maximization.
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RAE2822 Clyqr Maximization Using v and Bump.

CImax Maximization for RAE2822 Airfoil (Approach II)
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|Conclusions and Future Work

e Making use of the Large Computational Savings provided by the Adjoint
Method, a Numerical Optimization Procedure for Designs of
High-Dimensional Design Space has been developed.

e High-Lift System Configuration Design Examples have been performed in order
to validate the Sensitivity Calculation Procedure using our Continuous Viscous
Adjoint Method.

e Further Study of Adjoint Solver and Adjoint Boundary Conditions.

e Enhancement of Design Methods by Survey of Optimization Algorithm and Design
Parameterization.

e [ixtension to More Realistic Problems inculding 3D Design Problems and Multi
Point Designs




