1998/1999 AIAA Foundation Graduate Team Aircraft Design Competition:

Super STOL Carrier On-board Delivery Aircraft

Patrick A. LeGresley, Teal Bathke, Angel Carrion, Jose Daniel Cornejo, Jennifer Owens, Ryan Vartanian, Juan J. Alonso, Ilan Kroo

Department of Aeronautics and Astronautics
Stanford University

World Aviation Congress
San Diego, California
October 10, 2000
Outline

• Design Requirements & Design Philosophy
• Preliminary Weight & Performance Sizing
• Configuration Selection & Component Design
• Propulsion Selection & Installation
• Structural Layout
• Drag Estimation
• Performance Analysis
• Cost Estimation
• Design Optimization
• Conclusions
Design Requirements

- Super Short Takeoff and Landing (SSTOL) aircraft to provide center-city to center-city travel using river “barges”
- Also fulfill needs of US Navy to replace the C-2 Greyhound for Carrier On-Board Delivery (COD)
Design Requirements (cont.)

- Takeoff ground roll of **300 ft**, landing ground roll of **400 ft**
- 1500 nm cruise at 350 knots
- Payload of 24 passengers and baggage for commercial version
- Payload of 10,000 lb, capable of carrying two GE F110 engines for the F-14D, and a spot factor of 60 ft by 29 ft for military version
- **Arresting hooks or catapult devices not allowed!**
- Technology availability date is 2005
Design Philosophy

- Investigated two design approaches: tilt-wing and fixed-wing with upper surface blowing (USB) flaps
- Tilt-wing (as opposed to tilt-rotor) concept demonstrated by Canadair CL-84 and XC-124
- USB flaps utilized on NASA Quiet Short-haul Research Aircraft (QSRA) and Boeing YC-14
Preliminary Weight & Performance

• Used to estimate weight, wing area, and thrust or power to meet performance constraints (cruise speed and range, takeoff and landing ground rolls)

• Fixed-wing with USB flaps:
 – 48,635 lb takeoff weight
 – 1000 sq ft wing area
 – 30,000 lb installed thrust

• Tilt-wing:
 – 59,922 lb
 – 700 sq ft wing area
 – 10,500 installed horsepower
Fuselage

- Fuselage laid out around engine containers:

 Total of 4 containers for the 2 GE F110 Engines
Fuselage (cont.)

Military Version with two GE F110 engines for F-14D

Passenger version with accommodation for 24 passengers
Wing

- Highly constrained by spot factor requirement (60 ft x 29 ft, wing folding allowed)
- Final design incorporated wing pivoting and folding
Propulsion & High Lift

- Two different concepts for high lift:

 (I) Airflow over wing without BLC
 (II) USB Concept
 (III) BLC used to delay boundary layer build-up

Upper Surface Blowing (USB) Flaps

Tilt-wing
Propulsion & High Lift (cont.)

- Analyzed using methodology in *Aerodynamics of V/STOL Flight* by McCormick
- Flight test and wind tunnel data for ‘sanity’ check

![Graph showing variation of lift coefficient](image)

Sample Variation of Lift Coefficient

\[
\delta_f = 10 \text{ deg} \\
\alpha_f = 0 \text{ deg} \\
C_{\mu} = \frac{\text{Thrust}}{q_{\text{bar}} S_{\text{ref}}}
\]
Structural Layout

- Based on ‘typical’ configurations of cargo aircraft and consists of frames, longerons, ribs, and spars
- Efforts to make use of advanced materials where useful and cost effective
Cardinal Design Project
Stanford University

Wing Structure
Empennage Structure
Drag Estimation

- Drag build-up approach: drag of each major component computed, plus interference effects
- Induced drag computed as function of wing/body lift coefficient

![Drag Polar and L/D vs. CL for M = 0.61](image)
Cardinal Design Project
Stanford University

Performance Analysis

- Equations of motion numerically integrated to compute takeoff and landing ground roll
- Climb rate calculated from engine data & drag polar

Takeoff and Landing Ground Rolls

AEO Climb Rate

Graphs depicting takeoff and landing ground roll as a function of weight, and AEO climb rate as a function of Mach number.
Performance (cont.)

- Specific range computed from drag polar and engine data for various weights
- Range calculated by integrating specific range, taking into account reserves requirements

![Graph showing Specific Range and Payload-Range](image)

Specific Range
- Valid for h = 37,000 ft

Payload-Range
- Design Payload
- Ferry Range
Cost Estimation

- Cost estimation method based on statistical data gathered for many existing aircraft
- Research, Development, Test, and Engineering (RDTE), Acquisition, Operating, and Disposal costs were computed, leading to the Life Cycle Cost (LCC)

Military Version Operating Costs: 8.44US$/nm
Commercial Version Operating Costs: 8.16US$/nm
Block Distance: 1500 nm

Operating Cost Breakdown

- Flying: 27%
- Maintenance: 17%
- Depreciation: 6%
- Landing Fees/Nav./Taxes: < 1%
- Financing: 24%
- Indirect: 26%

Military Version Life Cycle Cost: $155B (750 military airplanes)
Commercial Version Life Cycle Cost: $149B (750 commercial airplanes)
Design Optimization

• Various subsystem analyses (high lift, weight, propulsion, performance, cost, etc.) were combined into a collaborative optimization code

• The goal of the optimization was to produce the best design (in this case as measured by life cycle cost) which met all of the design requirements – takeoff and landing ground roll, cruise speed and range

• Constraints for FAR / MIL certification such as stability, climb gradients, tipover, etc. were also applied
Design Optimization (cont.)

Cardinal Design Project
Stanford University
Design Optimization (cont.)

- A final design was selected based on the relative costs of the various designs:

Cost Comparison

<table>
<thead>
<tr>
<th></th>
<th>Vertical Takeoff Tiltwing</th>
<th>Short Takeoff Tiltwing</th>
<th>Short Takeoff Fixed Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>$9.06/nm</td>
<td>$7.82/nm</td>
<td>$7.03/nm</td>
</tr>
<tr>
<td>IOC</td>
<td>$1.81/nm</td>
<td>$1.56/nm</td>
<td>$1.41/nm</td>
</tr>
<tr>
<td>Fuel Price</td>
<td>$1.20/gal</td>
<td>$1.20/gal</td>
<td>$1.20/gal</td>
</tr>
<tr>
<td>Engine Price (per engine)</td>
<td>$1.09 M</td>
<td>$0.81 M</td>
<td>$0.52 M</td>
</tr>
<tr>
<td>AEP</td>
<td>$20.8 M</td>
<td>$18.0 M</td>
<td>$17.1 M</td>
</tr>
<tr>
<td>AMP</td>
<td>$19.7 M</td>
<td>$17.3 M</td>
<td>$16.7 M</td>
</tr>
<tr>
<td>LCC</td>
<td>$200.6 B</td>
<td>$172.1 B</td>
<td>$154.7 B</td>
</tr>
</tbody>
</table>

Final Three-View
Trade Study on Performance Requirements

- Although performance requirements were specified, constraints were varied to analyze effect on LCC
- One of the more interesting is that for takeoff ground roll:

![Variation of Life Cycle Cost with Takeoff Ground Roll Constraint](image)
Conclusions

• Upper Surface Blowing (USB) flaps and tilt-wing considered as means to achieve Super Short Takeoff and Landing (SSTOL)

• Subsystem analyses methods developed for use in collaborative optimization

• A fixed-wing design with USB flaps was selected for its lower Life Cycle Cost

• Design studies showed that a relaxed takeoff constraint would have a significant effect on Life Cycle Cost