A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization

Juan J. Alonso
Department of Aeronautics & Astronautics
Stanford University
jjalonso@stanford.edu

Lecture 19
Outline

• Introduction to Optimization
 – Survey of available optimization methods
 – Approaches to sensitivity analysis
 – Performance of direct vs. adjoint method

• Theory of the adjoint method

• The adjoint system for the Euler equations

• Reduced gradient formulation

• Some results and examples
minimize \(I(x) \)

\(x \in \mathbb{R}^n \)

subject to \(g_m(x) \geq 0, \quad m = 1, 2, \ldots, N_g \)

- \(I \): objective function, output (e.g. structural weight).

- \(x_n \): vector of design variables, inputs (e.g. aerodynamic shape); bounds can be set on these variables.

- \(g_m \): vector of constraints (e.g. element von Mises stresses); in general these are nonlinear functions of the design variables.
Optimization Methods

• **Intuition:** decreases with increasing dimensionality.

• **Grid or random search:** the cost of searching the design space increases rapidly with the number of design variables.

• **Evolutionary/Genetic algorithms:** good for discrete design variables and very robust; are they feasible when using a large number of design variables?

• **Nonlinear simplex:** simple and robust but inefficient for more than a few design variables.

• **Gradient-based:** the most efficient for a large number of design variables; assumes the objective function is “well-behaved”. Convergence only guaranteed to a local minimum.
Gradient-Based Optimization: Design Cycle

- Analysis computes objective function and constraints (e.g. aero-structural solver)
- Optimizer uses the sensitivity information to search for the optimum solution (e.g. sequential quadratic programming)
- Sensitivity calculation is usually the bottleneck in the design cycle, particularly for large dimensional design spaces.
- Accuracy of the sensitivities is important, specially near the optimum.
Sensitivity Analysis Methods

- **Finite Differences**: very popular; easy, but lacks robustness and accuracy; run solver N_x times.

\[
\frac{df}{dx_n} \approx \frac{f(x_n + h) - f(x)}{h} + O(h)
\]

- **Complex-Step Method**: relatively new; accurate and robust; easy to implement and maintain; run solver N_x times.

\[
\frac{df}{dx_n} \approx \text{Im} \left[\frac{f(x_n + ih)}{h} \right] + O(h^2)
\]

- **Algorithmic/Automatic/Computational Differentiation**: accurate; ease of implementation and cost varies.

- **(Semi)-Analytic Methods**: efficient and accurate; long development time; cost can be independent of N_x.
Finite-Difference Derivative Approximations

From Taylor series expansion,

\[f(x + h) = f(x) + hf'(x) + \frac{h^2 f''(x)}{2!} + \frac{h^3 f'''(x)}{3!} + \ldots. \]

Forward-difference approximation:

\[\Rightarrow \frac{df(x)}{dx} = \frac{f(x + h) - f(x)}{h} + O(h). \]

\[
\begin{array}{|c|c|}
\hline
f(x) & 1.234567890123484 \\
\hline
f(x + h) & 1.234567890123456 \\
\Delta f & 0.00000000000000028 \\
\hline
\end{array}
\]
Complex-Step Derivative Approximation

Can also be derived from a Taylor series expansion about x with a complex step ih:

$$f(x + ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \ldots$$

$$\Rightarrow f'(x) = \frac{\text{Im}[f(x + ih)]}{h} + h^2 \frac{f'''(x)}{3!} + \ldots$$

$$\Rightarrow f'(x) \approx \frac{\text{Im}[f(x + ih)]}{h}$$

No subtraction! Second order approximation.
Estimate derivative at $x = 1.5$ of the function,

$$f(x) = \frac{e^x}{\sqrt{\sin^3 x + \cos^3 x}}$$

Relative error defined as:

$$\varepsilon = \left| \frac{f'(x) - f'_{ref}}{|f'_{ref}|} \right|$$
Challenges in Large-Scale Sensitivity Analysis

• There are efficient methods to obtain sensitivities of many functions with respect to a few design variables - Direct Method.

• There are efficient methods to obtain sensitivities of a few functions with respect to many design variables - Adjoint method.

• Unfortunately, there are no known methods to obtain sensitivities of many functions with respect to many design variables.

• This is the curse of dimensionality.
Outline

• Introduction to Optimization
 – Survey of available optimization methods
 – Approaches to sensitivity analysis
 – Performance of direct vs. adjoint method

• Theory of the adjoint method

• The adjoint system for the Euler equations

• Reduced gradient formulation

• Some results and examples
Symbolic Development of the Adjoint Method

Let I be the cost (or objective) function

$$I = I(w, F)$$

where

$$w = \text{flow field variables}$$

$$F = \text{grid variables}$$

The first variation of the cost function is

$$\delta I = \frac{\partial I^T}{\partial w} \delta w + \frac{\partial I^T}{\partial F} \delta F$$

The flow field equation and its first variation are

$$R(w, F) = 0$$
\[\delta R = 0 = \left[\frac{\partial R}{\partial w} \right] \delta w + \left[\frac{\partial R}{\partial F} \right] \delta F \]

Introducing a Lagrange Multiplier, \(\psi \), and using the flow field equation as a constraint

\[\delta I = \frac{\partial I}{\partial w}^T \delta w + \frac{\partial I}{\partial F}^T \delta F - \psi^T \left\{ \left[\frac{\partial R}{\partial w} \right] \delta w + \left[\frac{\partial R}{\partial F} \right] \delta F \right\} \]

By choosing \(\psi \) such that it satisfies the adjoint equation

\[\left[\frac{\partial R}{\partial w} \right]^T \psi = \frac{\partial I}{\partial w} \]

we have

\[\delta I = \left\{ \frac{\partial I}{\partial F}^T - \psi^T \left[\frac{\partial R}{\partial F} \right] \right\} \delta F \]
This reduces the gradient calculation for an arbitrarily large number of design variables at a single design point to

\[
\begin{align*}
\text{One Flow Solution} \\
+ \text{ One Adjoint Solution}
\end{align*}
\]
Design Cycle

Flow Solver

Adjoint Solver

Gradient Calculation
 - Aerodynamics
 - sections
 - planform
 - Structure

Shape & Grid Modification

Design Cycle repeated until Convergence
Outline

• Introduction to Optimization
 – Survey of available optimization methods
 – Approaches to sensitivity analysis
 – Performance of direct vs. adjoint method

• Theory of the adjoint method

• The adjoint system for the Euler equations

• Reduced gradient formulation

• Some results and examples
Design Using the Euler Equations

In a body-fitted coordinate system, the Euler equations can be written as

$$\frac{\partial W}{\partial t} + \frac{\partial F_i}{\partial \xi_i} = 0 \quad \text{in } D,$$

where

$$W = Jw,$$

and

$$F_i = S_{ij}f_j.$$

Assuming that the surface being designed, B_W, conforms to the computational plane $\xi_2 = 0$, the flow tangency condition can be written as

$$U_2 = 0 \quad \text{on } B_W.$$
Formulation of the Design Problem

Introduce the cost function

\[I = \frac{1}{2} \int \int_{B_W} (p - p_d)^2 d\xi_1 d\xi_3. \]

A variation in the shape will cause a variation \(\delta p \) in the pressure and consequently a variation in the cost function

\[\delta I = \int \int_{B_W} (p - p_d) \delta p \ d\xi_1 d\xi_3. \] (3)

Since \(p \) depends on \(w \) through the equation of state the variation \(\delta p \) can be determined from the variation \(\delta w \). Define the Jacobian matrices

\[A_i = \frac{\partial f_i}{\partial w}, \quad C_i = S_{ij} A_j. \] (4)
The weak form of the equation for δw in the steady state becomes

$$
\int_{\mathcal{D}} \frac{\partial \psi^T}{\partial \xi_i} \delta F_i d\mathcal{D} = \int_{\mathcal{B}} (n_i \psi^T \delta F_i) d\mathcal{B},
$$

where

$$
\delta F_i = C_i \delta w + \delta S_{ij} f_j.
$$

Adding to the variation of the cost function

$$
\delta I = \int \int_{\mathcal{B}_W} (p - p_d) \delta p \ d\xi_1 d\xi_3 \\
- \int_{\mathcal{D}} \left(\frac{\partial \psi^T}{\partial \xi_i} \delta F_i \right) d\mathcal{D} \\
+ \int_{\mathcal{B}} (n_i \psi^T \delta F_i) d\mathcal{B},
$$

which should hold for an arbitrary choice of ψ. In particular, the choice
that satisfies the adjoint equation

\[
\frac{\partial \psi}{\partial t} - C_i^T \frac{\partial \psi}{\partial \xi_i} = 0 \quad \text{in } D, \tag{6}
\]

subject to far field boundary conditions

\[
n_i \psi^T C_i \delta w = 0,
\]

and solid wall conditions

\[
S_{21} \psi_2 + S_{22} \psi_3 + S_{23} \psi_4 = (p - p_d) \quad \text{on } B_W, \tag{7}
\]

yields and expression for the gradient that is \textit{independent} of the variation in the flow solution \(\delta w\):

\[
\delta I = - \int_D \frac{\partial \psi^T}{\partial \xi_i} \delta S_{ij} f_j dD
\]

\[
- \int \int_{B_W} (\delta S_{21} \psi_2 + \delta S_{22} \psi_3 + S_{23} \psi_4) p d\xi_1 d\xi_3. \tag{8}
\]
Outline

• Introduction to Optimization
 – Survey of available optimization methods
 – Approaches to sensitivity analysis
 – Performance of direct vs. adjoint method

• Theory of the adjoint method

• The adjoint system for the Euler equations

• Reduced gradient formulation

• Some results and examples
Consider the case of a field mesh variation with a fixed boundary. Then,

$$\delta I = 0,$$

but there is a variation in the transformed flux,

$$\delta F_i = C_i \delta w + \delta S_{ij} f_j.$$

Here the true solution is unchanged, so the variation δw is due to the field mesh movement δx. Therefore

$$\delta w = \nabla w \cdot \delta x = \frac{\partial w}{\partial x_j} \delta x_j \ (= \delta w^*),$$

and since

$$\frac{\partial}{\partial \xi_i} \delta F_i = 0,$$
it follows that

\[\int_D \psi^T \frac{\partial}{\partial \xi_i} (\delta S_{ij} f_j) \, dD = - \int_D \psi^T \frac{\partial}{\partial \xi_i} (C_i \delta w^*) \, dD. \] (9)

A similar relationship has been derived in the general case with boundary movement and the complete derivation will be presented in an upcoming conference paper. Now

\[\int_D \psi^T \delta R dD = \int_D \psi^T \frac{\partial}{\partial \xi_i} C_i (\delta w - \delta w^*) dD \]

\[= \int_B \psi^T C_i (\delta w - \delta w^*) dB \]

\[- \int_D \frac{\partial \psi^T}{\partial \xi_i} C_i (\delta w - \delta w^*) dD. \] (10)

By choosing \(\psi \) to satisfy the adjoint equation (6) and the adjoint boundary
condition (7), we have finally the reduced gradient formulation

$$\delta I = \int_{B_W} \psi^T (\delta S_{2j} f_j + C_2 \delta \omega^*) d\xi_1 d\xi_3$$

$$- \int_{B_W} (\delta S_{21} \psi_2 + \delta S_{22} \psi_3 + S_{23} \psi_4) p d\xi_1 d\xi_3,$$

which only involves surface integrals.

We have tested this formulation in two- and three-dimensional flows and the results are encouraging for both direct gradient comparisons and actual optimization.
Figure 1: Euler Drag Minimization for RAE2822: Comparison of Original Adjoint, Reduced Adjoint and Finite-Difference Gradients Using 3 Mesh-Point Bump as Design Variable.
BOEING 747 WING-BODY
Mach: 0.930 Alpha: 1.117
CL: 0.360 CD: 0.01141 CM:-0.1448
Design: 15 Residual: 0.6726E-01
Grid: 193X 33X 33

Cp = -2.0

Tip Section: 88.1% Semi-Span
Cl: 0.353 Cd:-0.02390 Cm:-0.1744

Cp = -2.0

Root Section: 16.1% Semi-Span
Cl: 0.304 Cd: 0.04729 Cm:-0.1411

Cp = -2.0

Mid Section: 50.4% Semi-Span
Cl: 0.526 Cd: 0.00681 Cm:-0.2288
Adjoint Design Software

The adjoint for the Euler and Navier-Stokes equations has been implemented into the following codes:

- SYN87: Wing-alone Euler C-H mesh.
- SYN88: Wing-body Euler C-H mesh.
- SYN107: Wing-body N-S C-H mesh.
- SYN87-MB: Arbitrary configuration, Euler, multiblock mesh.
- SYN107-MB: Arbitrary configuration, N-S, multiblock mesh.
- SYNPLANE: Arbitrary configuration, Euler, unstructured mesh.
Adjoint Design Projects

Adjoint methods (Euler and/or N-S) have been used with the following configurations:

- Boeing 747-200
- McDonnell Douglas MDXX
- Raytheon Premier I
- NASA High Speed Civil Transport
- Reno Air Racer
- IPTN N2130
- Other projects at BAE, DLR, NLR, etc.
- Research configurations (subsonic, transonic, supersonic)