AlIAA 01-0974

A Multi-Code-Coupling Interface for
Combustor/Turbomachinery
Simulations

Sriram Shankaran May-Fun Liou
Juan J. Alonso Nan-Suey Liu
Stanford University NASA Glenn Research Center
Stanford, CA 94305 Cleveland, OH 44135
Roger Davis

United Technologies Research Center
East Hartford, CT 06108

39th AIAA Aerospace Sciences
Meeting and Exhibit
January 8-11, 2001/Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344

AIAA 01-0974

A Multi-Code-Coupling Interface for
Combustor /Turbomachinery Simulations

May-Fun Liou*
Nan-Suey Liu®
NASA Glenn Research Center
Cleveland, OH 44135

Sriram Shankaran*
Juan J. Alonsof
Stanford University
Stanford, CA 94305

Roger Davis'
United Technologies Research Center
FEast Hartford, CT 06108

This paper describes the design, implementation and validation of a method to
couple multiprocessor solvers whose solution domains share a common surface. Using
Message Passing Interface (MPI) constructs, parallel communication pathways are estab-
lished between various simulation codes. These pathways allow applications to exchange
data, synchronize time integrations and reinitialize communication data structures when
meshes change their relative positions. At an interface with another simulation code,
applications request specific flow variables, typically for a ghost/halo layer of cells or
nodes. Numerical estimates of these flow variables are provided by the simulation soft-
ware on the other side of the interface through three-dimensional interpolation. With
an aim at achieving conservative interfacing between applications, particular instances of
the requested flow variables and interpolation stencils will be used for different problems.
Communication tables are built for processes involved with the exchange of information
and all exchanges occur strictly between specific processes, thereby minimizing commu-
nication bottlenecks. This paradigm has been used to build a code coupling interface
for a three-dimensional combustor/turbine interaction simulation in which a new mas-
sively parallel computational fluid dynamic solution procedure for turbomachinery, called
TFLO, has been coupled with an unstructured-grid, parallel procedure for combustors,
called NCC. Numerical and physical issues regarding the exchange of information as
well as the coupling of physics-disparate analyses will be discussed. Several development
test cases have been used to ensure the soundness of the communication procedures. A
multi-component simulation for a dump combustor/exit duct has been performed as a

demonstration of the new interface.

Introduction

OMPUTATIONAL Fluid Dynamic (CFD) sim-

ulations are an essential and integral element
in the design process of modern gas turbine jet en-
gines, providing engineering predictions of aerody-
namic performance, heat transfer, and flow behav-
ior. Steady-state flow predictions are commonplace
for problems ranging in size from the design of an
individual compressor or turbine blade, to large sec-
tions of a complete component such as a combustor
or low-pressure turbine. Entire component unsteady

*Doctoral Candidate, Stanford University

T Assistant Professor, Member ATAA

iAersopace Engineer

§ Aerospace Engineer, Senior Member, ATAA

9United Technologies Research Center

Copyright (© 2001 by the American Institute of Aeronautics and

Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein
for Governmental Purposes. All other rights are reserved by the
copyright owner.

or multi-component steady-flow simulations have not
yet become routine in the design process because of
the exceedingly large resource requirements to perform
these analyses and the disparate flow physics of each
component. However, multi-component interaction ef-
fects, such as combustor /turbine hot streak migration
or compressor/combustor instability, are of great in-
terest, especially at off-design conditions, due to their
adverse effects on performance, durability, and oper-
ability.

Shared and distributed memory parallel computer
systems and networks have helped to greatly extend
the feasible size and reduce the solution time of large-
scale gas-turbine design and analysis problems. Many
new advances in computer hardware, network commu-
nications, and simulation software are required, how-
ever, to bring large-scale simulations into practical,
everyday use. The design and analysis of gas tur-
bine jet engines is not the only engineering or scientific
arena that has these bottlenecks due to the overwhelm-

1 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

ing problem size and the limited computer systems
that can handle them. As a result, the Department of
Energy (DoE) has launched the Accelerated Strategic
Computing Initiative (ASCI) to promote the devel-
opment of massively-large parallel computer systems
and the simulation software that can take advantage of
them. As part of this initiative, the current effort has
focused on developing and demonstrating the capabil-
ity to simulate the steady or unsteady flow through
multi-components of a gas-turbine engine. In addi-
tion, plans for more ambitious simulations which are
currently underway are brielfy mentioned.

In the following sections a detailed description of
the integration framework and an overview of the two
codes, TFLO and NCC is presented. Finally, results
from coupling the two codes for a few model problems
as well as a dump combustor/duct are presented.

Integration Framework

One of the crucial steps in the coupling of different
simulation codes is the need to develop a framework
which allows these codes to communicate with each
other within a parallel computing environment. In
the following sections we outline a method which aims
at developing one such framework. This framework
allows codes to request/provide the necessary data
from/to other codes, synchronize time integration, and
reset communication data structures for meshes in rel-
ative motion. The framework described here has been
developed with the aim of coupling TFLO and NCC.
However, it has been kept as general as possible and
it should be capable of handling multiple code inter-
facing problems. Another aspect of coupling multiple
codes is to identify the numerical nature of the cou-
pling process. There are different ways to arrive at a
numerical scheme and they can be placed in increasing
hierarchy of complexity as

e loosely coupled systems in which the presence of
the interface can be treated by the individual
codes as a boundary condition. This involves no
explicit exchange of values between the partici-
pating codes.

e moderately coupled systems in which the pri-
mary or primitive variables at the interface are
exchanged between codes.

e tightly coupled systems, where in addition to the
primary variables, the fluxes across the interface
are also exchanged.

e simultaneously coupled systems, where algorith-
mic variables required by the numerical schemes
of the individual codes are exchanged.

The integration framework described in the following
sections, aims to result in moderately coupled systems
with possibility of extension to tightly coupled sys-
tems.

Problem Description

The interface between different codes requires the
transfer of information from one code to the other.
Typically, for problems in turbomachinery, an Un-
steady Reynolds Averaged Navier-Stokes (URANS)
code that handles the turbine/compressor requires in-
formation at the entrance/exit of the physical domain
being simulated. This information is to be provided by
the code that handles the combustion process, which
can also be URANS-based or can use a Large Eddy
Simulation (LES) approach. For both cell-centered
and cell-vertex schemes the values of the flow variables
in a row of surrounding halo/ghost cells/nodes need
to be updated with information from the simulation
software handling the opposite side of the interface
(see Figure 1). Hence, to manage the transfer of in-
formation it is necessary to identify ‘donor’ cells for
each halo/ghost cell/node that requests information.
If the identification of this ‘donor’ is performed in
an algorithmically efficient manner, codes which use
different solution methodologies can be coupled ef-
ficiently. In combustor/turbomachinery simulations,
the grids on either side of the interface between the
codes are mostly stationary. However, with emerging
technologies, there is a possibility that in the future
the first blade row of the turbine might be designed to
be set of rotating blades. In this situation, for every
ghost /halo cell, it will become necessary to recompute
its ‘donor’ whenever the grids move relative to each
other. It is also crucial to minimize the amount of in-
formation exchanged so that any bottlenecks that may
arise due to communication may be eliminated. This
is of particular importance in large-scale parallel com-
puting applications, where the cost of the use of the
communication sub-system is relatively high compared
to the cost of actual computing.

In the following sections, we describe the important
steps needed to set-up a framework which allows for
the integration of different simulation codes. Sugges-
tions are made for the naming of the various compo-
nents of the integration framework, as well as for the
algorithmic details of the implementation.

Interface For Multi-Code Integration

The two important steps involved in developing this
framework are :

e Initialization - This step sets up the communica-
tion tables which allow each processor to iden-
tify the processors to/from which it needs to
send /receive information. For each code, the pro-
cessors involved in the interface must also identify
the cells/vertices which will be used to compute
the information requested by the other code. Fur-
thermore, it is necessary to perform this initializa-
tion step whenever the grids in either code move
relative to each other or when any of the grid sys-
tems are adaptively refined.

2 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

e Communication - Once the processors have gath-
ered the requisite information, this second step is
used whenever information has to be exchanged
between the two codes. The communication step
will be used repeatedly during the pseudo-time it-
erations of all participating simulation codes, and,
therefore, extreme care is placed in making this
step as efficient as possible.

For the sake of clarity, the following discussion as-
sumes that the two codes to be interfaced are TFLO
and NCC. However, no inherent assumptions are made
in the methodology and, hence, one should be able to
generalize this method to any pair of grid-based sim-
ulation codes.

Initialization Step

In order to facilitate the integration of component
simulation codes into a single parallel computing en-
vironment, we will make extensive use of user-defined
MPI communicators. The MPI standard allows for
the creation of sets of processors which are grouped ac-
cording to a commonality of the tasks to be performed.
At the very least, every component code should be a
member of a separate communicator. In addition, sub-
groups of processors within a simulation code may also
belong to additional communicators if they perform a
specific task which differentiates them from the other
processors.

The main reason for the introduction of additional
communicators is to restrict global communication op-
erations to only the processors that need to participate
in the communication. In addition, the enrollment of
various processors into a specific communicator allows
a simulation code to provide information to itself and
other component codes without apriori knowledge of
the functions that these codes may perform. Using
such a communicator-based processor decomposition
certain MPI global communication commands (such as
MPI_BCAST and MPI_GATHER) can be restricted to
members of a particular processor subset.

Creation of new Communicators

To distinguish between the processors that are
running TFLO and NCC, all processors running
TFLO will enroll in the TFLO_-WORLD communi-
cator, while those that run NCC will become part
of NCC_WORLD. Moreover, we shall make a fur-
ther distinction within each component code. Those
processors from TFLO that are involved in the com-
munication across the interface will become part of a
new communicator, TFLO_AEE_WORLD, and those
from NCC that perform a complementary role will
enroll in NCC_AEE_WORLD. The AEE portion of
the names of the communicators stands for Arbitrary
Eulerian-Eulerian which represents the types of simu-
lation codes we have thought of in the development of
this environment. In general, a given simulation code

will need to enroll its processors in a communicator
called CODENAME_WORLD, and the subset of its
processors that participate in the exchange of informa-
tion across the interface will become part of the CO-
DENAME_AEE_WORLD communicator. The proces-
sors in CODENAME_AEE_WORLD of one simulation
communicate with their counter-parts in other sim-
ulations through new communicators called CODE-
NAME1_CODENAME2. These communicators are
called inter-communicators in MPI. While coupling
multiple codes a suitable naming strategy can be used
to identify the different inter-communicators. Note
that this strategy can also be used to provide commu-
nication pathways between multiple instances of the
same simulation.

Identification of Processors at the Interface

Once the new interface communicators have been
created, every processor in each simulation code must
determine for itself whether it belongs to either one of
these groups. This determination may be made based
on a variety of criteria. For example, special bound-
ary condition flags may be specified in the input file
of each simulation program. Alternatively, processors
may conduct a series of geometric tests to determine
whether any part of their mesh lies on an apriori de-
fined interface surface. However, this choice is entirely
left to the developers of each simulation program.

Although typically all processors participating in
the communication across the interface will lie directly
on the interface, it is possible that other processors
that do not lie directly on the interface will also have
to provide information. This situation may arise when
the size of the cells on both sides of the interface vary
greatly. In such a situation, the halo of a large cell
may lie inside a processor that is not in direct contact
with the interface. In the event that one or more of
the required cells are not identified, the value of the re-
quested data can be computed from the updated values
of the neighboring cells/nodes in the local processor.

Compilation of Information to Be Requested

Once the processors that are involved in the ex-
change of information are identified and properly en-
rolled into the new communicators, these processors
need to compile a list of locations and variables for
which they require information from the other code.
For each location at which information is needed the
following pieces of information will be compiled:

e Processor ID : ID of the processor in which the
requested location resides.

e Block/Cell/Node ID : Block/Cell/Node number
in the local processor where the information pro-
vided by the other code will be stored. The format
of this data depends greatly on the data structure
used by the simulation code. In TFLO, for exam-

3 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

ple, each processor may handle an arbitrary num-
ber of blocks from the multiblock mesh. However,
a one-dimensional array is used as the underlying
data structure, and then, the Cell/Node ID will
correspond to the position in this one-dimensional
array.

e z,y,z location : Cartesian coordinates at which
interpolated data is required.

e Information Request Flag : This flag is an integer
value which encodes the specific variables, their
number, and the order in which these variables
will be provided. For example, TFLO may request
p, k, and w from NCC, while NCC may only need
p, pu, and T'.

Each processor in TFLO_AEE_-WORLD and
NCC_AEE_WORLD compiles this list which is then
broadcast to all its counterpart processors and only
to them.

The initial exchange of information is to be done in
three ‘steps’.

e During the first ‘step’, each and every pro-
cessor in the TFLO_AEE_WORLD and
NCC_AEE_WORLD groups will broadcast to
the other group the complete list of locations and
additional information described above for that
specific processor.

e The receiving processors must then, in a sec-
ond ‘step’ sort through all the entries in all the
lists provided during the broadcast operation and
identify those that they can provide information
for. Internally, each processor will generate infor-
mation regarding the interpolation weights nec-
essary to provide the information requested, and
will store this information using a data structure
appropriate to the code in question.

e In the final third ‘step’, all processors must com-
municate with those processors they can provide
data to and inform them of the specific requests
that can be fulfilled. In theory, all data requests
by a given processor will be fulfilled by a com-
bination of processors in the group on the other
side of the interface. However, there may be sit-
uations in which this will not be true; orphaned
cells may occur for which the error checking and
extrapolation procedures described below will be
necessary.

Identifying ‘donor’ cells and Send buffers

Each processor that receives the complete list that
is broadcast in the first ‘step’, builds a different list for
each of the processors to which it will provide inter-
polated data during the communication step. Hence,
each processor, scans the entries from all the lists that

are broadcast to it and determines those entries for
which it can provide information. The process of iden-
tifying the entries for which each processor can provide
information is left to the developers of the respective
simulation codes. This task constitutes the second
‘step’ described in the previous section. During the
process of identifying the entries each processor is re-
sponsible for, each processor builds a separate list for
each processor on the other side of the interface to
which it will provide information. The entries in this
list will contain the following entries:

e Processor ID : ID of the processor to which the
data is to be sent to.

e Block/Cell/Node ID : Block/Cell/Node number
on the remote processor to which the data is sent
to.

e Data : Interpolated data that will be used to
update the values in the Cell/Node ID of the pro-
cessor that requested those data.

Each processor in TFLO_AEE_-WORLD and
NCC_AEE_WORLD sends this information to the
appropriate processors on the other side of the inter-
face. The receiving processors map this information,
to an array that is stored locally in each processor, to
determine the cells/nodes that will be updated in the
communication step.

Step three of the above process is illustrated through
the following example. If the list received by proces-
sor 15 (say) which is in TFLO_AEE_WORLD from
processor 48 (say) which is in NCC_AEE_WORLD is

15, 1001, p
15, 2035, p, u, v, p
15, 5019, p

The local array that is built by processor 15 will be

48, 1001, Information Request Flag for p
48, 2035, Information Request Flag for p,u,v,p
48, 5019, Information Request Flag for p

Each receiving processor builds this local array
which contains entries in the order in which they will
be received from the processor that sends this infor-
mation. This local array is built, to prevent the need
to transmit the cell/node ID during the communica-
tion step. Hence, during the communication step, each
processor builds only a list of interpolated data that
it will communicate to the processor that needs the
information in the exact same order specified above.
The local processors, then determine the cells/nodes
to be updated using the pointer list that was compiled
during the initialization step.

4 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

As was mentioned in the previous section, there
might be situations in which some cells/nodes on a pro-
cessor requesting information do not find a donor from
the processors on the other side of the interface. The
local arrays can easily determine the identity of these
orphaned cells/nodes by direct comparison between
the request list and the lists sent by the processors
on the other side of the interface. The simplest way to
handle this scenario would be to use an extrapolation
routine to update the values in this cell/node from its
neighboring values.

The processors in TFLO_AEE_WORLD and
NCC_AEE_WORLD also compile a local array which
allows them to build the send buffers during the
communication step. This list would contain the
following information:

e Processor ID : ID of the processor to which the
requested entry is to be sent to.

e Interpolation weights : These entries are specific
to the nature of the interpolation and they are
to be decided by the developers of the simulation
code. This entry should be programmed to allow
for ease of use of different interpolation stencils.

Communication Step

In the communication step, each processor compiles
a list of interpolated data to be sent. Hence, the send
buffers during the communication step would only con-
tain the following information for each processor:

e Data : Interpolated data that will be used to up-
date the values in the Block/Cell/Node ID of the
processor that requested the data.

Only the actual data is needed here, since the ini-
tialization ‘step’ described in previous sections has
carefully created lists of pointers that translate the
information in an ordered communication buffer into
specific memory locations of the ghost /halo cells of the
receiving processor.

To reiterate, each processor which receives this infor-
mation, then uses the local arrays that it built during
the initialization step, to determine which cell/node
needs to be updated.

Overview of TFLO

The unsteady Reynolds Averaged Navier-Stokes
equations are solved using a cell-centered discretiza-
tion on arbitrary multiblock meshes. The solver is
parallelized using domain decomposition, an SPMD
(Single Program Multiple Data) strategy, and the Mes-
sage Passing Interface (MPI) Standard.!

The solution procedure is based on efficient ex-
plicit modified Runge-Kutta methods with several con-
vergence acceleration techniques such as multigrid,
residual averaging, and local time-stepping. These

techniques, multigrid in particular, provide excellent
numerical convergence and fast solution turnaround.
Turbulent viscosity is computed from a k — w two-
equation turbulence model. The dual-time stepping
technique®™ is used for time-accurate simulations that
account for the relative motion of rotors and stators
as well as other sources of flow unsteadiness.

The multiblock strategy facilitates the treatment of
arbitrarily complex geometries using a series of struc-
tured blocks with point-to-point matching at their in-
terfaces. This point-to-point matching ensures global
conservation of the flow variables. The structure of the
mesh is specified via a connectivity file which allows
for arbitrary orientations of the blocks. Two layers of
halo cells are used for inter-block information transfer
and an efficient communication scheme is implemented
for the halo cell data structures. The load of each pro-
cessor is balanced on the basis of a combination of the
amount of computation and communication that each
processor performs. Communication of halo cell val-
ues is conducted at every stage of the Runge-Kutta
integration and in every level of the multigrid cycle in
order to guarantee fast convergence rates. A general
and parallel efficient procedure has been developed to
handle the inter-blade row interface models, for multi-
stage turbomachinery simulations.

Overview of NCC

The National Combustion Code (NCC)® is an
unstructured-mesh solver for the solution of the time
dependent compressible Navier-Stokes equations with
turbulent combustion. A finite-volume, cell-centered
scheme is employed with the explicit four-stage Runge-
Kutta algorithm to advance the solution. Local
pseudo-time stepping and residual smoothing are used
to accelerate the convergence. Turbulence closure is
obtained via either a high or a low Reynolds number
k — e model. A Lagrangian scheme based on particle
tracking and the dilute spray approximation is used to
solve the liquid-phase equations. NCC has been run
on various massively parallel platforms.

Choice of Variables

The location and choice of variables that are ex-
changed between the participating codes are depen-
dent on how we wish to model the coupled systems at
hand. As mentioned earlier, in this approach we aim
to build a set of moderately coupled systems with the
possibility of extension to tightly coupled systems.

Our experiments with coupling TFLO and NCC re-
vealed that the implementation specifics of each code
also plays an important role in determining the set
of variables. Differing assumptions for the material
properties of air (R, C),,7) in the two codes, produce
differing states of the gas at the interface. This makes
it impossible to derive a set of variables which main-
tains continuity in all variables of interest, namely

5 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

density, pressure, temperature, velocity and energy.
Furthermore, NCC and TFLO model the dimensional
and non-dimensional forms of the governing equations.
This demanded that the two codes have knowledge
of the non-dimensionalization procedure used in the
other code. When the conditions of the flow war-
rant a turbulent simulation, variables that enable the
estimate of the turbulent viscosity need to be ex-
changed. Differing turbulence models in the two codes
required the identification of a new set of turbulence
variables that need to be exchanged at the interface.
Another factor that had to be accounted for was the
disparate numerics in the two codes. For example, the
implementation of pre-conditioning in NCC demands
knowledge of the minimum velocity in the whole com-
putational domain and hence this had to be included
in the set of variables that were exchanged between
the two codes.

To resolve these issues, a choice of variables that
allowed for the primitive variables to be continu-
ous across the interface while allowing for a jump
in the energy was adopted and it has produced the
best set of results for the problems that were tested.
Specifically, in the following analysis, the quantities
that were exchanged between the two codes were:
p, pu, pu, pw, T, p. Note that this set will provide con-
tinuity in the primitive variables but there will be a
jump in the energy due to the differing methods to es-
timate the energy. This set of variables loosely couples
the systems in question. Extensions can be made to
this set to include the fluxes through the appropriate
cell faces on either side of the interface. However, this
demands the knowledge of the intersection of the pla-
nar grid from either side of the interface, a challenging
task while coupling unstructured and structured grids.
The above set of variables were requested for the cell
centers of the two layers of face halo cells in TFLO
and the cell and face center values of the one layer of
halo cells in NCC. For turbulent flow simulations, in
addition to the set of variables mentioned above, the
turbulent kinetic energy and the turbulent viscosity
were exchanged between the two codes. However, this
did not provide satisfactory answers. Further research
is required to determine an optimal set.

Results

The results from using this integration module to
couple TFLO to NCC for a few model problems are
presented in this section.

Coupling TFLO and TFLO
Inviscid Transonic flow over a bump

The inviscid transonic flow over a two dimensional
bump was modeled by dividing the domain into two
equal regions. The two sub-domains form an interface
at the maximum height of the bump (Figure 2). The
integration module was used to exchange information

across the interface. The inlet Mach number was held
at 0.675 and the ratio of the back pressure to the inlet
total pressure was held at 0.737. The individual blocks
are structured grids and have dimensions 32 x 17 x 9.
The pressure contours of the steady state flow-field are
shown in Figure 3 (a). The contours are fairly contin-
uous through the interface suggesting that no spurious
disturbances were introduced by the coupling process.
The convergence histories of the two codes were also
not significantly affected by the coupling process.

Coupling NCC and NCC
Inviscid Transonic flow over a bump

The same procedure that was done to couple TFLO
to TFLO was repeated with NCC. The grids, inlet and
exit conditions were the same as was used in coupling
TFLO to TFLO. The pressure contours obtained from
this coupling process are shown in Figure 3 (b). Note
that the contours are continuous through the interface.

Coupling NCC and TFLO
Inviscid Transonic flow over a bump

The flow over the bump was now modeled by cou-
pling TFLO and NCC. NCC was used on the left half
of the bump and TFLO was used on the down-stream
side. The inlet Mach number and exit conditions were
the same as before. The pressure contours are shown
in Figure 4. Again, the contours are fairly continu-
ous through the interface. A few of the contours are
not strictly continuous which could be resolved by a
more optimal set of variables that are exchanged be-
tween the TFLO and NCC. Also, note that the ranges
of color scales are slightly different between the two
figures.

Dumyp combustor/Duct

The inviscid flow through a backward facing circular
channel is modeled by coupling NCC and TFLO. NCC
simulates the region within the dump combustor and
TFLO handles the flow through the duct (Figure 5).
NCC uses an unstructured tetrahedral grid (13922 el-
ements) and TFLO uses a multi-block structured grid
(5 blocks, each of dimension 17 x 17 x 17). The grid
for the whole geometry is shown in Figure 5. The inlet
velocity to the dump combustor was fixed at 10 m/s
and the back pressure was held at at 1 atm. The veloc-
ity vectors are shown in Figure 6. The uniform flow
down-stream of the dump combustor passes through
the interface and exits through the duct. There are no
noticeable glitches near the interface suggesting that
the numerical errors introduced by the interface are
negligible.

Conclusions

The development of a framework to integrate mul-
tiple simulations was outlined in this paper. The
framework was tested for a few model problems by
coupling the participating codes (TFLO and NCC) to

6 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

one another and to themselves. The computational
results from these experiments validate the implemen-
tation of the interface code. Further research needs to
be done to identify a general ‘rule’ to determine an op-
timal set of flow variables that the participating codes
will exchange. Ongoing work is focussed on coupling
turbulent simulations and future work will aim at cou-
pling a turbulent combustion simulation to a turbulent
flow simulation in the turbine.

Acknowledgements

The authors would like to thank the U.S. Depart-
ment of Energy (DoE) for its generous support under
the ASCI Program. We would also like to thank
Dr. Jixian Yao, Stanford University, Dr. T. H.
Shih, NASA Glenn Research Center, for generating
the TFLO and NCC grids respectively for the dump
combustor and Dr. Jeff Modor for the valuable dis-
cussions on the NCC integration framework. The
authors would also wish to thanks United Technolo-
gies Research Center, and Pratt and Whitney for their
support.

References

1Yao, J., Jameson, A., Alonso, J. J., and Liu, F., “Devel-
opment and Validation of a Massively Parallel Flow Solver for
Turbomachinery Flows,” ATAA Paper 00-0882, Reno, NV, Jan-
uary 2000.

2Jameson, A., “Time Dependent Calculations Using Multi-
grid, with Applications to Unsteady Flows Past Airfoils and
Wings,” ATAA Paper 91-1596, ATAA 10th Computational Fluid
Dynamics Conference, Honolulu, HI, June 1991.

3Alonso, J. J., Martinelli, L., and Jameson, A., “Multigrid
Unsteady Navier-Stokes Calculations with Aeroelastic Applica-
tions,” ATIAA Paper 95-0048, AIAA 33rd Aerospace Sciences
Meeting and Exhibit, Reno, NV, 1995.

4Belov, A., Martinelli, L., and Jameson, A., “Three-
Dimensional Computations of Time-Dependent Incompressible
Flows with an Implicit Multigrid-Driven Algorithm on Parallel
Computers,” Proceedings of the 15th International Conference
on Numerical Methods in Fluid Dynamics, Monterey, CA, June
1996.

5Liu, N.-S. and Quealy, A., “A Multidisciplinary De-
sign/Analysis Tool for Combustion,” NASA CP 1999-208757,
NASA HPCCP/CAS Workshop Proceeding, Cleveland,OH,
January 1999.

7 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

Halo/Ghost Cells for Structured and Unstructured Grids

d
¥ 1
'y /
[
\
[
2R .
Second First First Second

Fig. 1 Grid structures for TFLO and NCC

L]
| HH H1]
HEEE Tt
|] |]|
ANERE 1]
- e m -4
L 1]]
L H—
| |
E 1
EENF EEREEE
|| 1] |- |
1 H
-'-"--—. - — _.\-.\-"—'\-
| |- -] |
[H11]
L T -1 H
=11 -

- [T [-
rH- [[H 1
[TH ul 1
T =aingd
11 -
[i

Fig. 2 Section of the grid

8 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

P
12327.5
8517
4706.5
896

-2914.5
-6725
-10535.5
-14346
-18156.5
-21967
-25777.5
-29588
-33398.5
-37209
-41019.5

b)
Fig. 3 Transonic Bump : a) TFLO coupled to TFLO, b) NCC coupled to NCC

P
82584 .3
790815
755788
72078

685732
650705
B1BB7.7
HB0BS

H4BE2 .2
510584
475BB.7
44053 .9
40585811
370484
330458

)

b)
Fig. 4 NCC coupled to TFLO, a) NCC, b) TFLO

9 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

Fig. 5 NCC coupled to TFLO, Grids for Dump Combustor/duct

—_ o . . e

S o o o o o S S oS S o o
- - I L
D D S A
. L L L A L L LT
D D
—_ = Y~ Y Y Y —
- I O L D I L T
A S e
. T ===
S S S S o o S o S s S o
oo o D I o T T T
o s s s 4 o < e s o
= = = LT
- B e~ i — - — e — o — —— i — i — - —4
ER=E————— 1 F I F I

a) b)
Fig. 6 NCC coupled to TFLO, a) NCC, b) TFLO

10 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-0974

